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ABSTRACT
We address the known problem of detecting a previous com-
pression in JPEG images, focusing on the challenging case
of high and very high quality factors (≥ 90) as well as re-
peated compression with identical or nearly identical quality
factors. We first revisit the approaches based on Benford–
Fourier analysis in the DCT domain and block convergence
analysis in the spatial domain. Both were originally con-
ceived for specific scenarios. Leveraging decision tree the-
ory, we design a combined approach complementing the dis-
criminatory capabilities. We obtain a set of novel detectors
targeted to high quality grayscale JPEG images.
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1. INTRODUCTION
Reconstructing of the compression history of JPEG im-

ages is relevant in multimedia forensics. Traces of prior com-
pression may indicate multiple processing steps, potentially
including forgeries. In recent years the problem of detecting
traces of multiple compressions has been extensively stud-
ied. This has resulted in a number of forensic approaches
targeted to detect double or multiple compression.

The known approaches face some important limitations.
First, multiple compression detectors are generally evalu-
ated by considering quite strong quantization. Typically,
the tested JPEG quality factors (QF) are lower than 90.
However, high and very high quality JPEG compression is
relevant as memory and bandwidth are cheap. One may also
speculate that counterfeiters store intermediate versions at
high quality to avoid visible artifacts and detectable traces.
Second, cases where the second compression has a lower
quality than the prior compression remain hard to detect
with the known methods. Third, the majority of techniques
is based on DCT coefficients. These techniques typically
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fail in detecting previous compressions performed with the
same quantization matrix. While some progress has been
made in this direction [6, 16, 7, 3], a combination of these
techniques with the ones based on DCT coefficients remains
unexplored.

In this paper, we close this gap. We focus on the specific
scenario where both the primary and secondary quality fac-
tors are larger or equal to 90. We aim at detecting a previous
compression also in those cases where the quantization ma-
trix used in the secondary compression is identical or nearly
identical to the primary one. In order to achieve this goal,
we consider two different and recently proposed approaches:
the one based on block convergence in the spatial domain [7,
3] and the one based on Benford–Fourier analysis [10]. Af-
ter assessing the strengths and limitations on each of them
in the considered scenario, we proposed to combine them.
Decision tree theory offers a general framework to do this
systematically. This results in a set of double compression
detectors for high quality JPEG images, parameterized by
the observable quality factor of the image under investiga-
tion. We show that the combined classification tests lead
to considerable benefits in terms of classification accuracy
compared to the state of the art.

This work introduces several contributions: we improve
both state of the art detectors individually and adapt them
to high and very high JPEG qualities. For Benford–Fourier
we propose to adaptively choose the DCT frequencies used in
the test in order to accommodate for the fact that quantiza-
tion matrices for nearly identical quality factors do not differ
in every coefficient. We simplify the depth of the block con-
vergence analysis to the relevant number of iterations. We
build and evaluate a joint detector that outperforms each of
the improved methods individually.

The paper is structured as follows: Section 2 discusses
the decision problems studied in the literature and proposes
terminology to precisely define the tests in this paper. Sec-
tion 3 describes the two forensic techniques we consider for
our joint detector. In Section 4, we measure the performance
of both techniques in the considered scenario and improve
them. Section 5 presents the combination approach and
reports the performance of the combined detectors. Finally,
Section 6 concludes with an outlook on future work.
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Figure 1: Representation of the multiple JPEG compression detection problem

2. PROBLEM STATEMENT
Figure 1 depicts the possible status of a JPEG image. Ei-

ther the image was compressed only once and belongs to the
strict subset of single compressed JPEG images (SC), or it
was compressed multiple times. In the latter case, (some of)
the compressions could be non-aligned (light gray subset) or
all of them can be aligned (dark gray subset). In this pa-
per we focus on aligned compressions, thus we do not depict
the non-aligned set in full detail. Both subsets, aligned and
non-aligned, can be further distinguished into the subset of
images that were compressed exactly twice (DC) and the
subset of images with more than two compressions. Again,
we concentrate on the relevant case for this paper. Aligned
and double compressed JPEG images can be further divided
into those that were compressed twice with the same quan-
tization matrix (IDC) and those that were the quantization
matrices differ between the two compressions (DDC). It is
known that different quantization tables are generated as
function of the quality factor (QF), a natural number be-
tween 1 and 100. The lower the quality factor, the higher
are the values in the quantization table. Then, further dis-
tinctions are possible. For instance, DDC could be split-
ted into the set where the QF of the first compression was
strictly higher or strictly lower than the QF of the second
compression.

Ideally, a general framework for detecting multiple JPEG
compressions should differentiate between all of the depicted
subsets, although most of the approaches in the literature
restrict themselves to the distinction of some of the subsets.
One of the most studied problem is certainly the distinction
between SC and DC images in the aligned case, which is
addressed in [13, 1, 4, 8], while some approaches target also
a multiple recompression [9, 10]. However, most of them fail
when dealing with images in IDC, thus specific approaches
have been designed for this case, targeting also the detection
of multiple recompression with the same quantization matrix
[7, 3, 6, 16].

Given the diversity of statistical traces in DDC and IDC
images, in the proposed approach we reformulate the SC vs
DC discrimination problem as the distinction of the three
different sets SC, DDC and IDC. Moreover, we focus on
the case of QF≥ 90 both for the primary and secondary com-

pression and indicate such scenario as HQ-DC (high quality
double compression) for the sake of clarity.

3. CURRENT APPROACHES
In this section, we will briefly recall the main rationale

and procedures of the two state-of-the-art approaches that
are leveraged in this work, stressing the different forensic
scenarios for which they were originally designed.

3.1 Benford–Fourier analysis
The Benford–Fourier (BF) coefficients have been intro-

duced in [12] and they proved to be particularly suitable
for the analysis of DCT coefficients, thus providing an effec-
tive tool for different tasks in image forensics. In particular,
given a continuous random variable Z with pdf fZ(z), its
Benford–Fourier coefficient at ω ∈ R is defined as

aω =

+∞∫
−∞

fZ(z)e−jω log10 zdz.

In [11] and [10], BF coefficients have been used to study the
distribution of 8×8 DCT coefficients for the detection of pre-
vious compressions in uncompressed format and JPEG for-
mat images, respectively. In particular, given the analyzed
image the BF coefficients are estimated by the formula

âω =

M∑
m=1

e−jω log10 zm

M
m = 1, . . . ,M (1)

where zm is the realization of the random variable repre-
senting the absolute value of DCT coefficients at a certain
frequency in the m-th block of the image, M is the total
number of 8× 8 blocks.

In particular, in [10] such estimates are computed for a
number of DCT frequencies in a subset F ⊂ {1, . . . , 64}.
Specifically, there is a BF coefficient at certain ωf for each
f ∈ F , thus obtaining a vector

â = [â1
ω1 , . . . , â

F
ωF ].

After an estimation of their pdf in the different quantiza-
tion chains, the elements in â are combined to compute the



likelihood function L(H|â) for a certain hypothesis of com-
pression history H. The null hypothesis HN is given by the
fact that the last JPEG compression (whose parameters are
known from the image under investigation) is the only one
that occurred in the digital history of the image, while the
alternative hypotheses depend on the forensic scenario con-
sidered (in [10], single and triple compression are analized).
For instance, in a double compression detection framework
each alternative hypothesis HA is represented by the fact
that the image was previously compressed with a primary
quality factor among a predefined set. For each HA, the
logarithmic likelihood ratio (LLR) is computed as follows

LLR = −2 · ln
[
L(HN |â)

L(HA|â)

]
, (2)

and the maximum value of the LLR over all the alternative
hypotheses, indicated as LLRm, is considered. If LLRm > 0
then the null hypothesis is rejected, otherwise it is accepted.

In [10], the method has been tested on single and double
compressed images created by combining the quality factors
in {50, 60, 70, 80, 90}, i.e., the difference between the pri-
mary and secondary quality factor is in any case at least
10. It provided good accuracies, which are generally main-
tained in the cases of stronger secondary compression but
dramatically drops in the case of identical recompression.

3.2 Block convergence
In [7], the authors propose a technique to identify the

number of JPEG compressions with quality factor 100 in
grayscale images. In this case the quantization table is com-
posed only of the value 1 and we will indicate such setting
as JPEG-100. It is observed that for JPEG-100 the 8 × 8
blocks are transformed in the DCT domain, rounded to the
nearest integer and transformed back to the pixel domain,
where they are again rounded to the nearest positive integer
and truncated to the value range. The authors show that
for some of the blocks none of the pixel values change dur-
ing a JPEG-100 compression. They call these blocks stable
and conjecture that after repeated JPEG-100 compression,
all blocks of a grayscale image will converge, i.e., become
stable. Furthermore, the percentage of blocks that becomes
stable after a certain number of recompressions is largely in-
dependent of the image content. In particular, given a sub-
ject JPEG-100 image, the authors propose to discard the flat
blocks (i.e., the ones which contain a single value and are
stable from the beginning) and, among the remaining ones,
count the ones that become stable after each JPEG-100 re-

compression. Hence, the ratio of stable blocks (for different
numbers of JPEG compressions) is computed by:

r =
bstable − bflat

btotal − bflat
, (3)

where btotal is the total number of blocks in the image, bflat

is the number of flat ones and bstable is the number of stable
ones. The value of r is then used to identify the number of
previous JPEG-100 compressions.

This approach has been extended in [3] to color images,
for which all the three color channels need to be analyzed
and the block convergence path is studied with respect to
a number of additional aspects, such as the kind of color
space conversion and the subsampling/upsampling methods.
Moreover, in this work the authors propose to fit a theoret-
ical distribution (specifically, the beta distribution) to the
ratios of stable blocks observed after different numbers of
recompressions.

The technique has been tested on images that were recom-
pressed multiple times with the very same quality factor and
provided accurate results in case of very high quality images
(QF∈ {100, 99}). It also has been noted that the accuracy
decreases together with the quality factor.

4. INDIVIDUAL APPROACHES
As already mentioned in Section 1, we focus on the detec-

tion of high quality double compression in JPEG images, i.e.
with quality factors higher or equal to 90. In this section we
first describe our set-up and then show the performance of
the techniques mentioned in the last section in our scenario.
Furthermore, we improve both methods.

4.1 HQ-DC scenario
In our forensic scenario, each grayscale test image has

a current quality factor QFc ∈ {90, 91, . . . , 100} which is
known from the given JPEG file and a previous quality fac-
tor QFp ∈ {90, 91, . . . , 100,NC}, where we will use the no-
tation QFp =NC if the image is single compressed and has
no primary quality factor. We will represent a JPEG com-
pression history as square brackets containing the ordered
sequence of quality factors applied. Thus, in our tests the
compression history of the image under investigation can be
either [NC, QFc] (only the last JPEG compression occurred)
or [QF, QFc] (a previous compression occurred), where QF
is searched within set QFrange = {90, 91, . . . , 100}.

This kind of setting implies a limited difference between
the quantization tables used in the primary and secondary
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(b) HQ-DC scenario
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Figure 2: Euclidean norm of the quantization table difference in the different double compression chains



NC 100 99 98 97 96 95 94 93 92 91 90
100
99
98
97
96
95
94
93
92
91
90

Table 1: Example of result representation. Each cell refers
to a compression chain specified by the quality factors at
the corresponding row and column. Current quality factors
QFc are reported row-wise and primary ones are reported
column-wise. Colors match the ones used in Figure 1.

JPEG compression, as well as generally small primary quan-
tization steps which makes the detection of a previous quan-
tization more difficult. Figure 2 shows the Euclidean norm of
the differences between the quantization tables (luminance
channel) of the quality factors considered for the experimen-
tal setting in [10], compared with the ones of the HQ-DC
scenario. We refer to the standard quantization tables used
by the libjpeg library released by the IJG (Independent
JPEG Group), as they are often used in common software.

With respect to the scenario described in Section 2, our
goal is to design a test that analyzes a JPEG image with
QFc ≥ 90 either belonging to SC, DDC, or IDC and as-
sign it to the correct set1. Table 1 serves an example of
the result representation for our experimental setting: green
cells refer to compression chains of the form [NC,QFc] (class
SC), blue cells to compression chains of the form [QFc,QFc]
(class IDC), and red cells to compression chains of the
form [QF,QFc], QF6=QFc (class DDC). In the following,
the numbers in each cell will indicate the classification accu-
racy (i.e., the percentage of images that are assigned to the
correct class) with respect to the specific test considered.

For our experiments, we consider two datasets composed
of images in TIFF format and widely used in the literature:
the UCID database [15] (1338 images, 384×512) and a sub-
set of the DRESDEN database [5] (1488 images, 3872×2592
and 3008× 2000). For each image we create single and dou-
ble compressed versions by combining all the quality factors
in QFrange. Thus, each image is processed according to
132 different compression chains, 11 with single compression
and 121 with double compression. We limit our analysis to
grayscale images and consequently apply the approaches to
the luminance channel only. We employ the state-of-the-art
libraries libtiff 3.6.1 and libjpeg 8d to read TIFF and
write grayscale JPEG images, respectively.

In this section, for the sake of brevity, we report the results
for the UCID database only, as those for the DRESDEN
database are very similar. We reproduced the experimental
setting used in [10], where a set of 600 UCID images was
used for estimating the prediction error parameters (which
are employed also for other datasets). Such images are then
excluded from the Benford–Fourier analysis, while the re-
maining ones are used for testing.

1With a slight abuse of notation, we will indicate as SC,
DDC and IDC the sets introduced in Section 2, although
they only refer to the case of high quality JPEG compression
(QF≥ 90).

4.2 Benford–Fourier analysis
We first consider the method proposed in [10], that we

indicate as BF_baseline. Here, a predefined set of 9 DCT
frequencies (specifically F = {4, 6, 11, 13, 15, 22, 24, 26, 28}
in zigzag order) is used to compute (2). Moreover, the po-
tential primary quality factor is searched within the whole
set QFrange = {90, 91, . . . , 100}, thus each image is clas-
sified either as belonging to SC (if the maximum value of
LLR is below 0), DDC (if the estimated compression chain
[QF,QFc] is such that QF6=QFc) or IDC (if the estimated

NC 100 99 98 97 96 95 94 93 92 91 90
100 0.05 0.98 0.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
99 0.01 0.99 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
98 0.08 0.04 0.03 0.91 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
97 0.21 0.07 0.07 0.65 0.81 1.00 1.00 1.00 1.00 1.00 1.00 1.00
96 0.20 0.03 0.02 0.26 0.90 0.81 0.99 1.00 1.00 1.00 1.00 1.00
95 0.24 0.04 0.08 0.21 0.69 0.71 0.76 0.95 1.00 1.00 1.00 1.00
94 0.27 0.02 0.03 0.41 0.62 0.97 0.78 0.74 0.91 1.00 1.00 1.00
93 0.43 0.06 0.07 0.25 0.71 0.88 0.98 0.83 0.57 0.99 0.99 1.00
92 0.57 0.01 0.04 0.03 0.49 0.17 0.90 0.94 0.77 0.41 0.81 0.96
91 0.54 0.12 0.14 0.75 0.80 0.89 0.98 1.00 0.95 0.76 0.37 0.86
90 0.69 0.05 0.06 0.11 0.26 0.72 0.78 1.00 1.00 0.98 0.71 0.27

Table 2: Accuracy of the BF_baseline test.
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Figure 3: Values of the LLRs among different QFc for 20
randomly selected UCID images. In each plot the horizon-
tal axis contains the quality factors inQFrange. The vertical
axis represents the value of LLR, that we report in the in-
terval [−2000, 200] in order to compare its behavior across
the different QFc. Each black line corresponds to an image
and each value of the LLR that lies above 0 is marked in
red.



compression chain is such that QF = QFc). However, the
performance of BF_baseline degrades when moving from
the scenario in Fig. 2a to the HQ-DC one, as reported in
Table 2.

We notice that, although the accuracy for DDC is gener-
ally high when QFp <QFc (the upper triangle of the table),
we have a substantial misclassification for SC. By exploring
the results more closely, we obtain that the Benford–Fourier
analysis for images in SC generally leads to values of LLR
higher than 0 when the alternative hypothesis is given by
[QFc,QFc]. This can be observed in Fig. 3, where we re-
port the values of the different LLRs yielded by the quality
factors in QFrange for single compressed images.

Moreover, we have high values of the LLR when the pri-
mary quality factor tested is high or close to QFc, even for
lower current quality factors. The former phenomenon is due
to the small steps used in the primary quantization. The lat-
ter one is caused by the fact that the quantization tables of
QFc and the one tested might share the very same quantiza-
tion steps for all or some of the DCT frequencies used in the
computation of the LLR, thus decreasing the distinguisha-
bility of the two hypotheses. For instance, the quantization
table of 99 is equal to 1 up to the 37-th frequency and it
fully coincides with the one of 100 at the DCT frequencies
used for the computation of the LLR. Thus, when analyzing
a JPEG image with QFc = 100, the hypothesis [99, 100] will
yield the very same LLR as [100, 100]. This likely causes
misclassification.

In order to cope with this issue, we propose to adaptively
select the set F according to the binary hypothesis test, i.e.,
choosing the first 9 DCT frequencies in zigzag order among
the ones that actually have different primary quantization
steps. In the case of [NC, 100] vs [99, 100], the algorithm will
choose the frequencies {37, 38, 41, 45, 46, 47, 48, 49}, where
quantization steps for 99 are equal to 2. This implicitly
forces to exclude the hypothesis [QFc,QFc] from the pool of
alternative ones (as no suitable DCT frequencies would be
identified) and to set QFrange = {90, 91, . . . , 100}\QFc. By
this, we reduce the misclassification for single compressed
images while being aware that the possibility of identical
double compression needs to be assessed. In other words, we
can design a new BF test, that we will denote as BF_adaptive,
that has two possible outcomes: the image belongs either to
the union SC ∪ IDC (LLR is below 0 for every hypothesis)
or to DDC (at least one hypothesis has a LLR higher than
0).

We report in Fig. 4 an example of the different values
of LLR obtained with the two different tests, where we can
notice the benefit of the frequency selection. Moreover, the
accuracy results of this approach are reported in Table 3.
They show that the accuracy for DDC is unaltered with
respect to the baseline approach. Misclassification for SC
is now reduced, although it is no longer distinguished from
IDC (for this reason the accuracy on IDC is also very high).
On the other hand, the lower triangle of the table (especially
when QFp > 95) remains an issue.

Thus, we can conclude that the Benford–Fourier analysis
with adaptive selection of the DCT frequencies is suitable to
detect non-identical double compression and is particularly
accurate when QFp <QFc or QFp ≤ 95. This suggests that
other techniques can be used to extend the analysis to the
detection of identical recompression.

QFc = 95, QFp = 94

BF baseline

100 99 98 97 96 95 94 93 92 91 90

LL
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-5000

0

5000

BF adaptive

100 99 98 97 96 95 94 93 92 91 90

LL
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-5000
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Figure 4: Effect of the adaptive DCT selection on the com-
putation of LLR in case of a double compressed image with
QFp = 94 (for the BF_adaptive test the LLR for [QFc, QFc]
is not available).

NC 100 99 98 97 96 95 94 93 92 91 90
100 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
99 0.95 0.13 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
98 0.94 0.14 0.18 0.94 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
97 0.91 0.17 0.22 0.79 0.91 1.00 1.00 1.00 1.00 1.00 1.00 1.00
96 0.94 0.11 0.12 0.47 0.88 0.95 1.00 1.00 1.00 1.00 1.00 1.00
95 0.92 0.13 0.16 0.36 0.85 0.95 0.93 0.99 1.00 1.00 1.00 1.00
94 0.95 0.15 0.18 0.20 0.20 0.98 0.99 0.94 0.99 1.00 1.00 1.00
93 0.93 0.16 0.19 0.35 0.32 0.96 0.99 0.99 0.93 0.99 1.00 1.00
92 0.94 0.15 0.20 0.24 0.23 0.53 0.96 0.99 0.99 0.94 0.99 1.00
91 0.91 0.16 0.18 0.69 0.79 0.83 0.99 1.00 1.00 0.99 0.90 1.00
90 0.93 0.14 0.19 0.20 0.38 0.44 0.94 1.00 1.00 1.00 0.99 0.93

Table 3: Accuracy of the BF_adaptive test

4.3 Block convergence
We compute for each UCID image the ratio r as in Equa-

tion (3), by recompressing the image with the current quality
factor QFc. Then, we used the 600 UCID images discarded
in the Benford–Fourier analysis for fitting theoretical mod-
els, while the remaining ones are used for evaluating the
different tests designed (i.e., the results in the tables refer
to the very same images for both methods).

As a first approach, we adopt a maximum likelihood test
as proposed in [3], which searches among the pool of po-
tential primary quality factors QFrange = {90, 91, . . . , 100}
and is based on a theoretical approximation of the empirical
data distribution. In particular, we fit a beta distribution
for each of the 132 different compression chains and design
a first discrimination test, that we will indicate as BC_ML,
consisting of the following steps:

• Given an image with a certain QFc, the value of r is
computed.

• We consider all the beta distribution pdfs p[QF,QFc](·)
that were previously estimated from every compression
chain [QF, QFc], where QF varies in QFrange∪{NC}.

• We evaluate each pdf for r and pick the one that
yields the maximum value: if it corresponds to a QF
∈ QFrange then the image is classified as double com-
pressed, while if it corresponds to the case of NC it is
classified as single compressed.

It has to be pointed out that the BC_ML is in principle able
to distinguish between the three different sets SC, DDC and
IDC, as is the BF_baseline. However, it also has problems
in accurately classifying SC, as shown in Table 4.

On the other hand the double compressed images are usu-
ally correctly identified, in both the DDC and IDC set (for
QFc ≥ 94). We can identify the reason of the misclassi-
fication for SC by looking at the estimated beta pdfs re-
ported in Fig. 5. Notice that they are strongly overlapping



NC 100 99 98 97 96 95 94 93 92 91 90
100 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99
99 0.78 0.53 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.98 0.98 0.98
98 0.75 0.27 0.28 0.99 0.76 0.98 0.96 0.97 0.98 0.98 0.99 0.98
97 0.26 0.75 0.76 0.81 0.99 0.95 0.96 0.99 0.98 0.98 0.99 0.99
96 0.38 0.64 0.63 0.69 0.76 0.98 0.91 0.88 0.88 0.97 0.95 0.94
95 0.01 0.99 0.99 0.99 0.99 0.99 0.98 1.00 0.99 0.99 0.99 1.00
94 0.12 0.90 0.89 0.89 0.89 0.88 0.91 0.97 0.95 0.93 0.92 0.89
93 0.10 0.90 0.90 0.90 0.90 0.89 0.90 0.92 0.89 0.96 0.94 0.94
92 0.17 0.82 0.81 0.82 0.82 0.82 0.83 0.83 0.83 0.33 0.89 0.88
91 0.19 0.80 0.80 0.80 0.80 0.80 0.79 0.81 0.80 0.81 0.16 0.88
90 0.07 0.88 0.89 0.89 0.91 0.90 0.90 0.91 0.89 0.89 0.91 0.18

Table 4: Accuracy of the BC_ML test

NC 100 99 98 97 96 95 94 93 92 91 90
100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
99 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.98 0.98 0.98
98 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
97 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00
96 1.00 1.00 1.00 1.00 1.00 0.97 1.00 1.00 1.00 1.00 1.00 1.00
95 1.00 1.00 1.00 1.00 1.00 1.00 0.96 1.00 1.00 1.00 1.00 1.00
94 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.96 1.00 1.00 1.00 1.00
93 0.75 0.72 0.72 0.71 0.69 0.77 0.70 0.67 0.96 0.51 0.59 0.61
92 0.03 0.03 0.03 0.02 0.03 0.02 0.03 0.02 0.01 0.99 0.01 0.01
91 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.99 0.00
90 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.99

Table 5: Accuracy of the BC_threshold test with t = t1

NC 100 99 98 97 96 95 94 93 92 91 90
100 0.99 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
99 0.98 0.96 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
98 0.98 0.98 0.98 1.00 0.72 0.16 0.17 0.16 0.11 0.10 0.05 0.09
97 0.99 0.99 0.99 0.97 1.00 0.78 0.57 0.29 0.35 0.27 0.23 0.22
96 1.00 1.00 1.00 0.99 0.98 1.00 0.83 0.90 0.75 0.26 0.50 0.53
95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.88 0.95 0.96 0.95 0.77
94 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.97 1.00 1.00 1.00
93 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.85 1.00 1.00 1.00
92 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.20 1.00 1.00
91 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.16 1.00
90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.11

Table 6: Accuracy of the BC_threshold test with t = t2

in the cases of single compression and double compression
with QFp >QFc.

Also in light of the results obtained in Section 4.2, this
suggests to reformulate the test with the goal of correctly
distinguishing SC and IDC. In this case, the fitted dis-
tribution is clearly separated from the other ones (at least
for QFc ≥ 94) and represents a relevant open issue for the
Benford–Fourier analysis. Moreover, Figure 5 also indicates
that for QFc ≤ 93 almost all of the blocks are already stable.
Thus, we would not gain any information by recompress-
ing the image multiple times and get the whole convergence
path, as suggested in [3].

Then, we can design a simple threshold-based test (indi-
cated as BC_threshold) on r such that an image is classified
as belonging to SC ∪ DDC if r ≤ t, or to IDC otherwise.
The choice of the threshold t can be performed according to
different criteria related to the application scenario. As an
example, we report in Table 5 and 6 the results obtained by
fixing the threshold for each QFc in two different ways:

• t1 is such that
∫ t1

0
p[QFc,QFc](r)dr = 0.01 (we target

99% accuracy on IDC),

• t2 is such that
∫ 1

t2
p[NC,QFc](r)dr = 0.01 (we target

99% accuracy on SC.

In practice, we have that both thresholds yield good accu-
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Figure 5: Beta distributions of r fitted for different QFc

and QFp. In each plot the black bold line represents the
single compression case with the corresponding QFc, while
the red bold line represents the identical double compression
[QFc, QFc]; other previous quality factors are reported in
the legend.

racies for IDC when QFc ≥ 94 (as it can be expected from
Fig. 5), while if QFc ≤ 93 we have misclassification either
for SC and DDC (with t = t1) or IDC (with t = t2). Then,
we can consider the threshold-based approach on block con-
vergence ratio as accurate for the discrimination of single
compressed and identically recompressed images when qual-
ity factors are ≥ 94.

5. COMBINED APPROACH
In light of the results from Section 4, we can notice that

the pros and cons of the two techniques are mostly com-
plementary, thus suggesting the development of a combined
approach for coping with the HQ-DC scenario. In particular,
results from the previous section show that the BF_adaptive
test distinguishes with good accuracy images in SC ∪ IDC
from images in DDC (with misclassification cases for QFp >
QFc); on the other hand, the BC_threshold correctly distin-
guishes images in SC ∪ DDC from images in IDC (with
misclassification cases for QFc ≤ 93).

The goal is to design a classification test for high quality
JPEG images that is able to correctly assign an image to
one of the three classes (SC, DDC or IDC) by relying on
the knowledge of LLRm (the maximum LLR value obtained
from the Benford–Fourier analysis by excluding QFc) and r,



(a) Benford-Fourier based test

BF

SC ∪ IDC DDC

LLRm < τ1 LLRm ≥ τ1

(b) Block convergence based test

BC

SC ∪ DDC IDC

r < τ1 r ≥ τ1

(c) Desired global classification test

Global

SC IDC DDC

Figure 6: Decision trees for different tests.

the ratio of stable blocks after recompressing with QFc.
This task can be accomplished by means of decision tree

induction theory [2, 14], which allows us to determine deci-
sion rules on the pair (LLRm, r) ∈ R× [0, 1] obtained from
the analyzed image.

5.1 Decision tree induction
The decision tree (DT) is one of the most used ways to

represent a classification test, which is expressed as a recur-
sive partitioning of the instance space (in our case R×[0, 1]).
The problem of building (or inducing) a tree starting from
a set of labeled cases (i.e., a set of attribute tuples and
corresponding classes) has been extensively studied in the
literature [2], providing a number of effective and efficient
solutions. A tree is composed by a number of nodes, each
of them related to a specific attribute thresholding opera-
tion. Nodes that are followed by a subtree are called internal
nodes. Otherwise, they are called leaves and they represent
the fact that a decision has been reached (i.e, the analyzed
attribute tuple has been assigned to a class and no further
thresholding is performed). In our case every attribute tu-
ple is a pair (LLRm, r), while the possible classes are SC,
DDC or IDC.

In our visual representations of the trees, we will indicate
internal nodes as diamonds containing the name of the test
used (i.e., BF for Benford–Fourier and BC for block conver-
gence analysis), while leaves are denoted with squares. We
number each internal node in top-bottom/left-right order
and we denoted as τi the threshold used in the i-th internal
node. As an example, in Fig. 6 we represent the classifica-
tion tests used in Section 4, and the one that we want to
design. Please, note that the global test in Fig. 6c discrim-
inates between the three different classes and the accuracy
values in the following tables will be computed accordingly,
i.e., reporting in each cell the percentage of images that have
been correctly assigned to SC, IDC or DDC.

The induction process generally consists of a growing phase,
where the tree is developed according to greedy algorithms,
and a pruning phase, where the tree is further reduced by
replacing a subtree with a decision leaf [14]. All these op-
erations pursue the goal of maximizing accuracy on a given
training set (a set of samples for which both the attributes
and the corresponding classes are known) while minimizing
the complexity of the tree, and are performed according to
certain criteria and metrics. The result is a list of sequential
decision rules that indicates how to optimally threshold the
values LLRm and r, and in which order. In the following,
DT induction is used to derive accurate classification tests
starting from a number of labeled training images.

It is worth pointing out that, differently from other kind

of classifiers, decision trees are easy to interpret and repre-
sent. Moreover, their complexity can be controlled in several
ways, like fixing a maximum number of nodes or a minimum
number of leaves. This results in a classification test com-
bining multiple attributes that can be easily conveyed and
explained.

5.2 Experimental set-up
In our test, we consider the 738 UCID images used in the

previous section and, additionally, 500 DRESDEN images.
For both datasets a number of images has been randomly
chosen for the training set of the DT (200 and 100 images,
respectively), while the remaining ones are used for testing.

Among the existing toolboxes available for the DT induc-
tion, we used the fitctree MatLab function contained in
the Statistics and Machine Learning Toolbox. We used the
default options, with the exception of the prior probability
of each class, that we explicitly set uniform. In other words,
we consider as equally probable images in SC, DDC and
IDC.

Moreover, in each experiment we both determine a full
DT (i.e., the one that is built in the growing phase) and a
pruned one, obtained by forcing the algorithm to reduce the
tree until it contains less than 8 nodes, in order to have a
simplified version.

5.3 Overall decision tree
We first try to build a DT that can be applied to a high

quality image regardless of its current quality factor. In this
case, the training set is composed of each training image
processed according to the 132 different quantization chains,
i.e., by using all the quality factors.

The full DTs obtained are quite complex for both datasets,
presenting 3137 and 1395 nodes for UCID and DRESDEN
datasets, respectively. They are quite accurate on the train-
ing set, while the performance strongly degrades when mov-
ing to the testing set (see Tables 11, 12, 13 and 14 in Ap-
pendix A.1). This suggests that the algorithm is forced to
create a high number of nodes to cope with the specificity of
the training set, but it is sensitive to the images it contains.
In other words, it suffers from overfitting.

On the other hand, it is worth noticing that the pruned
DTs obtained (reported in Fig. 7) have the same structure
for both datasets (i.e., using BF analysis first to identify
DDC images and then employ block convergence to dis-
tinguish between SC and IDC), thus differing only in the
thresholds used.

Moreover, by observing the accuracies (reported in Tables
7 and 8) we can notice that the pruned versions achieve good
results both in the training and testing set when QFc is high,



(a) Training set

NC 100 99 98 97 96 95 94 93 92 91 90
100 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
99 0.97 0.10 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
98 0.96 0.11 0.15 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
97 0.95 0.12 0.17 0.69 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00
96 0.99 0.04 0.03 0.39 0.79 0.99 0.98 1.00 1.00 1.00 1.00 1.00
95 0.10 0.06 0.06 0.15 0.76 0.91 0.98 0.98 0.99 1.00 1.00 1.00
94 0.01 0.02 0.03 0.04 0.04 0.95 0.99 0.99 0.98 0.99 1.00 0.99
93 0.01 0.01 0.01 0.07 0.12 0.91 0.98 0.98 1.00 0.96 0.98 0.99
92 0.00 0.01 0.01 0.02 0.01 0.35 0.91 0.96 0.97 1.00 0.95 0.99
91 0.00 0.01 0.03 0.43 0.56 0.69 0.97 1.00 1.00 0.96 0.99 0.98
90 0.01 0.00 0.01 0.01 0.06 0.21 0.81 1.00 0.99 0.98 0.93 1.00

(b) Testing set

NC 100 99 98 97 96 95 94 93 92 91 90
100 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
99 0.95 0.13 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
98 0.95 0.13 0.16 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
97 0.94 0.11 0.16 0.83 0.94 1.00 1.00 1.00 1.00 1.00 1.00 1.00
96 0.98 0.04 0.07 0.41 0.90 0.98 1.00 1.00 1.00 1.00 1.00 1.00
95 0.01 0.03 0.04 0.17 0.87 0.95 0.99 0.99 1.00 1.00 1.00 1.00
94 0.00 0.00 0.02 0.03 0.04 0.98 0.98 1.00 0.97 1.00 1.00 1.00
93 0.00 0.01 0.01 0.15 0.16 0.96 0.99 0.96 0.99 0.96 0.98 1.00
92 0.00 0.01 0.01 0.02 0.03 0.45 0.95 0.97 0.95 1.00 0.96 1.00
91 0.00 0.00 0.01 0.48 0.68 0.83 1.00 1.00 0.99 0.92 1.00 0.95
90 0.00 0.00 0.00 0.01 0.09 0.28 0.85 1.00 1.00 0.97 0.90 1.00

Table 7: Accuracies of overall pruned DT for UCID dataset

(a) Training set

NC 100 99 98 97 96 95 94 93 92 91 90
100 1.00 1.00 0.92 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
99 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
98 0.99 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
97 1.00 0.00 0.00 0.20 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
96 1.00 0.00 0.00 0.03 0.36 1.00 1.00 1.00 1.00 1.00 1.00 1.00
95 0.00 0.00 0.00 0.03 0.24 0.86 1.00 1.00 1.00 1.00 1.00 1.00
94 0.00 0.00 0.00 0.00 0.00 0.87 1.00 1.00 1.00 1.00 1.00 1.00
93 0.00 0.01 0.01 0.01 0.01 0.66 0.96 1.00 1.00 1.00 1.00 1.00
92 0.00 0.01 0.01 0.01 0.01 0.03 0.83 0.99 1.00 1.00 1.00 1.00
91 0.00 0.01 0.01 0.11 0.14 0.18 0.88 1.00 1.00 1.00 1.00 1.00
90 0.00 0.01 0.01 0.02 0.02 0.02 0.89 0.99 1.00 1.00 1.00 1.00

(b) Testing set

NC 100 99 98 97 96 95 94 93 92 91 90
100 1.00 1.00 0.91 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
99 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
98 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
97 1.00 0.00 0.00 0.23 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
96 0.97 0.00 0.00 0.02 0.34 1.00 1.00 1.00 1.00 1.00 1.00 1.00
95 0.00 0.00 0.00 0.03 0.20 0.85 1.00 1.00 1.00 1.00 1.00 1.00
94 0.00 0.00 0.01 0.01 0.01 0.89 1.00 1.00 1.00 1.00 1.00 1.00
93 0.00 0.01 0.02 0.02 0.02 0.62 0.96 1.00 0.99 1.00 1.00 1.00
92 0.00 0.02 0.02 0.02 0.02 0.03 0.84 0.99 1.00 0.99 1.00 1.00
91 0.00 0.02 0.02 0.12 0.18 0.16 0.90 0.99 1.00 1.00 1.00 1.00
90 0.00 0.02 0.03 0.04 0.05 0.05 0.91 0.98 1.00 1.00 1.00 1.00

Table 8: Accuracies of overall pruned DT for DRESDEN dataset
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r < τ2 r ≥ τ2

Figure 7: Overall best pruned decision tree

whereas the misclassification for SC is noticeably higher for
lower values of QFc in both datasets.

In line with what we observed in Section 4, these results
confirm that the thresholds to be used differ when varying
QFc due to the non-homogeneous behavior of the attributes,
especially for r.

5.4 QFc-specific decision trees
Given the results obtained when using the same thresholds

for every image, a reasonable solution would be to differen-
tiate the classification test according to the current quality
factor, i.e., performing the tree induction process separately
for different QFc. Indeed, it is worth observing that the cur-
rent quality factor is known, thus such approach is feasible
in a realistic forensic scenario.

We repeat the DT building for the 11 different values of
QFc, where the training set is now composed only of images
compressed once or twice with QFc as last quality factor.
On the one hand, we have that the full trees have very good

accuracies on the training sets but the performance degrades
when applied to the testing sets, as shown in Tables 15, 16,
17 and 18 in Appendix A.2.

On the other hand, pruned trees lead to stable results for
training and testing set for both datasets (Tables 9 and 10).
For the sake of brevity, we only report the pruned trees ob-
tained from the UCID dataset (Fig. 8), together with the
different thresholds determined in each case. It is interest-
ing to observe how the structure of tree varies among the
quality factors, allowing either two or three levels of depth
and splitting the nodes in different ways. For instance, we
can observe that the first attribute chosen by the algorithm
is LLRm for QFc ≤ 92, while it switches to r for higher QFc

for which the block convergence is more accurate.
The results in Tables 9 and 10 indicate that the pruned

DTs determined separately for different values of QFc yield
accurate results. Note that in Tables 3, 5 and 6 the accura-
cies are computed with respect to the classes discriminated
in the two single tests (SC ∪ IDC vs DDC for BF and SC
∪ DDC vs IDC for BC), while the QFc-specific DTs achieve
good accuracy for all the three possible classes. Thus, we
can conclude that the capability of BF and BC of correctly
identifying DDC and IDC, respectively, is generally main-
tained, while the global misclassification on the three classes
is highly reduced.

In light of these results, we consider the QFc-specific deci-
sion trees as a possible effective solution for the distinction
of images in SC, DDC and IDC in the HQ-DC scenario.

6. CONCLUSIONS
We have addressed the single vs double compression dis-

crimination problem for grayscale JPEG images compressed
with high nearly-identical quality factors (≥ 90). After an-
alyzing the performance of the Benford–Fourier analysis in
the DCT domain and the block convergence analysis in the



(a) Decision tree for QFc ∈ {100, 98}
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(f) Values of τ1, τ2, τ3 for all DTs

QF τ1 τ2 τ3

100 0.52 324.13 0.34
99 0.41 749.80 5369.97
98 0.47 316.85 0.24
97 0.47 192.85 5088.69
96 0.54 27.56 5033.25
95 0.61 38.13 –
94 0.74 38.46 0.71
93 0.92 19.93 –
92 19.35 0.99 –
91 33.66 0.99 –
90 22.79 0.99 –

Figure 8: Pruned decision trees and thresholds for different quality factors for the UCID dataset

pixel domain, we have studied the problem of combining
the two techniques to obtain an accurate discrimination be-
tween single compressed images (SC), double compressed
images with a different quality factor (DDC) and images
recompressed with the same quality factor (IDC).

The final set of detectors on both the datasets consid-
ered proves to be very accurate for SC images (accuracy ≥
97.5%), DDC images with QFp <QFc (accuracy ≥ 99.0%)
and IDC with QFc ≥ 93 (accuracy ≥ 99.5%).

The results obtained suggest a number of open issues and
directions for future work. The first evident space of im-

provement is represented by the low detection rate of certain
compression chains. For instance, the DDC cases where
QFp >QFc are often misclassified when QFp ≥ 96. The
same happens for the IDC images when QFc ≤ 92. Indeed,
none of the methods considered is able to correctly identify
them and the combined global test does not achieve good
performance in those cases, although it leads to improve-
ments with respect to the two separate techniques. As a fu-
ture perspective, additional methods could be used to cope
with these specific issues and incorporated in the final deci-
sion tree. For instance, the approaches in [6] or [16] could



(a) Training set.

NC 100 99 98 97 96 95 94 93 92 91 90
100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
99 1.00 0.04 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
98 1.00 0.04 0.09 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
97 1.00 0.01 0.03 0.68 0.99 0.98 1.00 1.00 1.00 1.00 1.00 1.00
96 0.99 0.04 0.04 0.40 0.80 0.99 0.98 1.00 1.00 1.00 1.00 1.00
95 0.99 0.05 0.05 0.15 0.76 0.91 0.99 0.97 0.98 0.99 1.00 0.99
94 1.00 0.02 0.02 0.02 0.04 0.95 0.99 0.98 0.91 0.98 0.99 0.99
93 1.00 0.02 0.06 0.14 0.17 0.93 0.98 0.99 0.86 0.97 0.98 1.00
92 0.99 0.03 0.06 0.07 0.06 0.39 0.92 0.97 0.98 0.36 0.97 1.00
91 0.98 0.01 0.03 0.44 0.56 0.69 0.97 1.00 1.00 0.96 0.28 0.98
90 1.00 0.01 0.02 0.03 0.10 0.24 0.85 1.00 0.99 1.00 0.95 0.23

(b) Testing set.

NC 100 99 98 97 96 95 94 93 92 91 90
100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00
99 0.99 0.08 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
98 0.99 0.02 0.06 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.98
97 1.00 0.01 0.01 0.79 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
96 0.98 0.06 0.08 0.42 0.91 1.00 0.99 1.00 1.00 1.00 1.00 1.00
95 0.99 0.03 0.04 0.15 0.86 0.95 1.00 0.98 1.00 1.00 1.00 1.00
94 1.00 0.00 0.01 0.02 0.03 0.98 0.98 1.00 0.92 1.00 1.00 1.00
93 0.99 0.03 0.04 0.20 0.20 0.95 0.99 0.98 0.96 0.98 0.99 1.00
92 0.99 0.02 0.04 0.05 0.07 0.49 0.95 0.99 0.97 0.40 0.97 1.00
91 0.99 0.00 0.01 0.48 0.68 0.83 1.00 1.00 0.99 0.92 0.28 0.96
90 0.99 0.01 0.01 0.01 0.14 0.32 0.88 1.00 1.00 0.99 0.94 0.26

Table 9: Accuracies of QFc-specific pruned DT for UCID dataset.

(a) Training set.

NC 100 99 98 97 96 95 94 93 92 91 90
100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
99 1.00 0.03 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
98 1.00 0.00 0.01 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
97 0.96 0.01 0.04 0.79 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.98
96 1.00 0.02 0.01 0.07 0.88 1.00 1.00 1.00 1.00 1.00 1.00 1.00
95 0.98 0.06 0.10 0.30 0.47 0.93 1.00 1.00 1.00 1.00 1.00 1.00
94 1.00 0.01 0.01 0.01 0.01 0.87 1.00 1.00 1.00 1.00 1.00 1.00
93 0.97 0.10 0.11 0.16 0.13 0.78 0.97 1.00 1.00 1.00 1.00 1.00
92 0.99 0.04 0.07 0.07 0.07 0.08 0.89 0.99 1.00 0.87 0.73 0.99
91 1.00 0.01 0.01 0.11 0.14 0.18 0.88 1.00 1.00 1.00 0.78 0.88
90 0.99 0.04 0.08 0.08 0.10 0.11 0.90 0.99 1.00 1.00 1.00 0.76

(b) Testing set.

NC 100 99 98 97 96 95 94 93 92 91 90
100 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
99 0.99 0.02 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
98 1.00 0.00 0.01 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00
97 0.94 0.04 0.05 0.77 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
96 0.97 0.04 0.04 0.06 0.85 1.00 0.99 0.99 0.99 1.00 0.99 0.99
95 0.97 0.06 0.07 0.28 0.36 0.95 1.00 1.00 1.00 1.00 1.00 1.00
94 0.99 0.01 0.02 0.02 0.02 0.89 1.00 0.99 1.00 1.00 1.00 1.00
93 0.94 0.11 0.12 0.14 0.13 0.71 0.97 1.00 0.99 1.00 1.00 1.00
92 0.96 0.07 0.07 0.09 0.08 0.09 0.86 0.99 1.00 0.89 0.68 0.98
91 1.00 0.02 0.02 0.12 0.18 0.16 0.90 0.99 1.00 1.00 0.78 0.85
90 0.97 0.07 0.09 0.10 0.11 0.11 0.92 0.98 1.00 0.99 0.99 0.75

Table 10: Accuracies of QFc-specific pruned DT for DRESDEN dataset.

be employed for identifying IDC with QFc ≤ 92. Moreover,
a limitation of the proposed approach is that it does not
explicitly incorporate the knowledge of the size of the image
under investigation.

Finally, the process of decision tree induction is currently
performed by means of standard tools. A potential improve-
ment would be to design induction tools specifically tailored
to the forensic scenario considered, by customizing the cri-
teria that rule the construction of the tree.
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APPENDIX
A. RESULTS FOR FULL DECISION TREES

A.1 Overall full decision tree
NC 100 99 98 97 96 95 94 93 92 91 90

100 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
99 1.00 0.62 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
98 1.00 0.67 0.69 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
97 1.00 0.64 0.64 0.85 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
96 1.00 0.70 0.72 0.79 0.93 0.96 0.99 1.00 1.00 0.99 1.00 1.00
95 0.98 0.64 0.63 0.70 0.91 0.96 0.99 0.99 1.00 1.00 1.00 1.00
94 0.96 0.59 0.60 0.61 0.64 0.95 0.98 0.94 0.98 0.99 1.00 0.99
93 0.95 0.49 0.53 0.59 0.60 0.94 0.98 0.99 0.92 0.98 0.99 0.99
92 0.95 0.50 0.53 0.54 0.54 0.69 0.95 0.99 0.99 0.93 0.99 1.00
91 0.97 0.49 0.55 0.76 0.83 0.85 0.99 1.00 1.00 1.00 0.95 0.99
90 0.94 0.50 0.56 0.55 0.58 0.65 0.92 0.99 0.99 0.99 0.97 0.96

Table 11: Training set UCID
NC 100 99 98 97 96 95 94 93 92 91 90

100 0.91 0.95 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
99 0.70 0.44 0.63 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
98 0.54 0.45 0.46 0.93 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
97 0.54 0.49 0.47 0.89 0.86 1.00 1.00 1.00 1.00 1.00 1.00 1.00
96 0.45 0.61 0.60 0.75 0.96 0.67 1.00 1.00 1.00 1.00 1.00 1.00
95 0.35 0.56 0.58 0.66 0.93 0.94 0.77 0.98 0.99 1.00 1.00 1.00
94 0.36 0.48 0.48 0.51 0.49 0.98 0.98 0.57 0.98 1.00 1.00 1.00
93 0.39 0.36 0.32 0.46 0.47 0.97 0.99 0.98 0.45 0.99 0.99 1.00
92 0.32 0.34 0.40 0.37 0.40 0.64 0.97 0.99 0.98 0.58 0.99 1.00
91 0.32 0.34 0.42 0.72 0.84 0.89 1.00 1.00 1.00 0.96 0.56 0.99
90 0.33 0.36 0.39 0.43 0.52 0.58 0.94 1.00 1.00 0.99 0.96 0.53

Table 12: Testing set UCID
NC 100 99 98 97 96 95 94 93 92 91 90

100 1.00 1.00 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
99 1.00 0.68 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
98 0.99 0.68 0.66 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
97 1.00 0.68 0.63 0.82 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
96 1.00 0.74 0.78 0.75 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00
95 0.96 0.71 0.67 0.80 0.79 0.98 1.00 1.00 1.00 1.00 1.00 1.00
94 0.99 0.81 0.78 0.81 0.86 0.99 1.00 0.99 1.00 1.00 1.00 1.00
93 1.00 0.71 0.75 0.79 0.85 0.94 1.00 1.00 0.94 1.00 1.00 1.00
92 0.94 0.66 0.71 0.71 0.70 0.64 0.96 1.00 1.00 1.00 1.00 1.00
91 1.00 0.58 0.59 0.69 0.73 0.73 0.93 1.00 1.00 1.00 0.99 1.00
90 0.99 0.76 0.77 0.82 0.74 0.75 0.96 0.99 1.00 1.00 1.00 0.98

Table 13: Training set DRESDEN
NC 100 99 98 97 96 95 94 93 92 91 90

100 0.93 0.98 0.93 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
99 0.74 0.47 0.93 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
98 0.54 0.54 0.45 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
97 0.56 0.42 0.43 0.68 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00
96 0.54 0.62 0.64 0.66 0.97 0.97 1.00 1.00 1.00 1.00 1.00 1.00
95 0.53 0.49 0.51 0.71 0.76 0.96 0.99 1.00 1.00 1.00 1.00 1.00
94 0.43 0.66 0.69 0.67 0.63 0.97 1.00 0.96 1.00 1.00 1.00 1.00
93 0.43 0.63 0.67 0.63 0.66 0.91 0.98 1.00 0.51 1.00 1.00 1.00
92 0.40 0.45 0.49 0.48 0.49 0.46 0.93 1.00 1.00 0.88 1.00 1.00
91 0.42 0.49 0.51 0.55 0.59 0.60 0.93 1.00 1.00 1.00 0.87 1.00
90 0.34 0.52 0.54 0.60 0.58 0.58 0.95 0.99 1.00 1.00 1.00 0.83

Table 14: Testing set DRESDEN

A.2 QFc-specific full decision trees
NC 100 99 98 97 96 95 94 93 92 91 90

100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
99 1.00 0.61 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
98 1.00 0.65 0.66 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
97 1.00 0.63 0.67 0.86 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00
96 1.00 0.78 0.69 0.82 0.94 1.00 0.99 1.00 1.00 1.00 1.00 1.00
95 1.00 0.73 0.73 0.81 0.95 0.98 0.99 1.00 1.00 1.00 1.00 1.00
94 1.00 0.77 0.80 0.74 0.79 0.98 1.00 0.99 0.99 0.99 1.00 1.00
93 0.98 0.66 0.73 0.74 0.73 0.98 1.00 1.00 0.98 0.98 0.99 1.00
92 0.97 0.48 0.61 0.60 0.58 0.75 0.96 0.99 0.98 0.97 0.99 1.00
91 0.95 0.47 0.53 0.76 0.79 0.88 0.99 1.00 1.00 0.99 0.94 1.00
90 0.95 0.52 0.51 0.68 0.73 0.71 0.96 1.00 1.00 1.00 0.99 0.95

Table 15: Training set UCID
NC 100 99 98 97 96 95 94 93 92 91 90

100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00
99 0.77 0.43 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
98 0.58 0.43 0.47 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
97 0.52 0.49 0.54 0.91 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
96 0.41 0.61 0.63 0.74 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00
95 0.43 0.62 0.64 0.71 0.95 0.98 1.00 0.99 1.00 1.00 1.00 1.00
94 0.38 0.64 0.63 0.68 0.64 0.99 0.99 1.00 0.99 1.00 1.00 1.00
93 0.42 0.57 0.58 0.65 0.67 0.98 1.00 0.99 0.97 0.99 0.99 1.00
92 0.40 0.38 0.44 0.45 0.45 0.69 0.97 1.00 0.98 0.55 0.99 1.00
91 0.38 0.32 0.33 0.73 0.80 0.89 1.00 1.00 1.00 0.95 0.56 0.97
90 0.30 0.44 0.51 0.50 0.66 0.66 0.96 1.00 1.00 1.00 0.99 0.46

Table 16: Testing set UCID
NC 100 99 98 97 96 95 94 93 92 91 90

100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
99 1.00 0.61 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
98 1.00 0.51 0.54 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
97 1.00 0.57 0.65 0.88 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
96 1.00 0.71 0.76 0.77 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
95 1.00 0.78 0.74 0.82 0.91 1.00 1.00 1.00 1.00 1.00 1.00 1.00
94 1.00 0.79 0.72 0.83 0.82 0.99 1.00 1.00 1.00 1.00 1.00 1.00
93 1.00 0.77 0.78 0.86 0.77 0.96 0.99 1.00 1.00 1.00 1.00 1.00
92 1.00 0.75 0.79 0.79 0.79 0.76 0.98 0.99 1.00 0.96 1.00 1.00
91 1.00 0.69 0.78 0.79 0.76 0.76 0.97 1.00 1.00 1.00 0.97 1.00
90 0.99 0.62 0.71 0.73 0.75 0.73 0.93 0.99 1.00 1.00 1.00 0.99

Table 17: Training set DRESDEN
NC 100 99 98 97 96 95 94 93 92 91 90

100 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
99 0.79 0.40 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
98 0.59 0.43 0.41 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
97 0.57 0.40 0.41 0.84 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
96 0.55 0.62 0.63 0.65 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00
95 0.54 0.55 0.57 0.75 0.81 1.00 1.00 1.00 1.00 1.00 1.00 1.00
94 0.51 0.61 0.69 0.72 0.64 0.99 1.00 0.99 1.00 1.00 1.00 1.00
93 0.44 0.60 0.65 0.70 0.65 0.89 0.99 1.00 0.99 1.00 1.00 1.00
92 0.47 0.56 0.60 0.60 0.62 0.65 0.96 1.00 1.00 0.90 1.00 1.00
91 0.41 0.56 0.56 0.57 0.61 0.62 0.94 1.00 1.00 1.00 0.86 1.00
90 0.47 0.49 0.52 0.52 0.56 0.54 0.97 0.99 1.00 1.00 1.00 0.82

Table 18: Testing set DRESDEN


