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Abstract—The adaptation of Spatial Modulation based links
to the channel conditions is challenged by the complicated
dependence between performance (either error rate metrics or
theoretically achievable rates) and the multiple antenna channel
description. In this paper a coding rate selection mechanism is
presented based on a carefully selected set of channel features
and the proper training of a deep neural network, which all
together can satisfy a given error rate bound.

Index Terms—Deep Learning, Link adaptation, MIMO, Neural
Network, Spatial Modulation.

I. INTRODUCTION

Spatial Modulation (SM) is being considered for future 5G
systems [1], since it can increase the spectral efficiency with
respect to single antenna systems, with simpler hardware re-
quirements as compared with other multi-antenna techniques,
reducing the power consumption. Its most basic implementa-
tion activates only one antenna at a time, with the information
encoded into the index of the active antenna and the transmit
symbol. This seemingly simple transmission scheme poses
some challenges when designing the receiver or computing
the achievable information rates.

In particular, the achievable rate shows a significantly complex
dependence with the channel coefficients, as opposed to more
conventional Multiple Input Multiple Output (MIMO) tech-
niques. This is a significant drawback when applying some
sort of Adaptive Coding and Modulation (ACM) mechanism,
generically known as link adaptation. This consists typically
in varying the modulation order and/or the coding rate of
the channel encoder to track the varying channel conditions.
The ultimate goal is to adjust the transmitted bit rate to the
information that the channel can support for a given bit error
probability.

Link adaptation makes it necessary for the transmitter-receiver
pair to estimate somehow the rate that can be supported by
the channel. In most practical cases, the receiver computes
some metric which is sent back to the transmitter end. This
metric can be in the form of the average or effective Signal to
Interference and Noise Ratio (SINR), or some Channel Quality

This work was funded by the Xunta de Galicia (Secretaria Xeral de Uni-
versidades) under a predoctoral scholarship (cofunded by the European Social
Fund), and it was partially funded by the Agencia Estatal de Investigacion
(Spain) and the European Regional Development Fund (ERDF) under project
MYRADA (TEC2016-75103-C2-2-R).

Indicator (CQI) specifically suited to the set of Modulation and
Coding Schemes (MCS) available to the transmitter [2].

The authors presented in [3] some analytical approximations
to the integral expression of the mutual information in an SM
link. Its use in adaptive settings is jeopardized by the error
of the approximations, and also by the need to estimate the
achievable rate of practical MCSs. With this motivation in
mind, in this work we explore the use of Machine Learning
(ML) tools to determine at each moment the appropriate MCS
to transmit. The use of ML at the physical layer of communica-
tion systems is gaining momentum, as recent surveys illustrate
[4]. In particular, Neural Networks (NN) have been success-
fully used for channel estimation and equalization [5], signal
recognition and modulation classification [6], [7], detection
in MIMO Generalized SM [8], and learning of physical layer
parameters in Cognitive Radio [9], among others. In [10], NNs
are applied to perform link adaptation in multicarrier systems.
A publication more related to this work is [11], where the
authors use a NN to make codebook selection in SM systems.

The current work uses a Multilayer Feedforward Neural Net-
work (MFNN) of three hidden layers to operate the adaptive
MCS decision process at the receive end. This is based on
some specifically selected input features which can be easily
obtained from the MIMO channel matrix, together with the
Signal to Noise Ratio (SNR). Thus, we will show how the
mapping from the SNR and the channel matrix to the optimum
MCS can be carried out with an affordable computational cost
and excellent performance.

The paper is organized as follows. Section II presents the
system model. Then, in Section III the steps for implementing
the coding rate selection in an adaptive SM link are explained.
Sections IV and V present the simulation settings and the
results, and finally the conclusions are exposed.

II. SYSTEM MODEL

We consider a Spatial Modulation system, where information
is not only conveyed by the selection of a symbol from a
constellation S, but also by the antenna choosen for sending
that symbol. The system model equation of an SM link with
N transmit antennas and N, receive antennas for a given
discrete time instant is

y=+Hx+w (1)



where y € CN*1 is the received vector, y the average Signal
to Noise Ratio (SNR), H € CNr*Nt the channel matrix,
x € CMe*! the transmitted signal and w ~ CAN(0,1Iy,)
the Additive White Gaussian (AWGN) noise vector. Due to
the specific nature of SM (activation of only one antenna per
symbol period), x has only one component different from zero
(component /) and its value is s € C, a symbol taken from a
constellation S with M symbols. Therefore, (1) can be also
expressed as

y=+vYhs+w 2)

where h; denotes the [ column of H, [ € {1,2,..., N;}. We
assume a unit power constraint, i.e., E [x7x| = E [|s|?] = 1.

We consider a packet based transmission where the transmitter
encodes a group of information bits into a codeword or
FECFRAME. The coding rate can be chosen from a predefined
set of codes for link adaptation purposes. K different coding
rates are considered, with respective rates 71 < ro < ... < rg.
Data is more protected with rq, the rate closest to zero,
although it has also the lowest spectral efficiency. Conversely,
if the channel is particularly benevolent information bits
can be encoded with a rate rx, which provides the highest
spectral efficiency at the expense of a lower protection of the
information bits. In general, the spectral efficiency attained
with a given code of rate r is n = rlog,(N;: M), where M is
the number of symbols of the constellation.

The SM link adaptation problem can be formulated as
maximize rlog, (N, M)

subject to  r € {r1,72,...,"K} )
BER(v; r, H) < po.

The Bit Error Rate (BER) depends on the selected coding
rate 7, the channel matrix H and the SNR ~, and must
be kept below py. As opposed to more conventional MIMO
techniques, the channel capacity is a very involved function
of H [3], which can be calculated in real time by using a
neural network [12]. It is also the case that, for a given coding
rate, the influence of H is such that SNR values which differ
in as much as 10 dB may be needed to achieve the same
performance as can be seen in Fig. 3. As a consequence,
coding rate selection requires a practical mechanism to track
both the SNR and the channel matrix.

Fig. 1 shows the block diagram of an adaptive SM system
where the transmitter can encode the information bits with
a variable rate. The coding rate to be used, r, is calculated
by the receiver from v and H and then signalled back to
the transmitter through a feedback channel. At the receiver
soft detection is performed to send to the channel decoder the
log likelihood ratios (LLRs) of each bit. The exact LLRs are
calculated following [13]. The difficult task of selecting the
appropriate coding rate solving (3) is addressed with the aid
of a neural network properly trained. The NN is trained off-
line, so that the on-line computations can be easily embedded
into a receiver as we will detail later.
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Fig. 1: Block diagram of an adaptive SM system with variable
coding rate.
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III. CODING RATE SELECTION

We detail in this section all the steps involved in the design
of a receiver able to estimate the optimum coding rate as
a function of the channel. This receiver will use machine
learning principles, which will be illustrated later with some
simulation results.

A. Evaluation of the performance of the channel codes

As the relation between the BER, channel matrix and SNR is
quite involved for SM, system level simulations must be run
to characterize the channel codes performance. For each of the
available K codes, and for a large number of different channel
matrices H following the same distribution as that expected in
the practical deployment, the corresponding BER curve with
respect to the SNR is obtained: BER = f(v; r,H). Fig. 2
shows, for illustration purposes, a collection of BER curves
for several channel matrices. This first step is, by far, the
most time consuming, taking even several days of execution
time. Note that the remaining parameters and functions of the
system remain fixed: number of antennas, family of codes,
constellation, architecture of both transmitter and receiver,
mapping of bits to SM symbols, and detection and decoding
algorithms.

B. Extraction of the SNR thresholds

The channel codes BER curves are to be processed to extract
the threshold (minimum) SNR to guarantee a given BER p, for
each of the simulated channel matrices. Thus, a collection of
stairwise plots, like those of Fig. 3, is produced. The selection
of the appropriate coding rate for a given SNR can be now
addressed with the support of a learning scheme, which can
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Fig. 2: The different channel codes performance must be
evaluated for a large number of channel matrices.

generalize the performance curves to any arbitrary channel
matrix H.
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Fig. 3: The minimum required SNR to guarantee a given BER
po with each coding rate for a set of 20 different channel
matrices.

C. Building the dataset for Machine Learning

The next step consists of building the dataset X used in the
training and testing of the neural network. In [12] we have
shown that it is possible to calculate the capacity constrained
to a given constellation of an SM system with high accuracy by
using a simple one-hidden layer feedforward neural network.
However, this contrained capacity or mutual information is
an upper bound of the achievable rate, and practical receiver
implementations can be more or less far from this bound.

The selection of the neural network input features x has a
paramount importance to obtain a good performance. The
vector of features is obtained from the SNR ~ and the channel
matrix H by means of a transformation x = g(-y, H). In Table
I of [12] several options for this function g(v, H) are given.
There it is shown that the columns norms ~|/h;||?> and the
angles between each pair of columns of H are a good selection
for the input features.

The dataset X = {(x;,yi),i = 1,2,...,m} is made of all
the input-output pairs. The vector x; is the neural network

input extracted from each pair of (v;, H;) from our code
performance evaluation. The scalar y;, the neural network
desired output or target variable, is a discrete real variable
between 0 and 1 which represents the highest coding rate
which can be used whilst meeting the BER pg. Thus, y; = 7y
for coding rate 7y, and y; = 0 if no coding rate can guarantee
the prescribed BER.

D. Neural network training

Once the Machine Learning dataset X is built, a neural network
architecture has to be selected and trained to set its internal
parameters 6. The goal is to provide good predictions y from
the input features x: y = h(x; 0).

The design of the architecture of the network requires the
selection of the number of hidden layers (depth of the model),
of the number of neurons per layer (width of the model), the
activation function and the specification of the output unit [14].
In this regard, although this is a classification problem, we
have obtained better results with linear output units, so that
the real-valued output of the network y has to be quantified to
obtain a value in the set {0, r1,..., 7k} to yield a valid coding
rate. Tangent hyperbolic is used as activation function for the
hidden layer neurons. The network training is performed with
the Levenberg-Marquardt (LM) backpropagation algorithm
[15] to minimize the Mean Squared Error (MSE).

E. Performance evaluation

The NN performance evaluation is conducted on the testing
portion of the dataset. The classification results are character-
ized by the confussion matrix, from which three key metrics
can be extracted: (i) accuracy, defined as the ratio between
the correct coding rates predictions and the total number of
prediction made; (ii) ratio of underestimations, when a coding
rate below the target is selected; (iii) ratio of overestimations,
when higher rates than the target are chosen. The latter is the
most critical since the selection of a coding rate beyond the
receiver capabilities causes an outage, i.e., the frame cannot
be correctly decoded, which results in a loss of throughput.
On the other side, underestimation causes only a less efficient
use of the link (a reduction of the average spectral efficiency),
although the transmission is still successful. The selection of
the coding rate is done with

T=Q(§/—A):argn;in|y—A—rk|, 4)
where A represents a positive back-off margin to be subtracted

to the neural network output y in order to reduce the outage
probability.

F. Operation phase

Finally, during the system operation, receivers employ the neu-
ral network trained in the design phase to perform the coding
rate selection. The transmitter receives through a feedback



channel the choice made by the receiver and applies the corre-
sponding coding rate for the next frame transmissions intended
for that receiver. Although the neural network parameters 0 are
fixed during the operation phase, the margin A introduced in
equation (4) could be adapted in a similar way as that proposed
in [16].

IV. SYSTEM SIMULATION SETUP

The previous procedure to perform coding rate selection with
the assistance of Deep Learning was evaluated in an SM link
with 2 transmit and 2 receive antennas. QPSK symbols are
transmitted, mapped from bits which are encoded with the
family of codes of the DVB-S2 standard [17]. These consist on
the concatenation of a BCH (Bose-Chaudhuri-Hochquenghem)
and a LDPC (Low Density Parity Check) code. There are
K = 9 available coding rates, ranging from 1/4 to 9/10. The
length of the FECFRAME is fixed to 64, 000 bits like in DVB-
S2 standard. The number of information bits per codework
is then variable and depends on the particular coding rate
selected. The LDPC maximum number of iterations was set to
50. The mapping of bits to SM symbols follows Gray coding,
by assigning the complementary bits sequences to the SM
symbols which are more distant. We assume perfect Channel
State Information (CSI) at the receiver, which includes the
SNR and the channel matrix.

The system level simulations to obtain the performance of
the codes are calculated for N = 1,000 different 2 x 2
channel matrices H, generated by following a unit-variance
Rayleigh distribution, i.e., h;; ~ CN(0,1). For each matrix
the average BER after the BCH decoding is calculated for
41 equispaced values of SNR between —5 and 15 dB. The
average BER is calculated after simulating the transmission
of 25 FECFRAMEs. The target BER for coding rate selection
is po = 10~%. Table I sums up the main parameters of the
system.

The NN input features x are calculated for each tuple (v, H)
as

x = g(v,H) = [sort (v l[?, 7[hal?), Om, ] )

following the results of [12], where the columns norms are
sorted in ascending order. The parameters ©y and ¢ are
two angles obtained from the scalar product between the two
complex column vectors as

hi'hy = ||hy| - [|hy| - cos O - €. (6)

The so-called Hermitian angle Oy belongs to the interval
[0, 7/2] whereas o, named Kasner’s pseudo-angle, takes val-
ues between —m and 7 [18]. On the other hand, the neural
network target output y is obtained as explained in the previous
section for a target BER pg of 10~%. The dataset is divided into
three independent parts: 15% of the samples were reserved
for the final test of the performance of the neural network.
The remaining 70% and 15% were employed for training and
validation of the neural network, respectively.

Several neural networks architectures were tested with a
number of hidden layers between one and seven and a number
of neurons per layer between 5 and 30. Each neural network
was trained 20 different times with different sets of initial
parameters. The training run for 1,000 epochs, although it
could be halted earlier if the network performance on the
validation dataset stopped improving or remained the same
for 6 epochs in a row. The default parameters of the trainim
function of Matlab® were used for the training.

TABLE I: System parameters

Paramter Value
Transmit and receive antennas Ne =2, N, =2
Constellation QPSK (M = 4)

DVB-S2 codes (BCH + LDPC)
1/4, 1/3, 2/5, 112, 3/5, 2/3, 3/4, 5/6, 9/10

Channel coding
Coding rate options

Target BER po = 10—%
Channel matrices 1000 Rayleigh ditributed
SNR range —5 to 15 dB (0.5 dB steps)

V. SIMULATION RESULTS

The results provided in this section correspond to a three
hidden layers NN, with 20, 15 and 10 neurons per layer,
respectively. Table II shows the raw classification performance
obtained from the neural network output without applying any
margin (for A = 0) using equation (4). This table sums up the
main information of the confusion matrix. The classification
accuracy is typically better than 90.0% for almost all classes
and the probability of selecting a coding rate higher than the
target class (which causes an outage) is always below 9%.
Whenever a wrong decision takes place, this is because the
rate right above or below the optimal one is chosen instead.
N/T corresponds to the class No-Transmission, i.e., no coding
rate can guarantee the BER constraint.

The average accuracy, outage and underselection probabilities
measured in the testing dataset are 96.2 %, 2.1 % and 1.7 %,
respectively. Note that not all coding rates have to be chosen
with the same probability, with N/T (no transmission) and 9/10
as the most likely in Table II. If we focus on the real output
of the neural network y, the Mean Square Error (MSE) is
4.75-10~* and the mean absolute error is 0.012.

Fig. 4 shows three regression plots with the target coding rate,
the output of the neural network y and the selected coding
rate. Fig. 4a depicts how the output of the neural network
is around the target values, except for the two lower classes,
where there is more dispersion. However, as it can be seen in
Fig. 4b, where the selected coding rate index is shown for a
margin A = 0, the miss classifications only happen with the
two adjacent classes. Lastly, Fig. 4c shows the index of the
target and the selected coding rate when a margin A = 0.03
is employed in equation (4). With this value, no outage takes
place at the expense of a reduction of the accuracy.



TABLE II: Classification performance (no margin is applied, A = 0): reduced version of the confusion matrix.

Target coding rate N/T 1/4 1/3 2/5 172 3/5 2/3 3/4 5/6 9/10
Accuracy (%) 98.7 1 959 | 91.9 | 942 | 93.8 | 91.8 | 944 | 89.3 | 89.7 | 99.5
Outage (%) 1.3 2.3 4.3 1.5 2.1 4.4 1.6 6.9 8.5 -
Underselection (%) - 1.8 3.8 4.4 4.0 3.8 3.9 3.7 1.8 0.5
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Fig. 4: Regression plot with target coding rate and calculated coding rate.

The average throughput 7 for each SNR value v is computed
using all the ML dataset as

N
1 .
=N ZIng(NtM)Ti(l — €)

i=1

1
~ 2 8rl—e), ()
i=1
where 7; is the coding rate selected for the channel matrix
i and ¢; is a binary variable which takes the value 1 in the
case of an error event, i.e., when a coding rate higher than
the target coding rate is selected, and which takes the value
0 when the correct coding rate or a lower one is selected. In
this case, N = 1,000, since one thousand different channel
matrices are simulated per each SNR value. With the previous
definition of ¢;, the average outage probability per SNR is
formulated as
N

Average outage probability = v ; €. )
For the average throughput and outage probability, the com-
plete dataset X is used, and not only the part used in the neural
network testing, in order to obtain smoother graphics without
increasing the number of channel matrices.

Finally, Fig. 5a shows the average throughput as a function
of the SNR computed with the whole dataset, for the same
Rayleigh distributed channel matrices. The blue triangles show
the maximum achievable throughput, obtained with a genie
who knows exactly which coding rate to choose. The red
squares represents the throughput attained with our DL-based
solution for the coding rate selection, employing a margin of
A = 0.03 for avoiding outage episodes. On the other hand,
the two yellow and purple dashed lines are obtained with a
fixed coding rate of 1/4 and 1/2, respectively.

The advantages of an adaptive SM system with variable coding
rate are clearly exposed in Fig. 5a. Works like [19] and

[20] consider only the adaptation of the modulation order
and propose to employ a fixed and conservative coding rate
for all the range of application of each constellation. This
coarse rate adaptation procedure falls far from exploiting the
achievable rate of the channel as Fig. 5a illustrates. Moreover,
the proposed solution for selecting the coding rate based on
DL is very close to the maximum achievable throughput (the
genie-aided selection) and it outperforms the fixed coding
rates curve for all the simulated SNRs. Lastly, for the sake
of completeness, in Fig. 5b it is shown the average outage
probability only for the fixed coding rate setup, since with
both DL and genie-aided no outage takes place.

‘We have shown in [12] that a shallow neural network with a
single hidden layer can obtain with high accuracy the theoret-
ically achievable rate of SM, at a much lower computational
cost than the previous numerical approximations of the MI
expression. Going one step further, our results here show that
by inserting two additional hidden layers, the neural network
can learn to select the optimum coding rate in a real setup for
a given family of channel codes and for a particular receiver
implementation.

VI. CONCLUSION

The application of Adaptive Coding and Modulation to Spa-
tial Modulation (SM) links requires receivers to be able to
compute the achievable rates on-the-fly. The relation between
the channel matrix and these rates is far from trivial, which
poses major challenges to decide the most appropriate MCS
for a given channel response. In this work we have shown
how a deep neural network can be used if properly trained
with all the available channel codes and a number of channel
realizations. The achieved selection accuracy is quite high, and
the outage caused by miss-classifications can be easily reduced
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Fig. 5: Average throughput and average outage probability per SNR in a 2 x 2 SM system with a QPSK constellation and
Rayleigh distributed channel matrices.

by subtracting a judiciously chosen back-off margin from the
neural network output. This fine adaptation of the coding rate
assisted with a deep neural network allows to increase the
throughput of the system, specially when compared with other
approaches with a fixed coding rate. The extension of the
tests shown here for higher number of antennas and additional
constellations is planned for further steps.

(1]

(2]

(3]

[4]

(5]

(6]

(7]

(8]

REFERENCES

E. Basar, M. Wen, R. Mesleh, M. Di Renzo, Y. Xiao, and H. Haas.
Index Modulation Techniques for Next-Generation Wireless Networks.
IEEE Access, 5:16693-16746, 2017.

Krishna Sayana and Jeff Zhuang. Link performance abstraction based
on mean mutual information per bit (MMIB) of the LLR channel, 2007.

P. Henarejos, A. Perez-Neira, A. Tato, and C. Mosquera. Channel
Dependent Mutual Information in Index Modulations. In 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 3261-3265, April 2018.

O. Simeone. A very brief introduction to machine learning with
applications to communication systems. /EEE Transactions on Cognitive
Communications and Networking, 4(4):648-664, Dec 2018.

M. M. A. Moustafa and S. H. A. El-Ramly. Channel estimation
and equalization using backpropagation neural networks in OFDM
systems. In 2009 IFIP International Conference on Wireless and Optical
Communications Networks, pages 1-4, April 2009.

M. T. E. A. Elsoufi, X. Ying, W. Jun, and T. Bin. Fletcher-Reeves learn-
ing approach for high order MQAM signal modulation recognition. In
2016 7th International Conference on Information and Communication
Systems (ICICS), pages 74-79, April 2016.

M. Mirmohammadsadeghi, S. S. Hanna, and D. Cabric. Modulation clas-
sification using convolutional neural networks and spatial transformer
networks. In 2017 51st Asilomar Conference on Signals, Systems, and
Computers, pages 936-939, Oct 2017.

A. Marseet and F. Sahin. Application of complex-valued convolutional
neural network for next generation wireless networks. In 2017 IEEE
Western New York Image and Signal Processing Workshop (WNYISPW).

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

P. V. R. Ferreira, R. Paffenroth, A. M. Wyglinski, T. M. Hackett,
S. G. Biln, R. C. Reinhart, and D. J. Mortensen. Multiobjective
Reinforcement Learning for Cognitive Satellite Communications Using
Deep Neural Network Ensembles. IEEE Journal on Selected Areas in
Communications, 36(5):1030-1041, May 2018.

J. Kassab and S. Nagaraj. Adaptive modulation in an OFDM commu-
nications system with artificial neural networks. In 2009 International
Joint Conference on Neural Networks, pages 1547-1551, June 2009.

V. Saxena, B. Cavarec, J. Jaldn, M. Bengtsson, and H. Tullberg. A
learning approach for optimal codebook selection in spatial modulation
systems. In 2018 52nd Asilomar Conference on Signals, Systems, and
Computers, pages 1800-1804, Oct 2018.

A. Tato, C. Mosquera, P. Henarejos, and A. Pérez-Neira. Neural Network
Aided Computation of Mutual Information for Adaptation of Spatial
Modulation. arXiv e-prints, page arXiv:1904.10844, Apr 2019.

Y. S. Cho, Jaeckwon K., W. Y. Yang, and Chung G. Kang. MIMO-OFDM
Wireless Communications with MATLAB. Wiley Publishing, 2010.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, 2016. http://www.deeplearningbook.org.

M. T. Hagan and M. B. Menhaj. Training feedforward networks with the
Marquardt algorithm. /IEEE Transactions on Neural Networks, 5(6):989—
993, Nov 1994.

Alberto Rico-Alvarino, Anxo Tato, and Carlos Mosquera. Robust
adaptive coding and modulation scheme for the mobile satellite forward
link. In Signal Processing Advances in Wireless Communications
(SPAWC), 2015 IEEE 15th International Workshop on, June 2015.

Digital Video Broadcasting (DVB); Second generation framing structure,
channel coding and modulation systems for Broadcasting, Interactive
Services, News Gathering and other broadband satellite applications;
Part 1: DVB-S2 . ETSI EN 302 307-1 V1.4.1 (2014-11).

K. Scharnhorst. Angles in complex vector spaces. Acta Applicandae
Mathematica, 69(1):95-103, Oct 2001.

P. Yang, Y. Xiao, L. Li, Q. Tang, Y. Yu, and S. Li. Link Adaptation
for Spatial Modulation With Limited Feedback. IEEE Transactions on
Vehicular Technology, 61(8):3808-3813, Oct 2012.

P. Yang, M. Di Renzo, Y. Xiao, S. Li, and L. Hanzo. Design Guidelines
for Spatial Modulation. IEEE Communications Surveys Tutorials,
17(1):6-26, Firstquarter 2015.



