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Abstract

We study the problem of optimizing the end-to-end performance of a full-duplex filter-and-forward MIMO relay link, consisting
of a source, a relay, and a destination node, by employing linear filtering at each node. The system model accounts for multipath
propagation and self-interference at the relay, as well as transmitter impairments and limited dynamic range at every node. The
design accommodates signals with arbitrary spectra and includes the direct link between the source and destination nodes. Under
the minimum mean square error criterion, the resulting non-convex problem is approximated by a sequence of convex problems
and solved by means of an alternating minimization method. Linear constraints allocate some of the degrees of freedom in the relay
to guarantee a sufficiently small residual self-interference. Simulations quantify the impact of degrees of freedom, the dynamic
range, and the balance between direct and relay paths on the link performance.

I. INTRODUCTION

Relays expand the source-destination architecture by extending coverage area and improving end-to-end performance [1], [2].
Among the different relay protocols, filter-and-forward (FF) relaying constitutes an attractive alternative, in terms of complexity
and performance, to other relaying techniques such as amplify-and-forward (AF), decode-and-forward (DF) or compress-and-
forward (CF) [3]–[7]. In contrast to AF relaying, where the signal is forwarded after a spatial transformation, FF relaying
forwards the signal after passing it through a linear filter, usually a linear finite impulse response (FIR) filter [8]–[12]. The
spectrum shaping capabilities of FF relaying bring about a performance edge over its AF counterpart, as reported in [13].
Additionally, FF relaying allows for a scalable design in comparison to the implementation of DF and CF relaying (normally
comprising, among others, timing recovery, frame alignment and/or signal regeneration operations), because the number of
parameters grows linearly with the number of antennas and the number of filter taps. By avoiding the decoding and re-encoding
of the signal, AF and FF relays are able to comply with the strict latency requirements of 5G systems.

In combination with a full-duplex (FD) protocol, any efficient relay design must deal with the presence of self-interference
(SI) distortion which is a consequence of simultaneous transmission and reception in the same frequency [14]–[20]. If not
properly mitigated, SI severely impacts the performance, as it has been reported in [3], [21]. To cope with SI distortion, different
mitigation methods, both in the analog and digital domains, have been developed, from which we highlight those based on
interference suppression (exploitation of spatial diversity), e.g., [14], [22]–[25], and those based on interference cancellation
(generation of an SI replica), e.g., [26]–[30]. Due to insufficient mitigation and high power transmission of the relay, residual
SI may still be strong enough to limit performance [14], and, therefore, the relay design must account for the presence of
residual SI.

Any relay implementing a linear filtering based FF protocol, under the presence of residual SI, is subjected to an impulse
response of infinite duration, in which the relay operation is contained inside the feedback loop caused by the SI [29]. As
a consequence, data signal and SI are correlated, which turns any optimal design strategy into an intractable problem and
possibly leading to an unstable system. This is in contrast to DF and CF relays, where the processing delay, defined as the
relay input-to-output time delay, is long enough to decorrelate the data signal and the SI [30].

Decorrelation between data and SI can be achieved by introducing additional processing delay, i.e., the relay waits a
sufficiently long number of samples before transmission. This decorrelation property applies in relays operating in frequency
domain, where the processing delay is at least one symbol or several time samples [14]. Under those conditions, the relay
design results in a tractable problem. Processing delay is an important parameter, and in the case of an orthogonal frequency-
division multiplexing (OFDM) system it should not exceed the cyclic prefix duration to avoid inter-symbol interference due
to the direct link. We propose a time-domain design in which no additional delay is introduced in the processing path. Still,
the method ensures decorrelation between data signal and SI by transmitting in the nullspace of the SI channel.

SI distortion is not the only performance-limiting factor in an FD architecture. Another important cause of performance
degradation is the limited dynamic range at reception and transmission [31]–[33]. Limited dynamic range is due to imperfections
in analog/digital conversion and nonlinear effects in the modulation/demodulation process [31], and translates into additional
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distortion in the system. Our design method incorporates limited dynamic range at every node of the link as additional
parameters of the system model.

A. Contributions of the paper

We consider a MIMO FD FF relay link with limited dynamic range and residual SI distortion after antenna isolation/analog
cancellation at the relay [17]. We introduce linear filters at each node, which are designed by minimizing the mean square
error (MSE) at the destination node. The resulting optimization problem is non-convex and the IIR nature of the relay makes
the problem intractable. We transform the original problem into a tractable one by imposing interference-free constraints on
the relay. This modified problem is solved by employing an alternating optimization technique. In particular, node filters are
obtained by solving a sequence of decoupled convex optimization problems.

Existing literature in FF design [13], [34]–[36] only considers half-duplex protocol and excludes direct link between
source and destination [34], whereas we model a FD system with direct link between source and destination. Although
[37] contemplates the presence of a direct link between source and destination, it does not account for a FD relay with SI or
limited dynamic range at each node of the link. Our design incorporates additional noise sources that model limited dynamic
range at both transmission and reception.

In [38], the authors study the problem of an FF FD relay network. In contrast to our approach, the system model considers
filters in the frequency domain, where there is no correlation between data signal and SI, and dynamic range is infinite.
Furthermore, frequency-domain processing introduces an unavoidable of at least one OFDM symbol. While [39], [40] consider
source-destination link, only the case of single antenna with flat-frequency channel response and infinite dynamic range is
treated.

In [41], the authors consider an FF FD relay network in the frequency domain with limited dynamic range and direct link
between source and destination. A gradient-projection based approach is used to maximize the signal-to-noise-plus-interference
ratio. Our design method works in the time-domain and is, therefore, modulation independent, and able to deal with multipath
distortion as well as reducing the end-to-end delay because it does not require synchronization at the relay.

Finally, [31] considers the problem of limited dynamic range for a DF relay link assuming uncorrelated input and output
signals. Concretely, we consider the correlation between data signal and self-interference at the FF relay, which has a major
impact on the filter design, particularly in the assignment of its degrees of freedom.

B. Organization of the paper

The paper is organized as follows. Section II describes the system model of the relay link, with special attention to the
limited dynamic range of the nodes and the equivalent impulse response of the link. Section III formulates the filter design
problem based on the minimum MSE (MMSE) criterion and details the required approximations in order to obtain a tractable
optimization problem. Section IV solves the optimization problem by means of an alternating optimization approach, in which
every filter is the solution to a convex optimization problem. Section V illustrates the performance of the design algorithm for
an OFDM relay system. Finally Section VI draws the conclusions.

C. Notation

Let {A[k]}LAk=0, with A[k] ∈ CM×N , denote the impulse response of a complex-valued, LAth-order causal FIR MIMO filter.
The row-expanded matrix of A[n], denoted by A, is defined as A = [A[0] . . .A[LA]] ∈ CM×N(LA+1). We define the squared
Frobenius filter norm as ‖A‖2 = tr{AAH} =

∑LA
k=0 tr{A[k]AH [k]}.

The convolution between filters A[n] and B[n], of respective sizes M ×N and N ×P and orders LA and LB , yields filter
C[n] = A[n] ?B[n] =

∑LC
k=0 A[k]B[n− k], of size M × P and order LC = LA + LB . In its row-expanded matrix, C[n] is

expressed as
C = AR(B) (1)

where R(B) ∈ CN(LA+1)×P (LC+1) is the row-diagonal-expanded matrix of order LA of B[n] [42, Sec.7.5.],

R(B) =

L
A

tim
es 


B︷ ︸︸ ︷

B[0] . . . B[LB ]

LA times︷ ︸︸ ︷
0N×P . . . 0N×P

0N×P B[0] . . . B[LB ] . . . 0N×P
...

. . . . . . . . . . . .
...

0N×P . . . 0N×P B[0] . . . B[LB ]

 (2)

where 0N×P denotes a null matrix of size N ×P . Note that R(C) = R(A)R(B) for a proper size of the expanded matrices.
The column-diagonal-expanded matrix of order LA of B[n], denoted by C(B) ∈ CN(LC+1)×P (LA+1), is defined as [42,
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Fig. 1. System model of an FF relay link incorporating the proposed design.

Sec.7.5.]

C(B) =

L
A

tim
es 



B[0]

LA times︷ ︸︸ ︷
0N×P . . . 0N×P

... B[0]
. . .

...

B[LB ]
...

. . . 0N×P

0N×P B[LB ]
. . . B[0]

...
...

. . .
...

0N×P 0N×P . . . B[LB ]


(3)

The convolution between signal vector x[n] and filter A[n] yields signal y[n] = A[n] ? x[n] =
∑LA
k=0 A[k]x[n− k], which

can be equivalently expressed as
y = R(A)x (4)

with y = [yT [n] . . . yT [n − L]]T ∈ CM(L+1) and x = [xT [n] . . . xT [n − L − LA]]T ∈ CN(L+LA+1) being the column-
expansion (of certain order) of y[n] and x[n], respectively. The Lth-order autocorrelation matrix of y[n] is denoted as Ry =
E{yyH}. Operator 〈A[n]〉−1 denotes the impulse response of the inverse system of the causal and stable filter A[n] with
coefficients {A[k]}LAk=0 ∈ CM×M , i.e., 〈A[n]〉−1 ?A[n] = δ[n]IM .

Let x ∼ CN (µ,Γ) denote a vector x that follows a circularly-symmetric complex normal distribution with mean µ and
covariance Γ. Matrix IM is the identity matrix of size M ×M , whereas IM [L] ∈ C(L+1)M×M denotes the block matrix given
by

IM [L] = 1TL+1 ⊗ IM = [IM IM . . . IM︸ ︷︷ ︸
L+1 times

] (5)

where 1L is the all-ones column vector of size L and ⊗ denotes the Kronecker product. Operator diag {A} creates a diagonal
matrix with the principal diagonal of A.

II. SYSTEM MODEL

The single-stream full-duplex MIMO relay link under consideration is depicted in Fig. 1 and consists of a source node (S)
equipped with MS antennas that transmits the signal ŝ[n] ∈ CMS , a destination node (D) equipped with ND antennas that
receives the signal d[n] ∈ CND , and a relay node (R) equipped with NR receive and MR transmit antennas that receives the
signal r[n] ∈ CNR while it simultaneously transmits the signal r̂[n] ∈ CMR . Assuming a block fading model, the Lij th-order
channel between node i and node j, where i ∈ {S,R} and j ∈ {R,D}, is denoted by Hij [n] ∈ CNj×Mi . Note that the strictly
causal HRR[n] with coefficients {HRR[k]}LRR

k=1 is the residual SI channel after antenna isolation/analog cancellation [6], [17],
[43]. Mitigation in the analog domain eliminates a significant part of the self-interference. The mitigation level is a function
of the frequency and normally insufficient for a wideband signal. Impulse responses Hij [n] account for the analog front-end
distortion and the propagation effects between nodes, as well as their respective delays. Noise sources are represented by
vectors vi[n] ∈ CMi , wj [n] ∈ CNj , and nj [n] ∈ CNj , while aggregated noise sources containing all noise terms at a node
are represented by vectors zj [n] ∈ CNj , where i ∈ {S,R} and j ∈ {R,D}. As seen from Fig. 1, each node filters the locally
observed signal. The design criterion for gS[n], gD[n], and GR[n] is to minimize the MMSE given by E{|d̂[n]− s[n− τ ]|2},
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with τ ≥ 0 being a design parameter. The joint design of these filters under the MSE criterion is the topic of subsequent
sections of this paper.

Starting with the signal in S, from Fig. 1, the LSth-order filter gS[n] ∈ CMS precodes the data signal s[n]

ŝ[n] = gS[n] ? s[n] (6)

The relay implements an FF protocol, modeled as the LRth-order filter GR[n] ∈ CMR×NR and transmits the signal

r̂[n] = GR[n] ? r[n] (7)

where the input signal to the relay filter r[n] can be decomposed into

r[n] =ř[n] + HRR[n] ? r̂[n]︸ ︷︷ ︸
self-interference i[n]

+ nR[n] + wR[n] + HRR[n] ? vR[n]︸ ︷︷ ︸
noise terms

(8)

with ř[n] ∈ CNR being the incoming source signal, i.e.,

ř[n] = HSR[n] ? (ŝ[n] + vS[n]) (9)

and i[n] denoting the self-interference. The presence of the self-interference path introduces a feedback loop, due to which the
relay becomes an infinite impulse response (IIR) linear MIMO filter. The impulse response of the relay Geq[n] ∈ CMR×NR is
given by

Geq[n] =〈IMRδ[n]−GR[n] ?HRR[n]〉−1 ?GR[n]

=GR[n] ? 〈INRδ[n]−HRR[n] ?GR[n]〉−1 (10)

The LDth-order filter gD[n] ∈ CND linearly combines the received signal d[n] at D, and produces the output

d̂[n] = gHD [n] ? d[n] (11)

from which source signal s[n] is recovered. We may now rewrite (11), in terms of the various channels and noise sources, as
follows

d̂[n] = gHD [n] ? (Heq[n] ? gS[n] ? s[n] + zD[n]) (12)

with

Heq[n] = HSD[n] + HRD[n] ?Geq[n] ?HSR[n] (13)
zD[n] = HSD[n] ? vS[n] + wD[n] + nD[n] + HRD[n] ? zR[n] (14)

The Leqth-order filter Heq[n] ∈ CND×MS represents the overall channel from S to D including direct (S-D) and relay (S-R-D)
paths. From (12)-(14) we see that synchronization between direct-link and source-relay-destination signals is not needed as
long as the delay spread of Heq[n] is smaller than the cyclic prefix length.

From (10), Leq →∞, as the equivalent channel response has an infinite duration in principle. Vector zD[n] ∈ CND in (12)
comprises all noise terms at D and zR[n] ∈ CMR denotes the aggregated noise sources at the relay output:

zR[n] = Geq[n] ? (HSR[n] ? vS[n] + nR[n] + wR[n])

+ 〈IMRδ[n]−GR[n] ?HRR[n]〉−1 ? vR[n] (15)

where vectors nR[n] ∈ CNR and nD[n] ∈ CND are the thermal noise sources in R and D, respectively. Their respective
distributions are

nR[n] ∼ CN
(
0, σ2

RI
)

(16)

nD[n] ∼ CN
(
0, σ2

DI
)

(17)

Vectors vS[n] ∈ CMS and vR[n] ∈ CMR model imperfections at the transmit sides of S and R, and are assumed normally
distributed and statistically independent of the transmit signals ŝ[n] and r̂[n]. Following [31], they are modeled as

vS[n] ∼ CN
(
0, δS diag

{
E{ŝ[n]ŝH [n]}

})
(18)

vR[n] ∼ CN
(
0, δR diag

{
E{r̂[n]r̂H [n]}

})
(19)

with 0 ≤ {δS, δR} � 1. Vectors wR[n] ∈ CNR and wD[n] ∈ CND model limited dynamic range distortion at R and D, and are
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assumed normally distributed and statistically independent of received signals at R and D, with

wR[n] ∼ CN
(
0, εR diag

{
E{r̃[n]r̃H [n]}

})
(20)

wD[n] ∼ CN
(
0, εD diag

{
E{d̃[n]d̃H [n]}

})
(21)

where r̃[n] and d̃[n] are the received signal prior to digital conversion at R and D, and 0 ≤ {εR, εD} � 1. The independent
Gaussian distortion models (18)-(19) and (20)-(21) accurately captures the combined effect of DAC and ADC nonlinearities
and practical hardware impairments, see [31] and the references therein.

III. MMSE DESIGN

The end-to-end performance depends primarily on the ability of the system to reconstruct signal s[n] at destination. Therefore,
a reasonable approach for designing filters gS[n], GR[n] and gD[n] is to minimize the MSE at node D, i.e.,

min
{gS[n],GR[n],gD[n]}

E{|d̂[n]− s[n− τ ]|2}

subject to E{‖ŝ[n]‖2} ≤ PS

E{‖r̂[n]‖2} ≤ PR

(22)

where the end-to-end delay τ ≥ 0 is a design parameter, and constants PS > 0 and PR > 0 denote the maximum transmit
power at S and R, respectively. In view of (10), the recursive nature of the SI-affected relay makes problem (22) intractable.
To overcome this, we introduce additional linear constraints. Since SI is the dominant source of distortion in a FD relay link,
see, e.g., [44], we modify problem (22) to incorporate an explicit SI suppression constraint, i.e.,

min
{gS[n],GR[n],gD[n]}

E{|d̂[n]− s[n− τ ]|2}

subject to E{‖ŝ[n]‖2} ≤ PS

E{‖r̂[n]‖2} ≤ PR

HRR[n] ?GR[n] = 0

(23)

The immediate effect of introducing the linear constraints HRR[n] ?GR[n] = 0 in (23) is summarized as follows.

Remark 1. From (10) we see that the equivalent relay impulse response has now finite order, i.e., Geq[n] = GR[n] and
Leq = max{LSD, LSR + LR + LRD}.

Remark 2. The SI is suppressed, i.e., i[n] = 0, making problem (23) tractable.

Remark 3. Since the SI suppression constraints constitute a linear subspace, as will be shown in Sec. IV, the available
degrees of freedom in GR[n] are reduced. Therefore, problems (23) and (22) are not equivalent and their solutions may
perform differently.

An important consequence of the SI suppression constraint in (23) is exposed by the next result.

Lemma 1. When HRR[n] ?GR[n] = 0, the inverse system 〈IMRδ[n]−GR[n] ?HRR[n]〉−1 = IMRδ[n] + GR[n] ?HRR[n] and is
of finite order LR + LRR.

Proof. By taking the Fourier transform of the inverse system, denoted by F{〈IMRδ[n]−GR[n] ?HRR[n]〉−1}, we obtain

F{〈IMRδ[n]−GR[n] ?HRR[n]〉−1}
= (IMR −GR(ejω)HRR(ejω))−1 (24)

Using the Woodbury matrix identity, the right-hand side of (24) is expanded as

(IMR −GR(ejω)HRR(ejω))−1

= IMR + GR(ejω)(INR + HRR(ejω)GR(ejω))−1HRR(ejω)

= IMR + GR(ejω)HRR(ejω) (25)

where we have used HRR(ejω)GR(ejω) = 0. By taking the inverse Fourier transform of (25), the inverse system impulse
response is given by

F−1{IMR + GR(ejω)HRR(ejω)} = IMRδ[n] + GR[n] ?HRR[n] (26)

whose order is LR + LRR.
�
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E{‖GR[n] ?HRR[n] ? vR[n]‖2}

= δR tr
{
GRR(HRR)

(
I(LR+LRR+1) ⊗ diag{GRR(HSR)R(gS)RsRH(gS)RH(HSR)GHR }

)
RH(HRR)GHR

}
(40)

Algorithm 1 Alternating MMSE linear filter design procedure

1: Initialization point: g
(0)
S [n], G

(0)
R [n] and g

(0)
D [n].

2: repeat for each iteration k = 1, 2, 3, . . .
3: Solve problem (23) with respect to g

(k)
D [n] for fixed g

(k−1)
S [n] and G

(k−1)
R [n].

4: Solve problem (23) with respect to G
(k)
R [n] for fixed g

(k−1)
S [n] and g

(k)
D [n].

5: Solve problem (23) with respect to g
(k)
S [n] for fixed G

(k)
R [n] and g

(k)
D [n].

6: until the convergence criterion is met.

By virtue of Lemma 1, the noise term zR[n] at the relay output (15) can be written as

zR[n] =GR[n] ? (HSR[n] ? vS[n] + nR[n] + wR[n])

+ (IMRδ[n] + GR[n] ?HRR[n]) ? vR[n] (27)

We make the following assumption about the limited dynamic range

Assumption 1. The statistics of wR[n], wD[n] and vR[n] depend only on their respective data signal, which follows from
δiδj ≈ 0, δiεj ≈ 0, δiσ2

j ≈ 0, εiδj ≈ 0, εiσ2
j ≈ 0 and εiεj ≈ 0. Let sR[n] = HSR[n]?gS[n]?s[n] and sD[n] = Heq[n]?gS[n]?s[n]

denote the data signal arriving at S and D, respectively. Therefore,

wR[n] ∼ CN
(
0, εR diag

{
E{sR[n]sHR [n]}

})
(28)

wD[n] ∼ CN
(
0, εD diag

{
E{sD[n]sHD [n]}

})
(29)

vR[n] ∼ CN
(
0, δR diag

{
E
{
(GR[n]?sR[n]) (GR[n]?sR[n])

H
}})

(30)

Problem (23) is non-convex due to the coupling between gS[n], GR[n] and gD[n]. Furthermore, the covariance of vS[n],
wR[n], vR[n], wD[n] are functions of filters gS[n], GR[n] and gD[n], see (18)−(21). In the next section we make use of an
alternating procedure to solve (23).

IV. ALTERNATING FILTER DESIGN

A sub-optimal solution to the non-convex problem (23) can be iteratively obtained by means of alternating (or cyclic)
minimization, in which the design of each individual filter is decoupled from the others by fixing them at each iteration. The
steps of such procedure are summarized in Algorithm 1. The destination node is in charge of the computation and broadcasts
the filter coefficients through the feedback channel.

Symbols g
(k)
S [n], G

(k)
R [n] and g

(k)
D [n] denote the node filters at iteration k. In summary, Algorithm 1 attempts to solve (23) by

iterating over a sequence of simpler optimization problems, which, as explained in the following, are convex in their respective
variables and can be solved semi-analytically. Although a global optimizer of (23) is not guaranteed, the convergence of
Algorithm 1 is ensured under the conditions described in [45]. Specifically, since the sequence of MSE values obtained by the
algorithm is nonincreasing and bounded below by 0, it must eventually converge. In [45], it is shown that algorithms of the
same form as Algorithm 1 have linear convergence, i.e., the ratio of the norm of the difference between the current iteration
and a solution and the norm of the difference between the previous iteration and a solution is less than or equal to a constant.
The algorithm can be sensitive to the initialization point due to existence of several local minima. Therefore, running the
algorithm with different initialization points can robustify the solution in case the algorithm falls in a local minima.

From now on, unless otherwise stated, we will simply denote gS[n] = g
(k)
S [n], GR[n] = G

(k)
R [n] and gD[n] = g

(k)
D [n].

A. Solution of problem (23) with respect to gD[n]

We first solve the problem (23) with respect to gD[n], while keeping both gS[n] and GR[n] fixed, i.e.,

g?D[n] = arg min
gD[n]

E{|d̂[n]− s[n− τ ]|2} (31)
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Note that, since gD[n] is at the receive side of D, its optimal expression will correspond to that of the MIMO normal equations.
Let gD and gS be the column-expansions of gD[n] and gS[n], respectively. From (12), we can now express d̂[n] as

d̂[n] = gHD (R(Heq)R(gS)s + zD) (32)

where vectors s and zD are defined as

s = [s[n] s[n− 1] . . . s[n− LS − Leq − LD]]
T (33)

zD =
[
zTD [n] zTD [n− 1] . . . zTD [n− LD]

]T
(34)

Let eτ denote the τ th canonical basis vector with eτ [τ ] = 1 and 0 elsewhere. Using (32), the MSE can be expressed as

E{|d̂[n]− s[n− τ ]|2} =(
gHDR(Heq)R(gS)− eHτ

)
Rs

(
RH(gS)RH(Heq)gD − eτ

)
+gHD RzDgD (35)

with Rs = E{ssH} and RzD = E{zDz
H
D } (see Table I for a full expression) denoting the autocorrelation matrices of s[n]

and zD[n], respectively. Combining (35) and (31), the optimal filter g?D is given by

g?D = R−1D R(Heq)R(gS)Rseτ (36)

where
RD = R(Heq)R(gS)RsRH(gS)RH(Heq) + RzD (37)

is the autocorrelation matrix of the input signal to gD[n]. From (36) we see that τ , with 0 ≤ τ ≤ (Leq + LD + LS), selects
one of the columns of R−1D R(Heq)R(gS)Rs, and can be interpreted as a filter selector.

B. Solution of problem (23) with respect to GR[n]

The next step of Algorithm 1 is to design GR[n] as the solution to (23) assuming both gS[n] and gD[n] fixed, i.e.,

G?
R[n] =arg min

GR[n]
E{|d̂[n]− s[n− τ ]|2}

subject to E{‖r̂[n]‖2} ≤ PR

HRR[n] ?GR[n] = 0

(38)

Even under the SI suppression constraints, solving (38) requires the use of certain approximations. Concretely, from (27), the
power of zR[n] has the following expression

E{‖zR[n]‖2} = E{‖GR[n] ? nR[n]‖2}+ E{‖vR[n]‖2}
+ E{‖GR[n] ?HSR[n] ? vS[n]‖2}
+ E{‖GR[n] ?wR[n]‖2}
+ E{‖GR[n] ?HRR[n] ? vR[n]‖2} (39)

From (7) and (19) we see that the covariance of vR[n] depends on GR[n]. Consequently, the last term in (39), E{‖GR[n] ?
HRR[n] ? vR[n]‖2}, exhibits a “fourth-order” relation with GR[n], as seen in (40).

To avoid such higher-order relation, we approximate G
(k)
R [n] ?HRR[n] as G

(k−1)
R [n] ?HRR[n]. This transforms (39) into

E{‖zR[n]‖2} ≈ E{‖G(k)
R [n] ? nR[n]‖2}+ E{‖vR[n]‖2}

+ E{‖G(k)
R [n] ?HSR[n] ? vS[n]‖2}

+ E{‖G(k)
R [n] ?wR[n]‖2}

+ E{‖G(k−1)
R [n] ?HRR[n] ? vR[n]‖2} (41)

with
E{‖vR[n]‖2} = δR tr{diag{G(k)

R RsR(G(k)
R )H}} (42)

Matrix RsR = E{sRsR
H} is the autocorrelation of sR[n] = HSR[n] ? gS[n] ? s[n], see (30). Vector sR is defined as

sR =
[
sTR [n] sTR [n− 1] . . . sTR [n− LR]

]T
(43)

By using the approximation in (41), E{‖zR[n]‖2} has a second-order relation with G
(k)
R [n], and (38) can be cast as a

constrained least-squares problem. The difference between (39) and (41) is roughly proportional to δR and the approximation
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Algorithm 2 Design steps for G
(k)
R [n]

1: Calculate the nullspace basis N of (INR ⊗ C(HRR)).
2: Approximate E{‖zR[n]‖2} according to expression (41).
3: Calculate w? by solving (49).
4: Obtain G

(k)
R [n] through expression g?R = Nw?.

in (41) will be tight whenever δR is not the dominant noise source. Typically, noise due to limited dynamic range is lower
than thermal noise [31].

Although the SI suppression constraints in (38), HRR[n] ?GR[n] = 0, force the possible solutions to lie within a subspace
of reduced dimension, (38) cannot be analytically solved by means of the normal equations due to the second-order power
inequality constraints E{‖r̂[n]‖2} ≤ PR. To characterize the interference-free subspace, we arrange constraints HRR[n] ?
GR[n] = 0 in the following matrix form

C(HRR)
[
GT

R [0] . . . GT
R [LR]

]T
=
[
0 . . . 0

]T
(44)

Applying the vec operator, (44) can be written in a compact form

(INR ⊗ C(HRR))gR = 0 (45)

with gR = vec{
[
GT

R [0] · · · GT
R [LR]

]T } ∈ CNRMR(LR+1)×1. For a nontrivial solution to (44) to exist, the rank of C(HRR)
must be strictly less than the number of its columns, which is MR(LR + 1). Assuming a full-row rank C(HRR), this condition
reads as NR(LR +LRR) < MR(LR + 1). For this to hold, the number of transmit antennas must exceed the number of receive
antennas (MR > NR), and in addition, the order of the relay filter must satisfy LR ≥ NR(LRR− 1)/(MR−NR). Consequently,
the subspace of feasible GR[n] is given by

gR = Nw (46)

where the columns of N constitute a basis of the nullspace of (INR ⊗ C(HRR)) and w is an arbitrary vector. Due to the
constraints (45), the number of degrees of freedom (DoF) in GR[n] is equal to the dimension of this null space, which is given
by

DoF = NR (MR(LR + 1)− rank{C(HRR)})
= NRMR(LR + 1)ρ

(47)

where ρ defines the fraction of DoF

ρ = 1− rank{C(HRR)}
MR(LR + 1)

∈ [0, 1] (48)

When ρ→ 1 either HRR[n]→ 0 or MR(LR + 1) is very large, whereas when ρ→ 0 the degrees of freedom in the relay that
are used to suppress the self-interference is maximized. For a given relay configuration, ρ is minimized when C(HRR) is of
full-rank. Generally speaking, C(HRR) is of full-rank when HRR[n] follows a Rayleigh fading channel model, setting a worst
case scenario benchmark in terms of self-interference.

Combining (46) and (38) yields the equivalent optimization problem

w? =arg min
w

E{|d̂[n]− s[n− τ ]|2}

subject to E{‖r̂[n]‖2} ≤ PR

(49)

Problem (49) is a Least Squares minimization problem with a Quadratic Inequality constraint (LSQI) [46]. Appendix A provides
the details of the computation and a semi-analytical expression of the solution. Finally, the optimal G?

R[n] is recovered directly
from g?R = Nw? and reordering of gR = vec{

[
GT

R [0] · · · GT
R [LR]

]T }. Table 2 summarizes the steps needed to design filter
GR[n] at each iteration.

C. Solution of problem (23) with respect to gS[n]

In order to complete an iteration, and as a final step, we must solve (23) with respect to gS[n] for both GR[n] and gD[n]
fixed, i.e.,

g?S [n] = arg min
gS[n]

E{|d̂[n]− s[n− τ ]|2}

subject to E{‖ŝ[n]‖2} ≤ PS

(50)

Since gS[n] is located at node S, its optimal expression will be that of a precoding filter tailored to the combined channel
gD[n] ?Heq[n]. Similarly to previous step, problem (50) can be cast as an LSQI problem and solved using the theory in [46].
We refer the reader to Appendix B for details of the computation and a semi-analytical expression of the solution.
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V. SIMULATION RESULTS AND DISCUSSION

We respectively define the signal-to-noise ratio of the SR hop, the SD hop and the RD hop as

SNRSR =
E
{
‖HSR[n] ? gS[n] ? s[n]‖2

}
E {‖nR[n]‖2}

SNRSD =
E
{
‖HSD[n] ? gS[n] ? s[n]‖2

}
E {‖nD[n]‖2}

SNRRD =
E
{
‖HRD[n] ?GR[n] ?HSR[n] ? gS[n] ? s[n]‖2

}
E {‖nD[n]‖2}

The final signal-to-noise ratio at the destination takes into account the limited dynamic range parameters δS, δR, εR and εD and
is defined as

SNRD =
E
{
‖gHD [n] ?Heq[n] ? gS[n] ? s[n]‖2

}
E
{
‖gHD [n] ? zD[n]‖2

}
We consider a source node with MS = 2 antennas transmitting a 64-QAM OFDM modulated signal. The number of

subcarriers is nc = 1024 and the cyclic prefix length is np = 32. The sampling frequency equals the Nyquist frequency
and E{|s[n]|2} = 1. Destination node has ND = 2 receive antennas, while the relay node has NR = 2 receive antennas and
MR = 5 transmit antennas. The maximum transmit powers at the source and the relay are set to PS = 0 dB and PR = 0 dB,
respectively. The channels follow a Rayleigh fading model, so each tap of Hij [k] is independently drawn from a circularly-
symmetric complex normal distribution, i.e., vec{Hij [k]} ∼ CN (0, INjMi) and then a scaling is performed in order to set
‖Hij‖2 = γij . Parameter γij modifies the SNR for a fixed noise power σ2

i . In this work, we only consider perfect channel
state information, threrefore, the following results can be seen as a benchmark case. The direct link is weaker than the relay
hop and subjected to stronger multipath components, and channel orders are LSD = 5, LSR = 2, LRD = 2 and LRR = 2
and normalization constants are γSD = 0.1, γSR = 1, γRD = 1 and γRR = 1, respectively. Noise levels are δS = δR = −30
dB, εR = εD = −20 dB, and σ2

R = σ2
D = −20 dB. Filters gS[n], GR[n] and gD[n] all have orders LS = LR = LD = 3.

Consequently, from (48) we have that a fraction DoF ρ = 0.5 is used by GR[n] for suppressing the self-interference. The
end-to-end delay is set to τ = 3 by using the rule of thumb recommending a value half the length of the equivalent channel,
Leq = 7. A method to optimize τ can be found in [47], [48], and a study about its influence on the performance in [49].

Algorithm 1 is assumed to have converged when the weighted filter norm between two consecutive iterations falls below a
certain threshold ε2 ≥ 0, i.e.,

‖g(k)
S − g

(k−1)
S ‖2/‖g(k)

S ‖
2 ≤ ε2

‖G(k)
R −G

(k−1)
R ‖2/‖G(k)

R ‖
2 ≤ ε2

‖g(k)
D − g

(k−1)
D ‖2/‖g(k)

D ‖
2 ≤ ε2

where the sensitivity threshold ε is set to ε2 = 0.003. The number of iterations to reach convergence varies as function of the
system parameters and channel impulse reponses. From the observed results, the algorithm may take from a few dozens up to
several thousands iterations.

Initialization points are g
(0)
S [n] = 1δ[n], g

(0)
D [n] = 1δ[n] and w(0) = 1, with 1 being the all-ones vector of appropriate

dimension. The results are obtained by averaging over 400 independent realizations. The parameters listed above are fixed
throughout simulations unless otherwise stated.

Figure 2 depicts the MSE as a function of SNRSD and SNRRD, when γSR = 1, γRD ∈ [0.1, 1] and γSD ∈ [0, 1]. We see that
for low values of SNRRD the presence of the direct link, i.e., when SNRSD > −∞, improves the end-to-end performance by
approximately 5 dB. On the other hand, when SNRRD is large, the improvement due to the direct link is roughly 1 dB. We
can conclude that the contribution of the direct link to the overall performance is a nonlinear function of the SNR of the RD
hop. When the RD hop supports a high SNR, the contribution of the direct link to the end-to-end performance is marginal.

Figure 3 shows the MSE as a function of SNRSR and SNRRD, when SNRRD = 0, i.e., no direct link, γSR ∈ [0.1, 1] and
γRD ∈ [0.1, 1]. We see that the impact of SNRSR on the MSE is more significant than that of SNRRD, due to the noise from
S being propagated to D. For low SNRSR, increasing SNRRD by 10 dB results in an MSE improvement of 3 dB, whereas,
when SNRSR is large, the same operation results in an MSE improvement of 5.5 dB. Therefore, a system where the SR hop
supports higher SNR values than the RD hop leads to better performance.

Figure 4 depicts the MSE as a function of SNRSR and SNRSD, when γRD = 1, γSR ∈ [0.1, 1] and γSD ∈ [0.1, 1]. Similarly
to the results in Fig. 2, the MSE gain decreases as SNRSR increases.

Figure 5 shows the contour lines of the MSE as a function of the distortion at the destination, εD, and the distortion at the
relay, εR. From the obtained results, although the MSE depends on both εD and εR, εD has a stronger impact on the end-to-end
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Fig. 2. MSE versus SNRRD for various SNRSD.
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Fig. 3. MSE versus SNRRD for various SNRSR. No S-D link.

performance than εR, e.g., compare the point (−10,−30) with the point (−30,−10) in Fig. 5. This is a consequence of the
cumulative effect of wD[n] at D, whose power depends on other noise sources, such as wR[n].

Figure 6 shows the contour lines of the MSE as a function of the source transmit noise, δS, and the relay transmit noise,
δR. Note the similar behavior of Fig. 6 and Fig. 5. It is observed that δS, or, δR has a stronger impact on the MSE than δS.
For instance, comparing the point (δR = −10, δS = −30) and the point (δR = −30, δS = −10) of Fig. 6, it is seen that there
is approximately a 1 dB gap between both. This is a consequence of the relay transmit noise being filtered by HRR[n].

Figure 7 shows the final SNR at destination SNRD for different values of SNRRD and SNRSD. The case SNRRD → −∞
indicates the absence of a relay. Therefore, Fig. 7 shows the performance gain resulting from the relay in the link. Note the
saturation effect when SNRSD is large, where performance gain is 3− 4 dB. On the other hand, when SNRSD is low, the relay
can boost performance in 10− 15 dB.

Figure 8 compares the final SNR at destination SNRD for different values of SNRSR and SNRSD. Solid lines depict the
unlimited dynamic range (u.d.r.) cases, δS = εR = δR = εD = 0, whereas dashed lines depict the limited dynamic range (l.d.r.)
cases, δS = δR = −30 dB and εR = εD = −20 dB. The gap between l.d.r and u.d.r. cases is of approximately 1− 2 dB, and
it increases alongside SNRSD.

Figure 9 shows the MSE as a function of the fraction of DoF ρ in (48) for different values of MR and LR. Dashed lines
show ρ for the same values of MR and LR. Note the clear relation between ρ and the MSE. Figure 9 highlights that different
values of MR and LR may lead to the same ρ or MSE. This is relevant if additional coefficients of GR[n] are affordable, as
performance may reach that of a system with more antennas, for example, cases (MR = 7, LR = 10) and (MR = 9, LR = 1)
results in the same MSE. However, MR has a bigger impact on the performance than LR.

Figure 9 also highlights the difference in performance between an AF relay (LR = 0) and an FF relay. In all the tested
cases, the FF relay outperforms the AF relay by 2− 3 dB. In fact, an FF relay with less antennas may outperform an AF relay
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Fig. 5. MSE contour lines (in dB) versus destination distortion εD and relay distortion εR.

equipped with more antennas. This is, because for an AF relay, ρ is low even if MR is large. Consequently, an FF protocol
has clearly the edge in performance over an AF protocol, particularly in the case where the number of transmit antennas MR
is fixed and LR is set on demand.

Figures 10 and 11 show the histogram of the number of iterations and the MSE for randomized initialization points when
simulations parameters are fixed. The number of randomized initialization points is 1000, whereas simulations parameters are
set to default values. From Fig. 10 the number of iterations to reach convergence is of the order of several dozens. Concretely,
most of the times the algorithm takes than 25 iterations before obtaining a solution. Note that this number depends on the
initialization point and the value of ε2, where lower values of ε2 result, on average, on a higher number of iterations. Similarly,
because the stop criterion is based on the normalized change per iteration, the resulting MSE follows the histogram in Fig.
11. Note that the MSE is most likely to lie within an interval of 1.5− 2 dB around its mean value.

VI. CONCLUSIONS

We presented a method for MMSE design of node filters in a filter-and-forward full-duplex MIMO relay link subjected to
limited dynamic range. The original non-convex optimization problem is approximated by an alternating optimization algorithm,
where each node’s filter is designed individually at each iteration. Simulations show that the balance between direct path (source-
destination) and relay path (source-relay-destination) has a strong influence on the end-to-end performance, particularly when
the source-to-relay path supports low SNR. A filter-and-forward protocol outperforms an amplify-and-forward protocol in most
of the cases, even for fewer antennas. Limited dynamic range decreases the performance by a factor that depends on the
individual hop SNR.
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APPENDIX A

Solution of (23) in terms of GR[n] for fixed gS[n] and gD[n]. Let first write the MSE as a function of w. Using (32), d̂[n]
has the following expression

d̂[n] =gHD (R(HRD)R(GR)R(HSR) +R(HSD))R(gS)s

+ gHD zD (51)

where s denotes a vector of appropriate size that contains current and L past samples of s[n], i.e.,

s = [s[n] s[n− 1] . . . s[n− L]]
T (52)

By vectorizing both sides of (51), we obtain

d̂[n] =gHD (R(HSD)R(gS)s + zD)

+ gHD ((R(HSR)R(gS)s)T ⊗R(HRD))Pw (53)

where P = VN, and V being a reordering matrix satisfying vec{R(GR)} = V vec{GR}, see Appendix C. From (53),

E{|d̂[n]− s[n− τ ]|2} = wHQsw − 2 Re{wHqτ}
+ gHD (R(HRD)RzRRH(HSD) + RwD)gD + q (54)

where matrix Qs, vector qτ and scalar q do not depend on w and are defined in Table II. Matrix RwD denotes the autocorrelation
matrix of wD[n] that depends on GR[n].
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Equation (55) expresses gHD RwDgD as a convex function of w, where in Equality 1 we used the linearity of expectation
and the properties of Kronecker product, whereas in Equality 2 we used Lemmas 2 and 3, presented below.

Lemma 2. For any constant matrices A ∈ CM×N and C ∈ CP×R and any random matrix B ∈ CR×M , the following
property holds

E{tr{C diag{BAAHBH}CH}} =

tr{AHE{BH diag{CHC}B}A} (56)

Proof. Let ei ∈ CR denote the ith canonical basis vector. Matrix Ji = eie
T
i ∈ CR×R denotes the single-entry matrix whose

ith diagonal element is one and zero elsewhere. The diag operation can be written as

diag{BAAHBH} =

R∑
i=1

JiBAAHBHJHi (57)

Combining (57) and (56) yields

E{tr{C diag{BAAHBH}CH}}

= E{tr{C
R∑
p=1

JpBAAHBHJHp CH}}
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gHD RwDgD = gHD

(
I(LD+1) ⊗ εD diag

{
(R(HRD)R(GR)R(HSR)R(gS))E{ss

H} (R(HRD)R(GR)R(HSR)R(gS))
H
})

gD

1
= εD

LD∑
i=0

E
{
gHD [i] diag

{(
(R(HSR)R(gS)s)

T ⊗R(HRD)
)
PwwHPH

(
(R(HSR)R(gS)s)

T ⊗R(HRD)
)H}

gD[i]

}
2
= εDw

H E
{
PH

(
(R(HSR)R(gS)s)

T ⊗R(HRD)
)H

IND [LD] diag
{
gDg

H
D

}
ITND [LD]

(
(R(HSR)R(gS)s)

T ⊗R(HRD)
)
P

}
︸ ︷︷ ︸

QεD

w (55)

=

R∑
p=1

E{tr{AHBHJHp CHCJpBA}}

= tr{AHE{BH
R∑
p=1

(
JpC

HCJHp
)
B}A}

= tr{AHE{BH diag{CHC}B}A} (58)

where we have used that tr{AAH} = tr{AHA} and that Ji is a Hermitian matrix. �
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Lemma 3. For any filter A[n] ∈ CM×N of order LA the following property holds

LA∑
k=0

diag
{
AH [k]A[k]

}
= IN [LA] diag

{
AHA

}
ITN [LA] (59)

Proof. Gramian matrix AHA has the following expression

AHA =

 AH [0]A[0] . . . AH [0]A[LA]
...

. . .
...

AH [LA]A[0] . . . AH [LA]A[LA]

 (60)

which, after applying the diag operation, results in

diag
{
AHA

}
=


diag

{
AH [0]A[0]

}
. . .

diag
{
AH [LA]A[LA]

}
 (61)

from where the result of the lemma follows immediately. �

Proceeding in a similar fashion with the additional terms in gHDR(HRD)RzRRH(HSD)gD, the MSE can be written as

E{|d̂[n]− s[n− τ ]|2} = wHQw − 2 Re{wHqτ}+ q (62)

where Q = Qs + QεR + QεD + QδS + QδR + Qσ2
R
. Each matrix Qi is a result of noise source with parameter i and signal s[n]

propagating to D and is defined in Table II.
The inequality constraint, E{‖r̂[n]‖2} ≤ PR, can be written as

E{‖r̂[n]‖2} = wHQrw ≤ PR (63)

with Qr = NH(RT
r ⊗ IMR)HN and Rr the autocorrelation of r[n], see Table II. Finally, the optimization problem can be

expressed as:
min
w

wHQw − 2 Re{wHqτ}+ q

subject to wHQrw ≤ PR

(64)

Problem (64), as explained in [46], is an LSQI problem, whose unique solution is obtained as follows:
1) If the unconstrained solution w? = Q−1qτ satisfies (w?)HQrw

? ≤ PR then w? is a solution of (64).
2) If not, the optimal solution is obtained using the Lagrange function and is given by w? = (Q + λ?RQr)

−1qτ where λ?R
is a Lagrange multiplier satisfying (w?)HQrw

? = PR.
The Lagrange multiplier λ?R can be obtained by means of any standard root finding technique.

APPENDIX B

Solution of (23) in terms of gS[n] for fixed GR[n] and GR[n]. Let fS = vec{[gS[0] . . .gS[LS]]} ∈ CMS(LS+1). By vectorizing
both sides of (32), we obtain

d̂[n] =
(
sT ⊗ gHDR(Heq)

)
VfS + gHD zD (65)

with V being matrix satisfying vec{R(gS)} = VfS, see Appendix C. From (65),

E{|d̂[n]−s[n− τ ]|2}
= fHS TsfS − 2 Re{fHS tτ}+ gHD RzDgD (66)

where matrix Ts and vector tτ are defined in Table III. Proceeding in a similar fashion as in Appendix A, term gHD RzDgD
can be expressed as a convex function of fS, resulting in

E{|d̂[n]− s[n− τ ]|2} = fHS TfS − 2 Re{fHS tτ}+ t (67)

where T = Ts + TεR + TεD + TδS + TδR and scalar t collects all the terms independent of gS. Each matrix Ti is a result of
noise source i and signal s[n] propagating to D and is defined in Table III.

The inequality constraint, E{‖ŝ[n]‖2} ≤ PS, can be written in terms of gS as

E{‖ŝ[n]‖2} = fHS TŝfS ≤ PS (68)
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with Tŝ = (RT
s ⊗ IMS)

H and Rs the autocorrelation of s[n]. Finally, fS is the solution to the following optimization problem:

min
fS

fHS TfS − 2 Re{fHS tτ}+ t

subject to fHS TŝfS ≤ PS

(69)

From Appendix A, (69) is seen to be an LSQI problem, whose solution f∗S is given by

f?S = (T + λ?STŝ)
−1tτ (70)

where Lagrange multiplier λ?S ≥ 0 ensures (f?S )HTŝf
?
S = PS when the unconstrained solution f?S = T−1tτ yields (f?S )HTŝf

?
S >

PS.

APPENDIX C

Proof of vec{R(B)} = V vec{B}. In terms of B, (2) can be rewritten as

R(B) =

LA∑
j=0

UjBWj (71)

where Uj ∈ CN(LA+1)×N and Wj ∈ CP (LB+1)×P (LC+1) are given by

Uj =
[
0TjN×N ITN 0T(LA−j)N×N

]T
(72)

Wj =
[
0P (LB+1)×jP IP (LB+1) 0P (LB+1)×(LA−j)P

]
(73)

Using (71) and the properties of the vectorization operator,

vec{R(B)} = vec


LA∑
j=0

UjBWj


=

LA∑
j=0

vec {UjBWj}

=

LA∑
j=0

(
WT

j ⊗Uj

)
vec {B}

= V vec {B} (74)

where the resulting vector vec {B} ∈ CNP (LB+1) and matrix V =
∑LA
j=0

(
WT

j ⊗Uj

)
∈ CNP (LC+1)(LA+1)×NP (LB+1).

TABLE I
AUTOCORRELATION MATRIX OF zD[n], RzD .{

LRD′ = LR + LRD + LD
}

,
{
LRD′′ = LRD′ + LRR

}
RzD = δRR(HRD)R(GR)R(HRR)

(
I(
L

RD′′
+1
) ⊗ diag

{
GRR(HSR)R(gS)RsRH(gS)RH(HSR)GHR

})
RH(HRR)RH(GR)RH(HRD)

+δRR(HRD)
(
I(LD+LRD+1) ⊗ diag

{
GRR(HSR)R(gS)RsRH(gS)RH(HSR)GHR }

})
RH(HRD) + σ2

RR(HRD)R(GR)RH(GR)RH(HRD)

+εRR(HRD)R(GR)

(
I(
L

RD′
+1
) ⊗ diag

{
HSRR(gS)RsRH(gS)HH

SR

})
RH(GR)RH(HRD) + σ2

DIND(LD+1)

+εD
(
I(LD+1) ⊗ diag

{
HeqR(gS)RsRH(gS)HH

eq

})
+ δSR(Heq)

(
I(LD+Leq+1) ⊗ diag

{
gSRsg

H
S

})
RH(Heq)
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2016-2019; Red Temática RedTEIC 2017-2018).



17

TABLE II
MSE IN TERMS OF GR[n] FOR FIXED gS[n] AND gD[n]. OPERATOR ∗ DENOTES CONJUGATION.

DEFINITIONS{
L

SD′ = LSR + LR + LRD + LD

}
,
{
L

RD′′ = LR + LRR + LRD + LD

}
,
{
DR[n] = IMRδ[n] + G

(k−1)
R [n] ?HRR[n]

}
Qs = PHE

{(
(R(HSR)R(gS)s)

∗ ⊗RH(HRD)gD

)(
(R(HSR)R(gS)s)

T ⊗ gHD R(HRD)
)}

P

qτ = PH
(
(R(HSR)R(gS)E {ss

∗[n− τ ]})∗ ⊗RH(HRD)gD

)
QδS = δSP

H

((
R(HSR)

(
I(L

SD′
+1) ⊗ diag

{
gSRsg

H
S

})
RH(HSR)

)∗
⊗RH(HRD)gDg

H
D R(HRD)

)
P

QεD = εDP
HE
{(

(R(HSR)R(gS)s)
∗ ⊗RH(HRD)

)
IND [LD] diag

{
gDg

H
D

}
ITND

[LD]
(
(R(HSR)R(gS)s)

T ⊗R(HRD)
)}

P

QδR = δRP
HE
{(

(R(HSR)R(gS)s)
∗ ⊗ IMR

)
IMR [LRD′′ ] diag

{
RH(DR)RH(HRD)gDg

H
D R(HRD)R(DR)

}
ITMR

[L
RD′′ ]

(
(R(HSR)R(gS)s)

T ⊗ IMR

)}
P

QεR = εRP
H
((

I(LR+LRD+LD+1) ⊗HSRR(gS)RsRH(gS)H
H
SR

)∗
⊗RH(HRD)gDg

H
D R(HRD)

)
P

Q
σ2R

= σ2
RP

H
(
I(NR(LR+LRD+LD+1)) ⊗RH(HRD)gDg

H
D R(HRD)

)
P

q = gHD

(
σ2

DI(ND(LD+1)) +R(HSD)R(gS)RsRH(gS)R
H(HSD)

)
gD + E

{
‖s[n]‖2

}
− 2Re

{
gHD R(HSD)R(gS)E {ss

∗[n− τ ]}
}

+gHD

(
δSR(HSD) diag

{
I(LSD+LD+1) ⊗ gSRsg

H
S

}
RH(HSD) + εR diag

{
I(LD+1) ⊗HSDR(gS)RsRH(gS)H

H
SD

})
gD

Qr = NH
(
R(HSR)R(gS)RsRH(gS)R

H(HSR)⊗ IMR

)∗
N

MSE as a function of w, gR = Nw = vec{
[
GT

R [0] · · · GT
R [LR]

]T }

E
{
|d̂[n]− s[n− τ ]|2

}
= wH

(Qs + QδS + QδR + QεR + QσR + QεD

)︸ ︷︷ ︸
Q

w − 2Re
{
wHqτ

}
+ q
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HE
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eq
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H
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V
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HE
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SR
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