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Abstract

We present techniques to improve convergence speed of distributed average consensus algorithms in

wireless sensor networks by means of topology design. A broadcast network is assumed, so that only the

transmit power of each node can be independently controlled, rather than each individual link. Starting

with a maximally connected configuration in which all nodes transmit at full power, the proposed methods

successively reduce the transmit power of a chosen node in order to remove one and only one link; nodes

are greedily selected either in order to yield fastest convergence at each step, or if they have the largest

degree in the network. These greedy schemes provide a good complexity-performance tradeoff with

respect to full-blown global search methods. As a side benefit, improving the convergence speed also

results in savings in energy consumption with respect to the maximally connected setting.

Keywords: Average consensus, algebraic connectivity, graph Laplacian, range assignment, topology

control, wireless multicast advantage.

1. Introduction

Average consensus, in the general framework of networks of agents, means reaching an agreement on

the average state of all agents. Recently, much effort has been directed to the study of the average consen-

sus problem in Wireless Sensor Networks (WSNs) (see [1] and the references therein), since distributed

consensus algorithms only require iterative local information exchanges among neighboring nodes and

the computation of weighted sums at each node. Potential applications include detection, estimation,

reputation management, load balancing, control of autonomous agents, etc. [2].

One important issue regarding distributed average consensus algorithms in WSNs is convergence

speed: reducing the convergence time results in fewer transmissions and therefore in energy savings.

Approaches from the literature to speed up convergence can be classified in two groups. If the topology of

the network is fixed, one can design the weights intervening in the consensus scheme in order to minimize
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convergence time [3–5]. On the other hand, if the network topology can somehow be altered, then

additional flexibility is available, and the optimization can be performed over the topology as well as the

weights [6–10]. Generally speaking, topology optimization is a very difficult combinatorial problem and

different suboptimal approaches can be adopted. In [6] the convergence properties of different topology

classes are theoretically analyzed on average, given the number of nodes of a general network. In [8]

it is shown that, starting from a given topology, removing certain links can be beneficial in terms of

convergence speed; this approach was later refined in [9] in order to judiciously remove and add links

with the goal of speeding up the consensus algorithm while keeping energy consumption at bay. In WSNs

with static nodes, topology control can be achieved by varying the transmit power, as considered in

[7, 10].

All of these approaches implicitly assume unicast pairwise communication1: each node can indepen-

dently set the transmit power it allocates to communicate with each of its neighbors, e.g., by using

orthogonal signaling. However, in distributed consensus schemes the information that nodes need to send

at a given iteration is the same for all of its neighbors, so that in WSNs it is possible to exploit the

broadcast nature of the wireless channel, also known as Wireless Multicast Advantage (WMA) [11]: at

each consensus iteration, each node may broadcast its state while its neighbors simultaneously listen,

thus reducing the number of required transmissions. On the other hand, exploiting WMA while varying

the transmit power of a given node affects the links to all of its neighbors, so that these cannot be

independently controlled now2. This motivates specific topology optimization strategies that take this

fact into account, since previous topology control schemes designed under the unicast assumption cannot

be applied under these ”broadcast communication” constraints.

This problem is related to the so-called range assignment (RA) problem in broadcast WSNs, usually

oriented to other network-related goals (e.g. maintaining global connectivity [13]) and known to be

difficult in general [14]. Our goal is to determine the transmit power for each node in a broadcast WSN

in order to minimize the convergence time of a given distributed average consensus scheme. One issue

featuring in such setting is the fact that, if the transmit powers of nodes i and j are different (non-

homogeneous RA [13]), it may well happen that node i is out of the coverage range of node j whereas

node j can listen to node i’s transmissions; in other words, the underlying graph becomes directed. This

has implications for consensus algorithms. Although reaching an agreement over a directed graph is

easily achieved, the agreement value will be a weighted average of the agents’ states, and the weights

will depend on the topology. When the unweighted average is of interest, certain stringent requirements

on the directed graph must be imposed (such as some sort of graph balancing [15]), which are generally

difficult to enforce in practice. Hence, we focus on undirected graphs, for which reaching an agreement

on the unweighted average by consensus algorithms is not a problem. To this end, we adopt a simple

1As an exception, in [10, Sec. V] a broadcast scheme is considered, but the transmit power is constrained to be equal for

all nodes in the network, in contrast with the approach proposed in the present work.
2Transmissions in a broadcast WSN should be coordinated at the MAC layer in order to avoid collisions and align the

listening and transmitting nodes, for instance by implementing some suitable time-synchronization protocol [12].
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strategy by which nodes just ignore transmissions received from neighbors which are not within their own

transmit range (in the previous example, node j would simply ignore packets received from node i), thus

obtaining an undirected topology. With this framework, we start from a maximally connected setting

(all nodes transmit at full power), and then proceed to iteratively reduce the power of one node at a time

in a centralized greedy fashion in order to maximize the convergence rate.

As previous approaches to topology control [6–10], ours is a centralized scheme which can be run

by a central entity after deployment and previously to the network becoming operative; after such step,

network operation may become decentralized. Fully distributed topology control methods are desirable

and should be the target of future research.

In Sec. 2 the network model and the basics of consensus schemes are presented. The proposed greedy

algorithm for non-homogeneous RA is presented in Sec. 3. Simulation results an conclusions are provided

in Secs. 4 and 5.

2. Problem setting

2.1. Graph model

Consider a set V of randomly deployed nodes with indices i ∈ {1, · · · , n}. Let dij be the distance

between nodes i and j, and let R = {ri ∈ [0, rmax], i = 1, · · · , n} be a set of connectivity radii (i.e.

transmit ranges), with rmax > 0 the maximum allowable range. We adopt a simple model by which a link

between two nodes exists iff their distance does not exceed the transmit range of the transmitter, which

can be controlled by setting the transmit power [10, 13]. As discussed in Sec. 1, the edge set E ⊆ V × V

is defined as

(i, j) ∈ E ⇔ i 6= j, dij ≤ min{ri, rj}. (1)

In this way, the graph G = {V, E} is undirected as desired. If ri = r for i = 1, · · · , n we recover the

homogeneous RA over the standard Random Geometric Graph (RGG) model [16]. However, we allow

for different transmit ranges at different nodes in order to add flexibility to the design.

The neighborhood of node i is defined as Ni = {j : (i, j) ∈ E}, and its degree (number of neighbors)

is therefore |Ni|. The graph Laplacian matrix L has elements

Lij =


|Ni| if i = j

−1 if i 6= j and j ∈ Ni
0 otherwise.

(2)

By construction L is symmetric. Let λ1(L) ≤ λ2(L) ≤ · · · ≤ λn(L) denote its ordered eigenvalues. Note

that λ1(L) = 0 with corresponding eigenvector the n× 1 all-ones vector 1. Moreover, λ2(L) > 0 iff G is

connected [16]. λ2(L) is known as the algebraic connectivity of the graph.

2.2. Average consensus algorithms

Let x(0) = [x1(0) · · · xn(0)]T ∈ Rn denote the vector of initial node measurements. The goal of

the average consensus algorithm is to have all nodes compute the average x̄ = 1
n1

Tx(0), iteratively
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and in a distributed fashion (thus node i can only communicate with nodes in Ni). Distributed linear

iterations [3] take the form x(k) = Wx(k − 1), where W is a symmetric weight matrix with zero (i, j)

entries if i 6= j and (i, j) /∈ E , and such that W1 = 1 and ρ(W − 1
n11

T ) < 1, with ρ(·) denoting the

spectral radius. Under these conditions, limk→∞ x(k) = x̄1 as desired. The asymptotic convergence

factor η and convergence time τ are defined as

η = sup
x(0) 6=x̄1

lim
k→∞

(
||x(k)− x̄1||2
||x(0)− x̄1||2

) 1
k

, τ =
s

log(1/η)
. (3)

The latter is indicative of the number of iterations required for the error norm ||x(k)− x̄1||2 to decrease

by a factor of e−s. As shown in [3], one has η = ρ(W − 1
n11

T ). Noting that W depends on the topology,

the problem is then stated as

min
R

ρ(W − 1

n
11T ). (4)

Note that choosing R sets the zero-valued entries of W . The nonzero entries are then set by some weight

selection method, such as FDLA [3], max-degree, Metropolis [17], etc. Although the scheme proposed

in Sec. 3 can be applied to any weight selection method, for illustrating purposes we focus on constant-

weight assignments [1], in which W = I − αL with 0 < α < 2/λn(L) a stepsize. Given R and the

corresponding topology with Laplacian L, the optimum stepsize minimizing the asymptotic convergence

factor η is

α? =
2

λn(L) + λ2(L)
⇒ η =

1− γ(L)

1 + γ(L)
, (5)

with γ(L) = λ2(L)/λn(L).

The nonconvex problem (4) is quite hard, as most RA problems [14]. Next we present greedy ap-

proaches to solving (4) with a good tradeoff between complexity and performance.

3. A greedy approach to fast consensus

An important observation is that the maximally connected topology3 obtained by setting ri = rmax

for all i is not necessarily optimal in terms of η. For example, with a constant weight assignment with

optimum stepsize, minimizing η amounts to maximizing the eigenvalue ratio γ = λ2/λn. It is known that

the eigenvalues of the Laplacian matrix cannot increase (resp. decrease) by removing links from (resp.

adding links to) a given topology [9, 18]. If some of the ri are decreased and some links are removed as a

consequence, the value of γ may actually increase if λn decreases faster than λ2 [8, 9]. Note also that this

effect is due to the fact that the optimum stepsize is topology dependent. Should one keep the stepsize

α constant, the asymptotic convergence factor would be η = 1− αλ2(L) which can only increase if links

are removed.

Our approach starts with the maximally connected topology, and then successively removes one link

at a time in order to obtain the best possible value of η at each step. In order to rigorously describe this

3Note that the maximally connected topology is not necessarily fully connected.

4



Table 1: Greedy algorithm for best topology search.

1. Set m = 0. Let R0 = {ri = rmax, i = 1, · · · , n}.

2. At step m, and for j = 1, . . . , n,

(a) Let Gjm = {V, Ejm} be the graph associated to Rj−
m .

(b) Let W j
m be the corresponding weight matrix, and

ηm,j = ρ(W j
m −

1

n
11T ).

3. Set Rm+1 = Rj(m)−
m , where j(m) = argmaxj ηm,j .

4. Let Gm+1 = {V, Em+1} be the corresponding graph. If Gm+1 is connected, and m < mmax, set

m← m+ 1 and go to step 2.

5. Set R = Rm? , where m? = argmaxm ηm,j(m).

scheme, let us first define the following two operations on a set of transmit ranges R. If G = {V, E} is

the undirected graph corresponding to a given R = {ri} as per (1), we define the reduction of R as

R− = {r−i , i = 1, · · · , n}, r−i = max
j|(i,j)∈E

{dij}. (6)

In words, each transmit range in R is decreased as much as possible without changing the structure of

G, by setting its value to the distance from the corresponding node to its farthest neighbor in G. Clearly,

a reduction always entails energy savings without affecting the topology; whereas any further decrease

of any of the elements of R− will change the underlying graph G. We define the j-th perturbation of

R−, denoted by Rj−, as the set of transmit ranges obtained by (i) replacing r−j by r−j − ε, where ε is

a sufficiently small positive constant such that only the link between node j and its farthest neighbor is

removed by this change, and (ii) applying a reduction to the resulting configuration.

The proposed iterative topology search is described in Table 1. At each step, the value of the objective

function η obtained by removing the link between node j and its farthest neighbor is computed for every

j, and the best choice is selected for the next step4. This is repeated for a maximum number of steps

(mmax in step (4) of Table 1) or until a disconnected graph is obtained; the final configuration is selected

from the history of topologies obtained along the process. Note that the number of links is reduced

at each step, and thus each configuration will be sparser (and more energy-efficient) than that at the

previous step.

The computational cost of the proposed scheme is dominated by step 2.b, which typically requires

an eigenvalue decomposition (EVD) to compute the spectral radius5. Thus the total number of EVDs is

n ·mmax. This load can be reduced if we replace steps (2.b) and (3) in Table 1 by

4A random choice can be made in case of ties.
5The fact that the Laplacian obtained after removing an edge is a rank-1 perturbation of the original Laplacian can be

exploited in order to efficiently compute the EVD of the perturbed Laplacian from that of the original one; see [19, Sec.

8.5.3].
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(2.b’) Let δm,j = |Nj |, i.e., the degree of node j at step m.

(3’) Set Rm+1 = Rj(m)−
m , where j(m) = arg maxj δm,j .

In this way, at each step the node with largest degree is chosen (also in this case a random choice is

made in case of ties), and the link to its farthest neighbor is removed; the number of EVDs is then just

mmax. The rationale for this simplified scheme is that convergence speed tends to be larger in networks

with more uniform degree distributions [6]. The following argument lends additional justification to this

approach:

If the edge connecting vertices i and j is removed from the graph with Laplacian L, the new Laplacian

becomes L̃ = L− ggT , where g = ei− ej , and ek is the k-th column of the n×n identity matrix. Thus,

L̃ is a rank-1 perturbation of L. Since ‖g‖2 = 2, direct application of Theorem 8.1.8 from [19] yields the

following upper bound on the eigenvalue ratio of the perturbed Laplacian:

γ(L̃) ≤ γ(L)

1− 2
λn(L)

. (7)

Recall now [20] that λn(L) ≥ δmax + 1, where δmax = max1≤i≤n |Ni| is the largest node degree of the

graph. Combining this with (7) yields

γ(L̃)

γ(L)
≤ δmax + 1

δmax − 1
. (8)

Since the right-hand side of (8) is monotonically decreasing in δmax, this suggests that the link to be

removed be an edge corresponding to a node with largest degree.

As an example, consider n = 50 nodes randomly deployed in [0, 1] × [0, 1] with a constant-weight

assignment. Fig. 1 shows the values of γ = λ2/λn obtained by the proposed greedy schemes as links get

removed, for two different choices of rmax. It is seen that the larger rmax, the more links can be removed

in order to optimize performance, which makes sense. The simplified greedy search seems to provide

a good low-cost alternative to the full greedy scheme. As regards the execution times of the proposed

optimization techniques, the simplified greedy approach (resp., the full-greedy approach) required 0.30

and 0.67 seconds (resp. 6.01 and 11.67 seconds) to run to completion (i.e., until disconnection) on the

considered network topologies, respectively6.

Nevertheless, it should be pointed out that the simplified greedy technique should be cautiously used

as an alternative to the full version, especially when trying to optimize peculiar network topologies. For

example, if the initial graph is regular (i.e., all nodes have the same degree), the simplified greedy version

would simply start removing the farthest link of a randomly chosen node, and this would be repeated

successively over the set of remaining nodes (again, randomly choosing the node among the remaining

ones with the largest degree at each iteration). An even more peculiar situation in which the simplified

greedy version would fail to select a convenient sub-optimal link to remove is the following: let assume

that node i has the largest degree and its farthest neighbor j has a node degree equal to 1 (e.g., it can

6Our simulation framework was entirely developed in Matlab 8.1.0.604 (R2013a) for a 32-bit Windows 7 OS, running on

a standard laptop machine equipped with 2 Intel(R) Core(TM) i7-2620M CPUs @ 2.70 GHz and 4GB of Ram.
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Figure 1: γ versus number of steps of the proposed greedy methods for an example with a WSN with n = 50 nodes. The

best γ values are marked with dots.

only communicate with node i). By design, the simplified greedy approach would remove link (i, j), hence

causing an early network disconnection.

The trend for γ along the iterations of the greedy schemes, illustrated in Fig. 1, is generally observed:

an increasing stage up to the maximum value followed by a decreasing stage until the network eventually

becomes disconnected (and thus γ = 0) as a consequence of removing too many links. This general trend,

however, is peppered with rather unpredictable local maxima and minima, so that one must in general

complete the link removal process until network disconnection, and then look back in order to pick the

best setting encountered in previous iterations.

4. Simulation results

The performance of the greedy schemes was checked in a number of randomly generated deployments

in [0, 1] × [0, 1]. The maximum transmit range is obtained as a function of the number of nodes n as

rmax =
√
c logn

n ; thus, the larger the value of c, the more connected the topology. For n = 50, 75 and

100 nodes and 1 ≤ c ≤ 2, we averaged the results over 100 random deployments for each (n, c) pair. A

constant-weight assignment W = I − α?L is assumed.

Fig. 2(a) shows the relative convergence time τ/τmc, where τmc denotes the convergence time corre-

sponding to the maximally connected configuration (in the sequel we take s = 7 in (3), which amounts

to a decrease of the error norm to 0.1% of its initial value). It is seen that it is possible to bring down

the relative convergence time to the range 80%–90%, with a larger payoff for less connected settings. For

comparison, we also show the results obtained with a strategy that constrains the transmit ranges to

be equal at all nodes. Under this constraint, the optimum setting can be obtained by solving a scalar

optimization problem in the variable r ∈ [0, rmax]. Although this approach provides some advantage

with respect to the maximally connected setting, the proposed methods yield much larger improvements.

Thus, the benefit of allowing for different transmit ranges at different nodes is clear.
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Although our goal is convergence speed, it is also worth checking the energy savings obtained by

topology sparsification. Given a configuration R = {ri}, the average energy consumption after a consen-

sus round is proportional to τ · 1
n

∑n
i=1 r

β
i , with β the path-loss exponent and τ the convergence time as

in (3). Thus, energy savings are due to a reduction in convergence time as well as in transmit power7.

Fig. 2(b) shows the average energy consumption (also relative to that of the maximally connected set-

ting), for β = 2. Savings in the range of 60%–80% are observed; again, less connected configurations

seem to benefit most from sparsification.
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Figure 2: Relative (w.r.t. the maximally connected topology) performances of the different designs. Recall that the smaller

the relative value, the better the corresponding metric of the sparsified configuration w.r.t. the maximally connected

topology.

The proposed schemes are greedy search methods with no guarantee of optimality. Thus, the question

of how much could be gained in terms of performance with respect to the greedy solutions is pertinent. We

ran a simulated annealing (SA)-based metaheuristic solver [21] which seeks the configuration with smallest

τ starting from the maximally connected setting. We adopt a standard cooling law tk = 0.94tk−1 with

initial temperature t0 = 0.1, and a standard Metropolis-Hastings acceptance probability function, while

at t0 hill climbings are accepted with probability 0.8 (disconnected configurations are always discarded).

At each tk value, each transmit range is randomly changed 15 times. The best setting found after a

maximum of 5× 104 EVDs is then returned. 10 independent SA runs were executed per deployment; for

complexity reasons, only networks with n = 50 nodes were considered. The results in terms of relative

convergence time and relative energy are shown in Figs. 2(a) and 2(b) respectively, both when picking

the best result out of the 10 trials per setting and when averaging those 10 results. Although the greedy

7We only consider transmit power in the energy budget, since receive energy consumption ultimately depends on the

type of radio and hardware implementation.
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methods show some loss, they provide a good performance/complexity tradeoff, as their computational

cost is much less than that of metaheuristic solvers such as SA.

5. Conclusions

New methods to optimize a topology-dependent cost function in the context of broadcast WSNs have

been introduced. They start with a dense topology and successively remove one link at a time in a greedy

fashion; the best configuration among those obtained is then picked. The methods effectively improve

convergence speed for average consensus algorithms, with reduced energy consumption as an important

side benefit. The full greedy version requires n EVDs of an n × n matrix per step, with n the network

size, whereas the simplified version requires just one such EVD per step. Thus, with very large networks,

the tradeoff between complexity and performance provided by the simplified greedy approach becomes

appealing.

Certain assumptions underlying the model, e.g. knowledge of the node locations, circular transmission

coverage regions, and a continuous range of feasible transmit powers, may not hold in practice. One may

just have, e.g., Signal-to-Noise Ratio (SNR) estimates for the links between pairs of nodes. In that case,

the inverse SNR can be used as a proxy for distance, and then the true shape of coverage regions becomes

irrelevant. The greedy search methods can then be applied if one assumes that links are established only

if the corresponding SNR is above a threshold guaranteeing successful message decoding: the role of the

“farthest neighbor” corresponds to the neighboring node with worst SNR still above the threshold. If

the corresponding link is to be dropped, then the transmit power is reduced by the difference (in dB)

between the SNR value and the threshold. Discrete values of transmit power, as is often the case in

practical chipsets, are straightforwardly accommodated as well. Future work should address the impact

of these practical issues as well as others such as node and/or link failures in the network.
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