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ABSTRACT

More complex and ever more common lens distortion cor-
rection post-processing is seriously hampering state-of-the-
art camera attribution techniques. In this paper, we show that
the two main existing techniques, namely PRNU (Photo Re-
sponse Non Uniformity)-based and linear-pattern-based, can
be successfully combined to improve performance. More-
over, we introduce a novel method that is able to correctly
invert adaptive distortion correction transformations by suc-
cessively maximizing the peak-to-correlation energy (PCE)
and the linear-pattern energy for much more reliable camera
attribution. A novel validation procedure to quickly discard
mismatched test images is also proposed. Finally, we show
how great reductions in running time can be achieved by us-
ing a GPU for interpolation, resampling, and PCE compu-
tation. The code is available at https://github.com/
AMontiB/PSLR.

Index Terms— PRNU, Camera Attribution, Camera
Source Identification, Radial Distortion Correction, GPU

1. INTRODUCTION

Camera attribution is the task of determining whether a given
device (i.e. smartphone or digital camera) was used to take a
given image. The last two decades have witnessed a number
of solutions, some of them aimed at identifying just the model
of the device by studying features introduced during the im-
age acquisition process [1][2][3][4], and others the device,
by exploiting invisible residuals introduced by the sensor of
the camera [5, 6]. Of all those features, the most accurate
for camera attribution purposes, remains the Photo Response
non-Uniformity (PRNU) [5].

The PRNU is a unique noise-like weak signal due to
manufacturing imperfections of the sensor which appears su-
perimposed on the captured image [5]. A device’s PRNU can
be extracted from images taken with it and compared with a
residual obtained from an image of the same or different de-
vices. The PRNU is very sensitive to image post-processing,
that hampers its reliability [7]. Specifically, when spatial
transformations such as cropping, up/down-sampling [8], ra-
dial distortion correction [9][10], HDR post-processing [11],

video stabilization [12], and others, [7] are applied to the host
image, the PRNU also gets distorted and becomes unreliable
unless the spatial transformation is properly inverted.

In this paper we will focus on in-camera and out-camera
radial corrections and on the effects they have on the PRNU.
In-camera radial corrections are common post-processing
techniques used in modern devices to mitigate simple barrel
or pincushion distortions due to camera lenses [13]. In the
last few years, more complex and adaptive radial corrections,
able to fit almost perfectly the lens distortion model, have
become available. Those complex corrections are handled
out-camera by third-party editing software like Adobe Light-
room, Pt-Lens, Photoshop, and Gimp, seriously impairing
the performance of state-of-the-art methods [9], [10] which
were mostly developed to invert simple barrel and pincushion
radial corrections.

This work analyzes the main limitations affecting [9], [10]
when applied to modern, more sophisticated radial correc-
tions. Furthermore, we will present novel solutions to im-
prove the accuracy of [9] and [10]: first, we will show the ef-
fectiveness of a proper combination of both methods; second,
we propose a coarse parameter estimation guided by the Peak-
to-Correlation Energy (PCE) followed by a refinement based
on the Linear Pattern Energy (LPE). Moreover, we propose
a novel validation procedure based on the PCE that serves to
quickly discard test images without having to wait for the en-
tire hypothesis test in order to declare a mismatch. Finally,
similarly to [14], we show how the required resampling, in-
terpolation, and PCE computing operations can be sped-up by
running them on a GPU.

The paper is organized as follows: in Section 2 we will
present the background, including the state of the art and its
limitations; in Section 3 we discuss our contributions. Section
4 empirically validates our proposals, and, finally, Section 5
provides some conclusions.

2. BACKGROUND

In this paper, images are represented by matrices of size M ×
N and denoted in boldface, e.g. X. The normalized cross-
correlation (NCC) between X and Y is denoted by ρ(X,Y)
and is defined as the NCC between the column vectors that
are obtained by stacking the columns of X and Y; if X andIC
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Y have different sizes, we centrally crop the bigger matrix to
fit the size of the smaller one, similarly to [10]. Given a set
S, its cardinality is denoted by |S|. Given an image X and a
vector δ = (δ1, δ2) ∈ Z2, C(X, δ) denotes the image after a
horizontal (vertical) cyclic shift of δ1 (resp. δ2) pixels.

2.1. PRNU

The PRNU is a weak, multiplicative, noise-like signal intro-
duced by the camera sensor on every image it acquires. The
uniqueness of the PRNU, due to specific manufacturing con-
ditions [5], is perfectly suited to camera attribution. PRNU-
based attribution requires a pre-processing that removes other
components [5]. Typically, this task consists in applying a de-
noiser (customarily [15], as in this paper) F (·) to an image I
to obtain a residual W .

= I− F (I) containing the PRNU.
To solve the attribution problem, we assume the existence

of an estimate K̂ of the true PRNU K for the test camera, and
the residual W from the test image I. Given L images Il with
residuals Wl, l = 1, · · · , L, the PRNU can be estimated as
[16]:

K̂ =

(∑L

l=1
Il ◦Wl

)
�
(∑L

l=1
Il ◦ Il

)
, (1)

where ◦ and � denote element-wise product and division,
respectively. The attribution test is a binary hypothesis test
in which H1 corresponds to the test image I containing the
PRNU K of the test camera; else, H0 is decided [17]. In [2]
the PCE test statistic proposed in [16] is improved by consid-
ering the sign of the normalized cross-correlation; the result-
ing test statistic is the signed-PCE (sPCE), which in the case
where I and K̂ are aligned takes the following form:

sPCE(K̂, I)
.
=

sgn(ρ(K̂,W)) · ρ2(K̂,W)
1

MN−|D|
∑

δ∈I\D ρ2(K̂, C(W, δ))
, (2)

where I is the set of image pixel-coordinates and D is a
cyclic exclusion neighborhood around the origin (in this
paper, of size 11 × 11 pixels) to avoid contamination of
cross-correlation peaks from H1 when estimating the cross-
correlation noise under H0 [8].

2.2. Radial Correction

The radial corrections analyzed in this paper are radially-
symmetric [9] barrel/pincushion distortions applied in-camera
by compact devices, and adaptive ones applied out-camera by
editing software like Adobe Lightroom which exploit more
powerful hardware and databases of camera models.

According to [10], [18], if (x′, y′) are the image coordi-
nates after radial distortion correction, there exists a geomet-
rical mapping Gα such that Gα : R2 → R2, and (x′, y′) →
(x, y), that inverts the correction, and that can be written as:

(x, y) = (x′
0, y

′
0) +

[
(x′, y′)− (x′

0, y
′
0)
](

1+
∑n

i=1
αir

′2i
)

(3)

where (x′
0, y

′
0) are the optical center coordinates, α

.
=

[α1, · · · , αn]
T contains the parameters of the mapping, and

r′2 = 4 · [(x′ − x′
0)

2 + (y′ − y′0)
2]/D2 is the normalized

squared distance from the point (x′, y′) so that r′ = 1 cor-
responds to half of the image diagonal D. By assuming
that Gα(x

′
0, y

′
0) = (x′

0, y
′
0), with a slight abuse of notation,

and dropping the phase component, (3) can be rewritten in
normalized radial coordinates as:

r = Gα(r
′) = r′

(
1 +

∑n

i=1
αir

′2i
)

(4)

In this paper, n = 2, i.e. we will consider distortion correction
models with two parameters, α1 and α2.

2.3. Camera Attribution of Radial Corrected Images

The best performing approaches for camera attribution of ra-
dially corrected images were proposed by Goljan et. al. in [9]
and [10], and rely on two different strategies to estimate the
parameter vector α such that Gα best inverts the radial cor-
rection distortion. The difference between those two methods
lies in their objective functions, as we discuss next.

1) PCE-guided method [9]: It uses a combination of a
grid-search and a golden-search to estimate α = [α1, α2]

T ,
with the additional constraint α2 = −3α2

1, aiming at maxi-
mizing the PCE. During the grid search, a coarse estimation
of α1 is obtained and further refined through four iterations,
each time with a smaller stepsize.

This works well on high-resolution in-camera-corrected
images but its performance dramatically decreases under
complex and adaptive radial corrections like those of Light-
room, and for low-resolution images. The issue with complex
corrections is due to the the above constraint, which can be
seen that corresponds to the inverse transformation of simple
barrel/pincushion mappings. The drop for low-resolution im-
ages owes to downsampling (by a factor of 2 × 2) of image
residuals. Such a downsampling is needed to deal with the
high computational complexity of this method.

2) LPE-guided method [10]: It uses the linear pattern en-
ergy (LPE) as the objective function to guide the estimation
of α = [α1, α2]

T . Those linear grid-like patterns are cam-
era artifacts that show up in the residuals of non-corrected
images; since distortion correction transforms these patterns,
the correct inverse mapping Gα would be such that when it
is applied they are restored. Parameter estimation proceeds
then in two stages: in the first, a grid search is employed to
locate that value of α1 that maximizes the LPE. In the second
stage, the algorithm refines this value of α1 and estimates α2

by using the Nelder-Mead method. The LPE has a bias that
depends on α, and is quite noisy; to solve these issues, the
algorithm not only removes the bias by computing its trend
through second-order polynomial fitting, but it also validates
the peak by comparing it with a threshold.

Similarly to [9], the method in [10] performs well on high-
resolution in-camera-corrected images, but behaves poorly on
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Fig. 1: PCE values obtained with [9] and [10] on the test
dataset. Samples near the dashed line corresponds to similar
output PCE values.

images either with low-resolution or corrected out-camera.
This can be attributed to [10] only considering barrel-like
mappings and to its validation procedure not taking advan-
tage of the PCE for a further check.

3. PROPOSED SOLUTIONS

During our experiments, we noticed that PCE-based [9] and
LPE-based [10] methods performed differently depending on
the type of radial corrections. This is illustrated in Fig. 1,
where the sPCE values of [9] and [10] are plotted against each
other for different subsets of our test database; the diagonal
corresponds to equal performance. These large deviations are
due to different intrinsic features and limitations of both meth-
ods: the one in [9] works well when it comes to inverting both
barrel and pincushion radial corrections, but struggles when
trying to invert complex radial corrections that employ more
than one parameter. In the latter case, [10] performs generally
better, especially when α1 ∈ [0, 0.33].

This observation is key to proposing combinations of [9]
and [10] using some judicious criterion; here we will discuss
MAX and OR rules. The MAX rule consists in running the
two methods in parallel (MAXpar) or in sequence (MAXseq),
on the same image, taking the maximum of both, and compar-
ing it with a threshold experimentally set to achieve a False
Positive Rate (FPR) ≈ 0.05. In this way, we choose the
parameter vector α that maximizes the final PCE value. In
contrast, the OR criterion declares a match whenever either
method yields a PCE value larger than its respective thresh-
old. Both OR and MAX rules outperform [9] and [10] on
low-resolution images, like those from the Panasonic ZS7 de-
vice, and complex out-camera radial corrections like those of
Adobe Lightroom, see Sec. 4. This further illustrates some
complementarity (to the best of our knowledge up to now un-
tapped) of [9] and [10], which can also be appreciated in Fig.
1. Unfortunately, both OR and MAX criteria increase the
computational complexity of the original methods (already
computationally quite demanding); in addition, they do not

fully complement each other towards an accurate estimation
of the spatial transformation parameters α1 and α2.

Alternatively, we propose a PCE-guided coarse parame-
ter Search plus LPE-based Refinement (PSLR), that more ef-
ficiently leverages the advantages of [9] and [10]. This ap-
proach first estimates α1, when α2 = 0, using the grid search
of [9] but without its early stopping conditions, which is more
accurate than the one of [10] and is able to cover both posi-
tive and negative values of α1. Let α̂1 denote the estimate just
described. Towards a fast detection of mismatches, the algo-
rithm verifies the correctness of α̂1; to that end, we do not
follow the same validation procedure of [10], but we evaluate
the PCE peak obtained at α̂1 by checking that:

sPCE(K̂, G(α̂1,0)(W))− µ > τv (5)

where

µ
.
=
(
sPCE(K̂, G(α̂1+∆,0)(W))+sPCE(K̂, G(α̂1−∆,0)(W))

)
/2

for some values of ∆ and τv to be discussed next. The intu-
ition behind the proposed validation is that the sPCE exhibits
a sharp peak if represented against α1 (when α2 = 0); to val-
idate whether α̂1 corresponds to the peak, we subtract from
the sPCE at α̂1 the average sPCE obtained at two points away
from the presumed peak, and compare the result with a thresh-
old. This threshold has been experimentally set to achieve a
probability of false validation of 0.01 (under both H0 and H1

hypotheses) using 200 images from our database. Following
the previous discussion, we set ∆ = 0.1 and τv = 10.58.

If (5) is satisfied, the PSLR algorithm proceeds with the
estimation of α2; otherwise, a mismatch is declared. To esti-
mate α2, we maximize the LPE using as in [10] the Nelder-
Mead algorithm which demonstrated, during our experiments,
to be very robust and reliable if initialized using the correct
value of α1. The algorithm decides H1 if, during any of its
two stages, an sPCE larger than τ is retrieved, where τ is a
threshold set experimentally to achieve FPR ≈ 0.05.

To further reduce the computational cost of the PSLR al-
gorithm, all the radial correction operations, interpolation, re-
sampling, and PCE estimation are run on a GPU, as it is done
in [14]. By doing so, we can parallelize all those operations
that are most time-consuming when run on a CPU. However,
for a fair comparison with the state of the art, we will also
show the CPU run-times of PSLR. We note that PSLR uses
the full-resolution noise residual W and not its downsampled
version as in [9].

4. EXPERIMENTAL RESULTS

We compared our solutions with the PCE-based method of
[9], also without downsampling (noDS), and the LPE-based
method of [10] (all of the previous using the sPCE for im-
proved performance) in terms of True Positive Rate (TPR)
for an FPR ≈ 0.05, Area Under the Curve for FPR < 0.05
(AUC@0.05, which is normalized to yield 1 in the ideal
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GIMP
3456× 5184

LIGHTROOM
3456× 5184

LIGHTROOM*
3456× 5184

PHOTOSHOP
3456× 5184

PT LENS
3456× 5184

S9100
3000× 4000

SX210
3240× 4320

SX230
1584× 2816

SX40
2664× 4000

ZS7
1920× 2560

TPR time [s] TPR time [s] TPR time [s] TPR time [s] TPR time [s] TPR time [s] TPR time [s] TPR time [s] TPR time [s] TPR time [s]
[9] (τ = 4.81) 0.96 85.3 0.44 87.9 0.41 91.6 0.91 107.2 0.64 100.3 0.97 81.7 0.98 81.3 0.82 25.1 0.98 56.3 0.79 27.8

[9] no DS (τ = 7.65) 0.97 962.3 0.6 930.8 0.51 930.9 0.96 947.6 0.91 918.3 1 598.3 1 723.4 0.98 229.0 1 526.3 0.98 255.2
[10] (τ = 2.83) 0.96 861.7 0.35 849.8 0.55 808.7 0.88 731.7 0.36 847.1 0.92 553.5 0.93 661.1 0.76 205.2 0.70 472.9 0.65 227.2

MAXpar (τ = 5.28) 0.97 861.7 0.68 849.8 0.75 808.7 0.93 731.7 0.83 847.1 0.99 553.5 1 661.1 0.88 205.2 1 472.9 0.87 227.2
MAXseq (τ = 5.28) 0.97 947 0.68 937.3 0.75 900.3 0.93 838.9 0.83 947.4 0.99 635.2 1 742.4 0.88 230.3 1 529.2 0.87 255

OR (τ = 5.28) 0.96 96.4 0.67 548.1 0.74 553.8 0.93 171.6 0.83 402.4 0.99 95.8 1 93.2 0.88 60.3 1 67.2 0.86 70.1
PSLR (τ = 5.83) 0.98 197.1 0.75 308.6 0.71 284.2 0.96 162.2 0.9 140.3 0.96 80.72 1 234.1 0.98 147.2 1 125.4 0.95 51.8

PSLR CPU (τ = 5.83) 0.98 667.76 0.75 932.29 0.71 962.46 0.96 576.83 0.9 474.04 0.96 197.75 1 621.83 0.98 363.18 1 287.46 0.95 151.82

Table 1: TPR and average execution time of [9], [10] and our proposed schemes, for different subsets.

Fig. 2: ROCs obtained with [9], [10], OR, MAX and PSLR
on the dataset of this paper.

case), Receiver Operating Characteristic (ROC) curve, and
time consumption.

The dataset used for testing is composed of 3645 im-
ages, of which, 2037 were downloaded from flicker and
radially corrected in-camera by Canon SX230 HS, Panasonic
ZS7, Canon SX40, Canon SX210, and Nikon S9100 models,
and 1508 were taken with the Canon 1200D and radially-
corrected out-camera by editing programs such as Adobe
Lightroom Classic CC 2017, Adobe Photoshop CC 2017,
PT Lens v2.0 (Macbook) and Gimp 2.10.14 (377 images by
each software). In addition, we radially corrected 100 images
taken with the Canon 1200D with Lightroom using the radial
distortion models of other lenses: Nikon (20 images), Tamron
(20), Apple (20), Huawei (20) and DJI (20). We refer to this
subset as LIGHTROOM∗ in Table 1.

Further details on the dataset and how the camera PR-
NUs were estimated are available in [19]. All the experi-
ments were run on a server with the following characteris-
tics: RAM 256GB, Processor Intel(R) Xeon(R) CPU E5-2640
v4 2.40GHz, GPU NVIDIA QUADRO 22 GB. The average
memory required for an image of size 3456× 5184 is ≈ 9GB
of GPU and ≈ 4GB of CPU.

Fig. 2 shows the ROCs obtained by [9], [10], and our pro-
posed schemes. Table 1 provides more details, including the
per-correction-type average time required to declare a match.

The results we obtained using the MAX and OR imple-
mentations demonstrate both the complementarity of [9] and
[10] and large improvements, especially in presence of the

most difficult radial corrections of our dataset (i.e. Light-
room, Lightroom*, and Pt-Lens) and low-resolution images
(i.e. sx230 and zs7). These improvements are even more
evident with PSLR, which yields the best results in terms
of ROC, AUC and, on average, in terms of TPR. Through
bootstrapping [20], we tested the null hypothesis that the
AUC@0.05 of PSLR is smaller than that of the other meth-
ods, and is rejected with the following p-values: MAX: 0.033;
OR: 0.024; [9] and [10]: < 0.001. From Table 1 it is pos-
sible to notice that improvements are also achievable when
[9] works with no DS. However, its computational cost is
very high, requiring up to 16 minutes to process a single
high-resolution image; PSLR, running on a GPU, is much
faster. This observation further corroborates the suitability of
the GPU in camera attribution problems involving complex
spatial transformations. Finally, by using (5), we drastically
reduced the number of images wrongly labeled as radially
corrected while rapidly detecting mismatches.

5. CONCLUSIONS

Despite the ever more common presence of distortion-corrected
images, due to the availability of more powerful in-camera
firmware and out-camera software, little progress has been
done after the seminal works in [9] and [10]. This is par-
ticularly striking because the corrections have become much
more complex than for simple barrel and pincushion distor-
tions, where those methods struggle (none of them were able
to achieve TPR> 0.75 at FPR ≈ 0.05 on the most difficult
radial corrections of our dataset, corresponding to Lightroom
and PT Lens software). Considering the continuous evolution
of post-processing software, this situation can only get worse
if no new advances are made.

In this paper we have taken a step in this direction by com-
bining and improving the available methods. In particular, we
have shown that PSLR, which finds the radial transformation
parameters following a two-stage procedure with an sPCE-
guided coarse search and a linear pattern-based refinement, is
able to overcome the limitations of the state-of-the-art.
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