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Abstract— Active interference cancellation (AIC) is a multi-
carrier spectrum sculpting technique which reduces the power
of undesired out-of-band emissions by adequately modulating
a subset of reserved cancellation subcarriers. In most schemes
online complexity is a concern, and thus cancellation subcarriers
have traditionally been constrained to linear combinations of the
data subcarriers. Recent AIC designs truly minimizing out-of-
band emission shift complexity to the offline design stage, moti-
vating the consideration of more general mappings to improve
performance. We show that there is no loss in optimality incurred
by constraining these mappings to the set of linear functions.

Index Terms— Active Interference Cancellation, Out-of-band
radiation, Spectrum Sculpting, Cognitive OFDM.

I. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) has
become the modulation format of choice in modern high-
speed wireless and wireline systems, due to its many well-
known qualities. Nevertheless, one shortcoming of OFDM
resides in the large sidelobes of the Inverse Discrete Fourier
Transform (IDFT), which result in substantial leakage across
subcarriers with the ensuing adjacent channel interference.
This issue is often dealt with by deactivating a number of
guard subcarriers at the edges of the signal spectrum, with
the consequent penalty in data rate. In order for OFDM to
be adopted by future high-performance systems, e.g., 5G, a
number of enhancements will become necessary to overcome
this and other drawbacks [1], [2]. The leakage problem is also
of concern in wideband OFDM-based cognitive systems in
which deep notches must be sculpted in the spectrum in order
to avoid interfering to narrowband licensed users [3].

An appealing approach to IDFT leakage reduction is active
interference cancellation (AIC), first proposed in [4]: undesired
emission is reduced by judiciously modulating a number of
cancellation subcarriers (CSs), while using the remaining data
subcarriers (DSs) for transmission as usual. Thus, operation
is transparent to the receiver, which just discards the CSs
after demodulation. The advantage of AIC resides in that the
number of CSs required to achieve a given level of undesired
emission is typically much smaller than the number of guard
subcarriers to be turned off in the traditional approach.

Several AIC designs have been subsequently proposed [5]-
[9]. These works minimize w.r.t. the CS values a cost function
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given by the magnitude of the instantaneous signal spectrum
for a given OFDM symbol at a number of frequencies within
the protected band, subject to different constraints to con-
trol the power allocated to CSs. These designs suffer from
one main drawback. Finding the optimal CS values requires
solving a constrained optimization problem for each OFDM
symbol, as the solution is dependent on the specific DS values;
this results in significant online complexity.

In this context, AIC has been recast in terms of minimization
of the average undesired emission power under a total power
constraint, assuming a linear map from DS to CS values [10].
This formulation drastically reduces the online computational
cost of AIC, which is a main concern in practice. Specifically,
the resulting matrix defining the optimal mapping is indepen-
dent of the instantaneous data, so no optimization problem has
to be solved on the fly: online complexity remains low, without
sacrificing performance, and with tight control on the transmit
power. In view of this, as a next step it is reasonable to ask
whether performance could be further improved by allowing
more general (nonlinear) relations between DS and CS values
under the framework of [10]. Were the answer affirmative, then
it would make sense to approach the design of such nonlinear
mappings in an optimal way.

Our contribution is to answer this question: we prove that
performance cannot improve by incorporating nonlinear de-
pendencies. Hence, there is no loss of optimality by restricting
the mapping from DS to CS values to the class of linear
functions, which have the advantage of simple implementation.
We note that the fact that certain earlier AIC designs such as
[6] and [9] directly result in a linear relation for the optimum
CS values does not readily imply that this should also be the
case for the setting in [10] because, as stated above, the use
of instantaneous values (as opposed to statistical averages) in
the cost function and constraints results in structurally different
problems. As it turns out, the corresponding proof is not trivial
due to a number of constraints inherent to the problem.

The letter is organized as follows. Sec. II describes the psd-
based AIC design from [10]. Optimality of linear processing is
established in Sec. III, and conclusions are drawn in Sec. IV.

II. PSD-BASED ACTIVE INTERFERENCE CANCELLATION

Consider the transmission of an OFDM signal with N
subcarriers. The power radiated in some band B, covered
by Np contiguous subcarriers within the transmission band-
width, is to be minimized'. The AIC scheme reserves N4 =

If B is outside the transmission bandwidth, as would be the case for out-of-
band radiation minimization, then Np = 0, as no system subcarriers overlap
with the target band.
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Np + N¢ subcarriers for cancellation, whereas the remaining
Np = N — N4 subcarriers are unaffected and used for data
transmission (in practice, N4 < Np). The vector modulating
the system subcarriers for the m-th OFDM symbol is then

=lag” o™ a0 ]

Lm

with d,,, € CVP the data vector, and ¢,,, € CV4 comprising
the cancellation coefficients. Matrices S € CN*No T ¢
CN*Na contain different columns of I, and respectively
map the elements of d,, and c,, to their corresponding
subcarriers. It is assumed that {d,,} is a zero-mean i.i.d.
process with E{d,,,dl _,} = Iy, if | = 0, and O otherwise?.

As described in [11], the discrete-time baseband signal s[n]
is generated by means of IDFT modulation, pulse shaping
and guard interval insertion as follows (note that n, k£ and
m denote respectively the discrete time index, the discrete
frequency index, and the symbol index):

oo N-1
> > ahl

m=—o0 k=0

h[n — mL)e/ Fr—mL) (9

)

with L the symbol length in samples and h[n] the shaping
pulse. The analog signal s(t) is obtained by D/A conversion
with an interpolation filter ¢g(¢) and sampling period T:

oo

> slnlg(t — nTy). 3)

n=—oo

s(t) =

It is assumed that the cancellation coefficients c¢,, are
obtained by means of some (possibly nonlinear) mapping
applied to d,,, i.e., ¢, = G{d,}. As a result, z,, and x,
are statistically independent for n # m. Let u £ E[c,,], so
that we can write ¢,, = ¢, + p, where ¢,, has zero mean;
and let &,, = Sd,, + T¢,,, so that x,, = @, + T'u. Then,
following analogous steps to those in [11] and [12], one finds
that the psd of s(t) is given by

S«(f) = " (NHEEnT,]S(f)
|¢H Tul2 S (). @

k=—o00

where we have introduced

o(f) = [dolf) ou(f) on-a(f) 17,
an(p) & G permu-raony, (©)
with Ay = NT the subcarrier spacing, and where H (e/%)

and G(f ) denote the Fourier transforms of h[n] and g(t) re-
spectively. Note that the type of time guard interval employed
(cyclic-prefix or zero-padding) affects the particular pulse h[n]
[11], but nevertheless (4)-(6) remain valid in both cases.

The problem can be stated as finding the mapping G such
that the power radiated in the protected band B, given by

Ps 2 /B S.(f)d/, )

2By adopting a prewhitening step, the results in this letter readily apply to
the case E{dmdi} # In,,.

is minimized, subject to adequate design constraints. A rea-
sonable approach is to constrain the total transmit power:

min P st / " Su(F)Af < P, @®)

It is readily seen from (4) that the optimum value of the mean
p for Problem (8) is p = 0, since this choice simultaneously
minimizes the objective Pp and the constraint. Thus, hereafter
we will assume that ¢,,, = ¢, is a zero-mean process.

From (1) and (4), and defining ®(f) 2 &(f)o(f), the
psd of the OFDM signal (with g = 0) can be written as

So(f) = SolH)+T{T @(/)TE [emen] |
+2ReTr {ST®(f)TE [cndl]}, (9
where So(f) £ Tr { ST®(f)S} is the psd obtained by making

¢, = 0 Vm, i.e., by turning off the reserved subcarriers.

If G is constrained to the class of linear mappings, then
¢ = Od,, for some fixed ® € CN4*XNp | which becomes
the optimization parameter. In that case, (1) becomes x,, =
(S 4+ T®)d,,, and the psd (9) simplifies to

Ss(f) = Solf)+Tr{©"TT®(f)TO}

+2ReTr {ST®(f)TO}. (10)

With this choice, (8) becomes a convex problem in ®, which
can be easily solved by means of the generalized singular value
decomposition [10], [13]. Note that the problem (and hence
its solution) depends only on system parameters, and not on
the specific values taken by the data vector d,,.

III. OPTIMALITY OF LINEAR PSD-BASED AIC

Consider now a general (possibly nonlinear) mapping G. We
drop the symbol index m since it does not play any role in
the development. Let 7y = rank E[cc!’] < N4, and consider
a factorization E[cc] = WWH where W € CN4*™W has
full column rank ryy . Let us introduce the random vector z =
We, with ()T denoting the pseudoinverse. Then E[z] = 0
and E[zz"] = I,,; moreover, one has the following.

Lemma 1: It holds that ¢ = Wz.

Proof: Consider a full column rank matrix P €
CNax(Na=rw) with columns orthogonal to those of W, i.e.,
PHW = 0. Then A = [W P] is invertible with

t
Al = { ‘;;T ] . (11)
Let now
_ Wie z
y:Alc:[PTc] |:PT6:| a12)

and note that E[(P'c)(Pfe)f] = (PTW)(PIW)H =0, so
that we must have PTe = 0. Therefore,

c:Ay:[WP][g]:Wz, (13)

as was to be shown. |
Therefore, the cross-covariance matrix of cancellation and
data coefficients is given by

Eled"] =WE[zd"| =WQ with Q £ E[zd"], (14)
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so that the psd in (9) can be expressed as

S.(f) = So(f) + T {WHT"&(/)TW)

+2ReTr {ST®(f/) TWQ} . (15)

Thus, our free parameters are W and Q. Note that whereas
W is arbitrary, this is not the case for ), which is the
cross-covariance of two spatially white random vectors. The
following lemma shows a key property of these matrices:

Lemma 2: Let z € CP and d € CY be zero-mean with
F [zzH] =1I,and E [ddH] =1I,andlet Q = F [de}.
Then I, — QQ™ > 0 and I, — Q¥ Q > 0, or equivalently,
all singular values of @ belong in [0, 1].

Proof: The linear MMSE estimate of z based on d is 2 =
Qd, and the estimation error e = z — 2 has covariance matrix
Elee] = I, — QQ" > 0. Reversing the roles of z and
d yields I, — Q" Q > 0. Noting that the positive singular
values of @ are the square roots of the nonzero eigenvalues
of QQ! (or of Q" Q) concludes the proof. ]

Our approach is to replace Problem (8) by

I’I”W - QQH 2 07
min Pz s.t.

w.Q [ So(f)Af < Prax.

o0

(16)

Note that, in principle, the feasible set of Problem (16) may be
larger than that of Problem (8), since the converse of Lemma
2 has not been proved; in other words, it has not been shown
whether given Q with I,.,, — QQ* > 0, a zero mean random
vector z with covariance I,.,, can always be found in order
to meet E[zd] = Q. Nevertheless, we will show that for
the matrix @ solving Problem (16), such random vector can
be obtained. Specifically, such optimal () happens to have
orthonormal rows, i.e., I, — QQ" =0, so that the random
vector z can be constructed as z = Qd, since in that case it
holds that E[z] = 0, E[zzf] = QQ" =I,.,, and E[zd"]| =
@, as desired. Therefore, it follows that the corresponding
solution is also the solution to the original Problem (8).

As a first step, in Sec. III-A we consider a simpler version of
Problem (16) in which the total power constraint is removed,
and show that for this “unconstrained” problem, linear pro-
cessing is optimal. The proof will be extended in Sec. III-B

in order to take the total power constraint into account.

A. Psd-based AIC solution without total power constraint

Consider then the minimization of P subject only to
I, — QQ" > 0. From (15), letting ®5 £ [, ®(f)df and
noting that So(f) does not depend on W, @, such problem
is equivalent to

Tr {WHTT®5TW} + 2ReTr {ST®5TWQ}
st. I, —QQ" >o0.

Let us focus on the minimization w.r.t. @ for a given W.
Defining F £ ST ®zTW, this amounts to solving

inn2ReTr{FHQ} st. I, —QQY >o0.

min
w.Q

a7

(18)

The solution to this problem is given by the following result.

Lemma 3: Let F € C"W*Np rp = rank F < 7, and
consider the SVD F = UFEFV}’ where Xp iS rp X TR
diagonal with the nonzero singular values. Then the minimum
value of the objective in Problem (18) is —2||F||,, where
|F||« = Tr X denotes the nuclear norm of F'. This minimum
is attained by any @ of the form

Q= -UrVi +UrQV{, (19)
where Up, Vi are such that [Ur U r| € C"W*"W ig unitary,
[VF Vi] € CNPX™W has orthonormal columns, and Q €
Crax7a js such that I, — QQH > 0, where rA = rw —rp.

Proof: Von Neumann’s trace inequality [14] states that given
two matrices A, B € C™*™ with singular values o;(A) >
09(A)>--->0and 01(B) > 02(B) > --- > 0, then

min{m,n}

S on(A)on(B),

k=1

with equality holding iff there exist SVDs of A and B with
common left- and right-singular vectors, i.e., iff there exist
unitary matrices U € C™*™, V € C™*" such that

ReTr{A” B} < (20)

A = Udiag{oi(A) 02(A) -}V, (@21
B = Udiag{oi(B) ox(B) ---}VH. (22)
Applying (20) to A = —F, B = @Q yields
2Re Tr{F"Q} > -2 04 (F)oi(Q), (23)
k=1

since the singular values of —F" are those of F'. The right-hand
side of (23) is minimized w.r.t 0,(Q) € [0,1] if 04(Q) = 1
for k =1,...,rw, yielding —2||F||.. In addition, in view of
(21), the bound is attained iff @ is of the form (19). |
The key fact from Lemma 3 is that we can take
Q = 1. > SO that for every W there exists an optimal
Q.(W) = —UpVH + 0FV;I with orthonormal rows:
Q.(W)QH (W) = I,,,. This allows us to rewrite (17) as

: Hyy HoT T
Vn‘}lg Tr{Q wHrT CI'BTWQ}+2ReTr{S @BTWQ}
st. QQ7 =1,,,.

Note that the objective function in (24) depends only on the
product WQ. As any matrix @ € CN4*Np with rank © =
o < N4 can be written as> @ = WQ with W e CNaxrw
Q € C'w*No with QQ = I,.,,, then (24) is equivalent to

(24)

Tr {@"T"®zTO} +2ReTr {ST®TO} .
(25)
The optimal solution corresponds to the integer 7y €
{1,2,..., N4} yielding the smallest value of the minimized
cost in (25). Clearly, this is the problem obtained when the
cancellation coefficients are linearly related to the data (see
(10)), i.e., ¢ = Od, with no rank constraint on . Thus, it is
concluded that linear processing is optimal for this problem.

min
rank @=ry,

3To see this, consider the SVD ©® = UgZeVZ!, and take W =
UoXeZH and Q = ZV(;{, where Z is an arbitrary ryy X ry unitary
matrix.
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B. Psd-based AIC with total power constraint

Consider now Problem (16), focusing again on minimization
w.rt. Q for W fixed. With F7 £ ST®zTW as before, let

o2 [ Z B()dJ.

—Tr{S"®rS} - Tt {WHT"®;TW}. (27)

G2 8T®,TW, (26)

p é Pmax

Then, it is seen that the optimal @ is the solution to

— H >

min2Re Tr {F7Q} s.t. { g’“f{ve Tr?gffé}oé P

Problem (28) has a linear objective, a linear inequality
constraint, and a convex quadratic inequality constraint, so it
is convex. From the discussion in Sec. III-A for the problem
without total power constraint, if we can show that the optimal
@ solving (28) has orthonormal rows, then we can conclude
that linear processing is also optimal for this constrained case.

To this end, and since F, G and P all depend on W, we
shall discuss the following three cases. First, let r¢ = rank G,
and consider the SVD

G =UgEcVE,

together with Us, Vi such that [Ug Ug]
unitary and [V V] € CNPX"™W has orthonormal columns.
Case 1: P < —2||G|.. In that case, it follows from
Lemma 3 that no @ simultaneously satisfies both constraints
in (28), so that the W defining Problem (28) is infeasible.

Case 2: P > 2||G||* From Lemma 3, it is seen that the
matrix Q = —~Ug V4 + UgVJ! satisfies the first constraint
in (28) with equality, and the second constraint with strict
inequality. Then there exists & < 1 such that Q@ = aQ
satisfies both constraints with strict inequality. Therefore,
Slater’s condition is satisfied, so that strong duality holds [15].
In that case (28) is equivalent to

min £(Q.A) = 2Re [T {(F" —X.G")Q}] — \.P

s.t. I, —QQ" >o,

where L£(Q, ) is the Lagrangian and A, is the Lagrange
multiplier maximizing the dual function [15]. As the term
—\,P does not depend on @, we can apply Lemma 3 to
conclude that there exists a matrix @, with orthonormal rows
which solves (30), and therefore (28) as well.

Case 3: P = —2||G||.. By virtue of Lemma 3, the only
feasible values of @ are given by

Q=-UcVH +UsQVY, 31)

with Q € C">*"5 such that I, — QQ" > 0, where now
r\ = rw — rg. Thus, if r/y = 0, then the only feasible
Q is Q = —UgVZ, which has orthonormal rows. On the
other hand, if r/y, > 0, then the only free parameter is Q.
Substituting (31) in the objective of Problem (28) and making
FH 2 VHFHT, results in

(28)

(29)

e Crwxmw jg

(30)

min 2 Re Tr {FHQ} st. I, —QQ" >0.  (32)

Q
Hence, applying again Lemma 3, it is concluded that it is pos-
sible to find an optimal Q, with Q, QY = I, .- Substituting

its value back in (31) we obtain Q, = —~Ug V! +Us Q. VH,
which again has orthonormal rows and solves (28).

The above considerations imply that for every feasible W
it is possible to pick an optimum Q.(W') with orthonormal
rows. Therefore, by the same argument as in Sec. III-A, under
a total power constraint, linear processing remains optimal.

IV. CONCLUSIONS

It has been shown that, regardless of the data distribution,
there is no loss of optimality by constraining the relation
between data and cancellation subcarriers to the class of linear
mappings with a constant coefficient matrix. This is true with
and without a total transmit power constraint. Thus, the low
complexity of online implementation associated to this type
of mappings comes with no penalty in terms of performance.

In practice, the solution to (8) may allocate too much power
to cancellation subcarriers, resulting in spectrum overshoot. As
shown in [16], this phenomenon can be tackled by introducing
an additional parameter « controlling the fraction of total
power allocated to data and cancellation subcarriers: the result
of this letter is also applicable to such a-AIC design from [16].
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