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Abstract—Crowdsourcing approaches rely on the collection of
multiple individuals to solve problems that require analysis of
large data sets in a timely accurate manner. The inexperience
of participants or annotators motivates well robust techniques.
Focusing on clustering setups, the data provided by all annotators
is suitably modeled here as a mixture of Gaussian compo-
nents plus a uniformly distributed random variable to capture
outliers. The proposed algorithm is based on the expectation-
maximization algorithm and allows for soft assignments of data
to clusters, to rate annotators according to their performance,
and to estimate the number of Gaussian components in the non-
Gaussian/Gaussian mixture model, in a jointly manner.

Index Terms—Crowdsourcing, Gaussian plus non-Gaussian Mix-
ture, Outlier, EM algorithm, Bayesian Information Criterion

I. INTRODUCTION

PARAMETER estimation of mixture distributions has
well-documented merits for unsupervised learning tasks

encountered in general-purpose clustering applications for
various data mining and machine learning applications in-
cluding image or speech analysis. Clustering algorithms are
particularly relevant to applications using a crowdsourcing
methodology1, which leverages multiple individuals having
access to large data sets instead of relying on a single ex-
pert. In a considerable number of crowdsourcing applications,
annotators are asked to click on specific structures of an
image. However, the whole process is severely error-prone
since annotators are usually non-experts [1]. For instance, in
the MalariaSpot project [2] annotators are asked to identify
malaria parasites in digitized blood smears through an online
game for an early malaria diagnosis, but they often mistake
parasites with other cells such as leukocytes, for instance;
in the Microscope Masters project [3], annotators must pick
out proteins in electron microscopy images for biological
molecule reconstruction but, instead, they mark smudges or
proteins that are clumped together. Other erroneous clicks do
not correspond to any particular structure, and are just placed
on random parts of the image; see e.g. Fig. 2 in [2].

The standard approach to process the unreliable data col-
lected by crowdsourcing applications consists of two steps.
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1A representative sample of crowdsourcing projects can be found in
Zooniverse platform at https://www.zooniverse.org.

First, the data provided by all annotators are clustered to
identify labels. Subsequently, since some of the labels may be
erroneously identified, a decision is made on each one whether
it corresponds to a desired structure or not [1], [4]. When
known, the true labels are referred to as the gold standard.
It is important to remark that the closer the identified labels
are to the gold standard, the lower the probability of false
detection in the second step. Crowdsourcing approaches also
entail rating annotators according to their performance, so that
data provided by unreliable annotators in future experiments
can be discarded. Interestingly, data is available in a streaming
manner at possibly different locations, which calls for dis-
tributed online implementation of the solutions.

This paper focuses on clustering and the associated anno-
tators rating problem. The probability density function (pdf)
of the collected data is modeled as a mixture of an unknown
number of Gaussian components plus a uniformly distributed
random variable (rv), which captures outliers. Further, the
proposed formulation includes a set of latent rv’s to de-
note the annotators’ performance. A closed-form approximate
maximum likelihood (ML) estimate of the parameters for
Gaussian plus non-Gaussian mixtures was given in [5], where
the number of Gaussian components is estimated by choosing
among a set of pre-estimated candidate models. Instead, here
we opt for an approach based on the expectation-maximization
(EM) algorithm [6] that solves the overall estimation problem
jointly. As a result, the proposed algorithm will allow for
(a) soft assignments of data points to clusters; (b) rating
of annotators; and, (c) estimating the number of Gaussian
components in the mixture model based on the algorithm
developed in [7] for a Gaussian mixture only. Relative to prior
works in robust clustering [8]–[12], the present contribution
accounts for the variable reliability of data to be clustered,
which is a distinct feature of crowdsourcing.

The rest of the paper is organized as follows. Sec. II
describes the data probabilistic model, and Sec. III develops
the EM-based algorithm. Sec. IV presents simulation results,
and Sec. V concludes the paper and comments on future work.

II. DATA MODEL

Consider a set of R annotators indexed by r P t1, . . . , Ru,
who provide instances of a D ˆ 1 vector2. Instances of

2If instances correspond to clicks on an image, then D“2



annotator r are modeled by the D ˆ 1 random vector

xr “ ar

M
ÿ

m“1

δpzr ´mqwm ` p1´ arqu (1)

where δp¨q denotes the Kronecker delta function; wm „

N pµm,Σmq is the mth D-dimensional Gaussian rv with mean
µm and covariance matrix Σm for m P t1, . . . ,Mu; and u
is a D-dimensional uniformly distributed rv with indepen-
dent entries and known pdf3 denoted by gU p¨q with support
rUmin
d ,Umax

d s for d P t1, . . . , Du. Variables tar;@ru P t0, 1u
are independent Bernoulli with probability pr – Prtar “ 1u,
and tzr;@ruPt1, . . . ,Mu are independent rv’s with probabil-
ity Prtzr “ mu–πm. We further assume that all rv’s in (1)
are independent among them. The model in (1) is a mixture
of M Gaussians plus a uniformly distributed rv with a priori
probabilities that depend on the annotator. Note that when
ar“1, the instance provided by annotator r corresponds to one
out of M Gaussians, given by zr. Conversely, when ar “ 0,
the instance of annotator r is a uniformly distributed rv, and
it is thus deemed as being an outlier. Therefore, probability
pr is a measure of the annotators’ reliability since the lower
pr is, the higher the probability that annotator r provides an
outlier.

Suppose further that each annotator r provides Nr P N
instances denoted by txr,i P RDˆ1; i “ 1, .., Nru, which
are independent identically distributed (iid) realizations of xr
in (1). Let X –txr,i; r“1, . . . , R and i“1, . . . , Nru collect
the instances provided by all annotators, with cardinality equal
to N – |X |“

řR
i“1Nr. Similarly, collect in A– tar,i;@r, iu

and Z – tzr,i;@r, iu, both with cardinality N , the set of all
iid realizations of ar and zr, respectively.

Under the aforementioned independence assumptions, the
likelihood function of the provided instances X is

fpX ;θq “
R
ź

r“1

Nr
ź

i“1

´

pr

M
ÿ

m“1

πm N pxr,i;µm,Σmq

` p1´ prqgU pxr,iq
¯

(2)

where N pxr,i;µm,Σmq is the likelihood function of instance
xr,i given zr,i“m, and vector θ gathers the set of all unknown
parameters, namely

θ–rµ1; ...;µM ; vecpΣ1q; ...; vecpΣM q;π1; ...;πM ; p1; ...; pRs.
(3)

The objective is not only to cluster data, but also to estimate
the M cluster centroids tµm;@mu, the covariance matrices
tΣm;@mu which are indicative of the cluster spread, the
probability of occurrence of each cluster tπm;@mu, and the
annotator’s reliability tpr;@ru. Although out of the scope of
this work, all these parameters might be useful in crowdsourc-
ing applications to support the decision whether the identified
clusters correspond to a desired structure or not. As a closed-
form maximization of fpX ;θq is not possible, we resort to a
numerical solution based on the EM algorithm.

3This is a reasonable assumption for the crowdsourcing applications de-
scribed in Sec. I.

III. EM FOR CLUSTERING CROWDSOURCED DATA

The proposed approach is to estimate the unknown parame-
ters in (3) using the iterative EM algorithm. The algorithm is
developed first when the number of Gaussian components is
known; that is, M0 “M .

A. Number of Gaussian components known

We regard X as the incomplete observation and the set
tX ,A,Zu as the complete one. Initialized with θ̂0, at iteration
t` 1 with t ě 0, the EM algorithm proceeds as follows.
S1) E-step: given an estimate θ̂t, compute the conditional

expectation of the log-likelihood function

Qpθ̃; θ̂tq – EA,Ztlog fpX ,A,Z; θ̃q | θ̂t,X u (4)

where θ̃ denotes a ’trial’ value of θ.
S2) M-step: obtain the estimate for the next iteration as

θ̂t`1 “ argmax
θ̃

Qpθ̃; θ̂tq. (5)

Recalling that A and Z are independent, it holds that (cf. (2))

Qpθ̃; θ̂tq“
R
ÿ

r“1

Nr
ÿ

i“1

αtr,i

M0
ÿ

m“1

ζtr,i,m log
´

p̃rπ̃mN pxr,i; µ̃m, Σ̃mq

¯

`

R
ÿ

r“1

Nr
ÿ

i“1

p1´ αtr,iq log pp1´ p̃rqgU pxr,iqq

(6)

where αtr,i – Prtar,i “ 1|θ̂t,X u and ζtr,i,m – Prtzr,i “

m|θ̂t,X u are the posterior probabilities of the hidden vari-
ables. Then, using Bayes’ theorem, in the E-step one basically
updates these a posteriori values according to

αtr,i“
p̂tr

řM0

m“1 π̂
t
mN pxr,i; µ̂tm, Σ̂t

mq

p̂tr
řM0

m“1 π̂
t
mN pxr,i; µ̂tm, Σ̂t

mq ` p1´ p̂
t
rqgU pxr,iq

(7)
and

ζtr,i,m“
π̂tmN pxr,i; µ̂tm, Σ̂t

mq
řM0

m“1 π̂
t
mN pxr,i; µ̂tm, Σ̂t

mq
. (8)

In the M-step, the parameters are updated to maximize (6).
Thus, at iteration t, the annotators’ reliability is updated as

p̂t`1
r “

1

Nr

Nr
ÿ

i“1

αtr,i, @r ; (9)

and the probability of the mth Gaussian component becomes

π̂t`1
m “

řR
r“1

řNr

i“1 α
t
r,iζ

t
r,i,m

řR
r“1

řNr

i“1 α
t
r,i

, (10)

which must satisfy
řM0

m“1 π̂m “ 1. Interestingly, the denomi-
nator in (10) is a soft count of all non-outliers instances and,
similarly, the denominator in (11) is a soft count of instances
that belong to the mth Gaussian component at iteration t` 1.
Further, the mean vectors and covariance matrices of the
Gaussian components are given by

µ̂t`1
m “

řR
r“1

řNr

i“1 α
t
r,i ζ

t
r,i,m xr,i

řR
r“1

řNr

i“1 α
t
r,i ζ

t
r,i,m

(11)



and

Σ̂t`1
m “

řR
r“1

řNr

i“1 α
t
r,iζ

t
r,i,mpxr,i ´ µ̂

t`1
m qpxr,i ´ µ̂

t`1
m qH

řR
r“1

řNr

i“1 α
t
r,i ζ

t
r,i,m

(12)
respectively, @m “ t1, . . . ,M0u. As proved in [6], the EM
iterates will converge at least to a stationary point (local
optimum) of the ML objective in (2).

B. Estimating the number of Gaussian components

In the previous section, the number of Gaussian components
M0 is assumed known. To deal with a more practical setting
where M is unknown, we modify the EM algorithm presented
in Sec. III by adapting the so-called CEM method in [7] to
our Gaussian plus non-Gaussian mixture model in (2). First,
we assume a Dirichlet-type prior for the tπm;m “ 1, . . . ,M0u

with M0"M as follows

fpπ1, . . . , πM0
q9 ´

L

2

M0
ÿ

m“1

log πm (13)

where L – DpD ` 3q{2 is the number of parameters per
Gaussian component. The negative exponent of the Dirichlet-
type prior encourages πm to be equal either to 0 or to 1, and
therefore, since

řM0

m“1 π̂m “ 1, this prior promotes sparsity
in the distribution mixture. Then, the probability of the mth

Gaussian component at iteration t is computed as the solution
of the following maximum a posteriori (MAP) problem subject
to some constraints.

π̂t`1
m “ argmax

π̃m

Qpθ̃ ; θ̂tq ` log fpπ̃1, . . . , π̃M0q

subject to π̃m ě 0
M0
ÿ

m“1

π̃m “ 1 (14)

The proposed algorithm proceeds as follows. The E-step
remains the same and computes the a posteriori probabilities
as in (7) and (8). The M-step is modified so that, instead of
(10), the probability of the mth Gaussian component becomes
the solution of (14) given by

π̂t`1
m “

maxt0, p
řR
r“1

řNr

i“1 α
t
r,i ζ

t
r,i,mq ´

L
2 u

řM0

m“1 maxt0, p
řR
r“1

řNr

i“1 α
t
r,i ζ

t
r,i,mq ´

L
2 u

(15)

and the parameters tµ̂t`1
m , Σ̂t`1

m u are computed as in (11) and
(12), but only for those m P t1, . . . ,M0u such that π̂t`1

m ‰0.
Parameters tp̂t`1

r ;@ru are updated as in (9). For convenience,
let M̂ t denote the number of Gaussian components for which
π̂tm ‰ 0. Note that the impact of (15) on the iterative algorithm
is that some of the components of the Gaussian mixture will
be eventually annihilated. It is therefore convenient to select
M0 " M , but also because it reduces the sensitivity of the
algorithm to the initial values of the remaining parameters.
Additionally, as pointed out by [7], at each iteration our
algorithm calculates the Bayesian information criterion (BIC),
namely

LpX, θ̂t, M̂ tq“´Qpθ̃; θ̂tq `
LM̂ t

2
log

˜

R
ÿ

r“1

Nr
ÿ

i“1

αtr,i

¸

(16)

1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Observations True Fuzzy K-means Mod EM

Fig. 1. Instances in + (black), true Gaussian means in big red l, centroids
estimated by Fuzzy c-means in cyan © and estimated by the modified EM
in small magenta l.

where the double summation inside the log function is the
soft count of non-outlying instances at iteration t. Overall,
the BIC criterion is used to terminate the EM iterations, and
also once convergence is reached, to check if larger values
of LpX, θ̂t, M̂ tq are achieved by setting to zero one by one
those components not annihilated by (15). Specifically, the
procedure is the following one. First, the presented algorithm
is run until (16) does not vary substantially from one iteration
to the next. Once convergence is reached, the least probable
component of the Gaussian mixture, i.e. the one with smallest
non-zero π̂tm, is annihilated and the algorithm is run until
convergence again. This last step is iterated until M̂ t “ 1
or equal to the minimum number of Gaussian components
if known. The final estimates, denoted by tθfinal, M̂finalu,
are those tθt, M̂ tu among all t that maximize (16).

IV. SIMULATIONS

Simulations are shown to illustrate the performance of the
novel algorithm. We consider R “ 20 annotators providing
instances with D“2 according to (1) confined to a rectangular
area of dimensions Umin

1 “ 1, Umax
1 “ 4, Umin

2 “ 0 and
Umax
2 “ 5. The total number of instances is N “ 850 with
Nr P r36, 48s. Fifteen annotators have a high reliability with
pr “ 0.95, three have pr “ 0.75, and two have low reliability
with pr “ 0.25. The density mixture consists of M “ 10
Gaussians with equal probability, πm “ 0.1. As an example,
Fig. 1 shows a realization with N “ 850 instances, the
Gaussian means tµm;@mu, the centroids estimated with the
fuzzy clustering-means (fcm) function of MATLAB using the
true number of Gaussians, and the centroid means estimated
with our algorithm. In this setup, the covariance matrices of
five Gaussian components are diagtΣmu “ r0.04, 0.05s, four
Gaussian components diagtΣmu “ r0.08, 0.1s and a single
Gaussian component has even larger variances diagtΣmu “

r0.12, 0.15s.
The experiment proceeds as follows. The EM-based algo-

rithm in Sec. III-B is run for K“500 independent realizations
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Fig. 2. Cumulative distribution function of ASE for successful realizations
using (a) the proposed EM-based algorithm, and (b) fuzzy c-means

using the same Gaussian plus non-Gaussian density mixture
of Fig. 1. The parameters are initialized as follows. The
initial estimated centroids tµ̂0

1, . . . , µ̂
0
M0
u are the centroids

estimated by the K-means algorithm [13] with M0 “ 40; the
initial estimated Gaussian covariance matrices are all set to
tΣ̂0

m“diagtr0.15 0.25su;@m“1, . . . ,M0u. The algorithm is
executed until M̂ tă6 or up to 200 iterations. For comparison
purposes, the fuzzy c-means (fcm) function of MATLAB with
M “ 10 clusters is also tested. We decide a realization is
successful if it estimates correctly the number of Gaussian
components, i.e. M̂final “M , and a one-to-one correspon-
dence can be established between the estimated centroids and
the true Gaussian means according to a minimum distance
criterion. Our algorithm correctly succeeds in 94% of the 500
realizations whereas fcm only succeeds in 47%.

Fig. 2 depicts the cumulative distribution function (cdf)
for the means of evaluating the average square error (ASE),
namely the square error between the true Gaussian means
tµm;m “ 1, . . . ,Mu and the final estimated centroids
tµ̂finalm ;m “ 1, . . . ,Mu averaged over the M Gaussian
components, that is

ASE –
1

M

M
ÿ

m“1

||µ̂finalm ´ µm||
2
2. (17)

Note that only successful realizations are considered in (17).
The proposed algorithm performs much better, since the ASE
is less than 6ˆ 10´3 in all successful realizations (i.e, 94%),
whereas the ASE is much higher for fcm. The following
figures of merit are further attained by the proposed algorithm
in estimating the remaining parameters.

1
K

řK
k“1

1
M

řM
m“1 |π̂

final
m ´ πm|

2 “ 2.3ˆ 10´5

1
K

řK
k“1

1
R

řR
r“1 |p̂

final
r ´ pr|

2 “ 2.7ˆ 10´3. (18)

Again only successful realizations are taken into account in
(18).

Finally, Fig. 3.a and Fig. 3.b show the evolution of
LpX , θ̂t, M̂ tq and M̂ t in a single realization, respectively.
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Fig. 3. Evolution of (a) LpX , θ̂t, M̂tq in (16), and (b) M̂t in a single
realization. The maximum of LpX , θ̂t, M̂tq is marked in (a) with ˝, and the
corresponding M̂t “ 10 in (b).

In this particular realization, LpX , θ̂t, M̂ tq increases due to
the annihilation of Gaussian components performed in (15)
until iteration t“ 109, where BIC is stable. After this point,
it decreases gradually each time the Gaussian component
with lower probability is annihilated. The algorithm stops at
iteration t“139 because M̂139“5. The final estimated values
of the parameters tθfinal, M̂finalu used in (17) and (18) are
those for which the maximum of LpX , θ̂t, M̂ tq is attained,
marked with a circle at iteration t“ 109, and corresponding
to M̂final “ 10.

V. CONCLUSIONS

This paper formulates and solves a clustering and estimation
problem for data adhering to a Gaussian mixture model in
the presence of outliers, that are modeled as a uniformly
distributed rv. The work fits nicely in the context of crowd-
sourcing applications, where observations are often provided
by different annotators, each with unknown expertise. The
proposed algorithm jointly estimates the density parameters
of the Gaussian plus non-Gaussian mixture, the number of
Gaussian components, and the reliability of annotators. Both
the data model and the proposed algorithm are broad enough to
be of interest in other general-purpose clustering applications.
Our future research agenda includes generalizations to kernel-
based crowdsourcing approaches to allow for clustering high-
dimensional or nonlinearly separable datasets, as well as
thorough testing and comparisons on real datasets provided
e.g., by contaminating the MINST datasets to account for the
variable reliability present in crowdsourcing collections.
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