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Abstract

The incessant demand for enhanced communication services has rendered current RF spectrum

allocation policies obsolete. The astronomic price of licensed channels stands in sharp contradic-

tion with their heavy underutilization and propels the adoption of novel spectrum management

paradigms where spectral resources are assigned in a dynamic fashion, possibly respecting hierar-

chical relations among multiple classes of users. In those scenarios, it is expected that emerging

communication systems will leverage spectrum awareness information to drastically improve

spectrum usage efficiency.

Spectrum sensing comprises a collection of signal processing procedures intended to cha-

racterize spectrum occupation along time, frequency and space based on the observations of the

RF environment reported by one or more sensors. It is the purpose of the present thesis to

contribute to this field by putting forward a number of statistical methods that capitalize on

the special features of different communication scenarios to reliably obtain detailed occupancy

information at low implementation costs.

We first propose a family of techniques aimed to detect, relying on the noisy observations of

a sensor with one or multiple antennas, the presence of constant magnitude and/or bandlimited

transmissions in a frequency band of interest, as motivated by the new regulations of the Federal

Communications Commission. Next, we address the problem of detecting constant-magnitude

and Gaussian-distributed waveforms in time-varying channels, relevant in this context since

spectrum sensing algorithms typically require long observation windows to meet the stringent

performance requirements enforced by spectrum regulations in low-SNR conditions.

We then apply sub-Nyquist acquisition techniques to characterize the occupancy state of

a wide frequency band via inexpensive sensing architectures with minimal computational re-

sources, where spectral prior information typically available in practice — e.g. spectral masks,

roll-off factors, etc. —, is exploited to enable compression. To minimize the sampling rate,

we extensively analyze the general problem of recovering second-order statistical information of

wide-sense stationary processes from compressed measurements. Our results in this direction

are of application well beyond spectrum sensing contexts.

Finally, we look at the problem of spectrum cartography, where the goal is to construct

power spectrum maps characterizing the spectrum utilization not only along frequency and

time, but also across space. We propose several methods capable of learning those maps based

on the highly compressed observations reported by a collection of inexpensive sensors.
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Resumo (Galician)

A presente tese de doutoramento enmárcase no contexto de sistemas de sensado espectral con es-

pecial atención a esquemas de acceso dinámico ao espectro. Baixo este último termo englóbanse

aqueles sistemas que pretenden incrementar a eficiencia de uso dos recursos espectrais existentes

mediante unha flexibilización das poĺıticas empregadas para a súa asignación. Nos esquemas em-

pregados na actualidade, a autoridade reguladora do espectro electromagnético asigna bandas

de frecuencia a grandes operadores, tipicamente mediante un sistema de poxas multimillonar-

ias. Paradoxalmente, recentes campañas de medidas puxeron de manifesto o elevado grado de

infrautilización que impera nestas bandas con licenza. Na vista destes resultados, varias co-

munidades de expertos suxiren considerar a opción de que usuarios sen licenza exploten estes

baleiros espectrais para as súas actividades de comunicación a condición de que non degraden

a calidade da comunicación do usuario con licenza cando este último accede ao canal. Por esta

e outras razóns, tórnase necesario investigar mecanismos que permitan aos chamados usuarios

secundarios coñecer, en cada momento, o estado do canal.

O problema principal radica en empregar un conxunto de observacións do canal, propor-

cionadas por un sensor espectral, para dar resposta a unha ou máis preguntas do tipo: hai algún

usuario primario a operar na banda b? se é aśı, con que potencia se recibe? Para proporcionar

tal resposta, un riguroso conxunto de ferramentas estat́ısticas ponse en funcionamento para crear

funcións dos sinais observados que devolven decisións que satisfacen certos requirimentos, tamén

formulados en termos estat́ısticos. O noso abano inclúe metodolox́ıas importadas da teoŕıa da

detección, como o cociente xeneralizado de verosimilitudes ou a procura de tests invariantes, da

teoŕıa da estimación, como os estimadores de máxima verosimilitude, ou da teoŕıa de aprendizaxe

estat́ıstico, como a máquina de vectores soporte.

FORMULACIÓN DO SENSADO ESPECTRAL

O sensado espectral comprende unha colección de procedementos destinados a determinar o

estado de ocupación de un canal de comunicacións — tipicamente sen f́ıos — a partir das
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observacións obtidas por un ou máis sensores espectrais [Axell et al., 2012]. Por simplicidade,

ao longo de toda a tese asumiremos que ningún usuario secundario está a transmitir durante a

ventá de observación, de modo que o sensor espectral só recibirá un ou máis sinais primarios

xunto con rúıdo/interferencia. Nótese a distinción terminolóxica entre estas dúas entidades

mencionadas: a pesares de que un mesmo dispositivo poida actuar de sensor espectral e de

usuario secundario, o primeiro engloba as funcións de sensado espectral mentres que o segundo

encárgase das funcións de transmisión e recepción de comunicacións sen licenza.

Ao longo da tese, consideraremos dúas clases de procedementos de sensado espectral: aque-

les destinados a determinar a potencia coa que se recibe o sinal primario e aqueles que simple-

mente tratan de establecer se algún usuario primario está a transmitir ou non.

• Estimación de Potencia: No escenario máis sinxelo, o sinal recibido por un sensor

espectral pode ser expresado como

y = r + w, (1)

onde r representa o termo de sinal, que contén o sinal primario despois de sufrir os efectos

de propagación do canal, e w é rúıdo. No instante t, os sinais y, r e w toman valores y(t),

r(t) e w(t) respectivamente. Se non existise ambigüidade, a primeira notación será usada

para se referir aos sinais en si mesmos, vistos como funcións ou procesos estocásticos,

mentres que a segunda será usada para se referir ao resultado de avaliar tales sinais,

vistos como escalares ou vectores. Se non se menciona o contrario, os sinais aleatorios

serán modelados como procesos estocásticos estacionarios en sentido amplo de media cero,

resultado de filtrar e converter a banda de interese a banda base.

O noso obxectivo é proporcionar unha estima da potencia do termo de sinal, definido como

η2
0 , E

{
|r(t)|2

}
, que pode ser directamente enviada ao usuario secundario ou usada como

paso intermedio para detección de actividade (ver máis abaixo). Estas estimas son obtidas

a partir de caracterizacións estat́ısticas parciais do sinal recibido e mediante o emprego de

metodolox́ıas como a de máxima verosimilitude [Kay, 1993].

• Detección de Actividade: Nalgunhas ocasións, a potencia do sinal primario non é

relevante e o usuario secundario soamente está interesado en coñecer se un usuario primario

está a transmitir ou non. No escenario máis sinxelo, deberemos decidir se as observacións

conteñen o termo de sinal correspondente ao sinal primario despois de pasar polo canal ou

se conteñen exclusivamente rúıdo. Formalmente, o problema consiste en decidir entre as
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dúas hipóteses seguintes:

H0 : y = w, H1 : y = r + w. (2)

Problemas de este tipo son o obxecto de estudo da teoŕıa da detección e da, máis xeral,

teoŕıa de tests de hipóteses estat́ısticas [Lehmann and Romano, 2005]. Da mesma forma

que en estimación de potencia, a decisión baséase nunha caracterización estat́ıstica parcial

das observacións. Tipicamente, avaĺıase unha función escalar das observacións, coñecida

coma o estat́ıstico do test, e dećıdese H1 se este estat́ıstico excede un umbral ν e H0 en

caso contrario:

T (y)
H1

≷
H0

ν. (3)

O comportamento dun test, tamén coñecido neste contexto coma detector, caracteŕızase

habitualmente mediante dúas métricas: a probabilidade de falsa alarma (PFA) e a proba-

bilidade de detección (PD) [Kay, 1998]. Habitualmente en teoŕıa da detección, o obxectivo

é maximizar a PD suxeito a unha cota superior sobre PFA. Sen embargo isto non é posible

en moitas circunstancias debido a que non existe un test que se comporte mellor que cal-

quera outro test en calquera condición. Por esta razón, empregaremos basicamente dous

métodos diferentes para construir T : o primeiro é o coñecido cociente xeneralizado de

verosimilitudes [Kay, 1998], mentres que o segundo consiste na busca de tests (localmente)

óptimos en familias de tests que satisfacen certas propiedades de invarianza [Lehmann and

Romano, 2005].

O PAPEL DA INFORMACIÓN A PRIORI

Na ausencia de información a priori, non é posible distinguir o sinal primario do rúıdo e, en

consecuencia, ningún estimador ou detector pode ser deseñado con garant́ıas razoables de com-

portamento. É necesario, por tanto, explotar algunha caracteŕıstica que diferencie o sinal do

rúıdo. Nesta tese, as caracteŕısticas consideradas serán:

• Información de Amplitude: Nalgúns casos, é sabido que o sinal transmitido pre-

senta unha amplitude constante, como acontece en moitos escenarios prácticos onde esta

propiedade relaxa os requirimentos impostos sobre os amplificadores de potencia. Entre

os exemplos deste tipo de sinais destacamos modulacións como FSK, CPM ou GMSK (ver

Caṕıtulo 1). No contexto de sistemas de acceso dinámico ao espectro, esta propiedade é

especialmente relevante dado que os micrófonos sen f́ıos, que son considerados usuarios pri-

marios nalgúns casos, empregan a modulación analóxica de frecuencia (FM), que produce
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formas de onda con magnitude constante.

Noutros casos, é posible asumir que a amplitude do sinal primario segue unha distribución

normal. Esta suposición está altamente motivada en escenarios de comunicacións por

varias razóns: primeiramente, moitos sistemas de transmisión empregan modulacións con

amplitude aproximadamente normal dado que esta distribución acada a capacidade do

canal aditivo Gaussiano. Segundo, a amplitude de sinais multiportadora é aproximada-

mente Gaussiana. Terceiro, é unha hipótese de traballo moi habitual en procesado do

sinal e estat́ıstica dado que conduce a modelos tratables e dado que moitos métodos que

asumen Gaussianidade presentan un comportamento aceptable incluso en condicións afas-

tadas desta suposición [Anderson, 2003, p. 3].

• Estrutura Espectral: En moitos escenarios prácticos, o coñecemento da estrutura espec-

tral do sinal transmitido é altamente detallado debido a que moitos sistemas de transmisión

actuais seguen estándares e regulacións coñecidos publicamente. Por exemplo, as carac-

teŕısticas das formas de onda de WiFi, Bluetooth, telefońıa celular, televisión dixital, etc

son ditadas polo correspondente estándar, que especifica factores de roll-off, modulacións,

número de portadoras, posición das portadoras piloto, etc. Outras caracteŕısticas coma

máscaras espectrais, frecuencias de portadora e anchos de banda están ditados polas reg-

ulacións do espectro. Por iso, é razoable asumir que a densidade espectral de potencia do

sinal transmitido é aproximadamente coñecido excepto por un factor de escala.

• Estrutura do Canal: Espérase que os usuarios secundarios/sensores espectrais estean

dotados de múltiples antenas debido ás súas vantaxes para comunicación e sensado es-

pectral [Taherpour et al., 2010, Cabric, 2008]. Nalgúns casos, por exemplo, sábese que

o rúıdo en diferentes antenas está incorrelacionado, mentres que o sinal primario pode

estar altamente correlacionado. Outras formas de estrutura que explotaremos inclúen

variacións temporais: debido ás longas ventás de observación necesarias para garantir un

certo comportamento do método de sensado espectral, a suposición de que o canal per-

manece invariante no tempo podeŕıa estar moi afastada da realidade.

SINOPSE

Mediante o emprego desta información a priori, esta tese presenta métodos de sensado espectral,

tanto para estimación de potencia como para detección de actividade, encamiñados a resolver

unha colección de problemas prácticos. De acordo co detallada que é a súa descrición dos baleiros

espectrais [Zhao and Sadler, 2007], estes métodos poden ser clasificados en tres categoŕıas:

• Sensado espectral nun só canal,
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• Sensado espectral en múltiples canais,

• Cartograf́ıa espectral en múltiples canais.

Inda que o noso traballo é principalmente teórico, levamos a cabo un esforzo especial para garan-

tir que os métodos propostos satisfagan certas propiedades necesarias en aplicacións prácticas.

En concreto, ningún dos nosos métodos requiren o coñecemento da potencia de rúıdo. Ademais,

todos os nosos métodos son invariantes a escalados, o cal minimiza os problemas asociados á cal-

ibración dos sensores. Ademais, ningún dos procedementos propostos precisa do coñecemento

dos coeficientes do canal, o cal se motiva polo feito de que a relación sinal a rúıdo pode ser

considerablemente baixa e polo feito de que os usuarios primarios non cooperan cos usuarios

secundarios.

A continuación resumimos os problemas considerados e as nosas contribucións nas tres

categoŕıas anteriormente mencionadas.

SENSADO ESPECTRAL NUN SÓ CANAL

Se concentramos a nosa atención no estado de ocupación dun canal de frecuencia en particular

e nunha localización espacial en particular, o baleiro espectral é, polo tanto, unha colección

unidimensional de intervalos temporais onde ningún usuario primario está a transmitir. Neste

contexto consideraremos dúas clases de problemas:

Detección de Actividade de Micrófonos sen F́ıos

A organización reguladora do espectro electromagnético nos Estados Unidos de América, a

Federal Communications Commission (FCC), permitirá a usuarios sen licenza transmitir nunha

banda de televisión en localizacións onde esta non estea a ser usada polos usuarios primarios, que

neste caso seŕıan, entre outros, as estacións de televisión e os micrófonos sen f́ıos. Polo tanto, é

de importancia cŕıtica desenvolver esquemas capaces de detectar fiablemente a actividade deste

tipo de dispositivos.

A literatura contén numerosos métodos especialmente deseñados para detectar a presenza

de micrófonos sen f́ıos mediante o uso de sensores cunha soa antena. Entre estes destacamos [Xu

et al., 2008,Hassan and Nasr, 2011,Chen and Gao, 2011,Chen et al., 2008,ElRamly et al., 2011,

Gautier et al., 2010]. Por outra banda, existe unha ampla variedade de métodos para a detección

de sinais primarios que empregan sensores multiantena, por exemplo [Alamgir et al., 2008,Besson

et al., 2006, Taherpour et al., 2010, Wang et al., 2010, Ramı́rez et al., 2011, Sala-Álvarez et al.,

2012,Vázquez-Vilar et al., 2011b,Zeng and Liang, 2009a]. Sen embargo, estas técnicas non están
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enfocadas á detección de micrófonos sen f́ıos, e polo tanto o seu funcionamento é mellorable.

Ao noso entender, na literatura non existe ningún detector destinado especificamente a detectar

micrófonos sen f́ıos mediante sensores multiantena. Un dos nosos cometidos nesta tese será encher

este baleiro, para o cal proporemos esquemas que explotan a información espacial xunto coas

caracteŕısticas propias das formas de onda dos micrófonos sen f́ıos. En particular, explotaremos

o feito de que estes sinais ocupan un ancho de banda espectral considerablemente inferior ao

do canal de televisión, e o feito de que estes micrófonos empregan habitualmente a modulación

analóxica en frecuencia, a cal produce formas de onda con magnitude constante. Seguindo

as directrices de simulación do grupo de traballo IEEE 802.22, conclúımos que os esquemas

propostos melloran notablemente os existentes.

Detección de Actividade en Canais Variantes no Tempo

Consideremos un detector deseñado baixo a hipótese de que o canal é invariante no tempo.

Cando este detector sexa usado na práctica, onde os canais satisfacen esta suposición só de forma

aproximada, o seu rendemento incorrerá nunha certa degradación. En efecto, existe un amplo

abano de situacións nas que as variacións do canal dentro da ventá de observación deben ser

tidas en conta. Este é o caso, por exemplo, dos sistemas de comunicación de banda estreita, onde

o tempo de coherencia do canal pode ser comparable ao peŕıodo de śımbolo. Outro exemplo

radica nos sistemas de comunicación subacuática, onde as caracteŕısticas de propagación dan

lugar a rápidas variacións no canal [Marage and Mori, 2010]. No contexto de sistemas de acceso

dinámico ao espectro, as regulacións impoñen duros requisitos en canto ao comportamento dos

detectores en condicións de baixa relación sinal a rúıdo, o que obriga a empregar longas ventás

de observación [Cabric, 2008], nas que o canal pode variar significativamente, especialmente en

entornos afectados por mobilidade.

A investigación previa relacionada con canais variantes no tempo considerou modelado,

estimación, predición, ecualización, codificación, deseño de formas de onda, etc (ver [Hlawatsch

and Matz, 2011] e as súas referencias). Sen embargo, ao noso entender, poucos esforzos foron des-

tinados a resolver problemas de sensado espectral. Entre estes, só temos coñecemento de [Wang

et al., 2010,Chen et al., 2007], obtidos coma implementacións adaptativas de esquemas para sen-

sado en canais invariantes, co cal cabe esperar grandes degradacións en presenza de variacións

rápidas. Ademais, no noso coñecemento, non existe ningún esquema na literatura capaz de

aproveitar as variacións do canal no seu favor. É un dos labores desta tese o de propoñer

métodos de detección de actividade en canais variantes no tempo que exploten no seu beneficio

as variacións deste ao logo do tempo.

Primeiramente consideramos o problema de detectar sinais con magnitude constante ob-
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servados con rúıdo de potencia descoñecida despois de atravesar un canal de propagación con

resposta plana en frecuencia e con variacións no tempo aleatorias. Usando unha parametrización

lineal con coordenadas aleatorias para modelar as variacións no tempo [Tsatsanis and Giannakis,

1996a, Giannakis and Tepedelenlioǧlu, 1998], derivamos o cociente xeneralizado de verosimili-

tudes. Se o sinal de módulo constante transmitido é coñecido, o esquema resultante xeneraliza

o detector de filtro adaptado [Kay, 1998]; en caso contrario reqúırese a solución dun dif́ıcil prob-

lema non convexo, para o cal propoñemos diferentes aproximacións con baixos requirimentos

computacionais e un eficiente algoritmo iterativo de punto fixo.

A continuación, consideramos o problema de detectar sinais Gaussianos observados con

rúıdo de potencia descoñecida despois de atravesar un canal de propagación con resposta plana

en frecuencia e con variacións no tempo. Baixo diferentes modelos para o canal, derivamos varios

detectores para sensores cunha soa antena e un detector para sensores con múltiples antenas.

Este último resulta de derivar o cociente xeneralizado de verosimilitudes e de empregar un

algoritmo de estimación-maximización (EM) para o seu cómputo. Sen embargo, as limitacións

do modelo impiden a este detector operar en condicións de variación moi rápidas, o cal motiva o

uso de tests para a homoxeneidade de covarianzas. Inda que non nos internamos neste ámbito, śı

proporcionamos un dos primeiros pasos nesta liña de investigación ao obter de forma teórica os

tests invariantes localmente óptimos. Estes tests estaŕıan indicados para casos de baixa relación

sinal a rúıdo, coma pode acontecer en sistemas de acceso dinámico ao espectro. Para realizar

este traballo de natureza fundamental restrinximos a nosa atención aos tests invariantes baixo

un grupo de transformacións nas que inclúımos transformacións af́ıns invertibles e permutacións.

O resultado tamén é particularizado ao test de escala (ver Apéndice).

SENSADO ESPECTRAL EN MÚLTIPLES CANAIS

Se o noso obxectivo é caracterizar a ocupación espectral do conxunto de canais contidos nunha

banda ancha de frecuencias nun lugar determinado, o baleiro espectral é, por tanto, o conxunto

bidimensional de puntos no plano tempo-frecuencia no que ningún usuario primario está a op-

erar. Considerar múltiples canais simultaneamente presenta numerosas vantaxes xa que permite

incrementar a probabilidade de que os usuarios secundarios atopen un canal vacante ou, incluso,

transmitir en múltiples canais ao mesmo tempo.

Un dos maiores retos do sensado espectral de bandas anchas é a problemática asociada á

limitación práctica na elección da frecuencia de mostreo: o mostreo a taxa de Nyquist pode ser

prohibitivo en termos de custo do hardware e en termos de consumo de potencia. Para afrontar

esta dificultade, é habitual introducir compresión na etapa de adquisición. Neste contexto,

consideramos dous problemas:
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Sensado Espectral

O obxectivo é determinar o estado de ocupación dunha banda de frecuencias a partir de

mostras comprimidas. Unha posible aproximación ao problema é primeiramente reconstrúır

o sinal non comprimido, por exemplo usando compressed sensing [Donoho, 2006, Candès and

Wakin, 2008], e a continuación aplicar unha técnica convencional de sensado espectral sobre

o resultado (ver [Sun et al., 2013] e as súas referencias). Para poder introducir compresión, é

necesario que exista certa estrutura no sinal, por exemplo sparsity. Outra opción é tratar de obter

directamente a información de interese a partir das mostras obtidas, evitando o paso intermedio

de reconstrución [Ariananda and Leus, 2012,Lexa et al., 2011]. Claramente, esta aproximación

permite acadar unha maior compresión e reducir significativamente o custo computacional. A

compresión é posible dado que soamente os estat́ısticos de segunda orde son necesarios para

obter a información de ocupación, e estes estat́ısticos están altamente estruturados en procesos

estacionarios en sentido amplo. Nesta tese propoñemos métodos de sensado espectral capaces

de operar directamente sobre as mostras comprimidas de acordo con esta segunda filosof́ıa.

O noso cometido é superar as limitacións dos esquemas existentes para sensado de banda

ancha [Quan et al., 2009, Taherpour et al., 2008, Vázquez-Vilar and López-Valcarce, 2011, Ar-

iananda and Leus, 2012] (ver Caṕıtulo 1). Para iso presentamos unha colección de métodos

paramétricos para a estimación do espectro de potencia a partir de medidas comprimidas. A

información a priori captúrase empregando unha parametrización lineal dos estat́ısticos de se-

gunda orde, motivados pola observación anteriormente mencionada de que a densidade espectral

de potencia dos sinais primarios é habitualmente coñecida de forma aproximada. Inda que o

problema se poida formular en termos de estimación de covarianza estruturada [Burg et al.,

1982], os algoritmos existentes para esta disciplina son excesivamente complexos. Por esta razón

desenvolvemos unha colección de métodos que permiten obter a información de interese con un

baixo custo computacional.

Deseño da Etapa de Compresión

O uso de algoritmos de sensado espectral capaces de operar sobre mostras comprimidas

require o deseño do propio sistema de adquisición. Nesta tese consideramos este problema, que

resulta ser unha cuestión fundamental extensible a múltiples ámbitos de procesado do sinal máis

alá do sensado espectral.

Os traballos existentes na literatura só consideran casos particulares deste problema [Mof-

fet, 1968, Hoctor and Kassam, 1990, Pillai et al., 1985, Pal and Vaidyanathan, 2010, Pal and

Vaidyanathan, 2011, Rédei and Rényi, 1949, Leech, 1956, Wichmann, 1963, Wild, 1987, Pearson
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et al., 1990, Linebarger et al., 1993, Pillai et al., 1985, Wichmann, 1963, Pearson et al., 1990,

Linebarger et al., 1993, Pumphrey, 1993, Pal and Vaidyanathan, 2010, Pal and Vaidyanathan,

2012] ou proporcionan deseños baseados nas necesidades de determinados algoritmos [Ariananda

and Leus, 2012,Domı́nguez-Jiménez and González-Prelcic, 2013,Yen et al., 2013]. Ao noso enten-

demento, a máxima taxa de compresión posible permanece como un problema aberto en moitos

casos de interese, e poucos esforzos foron destinados a proporcionar resultados con validez uni-

versal. É o noso obxectivo nesta tese presentar un marco de traballo xeral e formal, non baseado

en ningún algoritmo en concreto, que permita deseñar os sistemas de compresión a partir de cri-

terios abstractos. Proporcionamos ferramentas sinxelas que permiten establecer a admisibilidade

dun sistema de compresión para tódolos casos onde os estat́ısticos de segunda orde obedecen a

unha parametrización lineal e para algúns dos casos nos que esta parametrización non é lineal.

Derivamos as máximas taxas de compresión acadables usando demostracións construtivas, polo

que tamén obtemos deseños óptimos.

CARTOGRAFÍA ESPECTRAL EN MÚLTIPLES CANAIS

A noción máis xeral de baleiro espectral que consideraremos nesta tese resulta de incorporar a

dimensión espacial ao sensado de múltiples canais. Nese caso, o noso obxectivo consiste en moni-

torizar o uso do espectro ao longo do espacio, tempo e frecuencia. Esta información represéntase

en mapas espectrais, que poden ser empregados por usuarios secundarios para identificar zonas

reusables [Nishimori et al., 2007]. Os métodos de cartograf́ıa espectral tipicamente obteñen

estes mapas a partir das observacións proporcionadas por unha colección de sensores espectrais

distribuidos pola zona de interese.

Entre os esquemas de cartograf́ıa propostos na literatura, unha parte significativa están

destinados á elaboración de mapas de potencia, os cales representan a distribución espacial da

potencia dun sinal [Alaya-Feki et al., 2008, Jayawickrama et al., 2013, Huang et al., 2015, Kim

et al., 2011b, Kim and Giannakis, 2013]. A principal desvantaxe destes métodos radica en que

non distinguen sinal de rúıdo, polo que as tarefas de sensado espectral non poden levarse a

cabo sen coñecer a potencia de rúıdo. Outra parte está composta polos esquemas que incor-

poran a dimensión frecuencial, considerando múltiples canais simultaneamente e distinguindo,

posiblemente, sinal de rúıdo [Bazerque and Giannakis, 2010, Dall’Anese et al., 2012, Bazerque

et al., 2011]. Desafortunadamente estes métodos requiren que os sensores intercambien co cen-

tro de fusión ou con outros sensores unha elevada cantidade de datos, e requiren de complexas

arquitecturas de hardware.

Para solventar as limitacións destes métodos, propoñemos unha familia de técnicas de car-

tograf́ıa espectral onde os sensores poden ser implementados en dispositivos de baixo custo e



onde as necesidades de comunicación son mı́nimas. Mediante ferramentas de regresión en es-

pazos de Hilbert con núcleo reprodutor para funcións vectoriais [Micchelli and Pontil, 2005],

propoñemos un método non paramétrico e un método semiparamétrico para estimar os ma-

pas espectrais a partir de medidas altamente comprimidas. Os problemas de optimización

resultante son idénticos aos empregados en aprendizaxe estat́ıstico polas máquinas de vec-

tores soporte [Schölkopf and Smola, 2001, Cherkassky and Mulier, 2007, Smola and Schölkopf,

2004, Smola et al., 1998], o cal reporta múltiples vantaxes en termos teóricos e prácticos. Fi-

nalmente propoñemos unha implementación en liña para o método non paramétrico mediante

descenso por gradiente no espacio de funcións [Kivinen et al., 2004,Audiffren and Kadri, 2013].

Neste contexto, propoñemos unha nova representación para o campo vectorial que pode ser de

aplicación en calquera problema de estimación non paramétrica con redes de sensores.

ESTRUTURA DA TESE

O contido principal desta tese estrutúrase en 8 caṕıtulos, agrupados en 3 partes, e un apéndice.

A primeira parte, que inclúe os Caṕıtulos 2, 3 e 4, considera problemas de sensado espectral

nun só canal. A segunda parte, que comprende os Caṕıtulos 5 e 6, contén a nosa contribución

ao sensado espectral en múltiples canais. A terceira parte, que inclúe o Caṕıtulo 7, trata o

problema da cartograf́ıa espectral en múltiples canais. Finalmente, o Caṕıtulo 8 presenta as

conclusións e as liñas futuras. O Apéndice considera un problema de natureza fundamental, con

implicacións máis alá do sensado espectral.
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12. D. Romero, R. López-Valcarce, and G. Leus, Generalized matched filter detector for fast

fading channels, in Proc. IEEE Int. Conf. Acoust., Speech, Sig. Process., (Kyoto, Japan),

pp. 3165–3168, Mar. 2012.
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Chapter 1

Introduction

In the last few years, we have witnessed an explosive increase in wireless traffic demand. Far

from slowing down, this trend is in fact accelerating, and is expected to lead to a ten-fold

throughput increase in the next five years [CiscouSystems, 2015]. In correspondence with

this growth, the price of licensed bands has rocketed exorbitantly, which suggests that the

RF spectrum is becoming a scarce resource. This observation, however, stands in contra-

diction with recent measurement campaigns, which report that licensed bands remain highly

unused for significant periods of time (see e.g. [FederaluCommunicationsuCommission, 2002,

ShareduSpectrumuCompany, 2010]).

This paradoxical situation has been ascribed to the static nature of current spectrum regula-

tion policies [FederaluCommunicationsuCommission, 2002], where frequency bands are allocated

for long periods of time to users which purchase a license. Thus, a dramatic improvement in the

RF spectrum exploitation might result from allowing a more flexible and dynamic usage [Zhao

and Sadler, 2007].

1.1 Motivation and Context

The above concern has spurred on a great deal of research efforts to devise alternatives to current

static regulations. In this sense, a diversity of paradigms for dynamic spectrum access (DSA)

have been proposed in the literature (see [Zhao and Sadler, 2007] and references therein). Among

the most remarkable ones is the hierarchical access model, which governs the operation of two

classes of users: secondary users, which are those without a license, are allowed to transmit

provided the interference they inflict to primary users, which are those with a license, remains

below certain limits. A secondary user can therefore transmit, for instance, if its radiated power
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is so low that it is perceived by the primary user below its noise floor; or if no primary user is

operating in the same geographical area at that particular time.

In this context, recent regulations in the United States allow unlicensed wireless devices

to transmit in broadcast television bands at locations where they are unused by authorized

services [FederaluCommunicationsuCommission, 2008] [FederaluCommunicationsuCommission,

2010] [FederaluCommunicationsuCommission, 2011]. Those services — i.e., the primary users

— include, among others, television broadcast stations and low-power auxiliary devices, such as

wireless microphones (WMs).

Spectrum awareness is therefore of critical importance for secondary users, which must cor-

rectly identify their transmission opportunities and set their transmission parameters. While the

current state of US regulations establishes that unlicensed users must determine the occupancy

state of the radio spectrum by means of a geo-location database, the Federal Communica-

tions Commission (FCC) encourages the development of spectrum sensing procedures [Yucek

and Arslan, 2009, Axell et al., 2012] to detect the presence of the incumbent services, since

they are expected to yield significant spectrum efficiency improvements in the future [Fed-

eraluCommunicationsuCommission, 2010]. Furthermore, such procedures are also explicitly de-

manded by the IEEE 802.22 standard for DSA [IEEE, 2011].

This thesis is primarily concerned with the development of spectrum sensing tools capable of

determining the occupancy state of communication channels. This information serves secondary

users to set their transmission parameters so that they can coexist with primary users in a

DSA environment. Note that, although the terms DSA and cognitive radio are oftentimes

used as synonyms, they correspond to different concepts. A cognitive radio is an intelligent

radio that can autonomously reconfigure its operation by learning from and adapting to the

communication context [Mitola III and Maguire Jr, 1999,Zhao and Sadler, 2007]. It can be used

in any communication scenario, DSA being one of them.

1.1.1 Spectrum Sensing

Spectrum sensing encompasses a collection of procedures intended to determine the occupancy

state of a — typically wireless — communication channel, based on the observations gathered by

one or more spectrum sensors [Axell et al., 2012]. For simplicity, we assume throughout that no

secondary user is transmitting during the observation window, and hence spectrum sensors may

only receive one or more primary signals as well as noise/interference. Note the terminological

difference between these two entities: although both may be implemented as a single physical

device, a spectrum sensor is concerned with spectrum sensing functions, whereas a secondary

user undertakes the functions of transmission and reception of unlicensed communications.
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POWER ESTIMATION AND ACTIVITY DETECTION

Throughout the thesis, we consider two classes of spectrum sensing procedures: those that

attempt to determine the power of the primary signal as it arrives at the spectrum sensor and

those that simply attempt to establish whether the primary user is active or not.

Power Estimation

Suppose that a spectrum sensor filters and downconverts a band of interest to baseband.

In the simplest scenario, the signal resulting from this operation can be expressed as

y = r + w, (1.1)

where r represents a signal term containing the baseband representation of the primary signal

after suffering the effects of propagation and w is noise. At time instant t, the signals y, r and w

take the values y(t), r(t) and w(t) respectively. If there is no ambiguity, the former notation will

be used to refer to the signals themselves, seen as functions or stochastic processes, whereas the

latter will be used to refer to the evaluation of such functions, seen as scalars or vectors. Unless

otherwise stated, random signals will be modeled as wide-sense stationary random processes

with zero mean.

Our goal is to provide an estimate of the power of the signal term, defined as η2
0 ,

E
{
|r(t)|2

}
, which can be directly reported to the secondary user or used as an intermediate step

for activity detection (see below). Estimates of η2
0 are obtained making use of partial statistical

characterizations of the received signal. In particular, suppose that the observations of y have

been generated by a certain model θ which is known to be in a given family Θ of statistical

models. Estimation refers to the determination of θ based on those observations of y. Once θ

is known, so automatically is any other parameter of interest such as η2
0. Sometimes, even a

partial knowledge of θ may suffice to reveal the value of such a parameter.

We are interested in constructing functions of the observations of y, called estimators,

that return estimates of θ or of the parameters of interest. A well-known methodology used

throughout to derive such a function is the so-called maximum likelihood (ML) rule. If p(y; θ)

represents the probability density function of the observations under the model θ, the ML

estimate of θ is given by

θ̂ (y) = arg sup
θ∈Θ

p(y; θ). (1.2)
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Activity Detection

Sometimes the power of the primary signal is not relevant and one is solely interested

in determining whether a primary user is active or inactive. In the simplest scenario, one

must decide whether the noise-corrupted observations contain a signal term corresponding to a

primary transmission or not. Formally, the problem is to decide between two hypotheses:

H0 : y = w, H1 : y = r + w. (1.3)

Problems of this kind are the subject of study of detection theory [Kay, 1998] and the more

general theory of testing statistical hypothesis [Lehmann and Romano, 2005]. In these contexts,

H0 is referred to as the null hypothesis and H1 as the alternative.

Similarly to power estimation, the decision is made based on a partial statistical charac-

terization of the observations. In this case, there exists a family ΘH0 of models corresponding

to H0 and a family ΘH1 corresponding to H1, and the goal is to decide whether θ ∈ ΘH0 or

θ ∈ ΘH1 . A detector or test is a function of the observations which returns a decision on which

hypothesis is active. This decision is typically made by evaluating a real function T , called test

statistic, and comparing the result against a threshold ν:

T (y)
H1

≷
H0

ν. (1.4)

The performance of a detector is usually characterized in terms of the two metrics defined next.

• The probability of false alarm is defined as

PFA(θ) , Pθ {T (y) > ν} , θ ∈ ΘH0 , (1.5)

where Pθ {·} represents probability under the model θ. If PFA(θ) = PFA ∀θ, that is, if the

probability of false alarm does not depend on θ, we say that the detector has a constant

false alarm rate (CFAR) [Kay, 1998].

PFA corresponds to the probability of deciding that a primary user is transmitting (H1)

when it is not (H0). Thus, in the long term, it measures the fraction of missed transmission

opportunities. Since this drastically affects the throughput of the secondary user, it is

convenient to keep PFA as low as possible.

• The probability of detection (also known as the power of the test) is defined as

PD(θ) , Pθ {T (y) > ν} , θ ∈ ΘH1 . (1.6)
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It corresponds to the probability of deciding that a primary user is transmitting (H1) when

it is actually doing so. Thus, with probability 1− PD, the presence of the primary user is

not detected and, consequently, the secondary user may introduce disturbing interference

into the primary communication, which suggests keeping PD as close to one as possible. It

is expected that the upcoming spectrum regulations dictate a minimum PD that detectors

must guarantee.

Note that there exists a trade-off between PFA and PD: increasing ν in (1.4) yields lower

values of PFA and PD whereas decreasing ν results in higher values. This trade-off can be

characterized by the so-called receiver operating charactersitic (ROC), which is nothing but the

probability of detection seen as a function of the probability of false alarm.

In view of the above, it makes sense to seek the tests minimizing PFA subject to a PD

constraint. However, due to common practice in detection theory, most works in the spectrum

sensing literature adhere to the opposite convention, where the value of PFA is fixed and PD

maximized. Unfortunately, even if we focus on the family of CFAR tests whose PFA does not

exceed a certain value, the dependence of PD on θ makes that, in most cases, none of these tests

has a larger PD than all the other tests in the family for all θ. In other words, for each value

of θ there is an optimal test, but only in very restricted situations do all values of θ lead to the

same optimal test. Such a uniformly most powerful (UMP) test exists, for instance, when both

ΘH0 and ΘH1 contain a single element, say ΘH0 = {θH0} and ΘH1 = {θH1}, in which case it is

given by the so-called likelihood ratio test, defined as [Lehmann and Romano, 2005,Kay, 1998]

G(y) ,
p(y; θH1)

p(y; θH0)

H1

≷
H0

ν, (1.7)

where ν is adjusted to satisfy the PFA constraint. However, when the statistical distribution of

the observations is only partially known, at least one of the sets ΘH0 and ΘH1 contains more

than one element — thus resulting in a composite hypothesis test — and such a UMP test

may not exist. In those cases, several alternatives exist to design a detector; two of them being

introduced next.

• If we consider the family of all tests whose PFA does not exceed a certain value, it is

likely that none of them exhibits the maximum PD(θ) for all values of θ. However, if

we restrict ourselves to a smaller family, for instance focusing on those tests that satisfy

certain additional requirements, a test may exist which is UMP within this subfamily.

Notable examples include uniformly most powerful unbiased or uniformly most powerful

invariant (UMPI) tests [Lehmann and Romano, 2005].
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• A second approach is the so-called generalized likelihood ratio (GLR) test, given by:

G(y) ,
supθ∈ΘH1

p(y; θ)

supθ∈ΘH0
p(y; θ)

H1

≷
H0

ν. (1.8)

The ubiquitous presence of this test in detection theory owes to its acceptably good perfor-

mance in many situations. However, no optimality properties are associated with this test

for finite data records. The models in ΘH0 and ΘH1 are typically indexed by a collection of

parameters referred to as unknown deterministic parameters or nuisance parameters [Kay,

1998, Lehmann and Romano, 2005]. Upon comparing (1.2) and (1.8), we find that the

values of θ attaining the supremum in the denominator and numerator of (1.8) are respec-

tively the ML estimates of θ under H0 and H1.

THE ROLE OF THE PRIOR INFORMATION

In the absence of prior information, it is not possible to distinguish signal from noise and, con-

sequently, no detector can be designed with reasonable performance guarantees. It is therefore

necessary to exploit some feature that makes the signal term different from the noise term.

The most elemental example of such a feature is energy. Suppose that the noise vari-

ance σ2 , E
{
|w(t)|2

}
is known. If the goal is activity detection, one can merely estimate

η2 , E
{
|y(t)|2

}
and declare the channel busy if the resulting estimate exceeds σ2 meaningfully.

This simple and popular procedure is termed energy detection [Kay, 1998] and is optimal in

certain settings without further signal structure. In practice, this detector is unable to attain

an acceptable performance in low signal-to-noise ratio (SNR) conditions since this would re-

quire a highly accurate knowledge of σ2, which is seldom available in real scenarios [Zeng and

Liang, 2009b, Cabric, 2008, Tandra and Sahai, 2008]. The practical interest of this scheme is

therefore limited — the FCC, for instance, establishes that any secondary device operating in

the television band must be able to detect signals at −114 dBm, which entails SNRs as low

as −20 dB [Cabric, 2008,Zeng and Liang, 2009a]. This fact has motivated detectors exploiting

other properties of the primary signal, including spectral flatness, amplitude properties, spatial

correlation, etc. (see [Yucek and Arslan, 2009,Axell et al., 2012] and the references therein).

In order to tackle this noise uncertainty problem, we will focus our attention on spec-

trum sensing methods that exhibit certain invariance properties with respect to scalings of the

observations. For complex-valued y, a test statistic T is said to be invariant to scalings if

T (cy) = T (y) for any c ∈ C [Lehmann and Romano, 2005]. In typical scenarios, such statistics

lead to CFAR detectors that are immune to the noise uncertainty problem. On the other hand,

in power estimation we will be interested in equivariant estimators. An estimator η̂2
0 of η2

0 is
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said to be equivariant under scalings if η̂2
0(cy) = |c|2η̂2

0(y) [Lehmann and Romano, 2005].

The performance of any spectrum sensing procedure will drastically depend on the accuracy

of the prior information that it exploits. In this thesis we consider several forms of signal

structure, which may be classified as follows:

• Amplitude information: In some cases, the transmitted primary signal is known to

have a constant magnitude (CM). This is a common property of practical waveforms:

since it relaxes linearity requirements on power amplifiers, inexpensive transmitters can

be used. Examples include frequency shift keying (FSK) modulation, continuous-phase

modulation (CPM) or Gaussian minimum shift keying (GMSK) modulation, used in the

GSM standard. In the context of DSA, this property has a special relevance since WMs

typically employ analog frequency modulation (FM), which results in CM waveforms.

In other cases, the amplitude of the transmitted signal may be assumed to follow a Gaussian

distribution, which is well motivated in communication scenarios for several reasons: First,

many transmission systems employ modulations whose amplitude distribution is approx-

imately Gaussian since this is the one achieving the capacity of additive white Gaussian

noise channels. Second, the amplitude of multi-carrier waveforms, which are widespread

nowadays, is approximately Gaussian since these signals are linear combinations of many

independent — or nearly independent — subcarriers. Third, it is a common working as-

sumption in signal processing and statistics since it leads to tractable models and since

many methods designed for Gaussian distributions have an acceptable performance even

when there exist considerable departures from Gaussianity [Anderson, 2003, p. 3].

• Spectral structure: In many practical scenarios, the knowledge of the power spectrum

of the transmitted signal is highly detailed since many transmission systems today obey

public standards and regulations. For instance, the waveform features in WiFi, Bluetooth,

cellular telephony, digital television, etc., are dictated by the corresponding standard,

which specifies roll-off factors, modulations, number of carriers, location of pilots, etc.

Other features, such as spectral masks, carrier frequencies, and bandwidths are specified

by spectrum regulations. Thus, it is reasonable to assume that the power spectral density

(PSD) of the transmitted waveform is approximately known, except possibly for a scaling

factor which captures power. Consider, for instance, the case of a signal using QAM, whose

PSD is determined up to a scaling by the bandwidth and the roll-off factor of the square

root raised cosine pulse, or orthogonal frequency division multiplexing (OFDM), where the

PSD can be inferred from the location of data and pilot carriers.

• Channel structure: Secondary users/spectrum sensors are expected to deploy multiple

antennas due to their advantages for communication and spectrum sensing [Taherpour
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et al., 2010, Cabric, 2008]. In some cases, for instance, the noise at different antennas is

known to be uncorrelated, whereas the primary signal might be highly correlated. This

spatial structure provides the sensor with extra information to distinguish signal from

noise. Other forms of channel structure is that pertaining to time variations. Due to long

observation windows in scenarios with mobility or changes in the propagation medium, the

properties of the received signal may vary over time when a primary user is transmitting.

Provided noise properties remain constant, this information can be used to detect the

presence of a primary waveform.

SPECTRUM SENSING FORMULATIONS

We may classify spectrum sensing methods in several levels according to how detailed their

characterization of the white space is [Zhao and Sadler, 2007].

Spectrum Sensing in a Single Channel

Suppose that we focus our attention on the occupancy state of a specific frequency channel

at a particular spatial location. The white space is therefore the unidimensional set of time

intervals where no primary user is transmitting. In this setting, a sensor acquires samples of

a frequency channel during a certain observation window and uses this information to perform

power estimation or activity detection. This thesis is concerned with two problems of this kind:

• Activity detection of WM signals: As mentioned earlier, the FCC allows unlicensed wireless

devices to operate in the television broadcast spectrum at locations where that spectrum

is unused by legacy services, which include, among others, television broadcast stations

and WMs. Therefore, it is of critical importance to develop schemes capable of reliably

detecting the activity of WMs.

• Activity detection in time-varying channels: Suppose that a detector is derived under

the assumption that the channel is time invariant. When utilized in a practical scenario,

where channels only satisfy this assumption approximately, such a detector will incur

a performance loss. Indeed, there is a large swath of applications where such a model

becomes unrealistic and channel variations within the observation window should be taken

into account. This is the case, for instance, of narrowband wireless communication systems,

where the coherence time of the channel may be comparable to the symbol period. Another

example can be found in underwater communications, where the typically large Doppler

spreads give rise to fast channel variations [Marage and Mori, 2010]. More generally,
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the stringent requirements imposed by DSA regulations, which include very low SNR

conditions [Cabric, 2008], force detectors to use long observation windows, during which

the channel may vary considerably, especially in environments affected by mobility.

Spectrum Sensing in Multiple Channels

Now suppose that we are interested in the occupancy state of the channels contained in a

wide frequency band at a particular spatial location. The white space is therefore the bidimen-

sional set of points in the time-frequency plane where no primary user operates. Sensing multiple

channels simultaneously increases the chance of finding a vacant one and enables secondary users

to increase their throughput by transmitting on multiple channels at the same time.

Although, in principle, multiple channels can be scanned by applying single-channel proce-

dures independently on a channel-by-channel basis, this approach entails large hardware costs,

long sensing times, large power consumption and poor estimation/detection performance. It

is therefore preferable to employ statistical procedures that consider multiple channels jointly,

these being the subject of study of the so-called wideband spectrum sensing (WSS).

In the model used throughout the thesis for WSS, the received signal is given by

y =
B−2∑
b=0

rb + w, (1.9)

where rb corresponds to the b-th primary signal after propagating to the spectrum sensor and

B − 1 is the number of primary signals. Note that a single primary user may transmit multiple

signals at the same time, as usual in television broadcast bands. However, for the sake of clarity

and without any loss of generality, we assume that each signal is transmitted by a different

secondary user, although multiple secondary users may be located at the physical position. The

two classes of sensing problems considered above can be generalized for the wideband scenario

as follows:

• Power estimation: The goal is to estimate η2
b , E

{
|rb(t)|2

}
for all or some indices b.

• Activity detection: Although, in principle, a multiple hypothesis test can be posed, it is

customary to focus on a single channel, say

H0 : rb = 0, H1 : rb 6= 0. (1.10)

Let xb denote the b-th primary signal, which, without any loss of generality, is assumed

to be normalized to unit power; and let hb represent the impulse response of the linear and
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time-invariant channel between the corresponding source and the spectrum sensor. Then, (1.9)

becomes

y =
B−2∑
b=0

hb ? xb + w, (1.11)

where ? denotes convolution. A more compact representation arises by defining η2
B−1 ,

E
{
|w(t)|2

}
, as well as hB−1(t) , ηB−1δ(t) (δ is the Dirac delta function) and xB−1 , w/ηB−1:

y =
B−1∑
b=0

hb ? xb. (1.12)

According to what was explained earlier, it can be assumed that the PSDs of the xb,

denoted as Ξb, are approximately known. Suppose that all channels hb are frequency-flat, which

means that we can write hb(t) = h̃bδ(t − tb) for some scalars h̃b ∈ C, tb ∈ R — frequency-

selective channels can be handled similarly by introducing general assumptions [Bazerque and

Giannakis, 2010], or at the expense of a higher complexity by artificially decomposing each signal

into multiple uncorrelated narrowband components. Without any loss of generality we assume

tb = 0, so that hb(t) = h̃bδ(t).

If the xb are uncorrelated, it is clear that the PSD of y can be written as

Ξ =

B−1∑
b=0

αbΞb, (1.13)

where αb , |hb|2 = η2
b are unknown deterministic parameters. Note that the knowledge of Ξ

is equivalent to the knowledge of the coordinates αb if the set of functions {Ξb}B−1
b=0 is linearly

independent, in which case (1.13) is called a basis expansion model (BEM) for Ξ. The assumption

of linear independence is not limiting in practice: for instance, if two transmitters operate on

the same channel using the same PSD — as in single-frequency networks —, their signals can

be subsumed into a single term in (1.13) since one is not typically interested in the power

of individual users but in the overall power of the primary transmissions in a given channel.

By defining ξ(τ) , E {y(t)y∗(t− τ)} and ξb(τ) , E {xb(t)x∗b(t− τ)}, we may also write the

autocorrelation BEM, related to (1.13) via inverse Fourier transform:

ξ =
B−1∑
b=0

αbξb. (1.14)

The coordinates αb, which are nonnegative, contain all relevant information. In particular,
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power estimation can be cast as the problem of estimating the αb, whereas activity detection

can be posed as the hypothesis test

H0 : αb = 0, H1 : αb > 0 (1.15)

for some b.

One of the major challenges of WSS is the acquisition of wide frequency bands. Nyquist

sampling is oftentimes prohibitive since the cost and power consumption of analog-to-digital

converters (ADCs) explosively increase with the sampling rate. Indeed, this can be seen as

the bottleneck of WSS. To alleviate this problem, sub-Nyquist techniques have been introduced,

leading to the concept of compressive WSS (see [Mishali and Eldar, 2009] and references therein).

In this context, we will consider two classes of problems:

• Sensing: The goal is to determine the occupancy state from compressed measurements

of y. A possible approach is to first reconstruct y, for instance using compressed sens-

ing [Donoho, 2006, Candès and Wakin, 2008], and then apply a conventional spectrum

sensing technique (see [Sun et al., 2013] and references therein). Compression is enabled

by assuming certain signal structure, such as sparsity.

Alternatively, one may attempt to obtain the information of interest directly from the com-

pressed observations [Ariananda and Leus, 2012, Lexa et al., 2011]. Bypassing the inter-

mediate step of reconstructing the uncompressed waveform may potentially allow stronger

compression ratios and entail performance benefits. Compression is possible since we are

solely interested in the second-order statistics of the received signal, such as power, auto-

correlation, or PSD; which suffice for power estimation and activity detection purposes.

This thesis is concerned with problems of this second kind, which will be addressed from

the perspective of compressive covariance sampling (CCS) (see Section 1.1.2 below).

• Compression: Designing the compression system is nontrivial and requires extensive anal-

ysis. In the context of CCS, we are interested in those designs capable of maximizing the

compression ratio while preserving all relevant second-order information.

Spectrum Cartography in Multiple Channels

A more general notion of white space arises by bringing the spatial dimension into the

picture: we now aim at monitoring the spectrum usage across time, frequency and space. This

information is characterized by the so-called spectrum maps, which can be subsequently used

to identify the reusable areas [Nishimori et al., 2007]. These maps are defined over an area of
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interest, which is indexed by a subset of the Euclidean space Rd. The dimension d is application

dependent: d can be set to 1 if, for instance, we wish to monitor the RF spectrum along a

railroad or a highway; to 2 if the goal is to create a spectrum map for a flat geographical region;

to 3 if we want to monitor the RF spectrum for communication in a city or between aerial

vehicles; to 4 if we also want to account for time variations; and so on.

The model to be used arises by introducing the spatial dimension in (1.12). The signal

received at location z ∈ Rd takes the values

y(z; t) =

B−1∑
b=0

hb(z; t) ? xb(t), (1.16)

where hb(z; t) is the impulse response of the channel between the b-th primary transmitter and

a spectrum sensor located at z ∈ Rd. Likewise, the PSD of y can be obtained from (1.13) as:

Ξ(z; f) =
B−1∑
b=0

αb(z)Ξb(f). (1.17)

The goal of spectrum cartography is to estimate the power spectrum map or PSD map Ξ given

by (1.17). Since the basis functions Ξb are linearly independent, this is equivalent to estimating

the B spatial fields αb.

In the spectrum cartography techniques considered in this thesis, the observations gathered

by a collection of spectrum sensors deployed across the area of interest are fused to estimate

the PSD map. Using multiple sensors and explicitly considering the spatial dimension mitigate

the detrimental effects of fading and shadowing on spectrum sensing, and, in particular, allevi-

ate the hidden terminal problem [Quan et al., 2008]. Moreover, including spatial dependence

entails further advantages, such as the possibility of exploiting propagation and location prior

information.

Other applications besides DSA might profoundly benefit from the knowledge of spectrum

maps. Examples include network planning, coverage prediction, interference control, etc., where

field measurements may be more effective than prediction via simulation models.

1.1.2 Compressive Covariance Sampling

CCS is the workhorse used throughout the thesis to tackle the difficulties of acquiring simulta-

neously multiple channels that, as a whole, span a wide frequency band. This is possible since

the spectrum sensing tasks considered are ultimately concerned with second-order statistics.

In CCS, the second-order statistics of a signal of interest are estimated from a set of com-
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pressed observations without an intermediate reconstruction of the uncompressed waveform.

Some of these techniques are well-known in signal processing. In particular, the problem of sparse

power spectrum estimation has been extensively investigated in the literature (see e.g. [Moffet,

1968,Pillai et al., 1985,Abramovich et al., 1998,Abramovich et al., 1999,Pal and Vaidyanathan,

2010]). As for dense power spectrum estimation, both parametric [Romero and Leus, 2013b]

and nonparametric [Ariananda and Leus, 2012,Yen et al., 2013] approaches have been recently

proposed. These techniques have numerous applications in DSA — e.g., spectrum sensing,

source localization, frequency estimation, etc.— and beyond DSA (see [Romero et al., 2015d]

and references therein).

COMPRESSIVE ACQUISITION

It is particularly convenient to introduce compression in the acquisition stage since otherwise

part of the resources are devoted to acquire data that is afterwards discarded. For this reason,

the literature contains many acquisition and reconstruction procedures. Remarkable examples

include sub-Nyquist sampling of multiband [Lin and Vaidyanathan, 1998, Herley and Wong,

1999, Venkataramani and Bresler, 2000, Mishali and Eldar, 2010] or multitone [Tropp et al.,

2010] signals, compressed sensing [Donoho, 2006,Candès and Wakin, 2008] and array design for

aperture synthesis imaging [Hoctor and Kassam, 1990,Moffet, 1968,Pillai et al., 1985]. All these

approaches use linear compression structures that operate according to the relation

ȳ = Φy, (1.18)

where y ∈ CK represents a vector of uncompressed observations, Φ ∈ CK̄×K is the compression

matrix, measurement matrix, or sampler ; and ȳ ∈ CK̄ is the vector of compressed observations.

To quantify the compression, we define the compression ratio:

ρ ,
K

K̄
. (1.19)

It is typically desirable that it be as high as possible.

Two classes of compression structures will be considered:

• Sparse samplers are those where Φ is a sparse matrix. Commonly, Φ is composed of K̄

different rows of the identity matrix IK , thus performing a component selection of y. If

this selection is periodic, which means that Φ is a block diagonal matrix whose diagonal

blocks are replicas of a certain sparse matrix, it is called multi-coset sampling.

• Dense samplers are those where Φ is a dense matrix. Each component of ȳ is therefore a
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linear combination of the components of y. In the case of periodic samplers, Φ is block

diagonal where all diagonal blocks are replicas of a certain dense matrix.

The meaning of each vector in (1.18) depends on the domain where the signal y is defined:

• Time-domain signals: several alternatives have been proposed to replace ADCs — known

to be slow, expensive, and power-hungry — by introducing compression. Notable exam-

ples include interleaved ADCs [Black and Hodges, 1980], non-uniform sampling and its

generalizations [Herley and Wong, 1999, Venkataramani and Bresler, 2000, Wakin et al.,

2012], the random demodulator [Laska et al., 2007, Tropp et al., 2010], the modulated

wideband converter [Mishali and Eldar, 2010, Mishali and Eldar, 2011] and the random

modulator pre-integrator [Yoo et al., 2012,Becker, 2011]. For this reason, we will globally

refer to these schemes as compressive-ADCs (C-ADCs).

If fs = 1/Ts is the Nyquist rate of the signal of interest y and y , [y [0] , . . . , y [K − 1]]T ,

where y [k] = y(kTs), then the operation of a C-ADC can be described by (1.18). The

samples at the output of a C-ADC correspond to the entries of the compressed vector

ȳ , [ȳ [0] , . . . , ȳ
[
K̄ − 1

]
]T , which are linear combinations of the entries of y. Note, how-

ever, that no C-ADC internally acquires the Nyquist samples y [k] since this would entail

precisely the disadvantages of conventional ADCs that they aim to avoid. Nonetheless,

working with these samples constitutes a convenient mathematical abstraction.

• Spatial-domain signals: In some applications, it is necessary to measure the fine variations

of a spatial field, for instance to achieve a high angular resolution in source localization

problems. Without compression, a large number of antennas and RF chains are required,

which entail large hardware costs and power consumption. It is therefore of critical im-

portance to employ compression techniques that allow cost savings, either by reducing the

number of antennas or just the number of RF chains. Their operation can be described by

(1.18) if y is a vector containing the observations of the uncompressed array at a particular

time instant and ȳ represents the vector of compressed observations. As before, the vector

y does not necessarily have physical existence; it is just a mathematical abstraction.

With sparse sampling (see e.g. [Hoctor and Kassam, 1990, Moffet, 1968, Pearson et al.,

1990, Wild, 1987, Pillai et al., 1985, Pillai and Haber, 1987, Abramovich et al., 1998,

Abramovich et al., 1999, Pal and Vaidyanathan, 2010]), only the antennas correspond-

ing to the non-null columns of Φ need to be physically deployed to obtain ȳ, whereas in

dense sampling [Wang et al., 2009,Wang and Leus, 2010,Venkateswaran and van der Veen,

2010], analog combiners are used to reduce the number of RF chains. See [Romero et al.,

2015d] for more details.
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Periodic Acquisition

When observation windows for time signals are long, hardware design considerations make

it convenient to split a sampling pattern into shorter pieces that are repeated periodically. This

amounts to grouping data samples into blocks that are acquired using the same pattern. Note

that, despite this block partitioning, subsequent stages may process multiple blocks jointly.

Likewise, using periodic arrays in the spatial domain also presents certain advantages [Krieger

et al., 2013].

Suppose that y is partitioned into L blocks of N , K/L samples1 as y = [yT [0], . . . ,

yT [L− 1]]T , with y[l] ∈ CN ∀l, and that compressing a block of N elements produces another

block of N̄ elements as

ȳ[l] = Φ̌y[l], l = 0, 1, . . . , L− 1, (1.20)

where ȳ[l] ∈ CN̄ and Φ̌ ∈ CN̄×N . The use of the term periodicity owes to the fact that the

matrix Φ̌ does not depend on l. Making ȳ , [ȳT [0], . . . , ȳT [L− 1]]T and

Φ = IL ⊗ Φ̌, (1.21)

where ⊗ represents the Kronecker product, gives again expression (1.18). Since K̄ = N̄L, the

compression ratio in the periodic setting takes the form

ρ =
K

K̄
=
N

N̄
. (1.22)

Further conventions are useful when dealing with sparse sampling, in which case, as seen

earlier, Φ equals a submatrix of IK up to row permutations. For concreteness, assume that

the rows of Φ are ordered as they are in IK . If K = {k0, . . . , kK̄−1} denotes the set containing

the indices of the non-null columns of Φ, the entries of ȳ = Φy are given by ȳ
[
k̄
]

= y [kk̄] ,

k̄ = 0, 1, . . . , K̄ − 1 (see notation conventions in Section 1.4). The set N , which contains the

indices of the non-null columns of Φ̌, is related to K by

K = {n+ lN, n ∈ N , l = 0, 1, . . . , L− 1}. (1.23)

Loosely speaking, we may say that K is periodic with period N , or that K is the result of an

L-fold concatenation of N . These sets have cardinality |K| = K̄ = N̄L and |N | = N̄ elements.

Note that periodic sampling indeed generalizes non-periodic sampling, since the latter can

1For simplicity, we assume that K is an integer multiple of L.
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be retrieved just by making L = 1. For this reason, most results will be presented for periodic

samplers, with occasional comments on the non-periodic setting if needed.

PROBLEM FORMULATION

Let us first consider the problem of estimating the second-order statistics of the zero-mean

random vector y ∈ CK from the K̄ linearly compressed observations collected in the vector

ȳ ∈ CK̄ . The covariance matrix Ξ = E
{
yyH

}
, which contains this information, is assumed

to be a linear combination of the matrices in a given set B = {Ξ0,Ξ1, . . . ,ΞB−1} ⊂ CK×K .

Without any loss of generality, we consider real scalars,2,3 i.e.,

Ξ =
B−1∑
b=0

αbΞb, with αb ∈ R, (1.24)

and B is assumed to be a linearly independent set of matrices:

B−1∑
b=0

αbΞb =
B−1∑
b=0

α′bΞb ⇒ αb = α′b ∀b. (1.25)

Thus, B is a basis, which means that the decomposition in (1.24) is unique and, consequently,

knowing the αb is equivalent to knowing Ξ.

The prior information captured by B restricts the structure of Ξ, thus determining how

much y can be compressed. When no information at all is available, Ξ is simply constrained

to be Hermitian positive semidefinite and no compression is possible. However, the fact that

Ξ is necessarily a linear combination of the matrices in B may allow for a certain degree of

compression. Formally, Ξ must be sought in the intersection of the cone of positive semidefinite

matrices and the subspace spanned, with real scalars, by B:

Ξ ∈ S+ ∩ span
R
B. (1.26)

The subspace spanR B, throughout referred to as the covariance subspace, captures the prior

information available and, intuitively, the smaller its dimension, the stronger the compression

that can be reached. Because we are concerned with wide-sense stationary random processes, it

will be assumed throughout that the matrices in B, and therefore all matrices in the covariance

subspace, are Hermitian Toeplitz (HT).

2The reason why we prefer real scalars is to preserve the Hermitian property. Note that if Ξb is Hermitian
and αb is complex, then αbΞb is not necessarily Hermitian

3As opposed to the model for WSS presented earlier, general CCS problems do not necessarily require that
the αb be nonnegative.
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The second-order statistics of ȳ, arranged in Ξ̄ , E
{
ȳȳH

}
, and those of y, arranged in

Ξ, are related by:

Ξ̄ = ΦΞΦH =
B−1∑
b=0

αbΞ̄b, (1.27)

where Ξ̄b = ΦΞbΦ
H . In other words, the expansion coefficients of Ξ with respect to B are those

of Ξ̄ with respect to B̄ , {Ξ̄0, Ξ̄1, . . . , Ξ̄B−1} ⊂ CK̄×K̄ . The matrices in B̄ are clearly Hermitian,

and it follows from (1.21) that they have a block Toeplitz structure with N̄×N̄ blocks. However,

they are not Toeplitz in general. If the compression operation preserves all relevant information,

then B̄ is linearly independent and knowing Ξ̄ is equivalent to knowing the αb, which in turn

amounts to knowing Ξ. Conversely, if the compression is so strong that the linear independence

is lost, then not all the αb can be identified and some second-order information about y cannot

be recovered.

Besides the problem of estimating Ξ,— which is a particular instance of the covariance

matching problem, also known as the structured covariance estimation problem [Ottersten et al.,

1998,Burg et al., 1982] — we will also consider the design of Φ. Our purpose will be to maximize

the compression ratio ρ while guaranteeing that the coordinates αb can be identified from the

compressed observations.

1.2 Prior Work and Contributions

This thesis addresses the spectrum sensing problems introduced at the end of in Section 1.1.1.

Although our work is mainly theoretical, a special effort has been made to ensure that the pro-

posed methods meet certain properties that are required for practical application. In particular,

none of our techniques necessitates a priori knowledge of the noise power. All the proposed

detectors are invariant to scalings and all the schemes for spectrum sensing in a single channel

are CFAR.4 This form of invariance also allows fixing the thresholds via Monte Carlo simulation

in case that the probability of false alarm cannot be analytically determined [Kay, 1998, Zeng

and Liang, 2009b, Chen and Gao, 2011]. Similarly, all our procedures assume that the channel

coefficients are unknown, which is motivated by the fact that the SNR may be considerably low

and by the fact that primary users do not cooperate with spectrum sensors.

The spectrum sensing problems addressed in this thesis are posed in terms of the models

introduced in Section 1.1.1, sometimes in combination with the CCS model from Section 1.1.2.

We leverage mathematical tools that fall within detection theory, estimation theory, regression

4As we will see, CFAR detection is not possible in general for spectrum sensing in multiple channels.
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theory, statistical learning theory, and the theory of testing statistical hypotheses; choosing the

most appropriate framework on a case-by-case basis.

1.2.1 Spectrum Sensing in a Single Channel

As mentioned earlier, we consider two problems of activity detection in channels that contain

at most one primary signal: The first deals with detecting the presence of a WM transmission,

which is well-motivated in view of recent FCC regulations; the second considers the detection of

primary signals in time-varying channels, which is motivated by the long observation windows

required in spectrum sensing.

ACTIVITY DETECTION OF WM SIGNALS

Prior Work

Both CFAR and non-CFAR detectors5 have been proposed in the literature to detect the

presence of WM waveforms. Among those of the first kind, we mention the detector in [Xu

et al., 2008], which makes a decision based on the ratios of consecutive singular values of a

Hankel matrix containing the received samples, and the detector in [Hassan and Nasr, 2011],

where the decisions of two statistics are combined, one of which is CFAR whereas the other is

not, and the threshold is adapted accordingly. Among the non-CFAR detectors, we mention the

one in [Chen and Gao, 2011], where the test statistic is the output of a matched filter in the

autocorrelation domain; the detectors in [Chen et al., 2008] and [ElRamly et al., 2011], which

are, respectively, the maximum of the standard periodogram and Welch periodogram; and the

detector in [Gautier et al., 2010], which uses the Teager-Kaiser energy operator to exploit the

constant magnitude property of the signal.

All the above detectors assume single-antenna architectures. However, as mentioned in

Section 1.1.1, spectrum sensors are expected to deploy multiple antennas, which enable detectors

that are fast, resilient to small-scale fading and robust to the noise uncertainty problem. For

these reasons, a number of multiantenna detectors have been proposed in the past. Some of

them exclusively exploit the spatial structure of the signal — this is the case of the detector

in [Alamgir et al., 2008], which only exploits the spatial independence of noise, and the detector

in [Besson et al., 2006,Taherpour et al., 2010,Wang et al., 2010], which in addition assumes that

the signal subspace has dimension one. Generalizations to signal subspaces of larger dimension

5These detectors are CFAR within the settings where they were proposed because the authors assume that
the noise power is known. However, within our setting they are not CFAR since their probability of false alarm
depends on the noise power, which is here assumed an unknown parameter (see Section 1.1.1).
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were proposed in [Ramı́rez et al., 2011]. Other schemes exploit both spatial and temporal

structure by assuming that the PSD of the primary signal is known up to a scaling [Sala-Álvarez

et al., 2012,Vázquez-Vilar et al., 2011b]. It is also worth mentioning the detectors in [Zeng and

Liang, 2009a], which capitalize on the fact that the noise process is temporally and spatially

uncorrelated.

While the above multiantenna schemes could be readily applied for WM signal detection,

none of them can fully exploit the WM signal structure. To the best of our knowledge, no

multiantenna detectors have been proposed specifically targeting this class of signals. Moreover,

even within single-antenna detectors, none of them is capable of exploiting all the signal structure

present in WM waveforms.

Contributions

C1.1: We fill this gap by proposing multiantenna schemes specifically tailored to detect

WM signals. The spatial structure and particular properties of WM waveforms are gradually

exploited to derive four detectors that trade off performance and complexity: based on the

GLR test, each detector is found under a signal model that captures either the fact that the

bandwidth of a WM signal never exceeds 200 kHz, the property that WM signals have a constant

magnitude, or both. The resulting detectors do not require synchronization with the WM

signal and are robust to the noise uncertainty problem as well as to small-scale fading. Using

the simulation guidelines proposed by the IEEE 802.22 working group, the novel detectors are

shown to outperform previous schemes, thus demonstrating the advantages of exploiting spatial

correlation along with the WM signal structure.

TIME-VARYING CHANNELS

Prior Work

Previous work on time-varying channels has addressed modeling, estimation, prediction,

equalization, coding, waveform design, etc., (see [Hlawatsch and Matz, 2011] and references

therein). However, to the best of our knowledge, little effort has been devoted to activity

detection. Although some works allow for a certain degree of time variation through adaptive

implementations [Wang et al., 2010,Chen et al., 2007], they are not expected to work well under

rapidly changing conditions. Moreover, to the best of our knowledge, no scheme in the literature

can actually benefit from time variations in the channel to improve its detection performance.
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Contributions

C2.1: We consider the problem of detecting CM signals immersed in noise of unknown

variance when the propagation channel is frequency-flat and randomly time-varying within the

observation window. A BEM with random coefficients is used to model time variations [Tsatsanis

and Giannakis, 1996a,Giannakis and Tepedelenlioǧlu, 1998] and a GLR approach is adopted in

order to cope with the deterministic nuisance parameters. If the transmitted CM signal is known,

the resulting scheme can be thought of as a generalization of the well-known matched filter

detector [Kay, 1998], to which it reduces for time-invariant channels. Closed-form analytical

expressions are found for the distribution of the test statistic under both hypotheses, which

allow exact evaluation of the detection performance. If the CM signal is modeled as unknown

deterministic, a non-convex optimization problem arises. To work out a solution, we propose

various low-complexity approximations and an efficient fixed-point iterative method.

C2.2: We also consider the problem of detecting Gaussian signals immersed in noise of

unknown variance when the propagation channel is frequency-flat and time-varying within the

observation window. Three detectors are proposed for single-antenna sensors: First, the GLR

test is found for the case where the channel is modeled as an unknown deterministic param-

eter with no temporal structure, resulting in the well-known Bartlett test. Then it is shown

that, under the transformation group of positive scalings, no uniformly most powerful invariant

(UMPI) test or locally most powerful invariant (LMPI) test exists. Inspired by the likelihood

ratio of the maximal invariant statistic, two alternative approaches are explored for the low-

SNR regime. In the first one, the channel is assigned a prior distribution — hence modeled

as random — and Bayesian arguments are invoked, whereas in the second one, the channel is

expanded using a BEM with unknown deterministic coordinates and ML principles are applied.

For multiantenna scenarios, we adopt a GLR approach where the channel follows a BEM with

unknown deterministic coefficients. Since this detection rule requires the knowledge of the ML

estimates of the channel coefficients and noise power, which lack closed-form expressions, an

expectation-maximization (EM) algorithm is proposed compute them numerically.

C2.3: It is noted that certain tests for homogeneity of covariance matrices, which aim

at declaring whether a set of vector-valued observations gathered from different populations

have the same covariance matrix or not, may be applied to detect Gaussian signals in time-

varying channels with multiantenna sensors. Motivated by this application and inspired by our

analysis of invariant detectors in single-antenna scenarios (see contribution C2.2), we look at

the general problem of deriving optimal invariant tests for homogeneity of covariance matrices.

Because UMPI tests are known to exist only in very restricted conditions, we confine ourselves to

locally optimal tests in the challenging scenario of close hypotheses, which is of special relevance
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in spectrum sensing applications owing to the low-SNR conditions that arise in practical settings.

Capturing the invariance requirements in a group of affine transformations and permutations

of the populations, we derive the conditions under which a LMPI test exists and find a closed-

form expression for its statistic. For completeness, the analysis is then particularized to the

so-called scale test, where the covariance matrices of all populations are allowed to differ just in

a scaling factor.

1.2.2 Spectrum Sensing in Multiple Channels

We address two problems pertaining to spectrum sensing in bands where multiple primary

users may be operating. First, we consider schemes for power estimation and activity detection

in wide frequency bands, where the difficulties of sampling large bandwidths are alleviated

by introducing compression in the acquisition stage. Second, we address the design of the

compression stage itself.

WIDEBAND SPECTRUM SENSING

Prior Work

Previous WSS schemes include [Quan et al., 2009], which takes into account the through-

put of the secondary user along with interference constraints on the primary network. The

main limitation, however, is that the noise power must be known. This requirement is bypassed

in [Taherpour et al., 2008], where noise power is estimated using idle channels. Unfortunately, the

existence of such channels is not guaranteed in practice. To overcome this difficulty, [Vázquez-

Vilar and López-Valcarce, 2011] capitalizes on spectral prior information about the individual

transmissions. However, this scheme requires the acquisition of wideband signals at the Nyquist

rate, which may drastically limit the maximum sensed bandwidth if practical power and hard-

ware cost constraints are to be satisfied.

In order to avoid this limitation, one can resort to the scheme from [Ariananda and Leus,

2012], which proposes a nonparametric method for spectrum estimation based on compressed

measurements. The spectrum of the uncompressed signal is retrieved by inverting the linear

relationship that exists between the second-order statistics at the input and the output of the

C-ADC. However, as usual with nonparametric methods [Schölkopf and Smola, 2001], this ap-

proach cannot easily accommodate prior information, which is generally available in practice (see

Section 1.1.1) and which can allow sampling rate reductions. Moreover, the resulting estimate

may be difficult to interpret: while we are ultimately interested in the power of each channel,
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this method does not provide such information directly.

Contributions

C3: We propose fully parametric methods for PSD estimation based on the compressed

observations reported by a C-ADC and consider their application to power estimation and

activity detection. A CCS framework is adopted where a BEM captures the statistical structure

of the signal and allows us to formulate the problem in terms of a minimal set of unknown

parameters — only the power of each channel and the noise power has to be estimated, which

means that, in the absence of further structure, no other WSS method can achieve a smaller

sampling rate. The problem statement leads to the well-known covariance matching problem,

where existing algorithms are extremely computationally demanding for real-time execution in

inexpensive sensors. We develop novel methods capable of achieving a similar performance at a

much lower computational cost by exploiting the fact that the covariance matrix of a wide-sense

stationary process is Toeplitz together with considerations of the asymptotic theory of circulant

matrices to reduce the dimensionality of the resulting optimization problems.

SAMPLER DESIGN FOR CCS

Prior Work

Most works in the literature deal with the design of non-periodic sparse samplers for recon-

structing the second-order statistics of signals with HT covariance matrices, where the observa-

tion is that at least a pair of samples at each possible distance is required [Moffet, 1968,Hoctor

and Kassam, 1990,Pillai et al., 1985,Pal and Vaidyanathan, 2010,Pal and Vaidyanathan, 2011].

This argument leads to the so-called minimal sparse ruler problem, analyzed in [Rédei and Rényi,

1949,Leech, 1956,Wichmann, 1963,Wild, 1987,Pearson et al., 1990,Linebarger et al., 1993] and

shown to result in optimal designs for direction finding in [Pillai et al., 1985]. Suboptimal yet

more structured schemes were proposed in [Wichmann, 1963, Pearson et al., 1990, Linebarger

et al., 1993,Pumphrey, 1993,Pal and Vaidyanathan, 2010,Pal and Vaidyanathan, 2012].

Designs for periodic sampling in banded covariance subspaces (see definition in Chapter 6)

were proposed in [Ariananda and Leus, 2012, Domı́nguez-Jiménez and González-Prelcic, 2013]

based on the conditions for unique reconstruction of a least squares (LS) algorithm [Ariananda

and Leus, 2012]. Non-periodic sparse sampling in circulant subspaces was considered in [Yen

et al., 2013], where the authors present a suboptimal design based on an estimation algorithm



1.2 Prior Work and Contributions 23

that they propose6.

To the best of our knowledge, the maximum compression ratio remains an open problem

in many cases of interest; and most existing results rely on the usage of specific reconstruction

algorithms. Furthermore, their formulation is not general enough to accommodate periodic

samplers, dense samplers, or prior information.

Contributions

C4.1: We present a formal and general framework, irrespective of any algorithm, that

establishes the conditions for a compression pattern to be admissible and defines the maximum

compression ratio based on abstract criteria.

C4.2: We provide simple tools to assess admissibility for all linear and certain non-linear

covariance parameterizations. Particularly, we show that the positive semidefinite nature of

covariance matrices does not generally allow greater compression ratios.

C4.3: Maximum compression ratios are found for some of the most relevant linear covari-

ance parameterizations. Moreover, our proofs are constructive, thus providing optimal designs.

Novel designs include:

• periodic and nonperiodic sparse samplers for circulant and banded covariance subspaces,

• periodic sparse samplers for Toeplitz subspaces,

• periodic and nonperiodic dense samplers for Toeplitz, circulant and banded subspaces.

1.2.3 Spectrum Cartography in Multiple Channels

Bringing the spatial dimension into the picture is highly beneficial since it allows us to capture

prior information about propagation and localization, and mitigates the effects of fading and

shadowing. Although we exclusively investigate cartography techniques for power estimation, an

extension for activity detection can be performed following the approach described in Chapter 5.

Prior Work

Several algorithms have been proposed for spatial (and possibly temporal) interpolation of

power measurements, including kriging [Alaya-Feki et al., 2008], a modification of orthogonal

6The initial statement in [Yen et al., 2013] uses periodic sampling, but their considerations in the frequency
domain lead to non-periodic sampling.
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matching pursuit [Jayawickrama et al., 2013], sparse Bayesian learning [Huang et al., 2015] and

dictionary learning [Kim et al., 2011b, Kim and Giannakis, 2013]. However, since these tech-

niques can only deal with a single power component, estimating PSD maps requires proceeding

independently on a band-by-band basis, which incurs in a suboptimal estimation performance,

especially if spectral prior information is available. Moreover, these schemes cannot separate the

contribution of signal and noise to the overall power, and, in some cases, sensors must implement

filter banks or periodograms, which require complex hardware architectures.

The frequency dimension was introduced for the first time in [Bazerque and Giannakis,

2010], where the PSD is modeled using a BEM. Several improvements were described after-

wards in [Dall’Anese et al., 2012]. In [Bazerque et al., 2011], an overcomplete BEM is used

to model uncertainties in the frequency domain, and regression via thin-plate splines (TPS)

is applied along the spatial dimensions. Unfortunately, these techniques suffer from the large

amount of data required by the sensors to report their measurements and from the complexity

of their acquisition systems, especially when sampling wide frequency bands. The collaborative

scheme in [Mehanna and Sidiropoulos, 2013, Mehanna, 2014] circumvents these limitations by

proposing an extremely simple architecture where measurements are quantized to a single bit.

However, this approach is unable to capture variations across space and, therefore, to provide

spectrum maps.

An intimately related problem is that of channel-gain map estimation, which can be used

to obtain PSD maps at the expense of further prior information and processing [Kim et al.,

2011a, Dall’Anese et al., 2011]. However, to the best of our knowledge, existing techniques do

not consider dependence along the frequency dimension and require active sensing, where sensors

transmit pilot signals.

Contributions

C5.1: We propose a family of spectrum cartography methods that solve many of the

practical limitations of the aforementioned techniques. They rely on simple sensor architectures

capable of acquiring wide frequency bands and sending strongly compressed measurements to the

fusion center (FC), which robustly constructs PSD maps. For the reasons mentioned earlier,

these maps are parametrically modeled along the frequency dimension using a BEM. On the

other hand, based on the framework of reproducing kernel Hilbert spaces (RKHS) of vector-

valued functions proposed in [Micchelli and Pontil, 2005], spatial dependence is treated from

a nonparametric perspective, where the weights αb(z) are seen as scalar fields which must be

jointly estimated via nonparametric regression.
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C5.2: In order to improve the flexibility and interpretability of the map estimate, and to

enable the exploitation of spatial and propagation prior information, we then adopt a semipara-

metric approach along the spatial dimension. A regression method is proposed by generalizing

the setting in [Micchelli and Pontil, 2005] to the semiparametric case. To the best of our knowl-

edge, except for some particular cases which include TPS in [Wang et al., 2001,Bazerque et al.,

2011], this is the first effort to consider semiparametric regression in RKHSs of vector-valued

functions from a general perspective. The resulting technique, although derived in the context

of spectrum cartography, can be used in many other applications where a vector field is to be

estimated using the observations gathered by a collection of sensors.

An interesting connection is established between spectrum cartography and statistical

learning theory. Specifically, the regression problems can be cast as support vector machines

(SVMs) [Schölkopf and Smola, 2001, Cherkassky and Mulier, 2007, Smola and Schölkopf, 2004,

Smola et al., 1998]. This conclusion, which is not surprising, means that the proposed esti-

mates inherit the properties of SVMs, which are known 1) to be universal approximators firmly

grounded on the statistical learning theory and 2) to provide sparse representations of their

estimates. The latter property is especially convenient for spectrum cartography applications

since it simplifies the evaluation of PSD maps.

C5.3: Finally, an online implementation for the non-parametric regression method is pro-

vided based on stochastic gradient descent in the RKHS [Kivinen et al., 2004, Audiffren and

Kadri, 2013]. A novel representation of the vector field, which can also be of application in any

problem of nonparametric estimation with sensor networks, is proposed to avoid truncating the

estimate expansions.

1.3 Thesis Structure

The main content of this thesis is structured in 8 chapters, arranged in three parts, and one

appendix. Part I, which comprises Chapters 2, 3 and 4, considers spectrum sensing in a single

channel. Part II, deals with WSS in Chapter 5 and with the fundamental problem of sampler

design in Chapter 6. Part III, which includes Chapter 7, pertains to spectrum cartography.

Finally, Chapter 8 provides some conclusions and future lines. Each chapter is self-contained

and can be read separately after the present introduction. The topic in the Appendix is covered

independently of the rest of the thesis, since its fundamental considerations and conclusions go

beyond spectrum sensing applications. A summary of this structure is provided in Table 1.1.
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Part Chapter Contribution

I 2 C1
I 3 C2.1
I 4 C2.2
II 5 C3
II 6 C4
III 7 C5

Appendix C2.3

Table 1.1: Summary of chapters and contributions.

1.4 Notation

Throughout the thesis, lowercase is used for scalars, boldface lowercase for vectors and boldface

uppercase for matrices. All vectors are assumed to be column vectors unless otherwise stated.

Sets, matrices and vectors are indexed starting from zero. For instance, the entries of a P ×Q
matrix A are indexed as:

A =


a0,0 a0,1 . . . a0,Q−1

...
...

. . .
...

aP−1,0 aP−1,1 . . . aP−1,Q−1

 . (1.28)

The d-th diagonal refers to the entries (i, j) with j− i = d, where d is a negative, null or positive

integer. The rest of the notation conventions are summarized in Tables 1.2 and 1.3. Acronyms

and abbreviations are provided in Tables 1.4 and 1.5.
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Symbol Description

, Equality by definition

|A| Cardinality of the set A
φ(A) Image of the set A through the function φ

 Imaginary unit ( =
√
−1)

∠x Phase of x ∈ C
∝ Related by a monotone increasing transformation

not depending on the observations

! factorial

!! double factorial

(x)K Remainder of the integer division of x ∈ Z by K: (x)K is

the only element in the set {x+ lK, l ∈ Z} ∩ {0, . . . ,K − 1}
spanFA Span of the set of matrices A with scalars in the field F:

spanFA = {A ∈ CP×P : A =
∑

b αbAb, Ab ∈ A, αb ∈ F}
dimF B F-dimension of set B: smallest n ∈ N such that

there exists some A with |A| = n such that B ⊂ spanFA
P {·} Probability

E {·} Expectation

CN Circularly-symmetric complex Gaussian distribution

N Real Gaussian distribution

F F-distribution

χ2 χ2-distribution

CW Complex central Wishart distribution

? Convolution

δ(t) Dirac delta

δ[t] Kronecker delta

Table 1.2: Description of some of the symbols used in the thesis.
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Symbol Description

1K K × 1 vector of all ones

0K K × 1 vector of all zeros

eK,i K × 1 vector with a 1 at the i-th

position and zeros elsewhere

Ei,j Matrix with all zeros except for a 1 at the position (i, j)

IK Identity matrix of dimension K

(v)k k-th entry of the vector v

(A)k,l (k, l) entry of the matrix A

diag {v} Diagonal matrix with the entries of

the vector v on its diagonal

diag {A} Vector with the diagonal entries of matrix A

vec Column-wise vectorization: if A = [a0, . . . ,aK−1],

then vec(A) = [aT0 , . . . ,a
T
K−1]T

superscript T Transpose

superscript ∗ Complex conjugate

superscript H Conjugate and transpose

⊗ Kronecker product [Bernstein, 2009]

A�B Khatri-Rao product of of A = [a0, . . . ,aK−1] and

B = [b0, . . . , bK−1]: A�B = [a0 ⊗ b0, . . . ,aK−1 ⊗ bK−1]

A ◦B Entry-wise (Hadamard) product: (A ◦B)i,j = (A)i,j(B)i,j

|| · ||F Frobenius norm

|| · ||p `p-norm

|| · || `2-norm

||A||p,q Operator norm, defined as

maxx ||Ax||q subject to ||x||p = 1

|A| Determinant of the matrix A

Tr (A) Trace of the matrix A

etr {A} Abbreviation for exp{Tr (A)}
λn(A) n-th largest eigenvalue of A

a � b Generalized inequality/partial ordering with respect

to the nonnegative orthant: a � b⇔ (a)i ≥ (b)i ∀i
A ≥ 0 A is positive semidefinite

A > 0 A is positive definite

Table 1.3: Matrix/vector notation.
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Acronym/Abbreviation Meaning

ADC Analog-to-digital converter
BEM Basis expansion model
BL Bandlimited
BLCM Bandlimited and constant magnitude
C-ADC Compressive ADC
CCS Compressive Covariance Sampling
CFAR Constant false alarm rate
CM Constant magnitude
CPD Conditionally positive definite
CPM Continuous-phase modulation
CPQ Constant-probability quantization
CRB Cramér-Rao bound
DFT Discrete Fourier transform
DSA Dynamic spectrum access
EM Expectation-maximization
FC Fusion center
FCC Federal Communications Commission
FFT Fast Fourier transform
FIR Finite impulse response
FM Frequency modulation
FSK Frequency-shift keying
GK Generalized kurtosis/Gaussian kernel
GLR Generalized likelihood ratio
GMSK Gaussian minimum shift keying
GSM Global System for Mobile
HT Hermitian Toeplitz
iff if and only if
IFFT Inverse fast Fourier transform
KKT Karush-Kuhn-Tucker

Table 1.4: Acronyms and abbreviations (1/2).
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Acronym/Abbreviation Meaning

LIKES Likelihood-based estimation of sparse parameters
LMPI Locally most powerful invariant
LOS Line-of-sight
LS Least squares
MC Monte Carlo
ML Maximum likelihood
MSE Mean squared error
NLOS Non-line-of-sight
NORMA Naive Online Rreg Minimization Algorithm
OFDM Orthogonal frequency-division multiplexing
ONORMA Operator NORMA
PSD Power spectral density
RKHS Reproducing kernel Hilbert space
ROC Receiver operating characteristic
SCM Sample covariance matrix
SDP Semidefinite program
SMO Sequential minimal optimization
SNR Signal-to-noise ratio
SOCP Second-order cone program
SPICE Sparse iterative covariance-based estimation
s.t. subject to
SVM Support vector machine
TPS Thin-plate splines
ULA Uniform linear array
UMP Uniformly most powerful
UMPI Uniformly most powerful invariant
UQ Uniform quantization
WM Wireless microphone
WSS Wideband spectrum sensing

Table 1.5: Acronyms and abbreviations (2/2).
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Chapter 2

Detection of Wireless Microphone
Signals Using Multiple Antennas

The purpose of this chapter to devise detection schemes capable of fully exploiting both the

spatial structure and the available signal prior information to reliably detect the activity of WMs.

As explained in Section 1.2.1, no detector for WM signals has been proposed for multiantenna

sensors, while no multiantenna detector has been specifically tailored to detect the activity of

this class of signals. Even within single-antenna detectors, none of them exploits the whole

structure of WM waveforms.

In the IEEE 802.22 standard [IEEE, 2011], a 6 MHz TV channel is scanned for the presence

of TV and WM signals, among others. This motivates the acquisition of 6 MHz-chunks over

which a batch of detection algorithms for different kinds of primary signals is applied. Since

WM transmissions are confined to a bandwidth of 200 kHz [Clanton et al., 2007,Gautier et al.,

2010, Erpek et al., 2011], it is reasonable to take advantage of the fact that the signal to be

detected has a small bandwidth relative to the 6 MHz channel. In other words, we may exploit

the fact that the signal is bandlimited (BL). Moreover, regulations dictate that the carrier

frequency of WM transmissions must be an integer multiple of 25 kHz away from the channel

edge [FederaluCommunicationsuCommission, 2012], meaning that the set of candidate frequency

locations of WM signals are known a priori. Additionally, WM wavefoms typically employ

analog frequency modulation (FM) [Chen and Gao, 2011, Clanton et al., 2007], and therefore

their complex lowpass equivalent exhibits a constant magnitude (CM).

We consider these two features, namely the BL and CM properties, along with spatial in-

formation in order to develop several multiantenna detectors for WMs. These detectors differ

in the amount of prior information they exploit, providing the system designer with different

trade-offs between performance and complexity. In order to cope with the unknown parame-
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ters, our derivations are based on evaluating the GLR test under different signal models. The

deterministic approach adopted, by which the signal term is modeled as an unknown deter-

ministic parameter [Kay, 1998, Besson et al., 2006], enables us to find detectors which require

no assumptions about the statistical distribution of the transmitted signal or channel, and al-

lows to gradually incorporate prior information about WM signals while keeping the problem

mathematically tractable.

Our detectors generalize those in [Derakhtian et al., 2009a,Derakhtian et al., 2009b,Besson

et al., 2006,Taherpour et al., 2010,Wang et al., 2010] and were especially inspired by the work

in [Derakhtian et al., 2009a,Derakhtian et al., 2009b]. Besides spectrum sensing, these schemes

can also be used in other settings where the activity of BL or CM signals needs to be detected

(see Section 1.1.1).

The rest of this chapter is organized as follows. The problem is formulated in Section 2.1,

where the deterministic signal model is presented. We then derive several detectors that exploit

different degrees of prior information:

• In Section 2.2, we derive the GLR test for the case where only the BL property is exploited,

resulting in the simplest of all detectors proposed in this chapter. Next, we consider this

property along with the spatial rank-1 structure of the channel to derive another GLR

detector.

• In Section 2.3, the CM property is used together with the rank-1 space structure to derive

a third detector.

• Capitalizing on the spatial structure along with the BL and CM properties, a GLR detector

is developed in Section 2.4. Albeit the most computationally demanding, this scheme

provides the best performance since it exploits all the available prior information.

Some common considerations and implementation issues are discussed in Section 2.5. Next,

performance is analytically evaluated in Section 2.6. In Section 2.7, we assess performance using

the simulation guidelines for WMs proposed by the IEEE 802.22 working group and finally

provide some concluding remarks in Section 2.8.

2.1 Problem setting

We start by generalizing the signal model from Section 1.1.1 to represent the observations

acquired by a spectrum sensor with multiple antennas.



2.1 Problem setting 35

2.1.1 Signal Model

Consider a spectrum sensor that observes a certain frequency channel using M antennas. If a

WM signal x∗ is present, then the signal received by the m-th antenna is given by:1

ym = hm ? x∗ + wm, m = 0, . . . ,M − 1. (2.1)

The sensor collects K samples ym[k] = ym(kTs), k = 0, . . . ,K−1, from each antenna, producing:

ym[k] = hm[k] ? x∗[k] + wm[k], m = 0, 1, . . . ,M − 1,

k = 0, 1, . . . ,K − 1,

where the hm[k], x∗[k], and wm[k] denote, respectively, the samples of hm, x∗, and wm. The noise

processes wm are assumed zero-mean, circularly symmetric jointly Gaussian, and temporally and

spatially white with variance σ2, which implies that E
{
wm[k]w∗m′ [k

′]
}

= σ2δ[m−m′]δ[k − k′].

Let h[k] , [h0[k], . . . , hM−1[k]]T and r[k] , h[k] ? x∗[k] =
∑

k′ h[k′]x∗[k− k′]. Introducing

the M ×K matrix R , [r[0], . . . , r[K−1]], we can arrange all samples in matrix form and write

Y = R+W , (2.2)

where the (m, k) entries of Y and W are respectively ym[k] and wm[k].

The activity detection problem can be cast as a test of the null hypothesis H0 that the

observations contain only noise, i.e. Y = W , against the alternative H1 stating that there is

both signal and noise, i.e. Y = R + W . The transmitted signal samples x∗[k], the channel

coefficients hm[k] and the noise power σ2 are modeled as unknown deterministic parameters,

which will allow us to gradually introduce the prior information available about x∗ and hm. In

view of this assumption, the observations in Y are Gaussian distributed and satisfy EH0 {Y } = 0

and EH1 {Y } = R, where EHi {·} denotes expectation under hypothesis Hi.

Let

Ŝ0 ,
1

K
Y Y H , Ŝ1 ,

1

K
(Y −R)(Y −R)H (2.3)

respectively denote the M ×M sample spatial covariance matrices under H0 and H1. Then the

probability density function of the observations under Hi, i ∈ {0, 1}, is given by

pHi (Y ) =

[
1

(πσ2)M
exp

[
− 1

σ2
Tr
(
Ŝi

)]]K
. (2.4)

1We conjugate the signal component x for notational convenience.
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2.1.2 Generalized Likelihood Ratio

In order to cope with the presence of unknown parameters, we consider the GLR test, whose

statistic is given by

G(Y ) ,

sup
σ2,R

pH1

(
Y ;σ2,R

)
sup
σ2

pH0

(
Y ;σ2

) . (2.5)

Under either H0 or H1, it is readily found (see e.g. [Anderson, 2003, Lemma 3.2.2]) that the

value of σ2 maximizing (2.4) — i.e., the ML estimate of σ2 — is

σ̂2
i =

1

M
Tr
(
Ŝi

)
, i = 0, 1. (2.6)

Substituting (2.6) in (2.4) yields

pHi
(
Y ; σ̂2

i

)
=
[
πe · Tr

(
Ŝi

)]−MK
,

which after substitution in (2.5) produces

G(Y ) =

 Tr
(
Ŝ0

)
inf
R

Tr
(
Ŝ1(R)

)

MK

. (2.7)

The following sections address the minimization of Tr
(
Ŝ1(R)

)
under several models for R

that incorporate different degrees of prior information, thus determining the feasible set of such

optimization problems.

2.2 Multiantenna Detection of BL Signals

Let us assume that the transmitted signal has a known bandwidth B, measured in radians per

sample. In the case of WM signals, we know that

B =
2π · 200 kHz

fs
, (2.8)

where, recall from Chapter 1, fs = 1/Ts is the sampling rate. The central frequency ωc is not

known, but it is assumed to belong in a finite set Ωc of candidate central frequencies. For WM
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signals, this set is given by

Ωc =

{
2πfk
fs

, k = 0, 1, . . . , kmax

}
, (2.9)

where fk , fe + k · 25 kHz for fe the minimum carrier frequency, which is related to the edge of

the TV channel [FederaluCommunicationsuCommission, 2012]. For the sake of clarity, we start

by considering the case where this set has only one element, i.e., its cardinality |Ωc| equals one,

in which case ωc can be regarded as known. The case |Ωc| > 1 will be discussed in Section 2.5.2.

Let us particularize (2.7) to the BL case by noting that

Tr
(
Ŝ1(R)

)
=

1

K

K−1∑
k=0

|| y[k]− r[k] ||2, (2.10)

where y[k] and r[k] respectively denote the k-th column of Y and R . By virtue of Parseval’s

identity,

Tr
(
Ŝ1(R)

)
=

1

K2

K−1∑
n=0

||y(eωn)− r(eωn)||2, (2.11)

where ωn , 2π
K n and the DFT vectors y(eωn) and r(eωn) are given by

y(eωn) ,
K−1∑
k=0

y[k]e−ωnk, r(eωn) ,
K−1∑
k=0

r[k]e−ωnk.

Let us assume, without any loss of generality, that the frequency support of x∗[k], and therefore

that of r[k], is contained in the first B DFT coefficients2 (B = bK2πBc). Then (2.11) can be

written as the sum of two terms:

Tr
(
Ŝ1(R)

)
=

1

K2

B−1∑
n=0

||y(eωn)− r(eωn)||2 +
1

K2

K−1∑
n=B

||y(eωn)||2. (2.12)

The rest of this section is devoted to addressing the minimization of the first term in the right-

hand side of (2.12), which is the only one that depends on R, under two scenarios. First, an

arbitrary channel impulse response h[k] is assumed, which implies that the signal term r[k] is

unstructured. This will result in the simplest of the detectors proposed in this chapter — it

2 Strictly speaking, the received sequence is only approximately bandlimited since we observe a finite number
of samples K. Nevertheless, throughout this chapter it is assumed that K is sufficiently large so that windowing
effects can be neglected and the signal can be regarded as truly bandlimited. This is justified by the fact that, in
practice, stringent low-SNR detectability requirements cannot be met with small values of K.
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only exploits the BL property. Later, a frequency-flat channel assumption will induce a rank-1

spatial structure, resulting in a second detector with better performance but higher complexity.

2.2.1 Arbitrary Channel Structure

Applying Parseval’s identity again to the first term on the right side of (2.12) yields

1

K2

B−1∑
n=0

||y(eωn)−r(eωn)||2 =
1

K

K−1∑
k=0

|| yf [k]− h[k] ? x∗[k] ||2, (2.13)

where yf [k] represents a filtered version of y[k] obtained by setting to zero all out-of-band DFT

coefficients, i.e.,

yf [k] ,
1

K

B−1∑
n=0

y(eωn)eωnk. (2.14)

Clearly, expression (2.13), and consequently (2.12), is minimized when yf [k] = h[k] ? x∗[k].

Since no structure about h[k] is assumed, it is clearly possible to select x∗[k] and h[k] to satisfy

this condition. The resulting minimizer, denoted as R̂, is in fact the the ML estimate of the

signal term (see Section 1.1.1). From (2.12), it follows that

Tr
(
Ŝ1(R̂)

)
=

1

K2

K−1∑
n=B

||y(eωn)||2

=
1

K2

K−1∑
n=0

||y(eωn)||2 − 1

K2

B−1∑
n=0

||y(eωn)||2,

which, in the time domain, becomes

Tr
(
Ŝ1(R̂)

)
=

1

K

K−1∑
k=0

||y[k]||2 − 1

K

K−1∑
k=0

||yf [k]||2. (2.15)

Similarly to Y and Ŝ0, one can define

Y f ,
[
yf [0] yf [1] · · · yf [K − 1]

]
, (2.16a)

Ŝf0 ,
1

K
Y fY

H
f . (2.16b)
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In that case, (2.15) becomes Tr(Ŝ1(R̂)) = Tr(Ŝ0)− Tr(Ŝf0) and (2.7) reduces to

GBL(Y ) =

 Tr
(
Ŝ0

)
Tr
(
Ŝ0

)
− Tr

(
Ŝf0

)
MK

. (2.17)

Since two test statistics related by a monotonically increasing transformation define the same

test as long as the thresholds are properly set [Kay, 1998,Lehmann and Romano, 2005], testing

GBL(Y ) in (2.17) amounts to testing

T BL(Y ) ,
Tr
(
Ŝf0

)
Tr
(
Ŝ0

) =
||Y f ||2F
||Y ||2F

, (2.18)

where || · ||F denotes the Frobenius norm. Henceforth, the test associated with the statistic in

(2.18) will be referred to as the BL detector since this is the only property that it exploits. Note

that it simply measures the ratio of the in-band energy to the total energy.

2.2.2 Frequency-Flat Channels

As the WM signal is narrowband relative to the 6 MHz operational bandwidth, the channel

response can be regarded as frequency-flat.3 This produces a rank-1 channel structure which,

without any loss of generality, can be expressed by writing R = hxH , where h ∈ CM and

x , [x[0], x[1], . . . , x[K − 1]]T . This reads in the frequency domain as r(eωn) = x∗(e−ωn)h,

where x(eωn) ,
∑K−1

k=0 x[k]e−ωnk. Therefore, optimizing with respect to R amounts to opti-

mizing with respect to x(eωn) and h. We first find the minimum of

||y(eωn)− r(eωn)||2 = ||y(eωn)− x∗(e−ωn)h||2 (2.19)

with respect to x(eωn) for each ωn, with n = 0,. . . , B − 1. This is a typical least squares (LS)

problem, with solution given by

inf
x(eωn )

||y(eωn)− x∗(e−ωn)h||2 = ||y(eωn)||2 − |h
Hy(eωn)|2

||h||2
. (2.20)

3Note that the distance between antennas is set in the order of half the wavelength of the carrier frequency.
Since the bandwidth of the WM signal is much smaller than this carrier frequency, the relative delay that different
frequencies in the support of the WM signal experience when arriving at different antennas is small and, as a
result, we may adopt the usual narrowband assumption, by which the complex baseband representation of the
signal received by one antenna differs from another in a complex scaling factor.
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Substituting (2.20) in (2.12) yields

Tr
(
Ŝ1(x̂,h)

)
=

1

K2

K−1∑
n=0

||y(eωn)||2 − 1

K2

B−1∑
n=0

|hHy(eωn)|2

||h||2
, (2.21)

or, in the time domain,

Tr
(
Ŝ1(x̂,h)

)
=

1

K

K−1∑
k=0

||y[k]||2 − 1

K

||hHY f ||2

||h||2

= Tr
(
Ŝ0

)
− h

HŜf0h

||h||2
. (2.22)

The vector h minimizing (2.22) is given by the principal eigenvector of Ŝf0 . Hence,

inf
h

Tr
(
Ŝ1(x̂,h)

)
= Tr

(
Ŝ0

)
− λ1

(
Ŝf0

)
, (2.23)

where λ1(A) denotes the largest eigenvalue of A. Substituting (2.23) in (2.7) yields

GBLFF(Y ) =

 Tr
(
Ŝ0

)
Tr
(
Ŝ0

)
− λ1

(
Ŝf0

)
MK

.

For detection purposes, this statistic is equivalent to (recall our notational conventions from

Section 1.4):

T BLFF(Y ) ,
λ1

(
Ŝf0

)
Tr
(
Ŝ0

) =
||Y f ||22,2
||Y ||2F

, (2.24)

From now on, we will refer to the test defined by this statistic as the bandlimited frequency-

flat detector (BLFF). Observe that (2.24) reduces to the well-known multiantenna detector

from [Besson et al., 2006, Taherpour et al., 2010, Wang et al., 2010] when the signal is not

bandlimited, i.e., when B = K, which yields Ŝf0 = Ŝ0. In that case, the only property that

these detectors exploit is the rank-1 spatial structure.

2.3 Multiantenna detection of CM signals

In this section we derive the GLR detector that only exploits the CM property of the WM signal.

To do so, we minimize Tr(Ŝ1(R)) assuming that the transmitted signal x[k] has this property,
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although it may not be bandlimited. As it turns out, the existence of the GLR depends on

whether the assumption of frequency-flat channel applies or not.

2.3.1 Arbitrary Channel Structure

From expression (2.10), it is possible to write

Tr
(
Ŝ1(R)

)
=

1

K

K−1∑
k=0

|| y[k]− h[k] ? x∗[k] ||2. (2.25)

Due again to the fact that no structure is imposed on h[k], it follows that (2.25) can be made

zero: for example, pick x∗[k] as any CM signal with no spectral zeros, and choose each entry of

h[k] as the signal whose DFT spectrum equals that of the corresponding entry of y[k] divided by

the spectrum of x∗[k]. Thus, the denominator of (2.7) vanishes and no GLR exists for this case.

This makes sense since the CM property of the transmitted signal, which is the only feature

exploited in this case, is wiped out after passing through a frequency-selective channel.

2.3.2 Frequency-Flat Channels

Now assume that the channel is frequency flat, which, as seen in Section 2.2.2, means that one

may write R = hxH . In order to explicitly represent the CM property of the transmitted signal,

let us adopt the notation x(ϕ) , [eϕ0 , eϕ1 , . . . , eϕK−1 ]T , where ϕ , [ϕ0, ϕ1, . . . , ϕK−1]T . Note

that there is no loss of generality in assuming unit magnitude, since any scaling factor can be

subsumed in the unknown channel vector h. Noting that xH(ϕ)x(ϕ) = K yields

Tr
(
Ŝ1(h,ϕ)

)
=

1

K
[Tr
(
Y Y H

)
− 2 Re

{
hHY x(ϕ)

}
+K||h||2]. (2.26)

The ML estimate of ϕ is given by

ϕ̂ = arg sup
ϕ

Re
{
hHY x(ϕ)

}
(2.27a)

= arg sup
ϕ

Re

{
K−1∑
k=0

eϕkhHy[k]

}
, (2.27b)

which results in ϕ̂k = −∠
(
hHy[k]

)
. The optimal value of the above expression is therefore∑

k |hHy[k]| = ||Y Hh||1. Substituting this back in (2.26) gives

Tr
(
Ŝ1(h, ϕ̂)

)
=

1

K

[
Tr
(
Y Y H

)
− 2||Y Hh||1 +K||h||2

]
. (2.28)
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In order to minimize this expression with respect to h, write h = c · h̃, with c > 0 and ||h̃|| = 1.

The optimal value of c is readily found to be ĉ = 1
K ||Y

H h̃||1. Using this expression, the ML

estimate of the spherical component h̃ is seen to be

ˆ̃
h = arg sup

h̃

||Y H h̃||1 s.t. ||h̃|| = 1. (2.29)

The solution to this problem, ||Y H ||2,1 , ||Y H ˆ̃
h||1 is known as the operator norm, dual norm,

or subordinate norm to the vector `2- and `1-norms [Demmel, 1997,Golub and Van Loan, 1996,

Boyd and Vandenberghe, 2004,Kolmogorov and Fomin, 1970]. An iterative method for solving

this constrained optimization problem is presented in Appendix 2.A. Substituting this solution

produces

Tr
(
Ŝ1(ĥ, ϕ̂)

)
=

1

K

[
||Y ||2F −

1

K
||Y H ||22,1

]
. (2.30)

Finally, using (2.30) in (2.7) gives

GCM(Y ) =

[
||Y ||2F

||Y ||2F −
1
K ||Y H ||22,1

]MK

, (2.31)

which is a monotonically increasing function of the equivalent test statistic

T CM(Y ) ,
||Y H ||22,1
||Y ||2F

. (2.32)

The detector defined by the statistic in (2.32) will be referred to as the CM detector since it

exploits the CM property. Although it also exploits the rank-1 structure of the signal term, we

will dismiss this fact in the notation since, as seen in Section 2.3.1, no GLR detector exists that

exploits the CM property if the channel structure is arbitrary.

2.4 Detection of CM Bandlimited Signals

We now consider the complete model, which captures the entire prior knowledge about the WM

signal. Regarding the minimization of Tr
(
Ŝ1(R)

)
, it can be readily shown, analogously to

Section 2.3.1, that if an arbitrary channel impulse response is assumed, then the CM constraint

on the signal still allows to make zero the signal term within the frequency support of the

transmitted signal. However, in this case the denominator of (2.7) does not vanish because

of the contribution of the out-of-band noise, thus resulting in a well-defined GLR statistic.
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The resulting test turns out to be equivalent to the BL detector in (2.18). This is consistent

with our findings in Section 2.3.1: since passing a CM signal through a frequency selective

channel destroys the CM property at the channel output, it is reasonable that the corresponding

detector should not exploit such a property. However, the situation is different with frequency-

flat channels, as discussed next.

Let us start by noting that the fact that the signal is bandlimited allows us to write the

trace of the sample covariance matrix again as in (2.12). However, the optimization with respect

to r(eωn) now has to take into account the CM feature, which is a time-domain property. As

we will see, a solution can be found by confining ourselves to the frequency support of x(eωn).

As seen in Section 2.2.1, for frequency-flat channels we may write r(eωn) = x∗(e−ωn)h,

which means that the first term in the right-hand side of (2.12) becomes

1

K2

B−1∑
n=0

||y(eωn)− r(eωn)||2 =
1

K2

B−1∑
n=0

||y(eωn)− x∗(e−ωn)h||2. (2.33)

Now let ρ , K/B and, for a signal z[k], let zd[k] denote the result of ideally4 bandpass fil-

tering z[k] to the interval [0, 2π/ρ] followed by a downsampling operation5 by a factor ρ (see,

e.g., [Vaidyanathan, 2003]). Then one has z(eω) = ρ · zd(eωρ) for ω ∈ [0, 2π/ρ], which means

that (2.33) can be rewritten as

1

K2

B−1∑
n=0

||y(eωn)− r(eωn)||2 =
ρ2

K2

B−1∑
n=0

||yd(e
2πn
K
ρ)− x∗d(e−

2πn
K
ρ)h||2 (2.34a)

=
1

B

B−1∑
k=0

||yd[k]− x∗d[k]h||2, (2.34b)

where (2.34b) follows from Parseval’s identity (note that the sequences yd[k], xd[k] have length

K/ρ = B). By introducing

Ŝd1 ,
1

B

(
Y d − hxHd

) (
Y d − hxHd

)H ∈ CM×M , (2.35)

where

Y d ,
[
yd[0] yd[1] · · · yd[B − 1]

]
∈ CM×B, (2.36a)

xd ,
[
xd[0] xd[1] · · · xd[B − 1]

]T
∈ CB, (2.36b)

4Note that some performance degradation may be expected in practice due to the usage of non-ideal filters.
5Note that if ρ is not an integer, a previous interpolation step may be required.
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(2.34b) becomes

1

K2

B−1∑
n=0

||y(eωn)− r(eωn)||2 = Tr
(
Ŝd1(h,xd)

)
, (2.37)

Because decimation preserves the CM property of a signal, the problem of minimizing

(2.37) with respect to h and xd subject to the CM constraint on xd is analogous to the problem

found in Section 2.3.2. Therefore, the same approach can be applied, resulting in the following

minimum value for (2.37):

Tr
(
Ŝd1(ĥ, x̂d)

)
=

1

B

[
Tr
(
Y dY

H
d

)
− 1

B
||Y H

d ||22,1
]
. (2.38)

Substituting (2.38) back in (2.12) yields

Tr
(
Ŝ1(R̂)

)
=

1

B

[
Tr
(
Y dY

H
d

)
− 1

B
||Y H

d ||22,1
]

+
1

K
Tr
(
Y Y H

)
− 1

K
Tr
(
Y fY

H
f

)
,

where, recall, Y f is the filtered data matrix from (2.16a). Hence, the GLR statistic becomes

GCMBL(Y ) =

 ||Y ||2F
ρ
(
||Y d||2F −

1
B ||Y

H
d ||22,1

)
+ ||Y ||2F − ||Y f ||2F

MK

. (2.39)

The corresponding detector, which exploits the whole prior information about WM signals,

will be referred to as the CM bandlimited detector (CMBL). It is expected to offer the best

performance of all the detectors presented in this chapter, although this is at the expense of the

highest computational complexity.

2.5 Remarks

2.5.1 Interpretation

All the detectors for bandlimited signals derived in previous sections have the same general form:

all of them can be written as

G(Y ) =

[
σ̂2

tot

σ̂2
in + σ̂2

out

]MK

, (2.40)
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where σ̂2
tot = Tr(Ŝ0) is an estimate of the total power of the observations, whereas σ̂2

in and σ̂2
out

are, respectively, estimates of the in-band and out-of-band noise powers.

An alternative form, which was already used in (2.18) and (2.24), follows from noting that

an estimate of the in-band signal power can be obtained as η̂2
0 = σ̂2

tot − (σ̂2
in + σ̂2

out). Thus

(2.40) can be rewritten as G(Y ) =
[
σ2

tot/(σ̂
2
tot − η̂2

0)
]MK

, which is equivalent to the statistic

T (Y ) = η̂2
0/σ̂

2
tot. The proposed detectors are seen to use different estimates η̂2

0:

• The BL detector uses η̂2
0 = Tr

(
Ŝf0

)
, i.e., all the in-band power is ascribed to the signal

component. Consequently, σ̂2
in = 0.

• The BLFF detector uses η̂2
0 = λ1

(
Ŝf0

)
, which is an (actually biased) estimator of the

power in the principal eigenspace of the filtered covariance matrix. The prior information

being exploited here is the rank-1 structure of the signal subspace.

• From the denominator in (2.39), it can be seen that the CMBL detector uses η̂2
0 = ‖Y f‖2F−

ρ‖Y d‖2F + ρB−1‖Y H
d ‖22,1. For large K, the energy of the downsampled sequence yd[k]

relates to that of the filtered sequence yf [k] as ‖Y d‖2F ≈
1
ρ‖Y f‖2F [Vaidyanathan, 2003],

and therefore η̂2
0 ≈ ρB−1‖Y H

d ‖22,1. This observation suggests the following modification of

the statistic in (2.39):

GCMBL(Y ) ≈

[
||Y ||2F

||Y ||2F −
ρ
B ||Y

H
d ||22,1

]MK

, (2.41)

which, for detection purposes, is equivalent to

T CMBL(Y ) ,
||Y H

d ||22,1
||Y ||2F

. (2.42)

Clearly, the statistic in (2.42) has a lower computational complexity than that in (2.39).

Moreover, empirical results reveal that the modified CMBL test improves the detection

performance with respect to that of the original formulation (2.39) and reduces the influ-

ence of the particular choice of the filters used for band selection and decimation. Note

that (2.42) reduces to (2.32) when the BL assumption is dropped, since in that case one

has Y d = Y .

2.5.2 Dealing with an Unknown Carrier Frequency

In practice, the carrier frequency of the WM signal is not known. Similarly to detectors for

WM signals [Chen and Gao, 2011], the GLR statistics for the BL and CMBL detectors need,
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therefore, to be maximized with respect to this carrier frequency parameter ωc over the set Ωc of

candidate values. From (2.9), the number of candidate carrier frequencies |Ωc| in a 6 MHz TV

channel is 237. Since |Ωc| has a considerable impact on the computational complexity of some

of the proposed detectors (see Section 2.5.3 below), it is convenient to devise a simplification.

In this respect, the above detectors present an important advantage over previous schemes

in the literature, e.g. [Chen and Gao, 2011]: since the carrier frequency is not explicitly used

by the detector, it is possible to divide the 6 MHz channel in a reduced number of overlapping

intervals with bandwidth larger than 200 kHz. This operation reduces |Ωc| and increases the

bandwidth B of each segment, which allows a significant reduction in computational complexity

at the expense of some degradation in performance. Interestingly, as will be seen in Section 2.7,

the loss incurred by this approach is small provided that the number of subbands is large enough.

We also remark that some of the proposed detectors allow further simplifications when

performing a series of evaluations for different central frequencies ωc ∈ Ωc. Consider first the

BL statistic (2.18), for which one must compute

Tr
(
Ŝf0

)
=

1

K2

K−1∑
n=0

Gωc(e
ωn)||y(eωn)||2 (2.43)

for all ωc ∈ Ωc, where Gωc(e
ωn) denotes the frequency response of a bandpass filter satisfying

Gωc(e
ωn) = 1 for the B bins centered at ωc and zero otherwise. Thus, it suffices to compute

the DFT of the observations and then store the squared magnitudes ||y(eωn)||2; after that, only

B − 1 additions per candidate central frequency are required.

As for the BLFF statistic (2.24), it is seen that λ1(Ŝf0) must be computed for each ωc. Let

F ∈ CK×K be the Fourier matrix, which means that cTF is the DFT of the row vector cT . Note

that FHF = FFH = KIK . Then, it is clear that Y f = 1
K Ỹ GωcF

H , where Ỹ = Y F con-

tains the DFT of the observations and Gωc , diag {Gωc [0] , . . . , Gωc [K − 1]}. Therefore Ŝf0 =
1
KY fY

H
f = 1

K2 Ỹ GωcG
H
ωcỸ

H . Since λ1(Ŝf0) = 1
K2λ1(Ỹ GωcG

H
ωcỸ

H) = 1
K2λ1(GH

ωcỸ
H Ỹ Gωc),

one can first compute the matrix Ỹ H Ỹ and then, for each ωc ∈ Ωc, select the suitable rows and

columns to evaluate the largest eigenvalue.

Finally, the CMBL statistic (2.42) requires the computation of ||Y H
d ||22,1 for each ωc ∈ Ωc.

If ρ = K/B is an integer,6 then Y d can be directly obtained as Y d = Y fΓ = 1
K Ỹ GωcF

HΓ,

where Γ ∈ CK×B is a decimation matrix containing the appropriate B columns of the K ×K
identity matrix. If ρ is not an integer, but ρ = ρ1/ρ2 with ρ1, ρ2 coprime, then Y d can still be

obtained from Y f by first upsampling by a factor ρ2, followed by appropriate bandpass filtering

and finally downsampling by a factor ρ1. Once Y d is obtained, the computation of ||Y H
d ||22,1

6This is the typical case, since for WMs in 6 MHz bands, this factor is ρ = 6 MHz/200 kHz= 30.
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can be addressed as shown in Appendix 2.A.

2.5.3 Computational Complexity

According to what was explained in Section 2.5.2, the BL detector requires the computation

of ||y(eωn)||2 for n = 0, . . . ,K − 1. This requires M fast Fourier transforms (FFTs), with

complexity O(MK logK), and the computation of K squared magnitudes of vectors in CM ,

which is O(MK). After that, just a few additions are needed, which means that the complexity

of the BL detector is O(MK logK).

Besides the M FFTs, the BLFF detector requires the computation of Ỹ H Ỹ , which is

O(MK2). Then a total of |Ωc| eigenvalues must be computed, for example using the standard

power method with I iterations, resulting in a complexity of O(I|Ωc|B2). We therefore con-

clude that the BLFF detector has complexity O(max(I|Ωc|B2,MK2)), which is higher than the

complexity of the BL detector.

As for the CM detector, its complexity is dominated by that of the computation of ||Y H ||2,1.

Using the algorithm proposed in Appendix 2.A with I iterations, it can be seen that this oper-

ation is O(IM2K).

The number of operations required by the CMBL detector is the largest one since the com-

putations must be performed in the time domain. This means that one FFT and |Ωc| inverse

FFTs (IFFTs) are required, resulting in a complexity of O(|Ωc|MK logK). The execution of

the power method requires, in this case, O(|Ωc|IM2K/B) operations, whereas further com-

putations may require up to O(M2K). Therefore, the complexity of the CMBL detector is

O(|Ωc|MK logK).

2.6 Performance Analysis

Characterizing the detection performance of the schemes introduced in this chapter is of para-

mount importance. This section considers those cases where analytic evaluation is possible. For

more involved scenarios, we resort to Monte Carlo simulations, as described in Section 2.7.
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2.6.1 BL Detector

The exact distribution of the BL detector (2.18) when |Ωc| = 1 can be obtained as follows. Note

from (2.43) that the BL statistic can be rewritten as

T BL(Y ) =

∑K−1
n=0 G(eωn)||y(eωn)||2∑K−1

n=0 G(eωn)||y(eωn)||2 +
∑K−1

n=0 (1−G(eωn))||y(eωn)||2
,

where again G(eωn) = 1 if the n-th bin is within the passband and zero otherwise. Hence, an

equivalent statistic is given by

T ′BL(Y ) =

∑K−1
n=0 G(eωn)||y(eωn)||2∑K−1

n=0 (1−G(eωn))||y(eωn)||2
(2.44a)

=

∑B−1
n=0 ||y(eωn)||2∑K−1
n=B ||y(eωn)||2

, (2.44b)

where in (2.44b) it has been assumed, without any loss of generality, that the passband comprises

the bins with indices n = 0, 1, . . . B − 1.

Let w[k] denote the k-th column of the noise matrix W and let

w(eωn) ,
K−1∑
k=0

w[k]e−ωnk.

Then, (2.44b) can be rewritten as

T ′BL(Y ) =

∑B−1
n=0 ||r(eωn) +w(eωn)||2∑K−1

n=B ||w(eωn)||2,
(2.45)

since r(eωn) = 0 for n ≥ B. The distribution of (2.45) follows by noting that r(eωn) is determin-

istic whereas w(eωn) is Gaussian. Hence, the numerator is a scaled non-central χ2 random vari-

able, whereas the denominator is central χ2. Thus, K−B
B T ′BL(Y ) is a non-central F-distributed

random variable with non-centrality parameter λ = 2
Kσ2

∑
n ||r(eωn)||2 = 2

σ2 Tr
(
RRH

)
and

degrees of freedom n1 = 2MB and n2 = 2M(K−B). Clearly, one has that λ = 0 under H0 and

λ > 0 under H1.

Therefore, if Fλ,n1,n2 denotes the cumulative distribution function corresponding to the

F-distribution, it is clear that, once a threshold ν ′ is fixed for the test

K −B
B
T ′BL(Y )

H1

≷
H0

ν ′, (2.46)
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the probability of false alarm will be given by PFA = 1− F0,n1,n2(ν ′) whereas the probability of

detection will be PD = 1− Fλ,n1,n2(ν ′). Combining both expressions gives the ROC:

PD = 1− Fλ,n1,n2(F−1
0,n1,n2

(1− PFA)) (2.47)

These expressions provide a complete characterization of the performance of the BL detector

and allow to set the threshold ν ′ in order to attain any target PFA or PD.

2.6.2 BLFF Detector

The evaluation of the distribution of the BLFF statistic turns out to be considerably more in-

volved. Under H0, one can asymptotically approximate Tr
(
Ŝ0

)
≈Mσ2 for large K [Taherpour

et al., 2010], which means that (2.24) becomes

T BLFF(Y ) ≈
λ1

(
Y fY

H
f

)
MKσ2

=
λ1

(
Y H
f Y f

)
MKσ2

. (2.48)

This test can thus be equivalently defined as the one deciding H1 when

MK2 · T BLFF(Y ) =
K

σ2
λ1

(
Y H
f Y f

)
> ν ′, (2.49)

for some threshold ν ′. In order to compute the probability of false alarm, we note that under H0

the observations Y f are the result of filtering white noise with a bandpass filter of bandwidth B.

Using the notation introduced in Section 2.5.2, this means that Y H
f = 1

KFGωcF
HWH under

H0. Therefore, the columns of Y H
f are independent Gaussian random vectors with zero mean

and covariance matrix σ2

K2FGωcF
H , and the product Y H

f Y f follows a complex central Wishart

distribution with M degrees of freedom:

K2

σ2
Y H
f Y f ∼ CW(FGωcF

H ,M). (2.50)

The density of the largest eigenvalue of this matrix is given by [Zanella et al., 2009, expression

(41)], where we must note that the scale matrix FGωcF
H in (2.50) has two eigenvalues: 1 with

multiplicity B, and 0 with multiplicity K −B. If fBLFF denotes such density, the probability of

false alarm is given by

PFA = 1−
∫ ν′

0
fBLFF(t)dt (2.51)

which enables us to set the threshold ν ′ for a prescribed PFA.
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The computation of the probability of detection involves finding the distribution of the

largest eigenvalue of the matrix Y H
f Y f , which is non-central Wishart distributed under H1. To

the best of our knowledge, no simple method is known to compute the marginal density of the

largest eigenvalue of a non-central correlated complex Wishart matrix where the eigenvalues of

the scale matrix have multiplicity greater than one (see [Couillet and Debbah, 2011, Sec. 2.1]

and references therein, also [Zanella et al., 2009]). It is therefore more convenient to assess the

performance via Monte Carlo simulation, as described in Section 2.6.3.

2.6.3 CM and CMBL Detectors

From (2.32), (2.39) and (2.42), we see that the detectors exploiting the CM property rely on the

(2,1)-subordinate matrix norm of a correlated Gaussian matrix. To the best of our knowledge,

the distribution of this norm remains an open problem in statistics/random matrix theory, which

means that the threshold of these detectors cannot be determined analytically. However, due

to their invariance to scalings, the distributions of the corresponding statistics under H0 are

independent of the noise power and, consequently, the threshold required to obtain some target

PFA can be computed off-line using Monte Carlo simulation.

2.7 Simulation Results

Among the detection schemes proposed in the literature, only the statistical performance of a

few of them has been exactly characterized in terms of analytical expressions. Most of them

have been analyzed either approximately, asymptotically, or even heuristically. Notable ex-

ceptions include the energy detector [Kay, 1998] and, in this chapter, the BL detector. This

means that comparisons between different schemes should not be carried out in terms of ana-

lytical expressions; instead we must rely on Monte Carlo simulation. In this section, we analyze

the performance of the proposed and existing schemes in the context of WM signal detection,

following the guidelines of the IEEE 802.22 Working Group [Clanton et al., 2007].

2.7.1 Simulation Setting

The guidelines in [Clanton et al., 2007] consider six simulation scenarios, termed test vectors,

which are summarized in Table 2.1. The frequency-modulated analog WM signal x∗(t), gener-
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# Description fmod ∆f Fading

1 Outdoor, LOS, Silent 32 5 No

2 Outdoor, LOS, Soft Speaker 3.9 15 No

3 Outdoor, LOS, Loud Speaker 13.4 32.6 No

4 Indoor, NLOS, Silent 32 5 Yes

5 Indoor, NLOS, Soft Speaker 3.9 15 Yes

6 Indoor, NLOS, Loud Speaker 13.4 32.6 Yes

Table 2.1: Test vectors employed in WM simulation [Clanton et al., 2007]. Frequency units are
kHz in all cases.

ated according to

x∗(t) = exp

{


(
2πfct+

∆f

fmod
sin(2πfmodt),

)}
,

where ∆f is the frequency deviation and fmod is the modulating frequency, is then sampled

at rate fs = 6 MHz unless otherwise stated. Channels are frequency-flat in all cases; with

line-of-sight (LOS) propagation for vectors 1-3 and non-line-of-sight (NLOS) propagation for

vectors 4-6.

Since [Clanton et al., 2007] just considers single-antenna sensors, we generalize those guide-

lines to multiantenna settings. For LOS channels we assume a uniform linear array (ULA) with

half-wavelength spacing: h = α1/2 · [ 1, eψ, e2ψ, . . . , e(M−1)ψ ]T , where ψ ∼ U(0, π) is a random

phase and α the power of the signal term. For NLOS scenarios, Rayleigh fading is implemented

with h ∼ CN (0, αI). The SNR (per antenna) is defined as

γ ,
E
{
|hm|2

}
E {|wm[k]|2}

=
α

σ2
. (2.52)

We consider SNR values around −20 dB, which corresponds to a highly demanding scenario

for WM detection (see e.g., [Cabric, 2008, Zeng and Liang, 2009a]). Under these conditions,

simulations reveal that the proposed BL, BLFF and CMBL detectors necessitate sensing times

in the order of a fraction of millisecond — depending on several factors such as the number of

antennas — in order to satisfy typical performance requirements in 6 MHz channels.

In Section 2.7.2, we compare the proposed detectors with a representative part of the

competing schemes. Our results show the advantages of simultaneously exploiting the WM

signal features along with the spatial structure. In Section 2.7.3, we then focus on the novel

detectors, illustrating their performance in a wide variety of scenarios.
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Figure 2.1: Comparison of the proposed schemes (CMBL, BLFF, BL and CM) with competing
multiantenna detectors. (Test vector 5, K = 1024, B = 200 kHz, fs = 6 MHz, Rayleigh Channel,
γ = −20 dB, M = 4).

2.7.2 Comparison with Existing Detectors

We consider sensors with M = 4 antennas that gather K = 1024 samples per antenna (corre-

sponding to an observation time of 0.17 ms) in a setting defined by Test Vector 5. The central

frequency is randomly generated with a uniform distribution over Ωc, which contains the 237 fre-

quencies where a WM may transmit. Figure 2.1 shows the ROC of the proposed detectors along

with the sphericity detector (Alamgir et al. [Alamgir et al., 2008]), the detector from [Besson

et al., 2006,Taherpour et al., 2010,Wang et al., 2010] (labeled as Besson), and three detectors by

Zeng et al.: Zeng 1 [Zeng and Liang, 2009a, Algorithm 1], Zeng 2 [Zeng and Liang, 2009a, Algo-

rithm 2] and Zeng 3 [Zeng and Liang, 2009b]. Although the last three detectors are considered

in the IEEE 802.22 standard for the problem at hand, only Zeng 3 is specifically tailored for

detecting WM signals7 [IEEE, 2011].

We recall that, for a given PFA, detector A is said to perform better than detector B in a

given setting if PD is higher for detector A than for detector B. In Figure 2.1 it is seen that

the three proposed multiantenna WM detectors that exploit the bandwidth information (BL,

BLFF and CMBL) outperform all of the previous detectors in the literature. On the other hand,

7Note that, although the detectors by Zeng et al. were proposed in the IEEE 802.22 standard for single-antenna
detection, we are considering the multiantenna extensions given by the authors. This, together with the fact that
these detectors stem from heuristic considerations, explains why in the multiantenna scenario of Figure 2.1, Zeng
3 performs worse than Zeng 1.



2.7 Simulation Results 53

−35 −30 −25 −20 −15 −10
0

0.2

0.4

0.6

0.8

1

γ  [dB]

P
D

 

 

CMBL

BLFF

BL

CM

Xu

Chen

ElRamly

Figure 2.2: Comparison of the proposed techniques (CMBL, BLFF, BL and CM) with competing
WM detectors. (Test Vector 5, K = 1024, B = 200 kHz, fs = 6 MHz, Rayleigh Channel, M = 4,
PFA = 0.1).

the CM detector is outperformed by Zeng 1 and Zeng 3, which rely on space-time correlation.

This shows that temporal correlation is more important than the CM property for WM signal

detection.

We next compare the proposed detectors with existing single-antenna WM detectors. Fig-

ure 2.2 depicts the probability of detection vs. SNR when the thresholds are adjusted to obtain

PFA = 0.1 with all detectors. The proposed schemes are considered along with the detector by

Xu et al. [Xu et al., 2008], the detector by ElRamly et al. [ElRamly et al., 2011] and the one

by Chen et al. [Chen and Gao, 2011]. The advantages of using multiple antennas are clear: not

only is the PD of the multiantenna detectors better, but also the rate at which PD increases.8

Among the four detectors proposed, the performance of the CM detector shows a significant gap

with respect to the other three. This effect will be further analyzed in Section 2.7.3.

2.7.3 Performance of the Proposed Detectors

In order to independently illustrate the impact of each parameter on the detection performance,

we vary a single parameter at a time while fixing the others to keep the setting as simple as

possible. In particular, we start assuming that Ωc = {2πfc/fs}, i.e., the only candidate frequency

is the carrier frequency. Later, we consider the influence of the cardinality of this set and the

8This is related to the notion of diversity in multiantenna communications [Vázquez-Vilar et al., 2011a].
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Figure 2.3: Influence of the number of antennas in the probability of detection (K = 1024,
B = 200 kHz, fs = 6 MHz, Test Vector 5, Rayleigh Channel, γ = −24 dB, PFA = 0.1).

technique explained at the beginning of Section 2.5.2. Figure 2.3 shows the influence of the

number of antennas M on the probability of detection for fixed PFA = 0.1 and γ = −24 dB.

With the exception of the CM detector, the proposed schemes exhibit a significant improvement

as M becomes larger, thus showing that in this setting the BL property is more useful for

detection purposes than the CM property. This effect can be ascribed to the small fractional

bandwidth of the WM signal (200 kHz/6 MHz = 1/30). With larger fractional bandwidths, the

advantage of the BL property over the CM property diminishes. This is illustrated in Figure 2.4,

where the probability of detection is depicted vs. the sampling frequency in the range 200 kHz

≤ fs ≤ 2 MHz for PFA = 0.1. With fixed WM signal bandwidth (b = 200 kHz), the net effect

is the variation of the fractional bandwidth b/fs. In the extreme case where fs = 200 kHz the

sampled signal ceases to be bandlimited, and it is observed that the detectors exploiting the CM

property show a better PD than those which do not. In fact, the BL detector is unable to detect

the signal at all since the only property it exploits is absent in the signal. The performance

of the BLFF at this point is slightly better since it exploits the spatial correlation. As the

sampling rate is increased, the fractional bandwidth of the signal decreases, and thus the BL

property becomes more relevant. Note that the performance of the CM detector is not affected

by the fractional bandwidth, as could be expected. In addition, the PD of the BLFF and

CMBL detectors approach each other for sufficiently small fractional bandwidths; in particular,

for fs = 30 · 200 kHz = 6 MHz, the performance of both schemes is similar, although the

computational cost of the former is considerably lower.
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Figure 2.4: Probability of detection vs. sampling frequency, which is inversely proportional to
the fraction of bandwidth occupied by the WM signal (K = 1024, B = 200 kHz, fs = 200 kHz,
Test Vector 5, Rayleigh Channel, γ = −20 dB, M = 4, PFA = 0.1).

Next we complete the performance evaluation in terms of the simulation scenarios of Ta-

ble 2.1. Figure 2.5 shows the ROC curves corresponding to the six test vectors for the BLFF

detector when γ = −22 dB and the number of antennas is M = 4. It is observed that the

probability of detection does not meaningfully depend on the parameters of the WM signal

(modulating frequency and frequency deviation). It is the channel model which essentially de-

termines the performance of the detector to a larger extent. This agrees with intuition, since

detecting a signal in the presence of an LOS component should be easier than when operating

in NLOS conditions. Although not shown for brevity, a similar behavior is observed for the BL,

CM, and CMBL detectors.

To close this section we analyze the tradeoff discussed in Section 2.5.2 by considering

multiple candidate carrier frequency values, i.e., |Ωc| > 1. As pointed out, it is not strictly

necessary to scan the 237 central frequencies using the theoretical bandwidth of 200 kHz. Instead,

we can reduce the number of candidate frequency intervals by increasing their width. In the

experiment reported in Figure 2.6, this approach is followed by dividing the 6 MHz channel into

|Ωc| intervals. Specifically, for |Ωc| = n intervals, we consider the following candidate carrier

frequency set and bandwidth:

Ω(n)
c =

{
2π

n
k, k = 0, 1, . . . , n− 1

}
, B(n) =

2π

n
. (2.53)
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Figure 2.5: ROC of the BLFF detector for the different test vectors (K = 1024, B = 200 kHz,
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When the WM signal is present, its carrier frequency is set to fc = 0. It is observed in Figure 2.6

that the probability of detection stabilizes when |Ωc| is large enough. This observation allows

computational savings at a small performance loss, since the complexity of some of the proposed

schemes increases linearly with the number of candidate frequency intervals. Of course, other

choices for Ω
(n)
c and B(n) different from (2.53) may be preferable in practice depending on the

desired tradeoff. It is also observed that the probability of detection slightly decreases after

|Ωc| is about 150. This may be explained with the following argument: since the number

of candidate frequencies is too high, the probability that the actual frequency is erroneously

estimated becomes larger.

2.8 Conclusions

The protection of WM communications is a requirement imposed by the FCC for emerging

DSA systems in the TV band. Whereas no previous WM detector considers the use of multiple

antennas, none of the multiantenna detectors in the literature has been specifically designed for

WM signals. In order to fill this gap we have developed four GLR-based multiantenna detectors

which exploit a number signal features. The computational load of these detectors increases

with the amount of WM signal structure that they exploit, and therefore they offer different

tradeoffs between performance and complexity.

The proposed schemes do not require synchronization with the potentially present WM

signal, and are robust to the noise uncertainty problem as well as to small-scale fading due to

the use of multiple antennas. Moreover, they do not require information that is not available

in practice, such as the channel coefficients, the transmitted signal, or the noise power. The

detection performance was characterized analytically and using Monte Carlo simulations, where

we observed that the proposed schemes are well behaved and outperform previous detectors, in

particular those proposed in the IEEE 802.22 standard for WM detection.

The work in this chapter has been published on the IEEE Transactions on Vehicular Tech-

nology [Romero and López-Valcarce, 2014b] and presented in part in the 12th IEEE International

Workshop on Signal Processing Advances in Wireless Communications (SPAWC 2011) [Romero

and López-Valcarce, 2011b] and in the 4th IEEE International Workshop on Computational

Advances in Multi-Sensor Adaptive Processing (CAMSAP 2011) [Romero and López-Valcarce,

2011a].
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2.A Computation of the (2,1)-norm

Consider the constrained maximization problem (2.29). The cost can be written explicitly as

J(h̃) = ||Y H h̃||1 =

K−1∑
k=0

|yH [k]h̃|

=
K−1∑
k=0

√
h̃Hy[k]yH [k]h̃. (2.54)

One must maximize (2.54) subject to h̃H h̃ = 1. Let us decompose h̃ in its real and imaginary

parts as

h̃ = h̃R + jh̃I (2.55)

and let us define the complex gradient ∇h̃ as

∇h̃ = ∇h̃R + j∇h̃I . (2.56)

The corresponding Lagrangian is

Λ(h̃, λ) , J(h̃)− λ

2
(h̃H h̃− 1), (2.57)

where λ is the Lagrange multiplier. Note that the gradient of the constraint is 2h̃, which does

not vanish on the unit sphere ||h̃||2 = 1. It follows that all feasible points are regular, and

any local extremum of the constrained problem must satisfy the first-order necessary conditions

∇h̃Λ(h̃, λ) = 0, ∇λΛ(h̃, λ) = 0, which are readily seen to yield ∇h̃J(h̃) = λh̃, h̃H h̃ = 1. The

gradient of J is given by

∇h̃J(h̃) =
K−1∑
k=0

y[k]yH [k]

|yH [k]h̃|
h̃ = C(h̃) · h̃, (2.58)

where we have introduced the M ×M matrix

C(h̃) ,
K−1∑
k=0

y[k]yH [k]

|yH [k]h̃|
= Y D−1(h̃)Y H , (2.59)
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with D(h̃) , diag
{
|yH [0]h̃|, . . . , |yH [K − 1]h̃|

}
. Note that C(h̃) is positive (semi)definite,

and that the cost (2.54) can be written as J(h̃) = h̃HC(h̃)h̃.

The first-order necessary conditions then read as

C(h̃)h̃ = λh̃, h̃H h̃ = 1. (2.60)

Thus we see that at any extremum of the constrained problem, h̃must be a unit-norm eigenvector

of C(h̃). The corresponding eigenvalue is the attained cost, i.e. J(h̃) = h̃HC(h̃)h̃ = λ. These

conditions do not reveal whether λ corresponds to the largest, smallest, or an intermediate

eigenvalue of C(h̃). However, by examining the high SNR case, for which Y ≈ hxH(ϕ), one sees

that C(h̃) = Y D−1(h̃)Y H ≈ [xH(ϕ)D−1(h̃)x(ϕ)]hhH , i.e. a rank-1 matrix, whose eigenvector

associated to the largest eigenvalue is the true channel vector h (independently of h̃). Therefore,

it makes sense to consider numerical methods for the computation of the principal eigenvector

of a matrix, and then update the matrix at each iteration by using the eigenvector estimate

from the previous step. For example, the standard power method [Golub and Van Loan, 1996]

can be suitably modified in this manner, see Algorithm 2.1.

A reasonable initializer for any numerical method of this kind is the eigenvector associated

with the largest eigenvalue of Y Y H , since this is the solution to (2.29) if we relax the `1-norm

to the `2-norm in the cost function. In addition, since all elements of x(ϕ) have unit magnitude,

in the high SNR regime one has D(h̃) ≈ |hH h̃|IK , which means that C(h̃) ≈ 1
|hH h̃|Y Y

H , and

thus the eigenvectors of C(h̃) and Y Y H should lie close to each other.

Algorithm 2.1 Modified Power Method

Set h̃0 = principal eigenvector of Y Y H

for i = 1 to I do
vi = C(h̃i−1)h̃i−1

h̃i =
vi
||vi||

end for

Set
ˆ̃
h = h̃I
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Chapter 3

Detection of Constant Magnitude

Signals in Time-Varying Channels

This chapter addresses the problem of deciding on the presence of a CM waveform in noise of

unknown variance when the propagation channel introduces time-varying frequency-flat Rayleigh

fading. Relying on a BEM, we exploit the fact that the Doppler spectrum of the channel is

typically low pass [Tsatsanis and Giannakis, 1996a,Giannakis and Tepedelenlioǧlu, 1998].

We first consider activity detection in the case where the transmitted sequence is known,

which arises, for example, if the primary user transmits a pilot sequence. The resulting GLR

test generalizes the well-known matched filter detector to time-varying scenarios [Kay, 1998,

Cabric, 2008]. We then focus on the case of unknown transmitted signals, where the GLR

requires the solution of a difficult non-convex problem. We present one numerical method and

various approximations with different performance/complexity trade-offs. The performance of

the proposed detectors is investigated both analytically and via Monte Carlo simulation.

3.1 Signal Model

As explained in Section 1.1.1, time-varying channels arise in many spectrum sensing appli-

cations because the stringent requirements imposed by spectrum regulations force sensors to

acquire long observation windows. This situation is exacerbated when the signal of interest is

narrowband, since the low sampling rates used entail long observation times. For this reason, it

seems reasonable to assume that the channel is frequency-flat. The received signal can thus be
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written as

y = h · x+ w, (3.1)

where · denotes point-wise multiplication. The signal x has a constant magnitude and, without

any loss of generality, it can be assumed to satisfy |x(t)| = 1 ∀t. Thus, the power of the signal

term h · x is given by

η2
0 , E

{
|h(t) · x(t)|2

}
= E

{
|h(t)|2|x(t)|2

}
= E

{
|h(t)|2

}
. (3.2)

A spectrum sensor collects K samples of y, which can be expressed as (see Section 1.1.1):

y [k] = h [k] · x [k] + w [k] , k = 0, 1, . . . ,K − 1. (3.3)

If we define y , [y [0] , . . . , y [K − 1]]T and x , [x [0] , . . . , x [K − 1]]T , then y can be written in

vector/matrix form as

y = Xh+w, (3.4)

where X , diag {x}, h , [h [0] , . . . , h [K − 1]]T , and w , [w [0] , . . . , w [K − 1]]T . Note that,

as a result of the CM property, one has that XHX = IK . The noise vector w is assumed

zero-mean circularly symmetric complex Gaussian with E
{
wwH

}
= σ2IK . The parameters η2

0

and σ2 are regarded as unknown deterministic. Recall that the SNR is defined as

γ ,
η2

0

σ2
. (3.5)

The time variations of the channel are captured by a BEM with B orthonormal basis

functions βb ∈ CK and random coefficients αb which, upon defining α , [α0, . . . , αB−1]T and

B0 , [β0, . . . ,βB−1], can be written as:

h =

B−1∑
b=0

αbβb = B0α. (3.6)

Note that B0 satisfies BH
0 B0 = IB. The vector α is assumed zero-mean circularly symmetric

complex Gaussian with E
{
ααH

}
= η2

0
K
B IB, where the factorK/B ensures thatK−1 E

{
||y||22

}
=

η2
0 + σ2. The channel vector h is therefore Gaussian distributed, which models Rayleigh fading.

Although any orthonormal basis can be used, of particular relevance is the model where the

columns of B0 are given by the B elements of lowest frequency in the Fourier basis [Tsatsanis
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and Giannakis, 1996b,Leus, 2004], in which case B0 is given by

B0 = [f0 f1 . . . f B̃ fK−B̃ . . . fK−1], (3.7)

where B̃ , B−1
2 (B is assumed odd) and

f b ,
1√
K

[
1 e

2π
K
b . . . e

2π
K
b(K−1)

]T
. (3.8)

The complete Fourier matrix will be denoted as F , [f0, . . . ,fK−1]. For future reference, note

that, since fK−b = f∗b , 1 ≤ b ≤ B̃, the entries of the matrix

B0B
H
0 =

B−1∑
b=0

βbβ
H
b = f0f

H
0 + 2

B̃∑
b=1

Re
{
f bf

H
b

}
(3.9)

are real valued. Moreover, since B0B
H
0 = FD0F

H , where D0 , diag
{

[1T
B̃+1

0TK−B 1T
B̃

]T
}

,

one has that

E
{
hhH

}
= η2

0

K

B
B0B

H
0 = F

[
η2

0

K

B
D0

]
FH , (3.10)

which means that the PSD of the channel is asymptotically given by the diagonal of the matrix

η2
0(K/B)D0 [Gray, 2006]. The channel is therefore a low-pass random process of bandwidth

2πB̃/K, which is proportional to the maximum Doppler shift. This allows us to select B based

on some (possibly conservative) estimate of this parameter.

3.2 GLR Detector for Known CM Signals

The problem of activity detection can be cast as the following hypothesis test:

H0 : y = w, H1 : y = Xh+w. (3.11)

When x is known, the GLR statistic is

Gx(y) ,

sup
η2

0≥0,σ2≥0

pH1

(
y; η2

0, σ
2
)

sup
σ2≥0

pH0

(
y;σ2

) . (3.12)
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The density of y under H0, which is given by

pH0

(
y;σ2

)
=

1

(πσ2)K
exp

{
− 1

σ2
||y||2

}
, (3.13)

attains its maximum for σ̂2 = 1
K ||y||

2. On the other hand, the density of y under H1 is

pH1

(
y; η2

0, σ
2
)

=
1

πK |Ξ|
exp

{
−yHΞ−1y

}
, (3.14)

where

Ξ = η2
0

K

B
XB0B

H
0 X

H + σ2IK (3.15)

is the covariance matrix1 of y. Taking logarithms, we find that maximizing (3.14) with respect

to η2
0 and σ2 amounts to minimizing

yHΞ−1y + log |Ξ|. (3.16)

Let B1 ∈ CK×(K−B) be a matrix with orthonormal columns that satisfies BH
0 B1 = 0. Then,

it is clear that B , [ B0 B1 ] is unitary and B0 = B [ IB 0 ]T . Since XB is also unitary, it

follows from (3.15) that Ξ = XB D1 B
HXH is an eigenvalue decomposition of Ξ, where

D1 ,

[
(KB η

2
0 + σ2)IB 0

0 σ2IK−B

]
. (3.17)

Therefore, with z , BHXHy = [z0, z1, . . . , zK−1]T , minimizing (3.16) amounts to minimizing

zHD−1
1 z + log |D1|. Let us introduce the quantities

η̂2
in ,

1

B

B−1∑
i=0

|zi|2 =
1

B
||BH

0 X
Hy||22 (3.18a)

η̂2
out ,

1

K −B

K−1∑
i=B

|zi|2 =
1

K −B
||BH

1 X
Hy||22, (3.18b)

which respectively represent, if the Fourier basis is used, the estimated average power inside

and outside of the Doppler bandwidth of the channel. Note that the received energy is given by

1The dependence of Ξ with η2
0 and σ2 is not explicitly written so as not to overburden the notation, but must

be kept in mind.
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||y||22 = Bη̂2
in + (K −B)η̂2

out. From (3.18) it follows that

zHD−1
1 z + log |D1| = (K −B)

[
η̂2

out

σ2
+ log σ2

]
+B

[
η̂2

in
K
B η

2
0 + σ2

+ log

(
K

B
η2

0 + σ2

)]
. (3.19)

The minimizer of (3.19), subject to η2
0 ≥ 0 and σ2 ≥ 0, can be seen to be

(η̂2, σ̂2) =

{ (
0 , ϑη̂2

in + (1− ϑ)η̂2
out

)
if η̂2

out ≥ η̂2
in,(

ϑ(η̂2
in − η̂2

out) , η̂
2
out

)
if η̂2

out < η̂2
in,

(3.20)

where

ϑ ,
B

K
(3.21)

is the fractional bandwidth.

The log-GLR thus becomes

log Gx(y) =

{
K · log A.M.

G.M. , if η̂2
in > η̂2

out,

0, otherwise,
(3.22)

where A.M. and G.M. stand for ”arithmetic mean” and ”geometric mean” respectively, and are

defined as

A.M. , ϑη̂2
in + (1− ϑ)η̂2

out, (3.23a)

G.M. , (η̂2
in)ϑ(η̂2

out)
1−ϑ. (3.23b)

It is readily checked that K log A.M.
G.M. depends on the data only through the ratio η̂2

in/η̂
2
out, and

moreover, it is a monotonically increasing function of η̂2
in/η̂

2
out in the range η̂2

in/η̂
2
out ≥ 1. Hence,

the GLR test is equivalent to

η̂2
in

η̂2
out

H1

≷
H0

ν ′, (3.24)

where ν ′ ≥ 1 is a threshold.

This test is intuitively satisfying: the first step in the detection process is to correlate the

received waveform with a scaled version of the transmitted signal, obtaining the vector XHy.

This operation preserves the noise statistics and removes the effects of the signal: now the signal

term allows to directly observe the time variations of the channel. After that, the representation
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of this vector in terms of the orthonormal basis B is obtained as z = BH(XHy). If the BEM

uses the Fourier basis, then z is the DFT of XHy, and η̂2
in, η̂2

out are the result of averaging

the periodogram over the corresponding frequency bins. The GLR test then compares these

two values.

The time-invariant case is recovered by setting B = 1 and B0 = 1√
K

1K . In that case, we

have z0 = 1√
K

1TKX
Hy = 1√

K
xHy, which yields

η̂2
in = |z0|2 =

1

K
|xHy|2 (3.25)

and

η̂2
out =

1

K − 1
[||z||2 − |z0|2] =

1

K − 1
[||y||2 − 1

K
|xHy|2]. (3.26)

Thus, the GLR detector is equivalent to |xHy|2/||y||2 ≷H1
H0
ν ′ for some ν ′, which is the matched

filter detector normalized by the total observed power, which accounts for the lack of knowledge

about the noise variance. Consequently, the GLR test from (3.24) is a generalization of the

matched filter for time-varying channels [Kay, 1998].

3.3 GLR Detector for Unknown CM Signals

Clearly, when x is not known, the GLR test can be written as

G(y) = sup
x∈MK

Gx(y)
H1

≷
H0

ν, (3.27)

with Gx given by (3.22) and with MK , {x ∈ CK : |x [k] | = 1, ∀k} the set of unit-magnitude

signals of length K. Since Gx is a monotonically increasing function of η̂2
in/η̂

2
out, it suffices to

maximize this ratio with respect to x. Moreover, since

η̂2
in

η̂2
out

= (K −B)
η̂2

in

||y||22 −Bη̂2
in

(3.28)

is increasing in η̂2
in, the problem boils down to maximizing η̂2

in. Defining Y , diag {y} enables

us to rewrite (3.18a) as

Bη̂2
in = ||BT

0 Y
Hx||2 = xHCx, (3.29)
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where C , Y B∗0B
T
0 Y

H is K×K positive semidefinite with rank B. Consequently, the problem

reduces to maximizing xHCx subject to the CM constraint x ∈MK :

x̂ = arg sup
x∈MK

xHCx. (3.30)

The problem (3.30) can be solved in closed form when B = 1. In that case, C = ccH

is a rank-1 matrix, where c = Y β∗0. Therefore, xHCx = |cHx|2 ≤ ||c||21, with equality when

∠x [k] = ∠(c)k + C,∀k, with C any real constant. Using the Fourier basis, where
√
Kβ∗0 = 1K ,

the GLR detector becomes that for CM signals in time-invariant channels [Derakhtian et al.,

2009b]. On the other hand, as far as we know no closed-form expression exists for x̂ in (3.30)

when B > 1, which means that the GLR statistic has to be approximated or numerically

evaluated. Both alternatives are discussed next.

3.3.1 Low-Complexity Approximations

We now investigate several approximations and bounds for the objective in (3.30). Remarkably,

all these approaches yield the correct solution to the problem if B = 1, although they are not

necessarily equivalent if B > 1.

Largest Eigenvalue of C

Since ||x||22 = K for all x ∈MK , one can relax the constraint in (3.30) to obtain:

maximize xHCx

s.t. ||x||22 = K.

The maximum is given by λmax(C) · K, where λmax(·) denotes the largest eigenvalue. This

constitutes an upper bound on x̂HCx̂. Hence, one can think of approximating

η̂2
in ≈ η̂2

in,L1 ,
K

B
λmax(C). (3.31)
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`1-Norm of Principal Eigenvector

Since the original problem is easily solvable when B = 1, consider a rank-1 approximation

of C in terms of its principal unit-norm eigenvector v, i.e., C ≈ λmax(C)vvH . This leads to

xHCx ≈ λmax(C) · |vHx|2 ≤ λmax(C) · ||v||21 (3.32)

with equality attained for ∠x [k] = ∠(v)k + C, ∀k. As a result, one can approximate

η̂2
in ≈ η̂2

in,L1n1 ,
1

B
λmax(C)||v||21. (3.33)

Phase Relaxation

By writing x = [eϕ0 , eϕ1 , . . . , eϕK−1 ]T , it is clear that

xHCx =
K−1∑
k=0

K−1∑
l=0

ckle
(ϕl−ϕk) (3.34)

with ckl , (C)k,l. Since C is Hermitian, (3.34) can be rewritten in terms of the elements on

and below the diagonal as

xHCx =
K−1∑
k=0

ckk + 2 Re

{
K−1∑
k=1

k−1∑
l=0

ckle
−ϕkl

}
, (3.35)

where ϕkl , ϕk − ϕl. Although only K degrees of freedom are available to choose the ϕkl,

we can relax this requirement and regard all of the ϕkl, l < k as free parameters, thus having

K(K − 1)/2 degrees of freedom. In doing so, the ϕkl maximizing (3.35) satisfy ϕkl = ∠ckl,

resulting in the following bound:

xHCx ≤
K−1∑
k=0

K−1∑
l=0

|ckl|. (3.36)

Therefore, it is reasonable to approximate

η̂2
in ≈ η̂2

in,PR ,
1

B

K−1∑
k=0

K−1∑
l=0

|ckl|. (3.37)
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Phases of the Principal Eigenvector

If we were to approximate x̂ rather than η̂2
in, an argument similar to the one leading to

η̂2
in,L1 could be applied. If v is the principal eigenvector of C, then

η̂2
in ≈ η̂2

in,PPE ,
1

B
xHPPECxPPE, (3.38)

where the k-th component of xPPE is given by (v)k/ |(v)k|.

Semidefinite Relaxation

As suggested in [Gholam et al., 2011], upon noting that xHCx = Tr
(
CxxH

)
= Tr

(
CX̃

)
,

where X̃ , xxH , one can relax the (non-convex) rank-1 constraint on X̃ to produce the following

semidefinite program (SDP):

maximize Tr
(
CX̃

)
(3.39a)

s.t. diag
{
X̃
}

= 1K (3.39b)

X̃ ∈ S+, (3.39c)

where S+ denotes the cone of positive semidefinite matrices. One can find a solution using any

convex solver, and then retrieve an estimate x ∈ MK from the optimal X̃, e.g., by taking the

phases of its principal eigenvector.

Disappointingly, although two different matrices X̃1 and X̃2 may be very close to the

optimum of (3.39a), the associated vector estimates x1 and x2 may result in considerably

different costs, i.e. xH1 Cx1 may significantly differ from xH2 Cx2. This is illustrated in Figure 3.1,

where the cost of the original non-convex problem is represented vs. the cost of the SDP. Every

cluster of points corresponds to a particular realization of the matrix C, whereas each point is

the result of solving the SDP with a different initialization. The fact that in many instances

the points in each cluster are spread vertically is an indication of the phenomenon described

above. This has an effect on the performance of the resulting detectors, as we have observed via

simulations: the probability of detection strongly depends on the initializations and parameters

of the convex solver, resulting in a quite erratic and unpredictable behavior. For this reason,

this approach will not be pursued further.
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Figure 3.1: Cost of the original problem in terms of the optimal cost of the SDP (3.39a) (K = 32,
B = 9, γ = 3 dB, 30 points/cluster).

3.3.2 Numerical Optimization

Although C is positive semidefinite, and thus xHCx is a convex function of x, the feasible

set of (3.30) is clearly non-convex, which prevents us from using a convex solver. Since the

computational efficiency is a major requirement for the algorithm to be implemented in practice,

one can think of employing a simple method for local search such as a gradient ascent or a fixed-

point iterative algorithm. However, although gradient ascent methods enjoy local convergence

for properly selected step size sequences, the design of those sequences may be tricky. For

this reason, we abandon this approach in favor of fixed-point iterative methods. This class of

methods aim at solving a system of equations by iteratively updating each variable in such a

way that one of the equations is satisfied. In our case, we construct this system by setting the

gradient of the cost equal to zero.

Consider the unconstrained problem that results from substituting x = [eϕ0 , eϕ1 , . . . ,

eϕK−1 ]T in xHCx. Taking the derivatives with respect to ϕ , [ϕ0, ϕ1, . . . , ϕK−1]T yields

∇ϕ = 2 Im {X∗Cx} . (3.40)

Based on this expression, we propose the iterative method listed as Algorithm 3.1, where

cHk denotes the k-th row of C. Several remarks are in order:



3.3 GLR Detector for Unknown CM Signals 71

Algorithm 3.1 Fixed-Point iteration

1: Set initial vector x
2: repeat
3: for k = 0 to K − 1 do
4: Set ϕk = ∠(cHk x)
5: Set x [k] = exp{ϕk}
6: end for
7: until stopping criterion is satisfied
8: Set η̂2

in = 1
Bx

HCx

• One can readily check that the gradient (3.40) vanishes at any fixed point of this iteration.

• No parameter tuning is required.

• The variables ϕk and x [k] are overwritten at each iteration of the outer loop.

• There are two nested loops instead of just one for stability reasons. Each component in x

is updated one at a time rather than all together. In other words, to compute x [k] during

the i-th iteration of the outer loop, the values of x [0] , x [1] . . . x [k − 1] corresponding to

the outer i-th iteration and the values of x [k] , x [k + 1] . . . x [K − 1] corresponding to the

(i−1)-th iteration are used in the right hand side of the expression in line 4. This prevents

oscillations without introducing additional complexity.

• No stability problems have been observed in all our experiments, where the proposed

algorithm invariably converges to a maximum of the original cost.

• A candidate stopping criterion, used in Section 3.5.2, is whether the norm of the gradient

exceeds some certain tolerance ε.

Since the optimization problem is not convex, multiple local optima may exist, which means

that the choice of the initial iterate is critical to find the global maximum. One may attempt to

make that choice following the same lines as in Section 3.3.1. However, none of these approaches

yield valid initializers as seen next. First, the arguments leading to (3.31), (3.33) and (3.37)

merely bound the cost without producing an approximation for x̂. Second, if the matrix B0B
H
0

is real-valued, the vector xPPE used in (3.38) is a saddle point, where the gradient is zero

but the objective is not maximized: indeed, it can be shown that, for real-valued B0B
H
0 , the

gradient vanishes at those CM vectors obtained by retaining the phases of the components of

any eigenvector of C associated with a non-null eigenvalue; and it can be numerically checked

by evaluating the Hessian mattrix that these CM vectors are not, in general, maxima but saddle

points. As pointed out in Section 3.1, B0B
H
0 is real for Fourier bases, which discourages using
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this approach. Finally, the approximation using semidefinite relaxation is not reliable as an

initializer for the reasons discussed there.

Having dismissed all approximations from Section 3.3.1, we must consider other alternatives.

One possibility to obtain an initial estimate for ϕ is to project the solution of the phase-relaxed

problem onto the feasible set. This can be accomplished by forming an overdetermined system

of equations with the relationships ϕkl = ϕk − ϕl, k > l and solving it via LS. Specifically, one

may compute

ϕ̂ = arg inf
ϕ
||Γϕ−ϕPR||2, (3.41)

where ϕPR is a K(K − 1)/2-element vector whose entries are the phases ϕkl = ∠ckl, k > l, and

Γ is a K(K − 1)/2×K matrix whose i-th row is of the form

[ 0 . . . 0 1 0 . . . 0 −1 0 . . . 0 ], (3.42)

where the non-null coefficients are placed in such a way that the relationships ϕkl = ϕk−ϕl, k > l,

are imposed. Note that the sum of the columns of Γ is the zero vector, i.e., Γ1K = 0K(K−1)/2.

This reflects the fact that the relationships above are invariant to any constant added to the

ϕk ∀k. To sidestep this issue, we fix ϕ1 = 0 so that we can drop the first column of Γ and the

first row of ϕ. The resulting Γ has full rank and the solution of (3.41) is unique.

3.4 Performance Analysis

We next characterize the performance of the detector for known CM signals from (3.24). Since

z = BHXHy is zero-mean Gaussian with diagonal covariance D1 given by (3.17), η̂2
in and η̂2

out

are the sum of squared magnitudes of complex zero-mean i.i.d. Gaussian random variables.

Thus, it can be readily checked that:

kin,0 η̂
2
in ∼ χ2 (2B) under H0, where kin,0 , 2B/σ2,

kin,1 η̂
2
in ∼ χ2 (2B) under H1, where kin,1 , 2B/

(
K

B
η2

0 + σ2

)
,

kout η̂
2
out ∼ χ2 (2(K −B)) under H0 and H1, where kout , 2(K −B)/σ2,

where χ2(d) denotes a chi-square distribution with d degrees of freedom. The GLR test statistic

η̂2
in/η̂

2
out is, therefore, the quotient of two independent chi-square random variables, which is
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F -distributed [Papoulis and Pillai, 2002]. Hence, under H0,

kin,0 η̂
2
in/(2B)

kout η̂2
out/(2(K −B))

=
η̂2

in

η̂2
out

∼ F(2B, 2(K −B)),

and, under H1,

kin,1 η̂
2
in/(2B)

kout η̂2
out/(2(K −B))

=
ϑ

γ + ϑ

η̂2
in

η̂2
out

∼ F(2B, 2(K −B)),

where γ and ϑ respectively denote the SNR and fractional bandwidth (see (3.5) and (3.21)). Let

FB,K(x) denote the cumulative distribution function of an F(2B, 2(K − B)) random variable.

Then, the probabilities of detection and false alarm can be written as

PD = 1− FB,K
(

ϑ

γ + ϑ
ν ′
)
, PFA = 1− FB,K

(
ν ′
)
. (3.43)

Eliminating the threshold ν ′ from (3.43) gives the ROC:

PD = 1− FB,K
(

ϑ

γ + ϑ
· F−1

B,K(1− PFA)

)
. (3.44)

Observe that, as expected, the probability of detection is an increasing function of the SNR γ

for fixed PFA.

3.5 Simulation Results and Discussion

Since analytic performance evaluation is only tractable for certain detectors and under simple

scenarios, in this section we assess the performance of the proposed techniques using Monte

Carlo simulation. In our experiments, the transmitted signal is generated as x [k] = eϕk , where

the ϕk are independent and identically distributed random variables with uniform distribution

over (0, 2π). Two flat-fading Rayleigh channel models are used to generate h:

• BEM channel: h is generated using the model from Section 3.1: h is given by h = B0α,

where B0 is the Fourier basis from (3.7) and α is Gaussian distributed with zero mean

and E
{
ααH

}
= η2

0
K
B IB. The parameter B controls the Doppler spread, which is given

by ωd = B−1
2

2π
K — recall that B is assumed an odd integer.

• Jakes model: h is generated using the popular dense scatterer model (also known as

Jakes model) [Hlawatsch and Matz, 2011, Goldsmith, 2005]: the vector h is Gaussian
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Figure 3.2: Comparison between theoretical and Monte Carlo results for several BEM and Jakes
channels (K = 32, γ = −6 dB).

distributed with zero mean and Toeplitz covariance matrix given by

(
E
{
hhH

})
i,j

= J0(ωd(i− j)), (3.45)

where ωd is the Doppler spread of the channel and J0(x) is the following Bessel function:

J0(x) ,
1

π

∫ π

0
e−x cos θdx. (3.46)

On the sensor side, the test statistics are evaluated using the Fourier basis from Section 3.1,

where the number of basis functions, denoted as B, is selected based on prior knowledge. To

separately investigate the influence of each parameter, we start by assuming that the sensor

exactly knows the Doppler spread ωd of the channel and selects B = 1 + dKωdπ e. Later on, we

will consider the effects of using different values of B.

3.5.1 Detector for Known CM Signals

We first consider the detector for known CM signals presented in Section 3.2. The ROC of this

detector is shown in Figure 3.2 for both channel models and several Doppler spreads. For BEM
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channels, the observations follow the same model as assumed by the detector, and hence the

simulation results (MC) perfectly agree with (3.44) (Th.). As expected, when the observations

are generated using the Jakes model, the performance degrades, although just slightly. This

effect is also illustrated in Figure 3.3, where the probability of detection is represented vs. the

SNR for fixed false alarm rate PFA = 0.1. The SNR penalty incurred with Jakes channels is in

the order of 0.5 dB for this example.

The impact of the Doppler spread on the performance is shown in Figure 3.4. It is seen that

PD decreases as ωd becomes larger, even when the latter is perfectly known. In fact, for ωd = π,

which is the largest Doppler spread possible, one has PD = PFA and the detector becomes useless.

This is because in that case the distributions of y under both hypotheses coincide.

To analyze the case in which the actual value of the Doppler spread is not available to

the detector, we show in Figure 3.5 the probability of detection vs. the actual Doppler spread

for several values of B used in the detector (Ass. B). Although the matched filter detector

— that is, the GLR detector with B = 1 — is the best choice for time-invariant channels, its

performance quickly degrades as soon as fading is introduced. As intuition suggests, Figure 3.5

shows that overestimating the true Doppler spread is less detrimental than underestimating it.

3.5.2 Detectors for Unknown CM Signals

We now consider detection of unknown CM waveforms and compare the low-complexity ap-

proximations from Section 3.3.1 and the fixed-point iteration with phase relaxation-based ini-

tialization (PRFP) from Section 3.3.2. For the latter, we use a tolerance value ε = 10−3 in the

stopping criterion.

Figures 3.6 and 3.7 show the ROC of the proposed detectors for a BEM channel with B = 5

and B = 17, respectively. The curve labeled as ”KS” corresponds to the detector for known

CM signals from Section 3.2 and provides a performance upper bound for the other detectors.

As expected, the PRFP detector exhibits the best performance among those detectors without

knowledge of the signal, although this is at the expense of the highest computational cost. The

low complexity approximations are seen to perform quite similarly and suffer from a larger

performance loss relative to PRFP as B (and hence the Doppler spread) is increased.

In order to illustrate the influence of the SNR, Figures 3.8 and 3.9 show the probability of

detection for fixed false alarm rate vs. the SNR γ in the same settings as Figures 3.6 and 3.7,

respectively. Note that the performance loss incurred by the PRFP detector due to the lack of

knowledge about the transmitted signal is approximately 10 dB. We also note the presence of

a performance ceiling for the low-complexity approximations, that is, for given K and B, there
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exists an upper bound on PD that cannot be exceeded even if the SNR becomes arbitrarily large.

Finally, Figure 3.10 uses the PRFP detector to illustrate two different effects. First, as in

Section 3.5.1, it is exemplified using the Jakes channel that the scheme is robust to mismatches

in the channel model. Second, the influence of the value of B assumed by the detector is similar

to that observed in Figure 3.5.

3.6 Conclusions

We have proposed several schemes for activity detection in time-varying channels when the

transmitted signal is known to have a constant magnitude. Channel variations are captured by

a BEM with random coefficients. If the transmitted sequence is known, then the GLR detector

is a generalization of the matched filter detector that compares the energy measured inside

and outside of the Doppler bandwidth of the channel. If the transmitted sequence is unknown,

then the GLR detector requires the solution of a non-convex problem. Several low-complexity

approximations were proposed along with a fixed-point method that finds a local optimum of

that problem.

It has been observed through simulations that the probability of detection of the low-

complexity approximations remains bounded away from 1 even when the SNR goes to infinity,

an effect which is more pronounced as the Doppler spread of the channel increases. We have

also observed the importance of not underestimating the Doppler spread of the channel.

This work of this chapter has been presented in part in the 37th IEEE International Con-

ference on Acoustics, Speech and Signal Processing (ICASSP 2012) [Romero et al., 2012a] and

in the 3rd International Workshop on Cognitive Information Processing (CIP 2012) [Romero

and López-Valcarce, 2012].
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Chapter 4

Detection of Gaussian Signals in

Time-Varying Channels

In this chapter, we consider the problem of detecting the activity of primary signals with Gaus-

sian distribution observed in noise of unknown variance after passing through a frequency-flat

and time-varying channel. We start considering three single-antenna detectors, which arise from

three alternative formulations of the problem. First, we derive the GLR detector for the case

where the flat-fading channel is deterministic and unknown and has no temporal structure. Sec-

ond, we attempt to find optimal invariant tests under the group of positive scalings by deriving

the likelihood ratio of the maximal invariant statistic; but it is found that no such a test exists,

even in the low-SNR scenario. Inspired by the derivation of this likelihood ratio, we propose

two different detectors: the first assumes a prior distribution for the channel taps and derives

a test from Bayesian considerations, whereas the second models the channel using a BEM with

unknown deterministic coefficients and proceeds in a GLRT-like fashion.

We then consider activity detection using sensors with multiple antennas. Time variations

are captured by a BEM where the unknown deterministic coefficients are decoupled from one

antenna to another [Ma and Giannakis, 2002]. As opposed to Chapter 3, in this approach

the basis vectors need not be orthogonal. One may consider, for instance, discrete prolate

spheroidal sequences [Zemen and Mecklenbrauker, 2005], complex exponentials [Giannakis and

Tepedelenlioǧlu, 1998,Tsatsanis and Giannakis, 1996b,Leus, 2004], Karhunen-Loeve orthogonal

expansion functions [Senol et al., 2005] or simply polynomials [Hijazi and Ros, 2009]. The GLR

test requires the ML estimates of the noise power and BEM coefficients, which must be obtained

numerically. To this end, we propose the direct application of the expectation-maximization

(EM) algorithm.
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4.1 Observation Model

Let us start by generalizing the model from Chapter 3 to the multiantenna scenario. Suppose

that a spectrum sensor is monitoring a particular frequency channel using M antennas and that

the m-th antenna receives the signal

ym = hm · x+ wm, (4.1)

where wm and hm respectively represent the noise process at them-th antenna and the frequency-

flat channel between the single-antenna primary user and the m-th antenna of the spectrum

sensor. The K samples obtained from each antenna can be arranged in the matrix Y ∈ CM×K ,

where the m-th row corresponds to the m-th antenna and the k-th column corresponds to the k-

th time instant. Similarly, we form the matrices H and W , whose (m, k) entries are respectively

the samples hm[k] and wm[k], and the vector x, whose k-th entry is the sample x [k]. Thus, we

may write

Y = HX +W , (4.2)

where X , diag {x} ∈ CK×K . It is assumed that the samples x [k] form a sequence of in-

dependent complex Gaussian circularly symmetric random variables with zero mean and unit

variance, i.e., x ∼ CN (0, IK) (see motivation in Section 1.1.1). The noise is assumed spatially

and temporally white, independent of x [k], where the samples wm[k] are independent and iden-

tically distributed with wm[k] ∼ CN (0, σ2). The noise power σ2 is regarded as an unknown

deterministic parameter.

It is also convenient to define the column-wise vectorizations y , vecY and w , vecW

so that we can rewrite (4.2) as

y = Gx+w (4.3)

where G ∈ CMK×K is given by

G ,


g [0] 0 . . . 0

0 g [1] . . . 0
...

...
. . .

...

0 0 . . . g [K − 1]

 , (4.4)

with g [k] ∈ CM representing the k-th column of H. Thus, the covariance matrix of the obser-
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vations can be written as

Ξ , E
{
yyH

}
= GGH + σ2IMK , (4.5)

which means that the probability density function of y is simply

pH1(y;G, σ2) =
exp

{
−yHΞ−1y

}
πKM |Ξ|

. (4.6)

When no primary signal is present, the probability density function reduces to pH0(y;σ2) ,

pH1(y;G = 0, σ2). With these definitions in mind, one can pose the activity detection problem

as the following test:

H0 : Y = W , H1 : Y = HX +W . (4.7)

The detectors to be derived based on this model exploit the spatial structure and time

variations of the channel. If the sensor has a single antenna and the channel is time-invariant,

it can be seen from (4.5) and (4.6) that GGH and σ2 are not identifiable, which in turn means

that the two hypotheses in (4.7) are indistinguishable. Therefore, the proposed schemes will

benefit from time variation.

4.2 Detectors for Single-Antenna Sensors

Suppose that M = 1 and form the vector

η , [|h0[0]|2, . . . , |h0[K − 1]|2]T . (4.8)

Then, the covariance matrix of the observations can be written as

Ξ = diag {η}+ σ2IK , (4.9)

and the probability density function from (4.6) becomes

pH1(y;η, σ2) =
1

πK
∏K−1
k=0 (|h0[k]|2 + σ2)

exp

{
−
K−1∑
k=0

|y0[k]|2

|h0[k]|2 + σ2

}
. (4.10)

We next derive several detectors for single-antenna sensors following two philosophies. First,

we rely on a GLR approach to develop a detector for rapidly-changing channels. Second, we
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attempt to find an optimal test within the family of tests that are invariant to positive scalings.

Since no such test exists, we consider two alternative approaches that result in usable detectors.

4.2.1 Generalized Likelihood Ratio Test

The GLR test in the single-antenna case is given by

G(y) =

sup
σ2≥0

pH0(y;σ2)

sup
η∈E,σ2≥0

pH1(y;η, σ2)

H0

≷
H1

ν, (4.11)

where E denotes the set of feasible channel power gain vectors η allowed by the model; for

instance, the set of vectors allowed by a BEM.

It can be easily seen that the maximizer of the density in the numerator, i.e., the ML

estimate of σ2 under H0, is given by σ̂2 = 1
K

∑K−1
k=0 |y0[k]|2. To obtain the values of η and σ2

maximizing the density in the denominator, i.e., the ML estimates under H1, one must solve:

minimize
η∈E,σ2

K−1∑
k=0

[
log(|h0[k]|2 + σ2) +

|y0[k]|2

|h0[k]|2 + σ2

]
, (4.12)

which is not convex and therefore difficult to solve in general. In Section 4.3, we will develop an

EM method, which can be used with single-antenna or multiantenna sensors, to find a solution

to this problem numerically when the channel follows a BEM. Here, we will focus on the limiting

case without any particular temporal structure, i.e., E = RK+ . Specifically, it can be seen that

the ML estimates in that scenario satisfy

|ĥ0[k]|2 + σ̂2 = |y0[k]|2, k = 0, . . . ,K − 1, (4.13)

and result in the following GLR statistic (∝ denotes equality up to a monotonically increasing

transformation not depending on the observations)

G(c) =

(∏K−1
k=0 |y0[k]|2

)1/K

1
K

∑K−1
k=0 |y0[k]|2

∝ T AM/GM(c) ,
K−1∏
k=0

c [k] , (4.14)

where

c [k] ,
|y0[k]|2∑K−1

k′=0 |y0[k′]|2
(4.15)
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and

c , [c [0] , . . . , c [K − 1]]T . (4.16)

Recall that two statistics related by a monotonically increasing transformation not depending

on the observations define equivalent tests.

From (4.14), it follows that the GLR test computes the geometric over arithmetic mean ratio

of the instantaneous power and compares the result against a threshold. This is the well-know

Bartlett test [Bartlett, 1937] for equality of variances. Ratios of this kind are also encountered

in other contexts under the names of spectral flatness measure or Wiener entropy [Johnston,

1988]. Note that the GLR test rejects the null hypothesis H0 for low values of G(c) in (4.14),

which satisfies 0 ≤ G(c) ≤ 1. The exact and asymptotic distributions of G can be obtained as

particular cases of the results in [Glaser, 1976].

4.2.2 Towards Locally Optimal Invariant Tests

Although the GLR approach usually results in simple and intuitive tests with acceptable per-

formance, it is not generally UMP [Kay, 1998, Lehmann and Romano, 2005, Scharf, 1991] (see

Section 1.1.1). In fact, a UMP test seldom exists. We next pursue a different approach, where

an optimal test is sought within a constrained family (see Section 1.1.1). Specifically, we focus

on the class of tests which are invariant under scaling transformations.

The most powerful member of the family of invariant tests, if exists, is called UMP invariant

(UMPI), and it can be seen that its statistic is a maximal invariant (see [Lehmann and Romano,

2005]; also the Appendix). Although in order to find a UMPI test one can seek a maximal

invariant statistic and then compute its likelihood ratio, this operation is considerably involved in

most cases. A simpler approach relies on the application of Wijsman’s theorem [Wijsman, 1967],

which states that, under mild assumptions, this likelihood ratio can be obtained by integrating

the densities under both hypotheses over the group of transformations defining the problem

invariances. Since, in this chapter, our interest will center on invariance to positive scalings (see

the Appendix for a more general case), the likelihood ratio of the maximal invariant statistic

will be given by

L(y;η, σ2) =

∫∞
0 pH1(ay;η, σ2)a2Kda∫∞

0 pH0(ay;σ2)a2Kda
, (4.17)

where a ∈ R+ is a scale factor and a2K represents the Jacobian of the transformation. Since

L is invariant to scalings of y, one can scale this vector by a factor of 1/
√∑

k |y0[k]|2 without

changes in L. After doing this operation, it can be seen that the denominator of (4.17) becomes
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a constant and, consequently,

L(y;η, σ2) = L(c;η, σ2) ∝
∫ ∞

0

K−1∏
k=0

a2

σ2 + |h0[k]|2
exp

{
− a2c [k]

σ2 + |h0[k]|2

}
da, (4.18)

where c has been defined in (4.16). Using the change of variable a← σa, it follows that

L(c;η, σ2) ∝ L′(c;γ) ,
∫ ∞

0

K−1∏
k=0

a2

1 + γ [k]
exp

{
− a2c [k]

1 + γ [k]

}
da, (4.19)

where

γ [k] ,
|h0[k]|2

σ2
(4.20)

and

γ , [γ [0] , . . . , γ [K − 1]]T . (4.21)

Since the tests defined by the right-hand side of (4.19) for all values of the unknown parameter

γ are not equivalent, we conclude that there exists no UMPI test [Lehmann and Romano,

2005,Scharf, 1991] associated with this invariance group.

However, there is still the possibility that if we focus on the case of close hypotheses, which

in this setting means low SNR (γ ≈ 0), a locally most powerful invariant (LMPI) test may exist.

To find it, we approximate the statistic L′ in (4.19) using a second-order Taylor expansion with

respect to γ. This operation yields

L′(c;γ) ≈
∫ ∞

0
a2Ke−a

2
Ψ(a, c,γ)da, (4.22)

where

Ψ(a, c,γ) , 1 + (a2c− 1)Tγ

+
1

2
γT
[
(a2c− 1)(a2c− 1)T − diag

{
a2c− 1

}]
γ. (4.23)

Since this expression still depends on unknown parameters, we also conclude that no LMPI test

exists for this invariance group. A more in-depth study of the existence of (locally) optimal

invariant tests in more general scenarios is provided in the Appendix. In the rest of this section,

we propose two tests based on the local approximation (4.22): The first one introduces a prior

distribution on the channel and proceeds in a Bayesian-like fashion, whereas the second one
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assumes a BEM for the channel and proposes a detector inspired by the ML philosophy.

BAYESIAN APPROACH

The introduction of a prior distribution on the channel coefficients clearly induces a prior on γ.

If pγ denotes the density of such a prior distribution and Eγ{Ψ} ,
∫

Ψ(a, c,γ ′)pγ(γ ′)dγ ′, one

may consider using the following test statistic:

T Bayes(c) , Eγ{L′(c;γ)} =

∫ ∞
0

a2Ke−a
2

Eγ{Ψ}da. (4.24)

We now assume that µη , E {η} is proportional to the vector of all ones and Ξη , E{(η −
µη)(η − µη)T } has a constant diagonal, which is the case, for instance, if the sequence of

instantaneous channel power gains |h0[k]|2 is a wide-sense stationary process. Taking these two

facts into account and noting from (4.15) and (4.16) that cT1 = 1, we find that

Eγ{Ψ(a, c,γ)} ∝ a2cTΞηc− 21TΞηc. (4.25)

Thus, T Bayes(c) is a linear combination of a quadratic and a linear term:

T Bayes(c) ∝ v2c
TΞηc− 2v11

TΞηc. (4.26)

where v2 =
∫∞

0 a2K+2e−a
2
da and v1 =

∫∞
0 a2Ke−a

2
da. The first constant can be computed as

v2 =

∫ ∞
0

a2K+2e−a
2
da (4.27a)

=
1

2

∫ ∞
−∞

a2K+2e−a
2
da (4.27b)

=

√
π

2
Ea{a2K+2} (4.27c)

=

√
π

2K+2
(2K + 1)!!, (4.27d)

where (4.27b) follows from the fact that the integrand is an even function of a, the expectation

in (4.27c) is with respect to a random variable a ∼ N (0, 1/2), and !! denotes double factorial.1

Applying a similar procedure to obtain v1 yields v1 = (1/2)(2K + 1)v2. Therefore,

T Bayes(c) ∝ cTΞηc− (2K + 1)1TΞηc. (4.28)

1Recall that the double factorial of a positive odd integer n is the product of all odd integers between 1 and
n inclusive.
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In the limiting case of independent channel gains h0[k], where the matrix Ξη has the form

Ξη = λIK with λ a positive constant, we obtain

T Bayes(c) ∝ T GK(c) , ‖c‖22 =
‖y‖44
‖y‖42

, (4.29)

where ”GK” stands for generalized kurtosis and whose meaning is explained below.

Interestingly, this test statistic was obtained in the context of testing for homogeneity

of covariance matrices following a completely different approach [Nagao, 1973] (see also the

Appendix). The test statistic can be seen as a monotone function of the sample excess kur-

tosis [Ollila et al., 2011] and exploits the fact that the observations y0[k] follow a Gaussian

distribution under the null hypothesis H0 and a leptokurtic distribution (with kurtosis κ =

3Var[|h0[k]|2]/E2{|h0[k]|2} > 0) under the alternative H1.

DETERMINISTIC APPROACH VIA ORTHONORMAL BEM

Let us decompose the vector hH0 , [h0[0], . . . , h0[K − 1]], which collects the coefficients of the

zeroth row of H, as h0 = ‖h0‖2h̃0, or equivalently, γ = ‖γ‖1γ̃, where ‖γ̃‖1 = γ̃T1 = 1. Noting

that in the low-SNR scenario (‖γ‖1 � 1) the quadratic term in (4.23) is negligible allows us to

write

Ψ(a, c, ‖γ‖1, γ̃) ≈ 1 + ‖γ‖1(a2c− 1)T γ̃. (4.30)

To capture the structure present in the time-variations of the channel, assume that h0 follows

a BEM with unknown deterministic parameters. Specifically, suppose that h̃0 is given by h̃0 =

B0α̃0, where B0 has orthonormal columns and α̃0 is an unknown deterministic vector satisfying

‖α̃0‖2 = 1. To maximize Ψ with respect to α̃0, note that

Ψ(a, c, ‖γ‖1, γ̃) ∝ cT γ̃ = α̃H0 B0
HCB0α̃0, (4.31)

where C = diag(c). Thus, we can see that our problem reduces to the maximization of the

correlation between the sequences of normalized instantaneous power observations c [k] and the

instantaneous SNR γ [k], which resembles the idea of subspace matched detectors [Scharf, 1991].

Clearly, the maximizer of (4.31) with respect to α̃0 is given by the principal eigenvector of

B0
HCB0, and results in the test statistic

T EV(c) = λmax

(
B0

HCB0

)
. (4.32)
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Note that this test decides H1 for large values of T EV and, in the limiting case with no temporal

channel structure (with B0 a complete basis), the statistic reduces to the largest element of c.

4.3 Detectors for Multiantenna Sensors

In this section, we rely on a BEM with unknown deterministic coefficients to derive a GLR

detector. It will be shown that such a detector cannot properly operate if the channel has no

structure, and alternative schemes will be discussed for such a scenario.

4.3.1 Generalized Likelihood Ratio Test

In the BEM adopted in this section, a different collection of coefficients captures the time

variations of the channel at each antenna [Ma and Giannakis, 2002]. That is, if hHm denotes the

m-th row of H, we apply the expansion

hm =
B−1∑
b=0

βbαb,m, (4.33)

where βb ∈ CK is the b-th basis vector and αb,m is the corresponding coefficient, regarded as

an unknown deterministic parameter. Expression (4.33) can also be written as hm = B0αm,

where B0 = [β0,β1, . . . ,βB−1] ∈ CK×B and αm = [α0,m, α1,m, . . . , αB−1,m]T ∈ CB or, more

compactly, as HH = B0A, where A = [α0,α1, . . . ,αM−1] ∈ CB×M . The GLR statistic can

therefore be written as

G(y) =

sup
A,σ2≥0

pH1(y;A, σ2)

sup
σ2≥0

pH0(y;σ2)
. (4.34)

It can be easily seen that the maximizer of the denominator, i.e., the ML estimate of σ2 under

H0, is given by σ̂2 = (MK)−1||y||2 = (MK)−1 Tr
(
Y Y H

)
. On the other hand, the maximizers

of the numerator, i.e., the ML estimates of A and σ2 under H1, cannot be obtained in closed-

form, to the best of our knowledge. For this reason, we next consider an EM method capable of

computing the pair θ , (A, σ2) numerically.
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4.3.2 EM algorithm

The EM algorithm is an iterative method proposed by Dempster et al. [Dempster et al., 1977]

for the numerical computation of ML estimates. It enjoys, as its most appealing property, local

convergence. Moreover, as opposed to methods like gradient descent, no parameter needs to be

tuned. The key observation is that optimizing the numerator of (4.34) with respect to θ would

be much easier if we knew the transmitted sequence x. We thus may form the so-called complete

data vector z:

z ,

[
x

y

]
=

[
0K IK

IMK G

][
w

x

]
. (4.35)

This vector is clearly Gaussian distributed with probability density function

p(z; θ) =
exp

{
−zHΞ−1

z z
}

πK(M+1)|Ξz|
, (4.36)

where

Ξz , E
{
zzH

}
=

[
IK GH

G σ2IMK +GGH

]
. (4.37)

Note that p(z; θ)is clearly related to the numerator of (4.34) via∫
p(z; θ)dx = pH1(y; θ). (4.38)

Given a guess
¯
θ for the vector of true parameters, every iteration of the EM algorithm ob-

tains a refined estimate θ∗ as θ∗ = arg supθ J(θ|̄θ) (maximization step), where J(θ|̄θ) ,

E {log p(z; θ)|y;
¯
θ} (expectation step). This procedure is repeated by taking the output θ∗ of

each iteration as the input
¯
θ of the next one. In the sequel, we will describe the operations

performed in each iteration using the under-bar notation to represent the input parameters and

the asterisk notation to represent the output parameters.

EXPECTATION STEP

In view of (4.36), it is clear that the expectation in J(θ|̄θ) can be expanded as

J(θ|̄θ) = −K(M + 1) log π − log |Ξz| − E
{
zHΞ−1

z z|y;
¯
θ
}
. (4.39)
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On the other hand, using the properties of the Schur complement [Bernstein, 2009] we find that

|Ξz| = σ2MK and

Ξ−1
z =

1

σ2

[
σ2IK +GHG −GH

−G IMK

]
. (4.40)

Combining these expressions we obtain, after some algebra,

J(θ|̄θ) ∝ −MK log σ2 −
Tr
(
GHGΥx|y

)
− 2 Re

{
µHx|yG

Hy
}

+ yHy

σ2
(4.41)

where Υx|y = E
{
xxH |y,

¯
θ
}

and µx|y = E {x|y,
¯
θ}. Since w and x are independent and thus

jointly Gaussian, the values of Υx|y and µx|y can be easily computed using (4.35) and [Kay,

1993, Sec. 10.5]; on the one hand,

µx|y =
¯
GH(

¯
σ2IMK +

¯
G

¯
GH)−1y. (4.42)

Applying the matrix inversion lemma [Bernstein, 2009], it follows that

(
¯
σ2IM +

¯
g [k]

¯
gH [k])−1 =

1

¯
σ2

[
IM − ¯

g [k]
¯
gH [k]

¯
σ2 + ||

¯
g [k] ||2

]
, (4.43)

which means that (4.42) becomes

µx|y = (
¯
σ2IK +

¯
GH

¯
G)−1

¯
GHy. (4.44)

For convenience, let us also define Dx|y = diagµx|y and

U =


y [0] 0 . . . 0

0 y [1] . . . 0
...

...
. . .

...

0 0 . . . y [K − 1]

 , (4.45)

where y [k] is the k-th column of Y . Then, it is clear that

Dx|y = (
¯
σ2IK +

¯
GH

¯
G)−1

¯
GHU . (4.46)

On the other hand

Υx|y = Ξx|y + µx|yµ
H
x|y, (4.47)
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where [Kay, 1993, Sec. 10.5]

Ξx|y = E
{

(x− µx|y)(x− µx|y)H |y,
¯
θ
}

= IK −
¯
GH(

¯
σ2IMK +

¯
G

¯
GH)−1

¯
G, (4.48)

but, using (4.43) again, (4.48) simplifies to

Ξx|y =
¯
σ2(

¯
σ2IK +

¯
GH

¯
G)−1, (4.49)

which is much easier to compute. Finally, since the cost function J(θ|̄θ) only depends on the

values on the diagonal of Υx|y, we will replace this matrix with

Υ̃x|y , Ξx|y +Dx|yD
H
x|y, (4.50)

which is equal to Υx|y on the diagonal and zero elsewhere.

MAXIMIZATION STEP

In this section, we shall maximize (4.41) with respect to σ2 and G, subject to the constraints

that σ2 ≥ 0 and H = AHBH
0 for some A. For a given G, the maximizer with respect to σ2 is

σ2
∗ =

Tr
(
GHGΥ̃x|y

)
− 2 Re

{
µHx|yG

Hy
}

+ yHy

MK
(4.51)

and results in

sup
σ2

Q(θ|̄θ) ∝ −Tr
(
GHGΥ̃x|y

)
+ 2 Re

{
µHx|yG

Hy
}
, (4.52)

which, denoting the m-th row of Y by yHm, can be expressed as

sup
σ2

Q(θ|̄θ) ∝ −
M−1∑
m=0

[
hHmΥ̃x|yhm − 2 Re

{
yHmD

H
x|yhm

}]
. (4.53)

Recalling that hm = B0αm enables us to rewrite the right hand side as

−
M−1∑
m=0

[
αHmB

H
0 Υ̃x|yB0αm − 2 Re

{
yHmD

H
x|yB0αm

}]
. (4.54)
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Maximizing this expression with respect to αm yields

αm,∗ = (BH
0 Υ̃x|yB0)−1BH

0 Dx|yym (4.55)

or, alternatively,

A∗ = (BH
0 Υ̃x|yB0)−1BH

0 Dx|yY
H . (4.56)

The resulting EM method is summarized as Algorithm 4.1.

Algorithm 4.1 Expectation-Maximization

Initialize
¯
σ2 and

¯
H

while stopping criterion==FALSE do
• E-STEP:
Dx|y = (

¯
σ2IK +

¯
GH

¯
G)−1

¯
GHU

Υ̃x|y =
¯
σ2(

¯
σ2IK +

¯
GH

¯
G)−1 +Dx|yD

H
x|y

• M-STEP:
H∗ = Y DH

x|yB0(BH
0 Υ̃x|yB0)−1BH

0

σ2
∗ =

1

MK
Tr
(
GHGΥ̃x|y − 2 Re

{
DH
x|yG

HU
}

+UHU
)

• UPDATE:

¯
σ2 ← σ2

∗

¯
H ←H∗

end while

INITIALIZATION

The EM iteration presented above can be initialized in a number of different ways. Fortu-

nately, we have observed in all our experiments that the detection performance does not depend

meaningfully on the particular choice among those described next.

One possibility arises by assuming that X = IK , which implies that the minimum-variance

unbiased estimate for A is given by
¯
A = (BH

0 B0)−1BH
0 Y

H . A different option is to assume

that the channel is time invariant: if β0 ∝ 1K , then A is of the form A = [α0,0, . . . ,0]H , which

implies that the ML estimate of α0 is given by α̂0 = v · v, where v is a constant depending on

the trace and largest eigenvalue of the spatial sample covariance matrix Ŝ , Y Y H/K and v is

the principal eigenvector [Besson et al., 2006,Taherpour et al., 2010,Wang et al., 2010].
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As an initial value for σ2, it seems reasonable to take

¯
σ2 = max

[
ε,
||Y ||2F − ||B0

¯
A||2F

MK

]
, (4.57)

where ε is a small positive constant, required to avoid negative variance estimates.

4.3.3 Rapidly-changing Channels

Let us consider the scenario where the channel has no known structure to exploit, which occurs

for instance when B = K in the BEM above. In that case, we have the following result:

Proposition 4.1. Let M > 1. If the channel is deterministic with no structure, that is, the

only information available about H is that it is contained in CM×K , then, with probability one,

the ML estimates of g [k] and σ2 under hypothesis H1 satisfy

||ĝ [k] ||2 = ||y [k] ||2, k = 0, . . . ,K − 1, (4.58)

σ̂2 = 0 (4.59)

and the GLR statistic becomes G(y) =∞.

Proof. See Appendix 4.A.

Consequently, in such a case the GLR test decides H1 with probability one irrespective of

the observations, which renders this detector useless. However, this phenomenon is not exclusive

to the case without structure: it takes place, for example, whenever we use our multiantenna

BEM and B is large enough. To see that, we note that the same arguments used to establish

Proposition 4.1 (see Appendix 4.A) can be used to conclude that the GLR statistic becomes

infinite when M > 1 and the channel structure is such that the expression

||y [k] ||2 = σ2 + ||g [k] ||2 (4.60)

is satisfied for some σ2 ≥ 0 and some candidate channel matrix G as in (4.4). To show that

this is possible even for B < K, let us invoke the well-known Fejer-Riesz spectral factorization

theorem [Papoulis, 1977]:

Theorem 4.1. Let B̃ be a nonnegative integer and let

V (eω) ,
2B̃∑

k=−2B̃

v [k] e−ωk (4.61)
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be a function taking nonnegative values in 0 ≤ ω < 2π. Then, there exists a function

H̃(eω) =

B̃∑
b=−B̃

h̃ [b] e−ωb (4.62)

such that V (eω) = |H̃(eω)|2 for all ω.

Let σ2 be such that ||y [k] ||2− σ2 ≥ 0 for all k and assume that there exist M nonnegative

functions of the form

V m(eω) ,
2B̃∑

k=−2B̃

vm [k] e−ωk (4.63)

satisfying

||y [k] ||2 − σ2 =
M−1∑
m=0

V m(e
2π
K
k) (4.64)

for k = 0, . . . ,K − 1. Then, according to Theorem 4.1, there exist M functions

H̃m(eω) =

B̃∑
b=−B̃

h̃m [b] e−ωb, m = 0, . . . ,M − 1 (4.65)

satisfying that |H̃m(eω)|2 = V m(eω) for all ω and, in particular, |H̃m(e
2π
K
k)|2 = V m(e

2π
K
k) for

k = 0, . . . ,K − 1. In that case, (4.64) becomes

||y [k] ||2 − σ2 =

M−1∑
m=0

|H̃m(e
2π
K
k)|2. (4.66)

Now recall that g [k] , [(H)0,k, . . . , (H)M−1,k]
T . Thus, if there exists a candidate channel

matrix H satisfying (H)m,k = H̃∗m(e
2π
K
k), the condition (4.60) holds and the GLR becomes

infinite. As shown next, this is possible when H follows a BEM HH = B0A if B0 contains the

B = 2B̃+ 1 columns of the Fourier matrix with lowest frequencies (see (3.7) and (3.8)). In that
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case, we find that

(H)∗m,k =
1√
K

[
e−

2π
K
B̃kαB̃+1,m + e−

2π
K

(B̃−1)kαB̃+2,m + . . .+ e−
2π
K
kαB−1,m

+ α0,m + e
2π
K
kα1,m + e

2π
K

2kα2,m + . . .+ e
2π
K
B̃kαB̃,m

]

=
B̃∑
b=1

αB−b,m√
K

e−
2π
K
bk +

0∑
b=−B̃

α−b,m√
K

e−
2π
K
bk. (4.67)

Comparing (4.65) and (4.67), it follows that one can obtain H̃∗m(e
2π
K
k) = (H)m,k by setting

(A)b,m = αb,m =


√
K · h̃m [−b] if b = 0, . . . , B̃
√
K · h̃m [B − b] if b = B̃ + 1, . . . , B − 1.

(4.68)

To sum up, when the nonnegative functions V m(eω) satisfying (4.64) exist, the condition

(4.60) is satisfied and G(y) =∞. Thus, the question is under which conditions the V m(eω) exist.

Clearly, they exist with nonzero probability whenever 4B̃ + 1 = 2B − 1 ≥ K, which amounts to

saying that B ≥ (K+1)/2. As seen in Proposition 4.1, they exist with probability one if B = K.

In between these two values, these functions exist with a certain nonzero probability, whereas

for B < (K + 1)/2 they exist with probability zero. Since the existence of those functions is

not, in principle, connected with the presence of a primary user, this effect is detrimental for

the detection performance, which discourages the use of the GLR test for channels with little

or no structure. In other words, the GLR test can only properly exploit the structure of the

channel if it is sufficiently parsimonious, but not if the channel is unstructured or, equivalently,

rapidly-changing. Devising detectors for this class of channels requires further research in this

direction, which we leave as a future line.

In this regard, we point out that possible approaches to activity detection when the channel

structure is completely unknown may consider applying tests for homogeneity of covariance: note

that, if H is assumed deterministic, the covariance matrices of the columns of Y in (4.2) are all

the same under H0, while they differ under H1. Thus, the presence of a primary signal may be

detected by looking at this feature. Although we will not embark in the task of applying those

tests to activity detection, in the Appendix we move a step forward in this research direction by

deriving (locally) optimal invariant tests for homogeneity of covariance. As mentioned earlier,

this class of tests may be of paramount importance in practical applications. Other tests that

can be used in this context are also reviewed in the Appendix.
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Figure 4.1: Probability of detection vs. the number of basis functions used in the BEM model
when PFA = 0.10 (K = 128, γ = 0 dB).

4.4 Simulation Results

In this section, we provide a Monte Carlo simulation study that illustrates the performance

of the proposed methods. The transmitted signal and the noise samples are generated as de-

scribed in Section 4.1. On the other hand, the channel is generated using the BEM model from

Section 4.3.1, where hm = B0αm. The basis matrix B0 is composed of the B columns with

lowest frequency in the unitary Fourier matrix (see (3.7)), which results in a Doppler spread of

ωd = B−1
2

2π
K . The coordinate vectors αm are generated as independent random vectors with

distribution αm ∼ CN (0, η2
0
K
B IB), which implies that hm is Rayleigh. Since

E
{
||HX||2F

}
= E

{
Tr
(
AHBH

0 XX
HB0A

)}
(4.69a)

= E
{

Tr
(
BH

0 XX
HB0AA

H
)}

(4.69b)

=
η2

0KM

B
Tr
(
BH

0 IKB0IB
)

(4.69c)

= η2
0KM, (4.69d)

the average SNR per antenna is given by

γ ,
E
{
||HX||2F

}
E
{
||W ||2F

} =
η2

0KM

σ2KM
=
η2

0

σ2
. (4.70)
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Figure 4.2: Probability of detection vs. SNR when PFA = 0.10. On the left, the number of basis
functions B is set to 3, whereas on the right it is set to 32 (K = 32).

In order for our results to be as general as possible, a different H is generated at every

Monte Carlo run. This operation does not affect the probability of false alarm and naturally

averages the probability of detection over the different realizations of the channel.

We first perform a few simple experiments to assess the performance of the AM/GM, GK

and EV detectors from Section 4.2. Note that, among these detectors, only EV requires the

knowledge of B; the others assume that the channel is fast-varying. Figure 4.1 depicts the

probability of detection vs. the number of basis functions B when PFA = 0.1. As expected,

both the GK and AM/GM detectors improve for larger Doppler spreads. On the other hand,

the EV is negatively affected by fast variations of the channel. Interestingly, for a large Doppler

spread, the probability of detection for AM/GM and EV is roughly the same, but both detectors

are outperformed by GK: this effect can be intuitively explained by noting that the product of

two Gaussian distributed random variables — in particular h and x — is leptokurtic and GK

exploits precisely this feature (see Section 4.2.2).

Another interesting effect is observed in Figure 4.2, which represents the probability of

detection vs. the SNR for fixed PFA = 0.1 and two values of B. For large SNR, the EV detector

shows the highest PD when the channel is slow-varying (B = 3), as seen in the left panel; while

the situation is reversed when the channel is fast-varying (B = 32), as seen in the right panel.

On the other hand, the superiority of EV and GK, which assume low γ, is manifest in the

low-SNR regime. Finally, it is also noted that PD is bounded away from 1 even when the SNR

approaches infinity. To elucidate this effect, in Figure 4.3 we represent PD vs. K and B for fixed

PFA = 0.1 and K = B, which corresponds to rapidly-changing channels. The SNR was chosen
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Figure 4.3: Performance of the proposed detectors vs. the number of samples K and basis
functions B when PFA = 0.10 and K = B (γ = 20 dB).

high so that the curves are close to their asymptotic forms in the high-SNR regime. In view of

this figure, we conclude that PD will not approach 1 unless the data record is long enough. This

can be interpreted from the perspective of homogeneity of covariance mentioned earlier: it is

not possible to reliably decide whether a collection of samples have the same variance if we do

not observe a sufficiently large number of them.

To appreciate the advantages of using multiple antennas, in Figure 4.4, we show the proba-

bility of detection vs. B for different numbers of antennas. The GLR detector from Section 4.3,

denoted as TV-GLR, is compared with the detectors from Section 4.2 and the GLR detector

for time-invariant channels from [Besson et al., 2006,Taherpour et al., 2010,Wang et al., 2010],

denoted as TI-GLR. We observe that, when B > 1, the time variations of the channel are suc-

cessfully exploited by the TV-GLR detector, which moreover attains the same performance as

TI-GLR when the channel is time-invariant (B = 1) as a result of the exploitation of the spatial

structure. Note that in the single antenna case (M = 1), the detector from Section 4.3, which

is the GLR detector for this scenario, does not necessarily perform better than all the detectors

from Section 4.2.

Finally, Figure 4.5 shows the ROC of the TV-GLR and TI-GLR detectors when K = 20

samples, M = 4 antennas and B = 5 basis vectors, for three different SNR values. It is observed

that a significant improvement arises from exploiting the time variations of the channel.
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Figure 4.5: Receiver Operating Characteristics (K = 20, M = 4, B = 5).
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4.5 Conclusions

We have presented several methods to detect the presence of Gaussian signals observed in noise of

unknown power after passing a time-varying channel. For single-antenna sensors, we considered

the GLR detector for channels with no structure, which results in the well known AM/GM test,

and we sought an optimal test within the family of tests invariant to positive scalings, which

turned out not to exist. However, we used the likelihood ratio of the maximal invariant statistic

to propose, based on Bayesian and ML criteria, two additional detectors. For multiantenna

sensors, we adopted a BEM for the channel coefficients and derived the GLR test, which requires

the solution of a non-convex problem. An EM algorithm was proposed to solve that problem

numerically. We also showed that the GLR test cannot be used with channels without structure

or, in general, for rapidly-changing channels. In those cases, one must resort to alternative

schemes, such as the tests for homogeneity of covariances considered in the Appendix. Finally,

we analyzed the performance of the proposed detectors via Monte Carlo simulation, which

revealed the convenience of exploiting the time variations of the channel.

This work was presented in part in the IEEE Statistical Signal Processing Workshop (SSP

2012) [Romero et al., 2012b] and in the 14th IEEE International Workshop on Signal Processing

Advances for Wireless Communications (SPAWC 2013) [Romero and López-Valcarce, 2013].

4.A Proof of Proposition 4.1

The GLR statistic is given by

G(y) =

sup
G,σ2≥0

pH1(y;G, σ2)

sup
σ2≥0

pH0(y;σ2)
. (4.71)

It can be readily seen that the denominator takes, with probability one, a positive finite value.

From (4.5) and (4.6), it follows that

pH1(y;G, σ2) =

K−1∏
k=0

exp
{
−yH [k]Ξ−1 [k]y [k]

}
πM |Ξ [k] |

, (4.72)

where Ξ [k] = g [k] gH [k] + σ2IM . Using [Bernstein, 2009, Fact 2.16.3], we find that

|Ξ [k] | = σ2M

(
1 +
||g [k] ||2

σ2

)
. (4.73)
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From (4.72), (4.43) and (4.73) it follows that

− log pH1(y;G, σ2) = −
K−1∑
k=0

log
exp

{
−yH [k]Ξ−1 [k]y [k]

}
πM |Ξ [k] |

(4.74a)

=
K−1∑
k=0

yH [k]Ξ−1 [k]y [k] +M log π + log(|Ξ [k] |) (4.74b)

=

K−1∑
k=0

||y [k] ||2

σ2
− |yH [k]g [k] |2

σ2(σ2 + ||g [k] ||2)
+M log π

+M log(σ2) + log

(
1 +
||g [k] ||2

σ2

)
(4.74c)

Let us decompose g [k] = ukg̃ [k], where g̃ [k] satisfies ||g̃ [k] || = 1 and uk is real and non-negative.

Then, (4.74c) can be rewritten as

− log pH1(y; {g̃ [k]}k, {uk}k, σ2) =
K−1∑
k=0

||y [k] ||2

σ2
−
u2
k|yH [k]g̃ [k] |2

σ2(σ2 + uk)
+M log π

+M log(σ2) + log
(

1 +
uk
σ2

)
. (4.75)

The minimizer of (4.75) with respect to g̃ [k] is clearly given by

ˆ̃g [k] =
y [k]

||y [k] ||
(4.76)

and results in

− log pH1(y; {ˆ̃g [k]}k, {uk}k, σ2) =

K−1∑
k=0

||y [k] ||2

σ2
−

u2
k||y [k] ||2

σ2(σ2 + uk)
+M log π

+M log(σ2) + log
(

1 +
uk
σ2

)
(4.77a)

=
K−1∑
k=0

||y [k] ||2

σ2 + uk
+M log π +M log(σ2) + log

(
1 +

uk
σ2

)
.

(4.77b)

Setting the derivative of this expression with respect to uk equal to zero gives the condition

||y [k] ||2 = σ2 + uk, (4.78)
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and noting that each term in the sum of (4.77b) is decreasing for uk < ||y [k] ||2 − σ2, implies

that the ML estimate of uk is given by

ûk = max(0, ||y [k] ||2 − σ2), k = 0, . . . ,K − 1. (4.79)

Assume that σ2 ≤ ||y [k] ||2 for all k. In that case we obtain from (4.77b) that

− log pH1(y; Ĝ, σ2) = K +KM log π +K(M − 1) log(σ2) +
K−1∑
k=0

log ||y [k] ||2 (4.80)

Since M > 1 by hypothesis, it follows from (4.80) that the ML estimate of σ2 is σ̂2 = 0, which

agrees with the assumption that σ2 ≤ ||y [k] ||2 for all k. It also follows from (4.80) that the

resulting GLR statistic is unbounded.
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Chapter 5

Wideband Spectrum Sensing from

Compressed Measurements

We now assume that a spectrum sensor acquires a wide frequency band comprising a large

number of frequency channels, where primary users may be operating. To avoid the large cost

and power consumption associated with Nyquist sampling, the received signal is acquired by

means of a C-ADC (see Section 1.1.2). Based on the observation of this wideband signal, the

goal is to perform power estimation and activity detection. To this end, we adopt the multi-

channel model from Section 1.1.1 and the compression model from Section 1.1.2.

Starting from a Gaussian assumption — see motivation in Section 1.1.1 —, we address

various spectrum sensing tasks from an ML perspective. Next, this assumption is dropped and

several non-ML criteria are considered to develop estimation methods capable of working either

in Gaussian or non-Gaussian scenarios.

We pursue an entirely parametric approach, where the second-order statistics of the obser-

vations follow a BEM whose expansion coefficients contain all the information of interest. The

set of parameters to estimate is minimal, which favors performance, interpretability and com-

pression. Although this formulation lends itself to the application of well-known algorithms for

structured covariance estimation/covariance matching, their high complexity limits their appli-

cability to real-world scenarios — spectrum sensors should be implementable as low-end devices

where algorithms minimize their sensing and processing time, both for optimizing the exploita-

tion of transmission opportunities and for saving energy resources [Axell et al., 2012,Zhao and

Sadler, 2007]. To circumvent this limitation, we base our methods on a technique to reduce the

dimension of the problem in the covariance domain that we present in Section 5.1. It capitalizes

on the redundancy present in the covariance matrix of a wide-sense stationary process and on
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the fact that most information is usually concentrated on the first few autocorrelation lags.

In Section 5.2, we review and modify some well-known structured covariance estimation

algorithms so that they can work in our setting, and we exploit the aforementioned technique to

propose efficient approximations that achieve similar performance at a much lower computational

cost. Although the asymptotic characterization of the resulting methods is relatively simple —

consistency can be established based on simple arguments —, analytic performance evaluation

is intractable for finite data records. For this reason, we resort to Monte Carlo simulation in

Section 5.4 in order to assess the performance of the proposed methods.

5.1 Wideband Spectral Estimation and Detection

We adopt the WSS signal model from Section 1.1.1 and the compression model from Sec-

tion 1.1.2. Specifically, the compressed observations ȳ ∈ CK̄ provided by a C-ADC were seen

to be given by ȳ = Φy, where y , [y [0] , . . . , y [K − 1]]T collects the Nyquist samples of the

received signal y and Φ = IL ⊗ Φ̌ is the compression matrix of the C-ADC.1 The second-order

statistics of y are captured by (1.14), which in this case particularizes as

Ξ =
B−1∑
b=0

αbΞb, (5.1)

where Ξ , E {yy} ∈ CK×K and Ξb , E
{
xbx

H
b

}
∈ CK×K contain the second-order statistics

of y and xb. The latter collects the Nyquist samples of the signal xb transmitted by the b-th

user: xb , [xb[0], . . . , xb[K − 1]]T . The known and linearly independent set of matrices B =

{Ξ0, . . . ,ΞB−1} is the basis of the covariance subspace, in which Ξ is equivalently represented

by its non-negative coordinates αb. From (5.1), the compressed statistics are clearly related by

Ξ̄ = ΦΞΦH =
B−1∑
b=0

αbΞ̄b, (5.2)

where Ξ̄b = ΦΞbΦ
H . We assume that Φ is properly designed so that the set B̄ = {Ξ̄0, . . . , Ξ̄B−1}

is also linearly independent — otherwise the coordinates αb are not identifiable (see Chapter 6).

Since the transmitted signals xb are wide-sense stationary processes, the matrices Ξb, and con-

sequently Ξ, are Hermitian Toeplitz (HT). Furthermore, since the xb are power-normalized, the

entries on the main diagonal of the Ξb equal 1.

Recall that the C-ADC individually compresses input blocks of N samples to produce

1Recall that the samples in y do not have physical existence (see Chapter 1).
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output blocks of N̄ samples. For convenience, Ξ is partitioned into N ×N blocks as

Ξ =


Ξ[0] ΞH [1] . . . ΞH [L− 1]

Ξ[1] Ξ[0] . . . ΞH [L− 2]
...

...
. . .

...

Ξ[L− 1] Ξ[L− 2] . . . Ξ[0]

 ,

where Ξ[l] , E
{
y[l′ + l]yH [l′]

}
∀l′ is the covariance matrix of y[l] , [y[lN ], y[lN+1], . . . y[lN+

(N − 1)]]T . Similarly, Ξb is partitioned into the N ×N blocks Ξb[l] , E
{
xb[l

′ + l]xHb [l′]
}
∀l′,

where xb[l] , [xb[lN ], xb[lN + 1], . . . xb[lN + (N − 1)]]T . In the compressed domain, Ξ̄ and Ξ̄b

can be similarly partitioned into the N̄ × N̄ blocks Ξ̄[l] = Φ̌Ξ[l]Φ̌H and Ξ̄b[l] = Φ̌Ξb[l]Φ̌
H ,

respectively. Although these blocks are not Toeplitz, Ξ̄ and Ξ̄b have a block Toeplitz structure.

In addition, because all the matrices in B̄ are assumed positive definite, the non-negativity of

the coordinates αb means that Ξ̄ is positive definite as well.

5.1.1 Power Estimation and Activity Detection

In this chapter we are concerned with both spectrum sensing formulations from Section 1.1.1.

In power estimation, the goal is to estimate α � 0, which contains the power of all channels. In

activity detection, we are interested in deciding on the presence of a primary user in a specific

channel b. Without any loss of generality, we assume b = 0, which results in the following test:

H0 : α0 = 0, H1 : α0 > 0. (5.3)

In order to cope with the presence of the unknown parameters αb, b = 1, 2, . . . B − 1, we follow

a GLR approach to derive the detectors in this chapter.

We start by assuming that the transmitted signals xb are zero-mean circularly symmetric

complex Gaussian distributed, and therefore the second-order statistics introduced above entirely

characterize the statistical distribution of the observations ȳ. Their probability density function

is given by

p (ȳ;α) =
exp

{
−ȳHΞ̄−1ȳ

}
πN̄L|Ξ̄|

. (5.4)

Although Ξ̄ depends on α, we dismiss the notation Ξ̄(α) in favor of clarity.

Under the Gaussian assumption, obtaining the ML estimate α̂ML = arg supα p(ȳ;α) is

a particular instance of the so-called covariance matching or structured covariance estimation

problem, and requires non-convex optimization. Although this problem has been widely ana-
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lyzed, no closed-form solution has been found. Because the existing numerical methods (see

e.g. [Burg et al., 1982, Ottersten et al., 1998]) are not well-fitted to the specifics of our prob-

lem, in part due to the computational burden they require, we will develop several efficient yet

accurate alternatives.

On the other hand, the GLR statistic is given by

G(ȳ) =
p (ȳ; α̂H1)

p (ȳ; α̂H0)
=
|Ξ̄(α̂H0)|
|Ξ̄(α̂H1)|

exp
{
−ȳHΞ̄−1(α̂H1)ȳ

}
exp

{
−ȳHΞ̄−1(α̂H0)ȳ

} , (5.5)

where the vectors α̂H0 and α̂H1 respectively denote the ML estimates of α under hypotheses

H0 and H1. In particular, α̂H0 is the maximizer of (5.4) subject to α0 = 0 and αb ≥ 0, b =

1, . . . , B−1, whereas α̂H1 is the maximizer of (5.4) subject to α0 > 0 and αb ≥ 0, b = 1, . . . , B−1.

For concreteness, but without any loss of generality, we only discuss the estimation of α subject

to the constraint that all the αb are non-negative. Note that both the estimation of α̂H0 and α̂H1

can be formulated as particular instances of this problem: in the first case, it is easy to see that

α̂H0 can be obtained in this way just by removing Ξ̄0 from B̄; in the second case, no modifications

are required since, except for degenerate cases, the likelihood function is continuous in α0, which

means that using the constraint α0 > 0 amounts to using the constraint α0 ≥ 0.

5.1.2 Complexity of the Exact ML Solution

The complexity of obtaining the exact ML estimates using existing methods is prohibitive in

spectrum sensing applications, even in those cases where the size of the compressed data record

K̄ , N̄L is of the order of a few hundreds. This is due to the fact that K̄ is also the size

of the covariance matrices involved, and typical algorithms need to evaluate their inverses and

determinants at each iteration. Moreover, numerical instabilities force algorithms to perform

multiple checks at every iteration, which slows down the execution even more. To see this, let

us look at the problem from an alternative perspective.

Observe that expression (5.4) can also be written in terms of the sample covariance matrix

(SCM) ȳȳH as

p (ȳ;α) =
exp

{
−Tr

(
Ξ̄−1ȳȳH

)}
πN̄L|Ξ̄|

. (5.6)

The problem is therefore to find a matrix Ξ̄ maximizing the metric in (5.6), which is a measure of

fit between ȳȳH and Ξ̄. This matrix has to be sought in the feasible set, which is the intersection

of the subspace of K̄×K̄ matrices spanned by B̄ and the cone of positive definite matrices. Note

that if Ξ̄ is not positive definite or, more generally, invertible, then expression (5.6) cannot be
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even evaluated. A conventional iterative algorithm will move across the feasible set ensuring

that the iterate stays far enough from the boundary of the cone (i.e., the set of singular positive

semidefinite matrices); otherwise it could become unstable. This goal is particularly hampered

by the fact that this iterate is attracted by ȳȳH , which is exactly on that boundary — note

that ȳȳH has one positive eigenvalue with multiplicity 1 and a null eigenvalue with multiplicity

K̄ − 1.

5.1.3 Dimensionality Reduction

As opposed to many statistical problems where the computational cost increases linearly or sub-

linearly with the number of samples, a larger K̄ here increases the dimension of the underlying

optimization problem, forcing us to work with larger matrices, whose determinants and inverses

become increasingly ill-conditioned and difficult to compute. Moreover, the problem described

in Section 5.1.2 will persist regardless of K̄. Intuition suggests attempting to approximate the

ML solution by replacing the raw SCM ȳȳH with a modified version satisfying two properties:

• Fixed dimension: the size of the modified SCM should not increase with the number

of samples. It must be kept small enough to facilitate the evaluation of the likelihood

function.

• Non-singular: the modified SCM should be full rank whenever the number of samples is

large enough. This would overcome the problem described in Section 5.1.2.

In addition, observe that the raw covariance matrix ȳȳH does not even have the block structure

of Ξ̄, which also suggests looking for a modified SCM of that particular form. The asymptotic

theory of Toeplitz matrices will give us some insight into how to accomplish this search.

AVERAGING THE SCM

Suppose that T is the Toeplitz covariance matrix of a wide-sense stationary random process.

The associated autocorrelation sequence contains the coefficients in the first row and column

of T set in the proper order. Without confining ourselves to covariance matrices, a correlation

sequence may be similarly associated with any Toeplitz matrix by selecting the corresponding

coefficients of the first row and column.

Given a sequence of n × n Toeplitz covariance matrices {Tn} satisfying that the Fourier

transform of the associated correlation sequences exists, it is possible to find a sequence of

n × n circulant matrices {Cn} which is asymptotically equivalent [Gray, 2006]. Particularly, if



112 Chapter 5. Wideband Spectrum Sensing from Compressed Measurements

two sequences {Tn} and {Cn} are asymptotically equivalent, then the products Tr
(
T−1
n An

)
and Tr

(
C−1
n An

)
will converge to the same value provided that {An} is a sequence of matrices

bounded in some norm. The sequences of determinants |Tn| and |Cn| will also have the same

limit as long as these matrices are non-singular. Since these are the only operations we are going

to perform with these matrices, we will allow ourselves to say that the sequence of matrices {Tn}
is asymptotically circulant or, for a finite n, approximately circulant. Likewise, since any circulant

matrix can be diagonalized by the vectors of the Fourier basis, we can also say that these are,

asymptotically (or approximately), the eigenvectors of Tn.

With this in mind, we may say that, as K̄ becomes large, Ξ̄ becomes approximately block

circulant and, consequently, it will remain approximately the same after a circular rotation of

the block-rows and block-columns. Formally, this operation can be expressed as RlΞ̄R
T
l ≈ Ξ̄,

where Rl denotes the matrix performing a block-row circular rotation of the l-th order, i.e.,

Rl = Řl ⊗ IN̄ where

Řl ,

[
0TL−1 1

IL−1 0L−1

]l
. (5.7)

This enables us to approximate the density of the observations as

p (ȳ;α) =
exp

{
−Tr

(
Ξ̄−1ȳȳH

)}
πK̄ |Ξ̄|

(5.8a)

≈
exp

{
−Tr

(
(RlΞ̄R

T
l )−1ȳȳH

)}
πK̄ |Ξ̄|

, (5.8b)

where we have made use of the fact that the squared determinant |Rl|2 is one. Noting that

Tr
(
(RlΞ̄R

T
l )−1ȳȳH

)
= Tr

(
Ξ̄−1RT

l ȳȳ
HRl

)
,

for all l = 0, 1 . . . L− 1 shows that Tr
(
Ξ̄−1ȳȳH

)
can actually be approximated as

Tr
(
Ξ̄−1ȳȳH

)
≈ 1

L

L−1∑
l=0

Tr
(
Ξ̄−1RT

l ȳȳ
HRl

)
= Tr

(
Ξ̄−1Ŝav

)
,

where we have defined the averaged SCM as Ŝav = 1
L

∑
lR

T
l ȳȳ

HRl. In other words, we have
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that

p (ȳ;α) ≈
exp

{
−Tr

(
Ξ̄−1Ŝav

)}
πK̄ |Ξ̄|

. (5.9)

This means that2 averaging along the modular block-diagonals of the SCM, where the d-th

modular diagonal comprises the blocks at positions (l, l′) with (l′− l)L = d, has a small influence

on the likelihood function. However, since in our case Ξ̄ is not block-circulant but block-Toeplitz,

one may prefer to simply average along the actual block-diagonals, i.e., to make

Ŝav =


Ŝ[0] ŜH [1] . . . ŜH [L− 1]

Ŝ[1] Ŝ[0] . . . ŜH [L− 2]
...

...
. . .

...

Ŝ[L− 1] Ŝ[L− 2] . . . Ŝ[0]

 , (5.10)

where Ŝ[l] , 1
M l

∑
m ȳ[m+ l]ȳH [m] for M l a constant that may depend on l. If M l = L,

then Ŝav is actually composed of the coefficients of the traditional biased estimates of the

autocorrelation/crosscorrelation of the processes {ȳ[lN̄ + n̄]}l for n̄ = 0, . . . , N̄ − 1 [Stoica and

Moses, 2005]. On the other hand, if M l = L − l, then Ŝav is composed of the coefficients in

the traditional unbiased estimate, which may be more justified in general since in that case M l

also represents the length of the l-th block-diagonal of Ŝav, i.e., the number of terms averaged.

The use of either of these estimates will guarantee that Ŝ[l] is a consistent estimator for Ξ̄[l] for

fixed l as K →∞ [Lehmann and Casella, 1998]. Note that the blocks of the raw estimate ȳȳH ,

however, lack this property. In terms of the interpretation of Section 5.1.2, consistency means

that this averaged SCM becomes closer, as K becomes large, to the feasible set where Ξ̄ must

be sought, and intuition suggests that this is numerically convenient. A further advantage of

Ŝav is that it presents the same block structure as Ξ̄.

CROPPING THE COVARIANCE MATRIX

Now that averaging has been motivated by arguing that it barely impacts the likelihood function,

two observations are in order: First, due to the block-Toeplitz structure of the covariance matrix

and the averaged SCM, most coefficients are replicated several times. This redundancy becomes

smaller as we move away from the main diagonal, which suggests that the importance of the

blocks Ξ̄[l] and Ŝ[l] decreases with increasing l. Second, the coefficients of Ŝav that are closer to

the diagonal have a lower estimation variance for fixed K̄ and, consequently, are more reliable.

2Note that we have unintentionally derived the exact ML estimate of Ξ̄ for the case where Ξ̄ is known to be
block-circulant.
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Figure 5.1: Comparison between the true ML solution and a modification of the ML estimate
that incorporates averaging and cropping (ACML) (K = 325, α = [4, 9, 4, 9, 4, 9, 1]T , dense
sampler, N = 5, N̄ = 2).

These remarks suggest truncating both Ξ̄ and Ŝav, disregarding the blocks Ξ̄[l] and Ŝ[l] for

large l. In particular, one may only retain the first L̃ autocorrelation lags, which correspond

to the blocks Ξ̄[0], Ξ̄[1], . . . , Ξ̄[L̃ − 1] of Ξ̄ and the blocks Ŝ[0], Ŝ[1], . . . , Ŝ[L̃ − 1] of Ŝav. The

resulting averaged and cropped SCM has dimension N̄L̃× N̄L̃ and can be written as

Ŝ ,


Ŝ[0] ŜH [1] . . . ŜH [L̃− 1]

Ŝ[1] Ŝ[0] . . . ŜH [L̃− 2]
...

...
. . .

...

Ŝ[L̃− 1] Ŝ[L̃− 2] . . . Ŝ[0]

 . (5.11)

An analogous structure applies to the cropped version of Ξ̄, which will also be denoted as Ξ̄

since no ambiguity is possible. Similar techniques were previously used in the literature (see

e.g. [Ariananda and Leus, 2012,Zeng and Liang, 2009a,Zeng and Liang, 2009b]) where, like here,

L̃ is regarded as a design parameter.

In view of the above discussion, one may use averaging and cropping to approximate the

ML estimate by the maximizer of

p (ȳ;α) ≈
exp

{
−Tr

(
Ξ̄−1Ŝ

)}
πK̄ |Ξ̄|

. (5.12)



5.1 Wideband Spectral Estimation and Detection 115

Figure 5.1 compares the mean squared error (MSE) of the ML estimate of the PSD, obtained via

maximization of (5.8a) (full red line) with the MSE of the approximate ML estimate obtained via

maximization of (5.12) (dashed black line) in a scenario where the received signal y is composed

of six bandpass signals with non-overlapping spectra of power [4, 9, 4, 9, 4, 9] and white noise of

unit power. A compression ratio of ρ = 3/2 results from the application of a compression matrix

Φ̌ ∈ C2×3, which is generated using independent Gaussian variables for each entry. More details

about these computations can be found in Section 5.4. We observe that a value of L̃ = 4 is

enough to obtain an estimation performance similar to ML. For larger values, the MSE of the

two compared techniques is roughly the same.

PARAMETER SELECTION

The algorithms presented in subsequent sections rely on the modified SCM and, in some cases,

they require that this matrix satisfy certain properties: sometimes, it must be positive semidef-

inite because its square root needs to be evaluated; in other cases, its inverse must exist or its

determinant must be different from zero. Since these properties depend on the choice of K, N̄ ,

N and L̃, it is therefore convenient to establish which combinations of these parameters yield

positive semidefinite or invertible matrices. The following theorem, whose proof can be found

in Appendix 5.A, provides this information.

Theorem 5.1. Let Ŝ be the averaged and cropped SCM from (5.11) and let ȳ have a continuous

distribution. Then, we have the following:

1. If the values of M l correspond to the biased estimator of the autocorrelation, that is M l =

L, then Ŝ is positive semidefinite.

2. If the values of M l correspond to the biased estimator of the autocorrelation, that is M l =

L, we have that

rank
(
Ŝ
)

= min
(
L+ L̃− 1, N̄ L̃

)
with probability one.

3. If the values of M l correspond to the unbiased estimator of the autocorrelation, that is

M l = L− l, we have that

rank
(
Ŝ
)

= min
(
LL̃, N̄L̃

)
= L̃min

(
L, N̄

)
with probability one.
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In our setting, the hypothesis that ȳ is distributed according to a continuous probability

distribution3 holds provided that the covariance matrix Ξ̄ is full rank. The reason for such an

assumption is that the proof takes advantage of the fact that ȳ[l] and ȳ[l′], l 6= l′, are linearly

independent with probability 1 if this hypothesis is satisfied.

The first part of the theorem guarantees that Ŝ is positive semidefinite if the biased estimate

is used, but the same cannot be said in the unbiased case, where Ŝ may have negative eigenvalues.

Intuitively, the reason is that the coefficients far from the main diagonal may be considerably

large due to the small number of samples averaged and the low value of M l.

From the second part, we conclude that L + L̃− 1 has to be greater than or equal to N̄L̃

in order for Ŝ to be invertible in the biased case. This establishes a lower bound on the number

of samples required:

K ≥ N [N̄L̃− L̃+ 1]. (5.13)

As stated by the third part, this lower bound is smaller for the unbiased estimate, where it

equals the product NN̄ . Interestingly, since L̃ does not have an influence on whether Ŝ is full

rank or not, this parameter can be freely adjusted in the unbiased case.

Finally, note that there is a further restriction on the values that these design parameters

can take on. In particular, the coefficients αb must remain identifiable after the observations

are compressed. This issue is related to the design of Φ and will be investigated in detail in

Chapter 6.

5.2 Estimation Algorithms

In this section, we start by detailing how to approximate the ML estimate at a low computa-

tional cost. Later, the Gaussian assumption is dropped and several estimators are discussed

for more general scenarios. As seen in Section 5.1.1, evaluating the GLR requires the numeri-

cal computation of two vector estimates, one under each hypothesis, and their substitution in

(5.5). Since no simplification is possible, we defer further discussions about activity detection

to Section 5.4.

3Formally, we say that a distribution µ is continuous if it is absolutely continuous with respect to Lebesgue
measure, that is, µ(B) = 0 for all Borel sets of CN̄×N with zero Lebesgue measure [Billingsley, 1995]. Intuitively,
this means that there are no probability masses.
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5.2.1 The True ML Estimate

In order to find the ML estimate of α, one must maximize (5.4) with respect to α over the non-

negative orthant {α : α � 0}. Equivalently, one may minimize the negative of the log-likelihood

function:

Λ(α) = log |Ξ̄|+ Tr
(
Ξ̄−1ȳȳH

)
. (5.14)

To do so, numerical methods such as likelihood-based estimation of sparse parameters (LIKES)

can be utilized. This algorithm was proposed in [Stoica and Babu, 2012] for rank-1 SCMs in the

context of sparse-parameter estimation and subsequently extended to the full-rank case in [Babu

and Stoica, 2012]. Although both works assume that the matrices in B̄ are rank-1, the scheme

carries over to the general case, as discussed next.

LIKES is based on the minimization-majorization principle, which locally majorizes the cost

by a convex function at each iteration and minimizes this function to obtain the next estimate.

Suppose that the current iterate is given by
¯
α. Since the first term in (5.14) is concave and the

second convex, it suffices to majorize the first one by its tangent plane at α =
¯
α:

log |Ξ̄| ≤ log |
¯
Ξ̄|+

B−1∑
b=0

Tr
(
¯
Ξ̄−1Ξ̄b

)
(αb −

¯
αb) (5.15)

= log |
¯
Ξ̄| − K̄ +

B−1∑
b=0

Tr
(
¯
Ξ̄−1Ξ̄b

)
αb,

where the parameters with the under-bar notation are those associated with
¯
α. Therefore, the

cost in (5.14) can be majorized as

Λ(α) ≤ log |
¯
Ξ̄| − K̄ + ȳHΞ̄−1ȳ +

B−1∑
b=0

Tr
(
¯
Ξ̄−1Ξ̄b

)
αb.

Hence, one must solve the program

minimize
α�0

ȳHΞ̄−1ȳ +
B−1∑
b=0

Tr
(
¯
Ξ̄−1Ξ̄b

)
αb (5.16)

at every iteration. As we will see in Section 5.2.4, the objective in (5.16) mimics the SPICE

objective with βb = Tr
(
¯
Ξ̄−1Ξ̄b

)
. LIKES is an algorithm that iteratively uses SPICE to refine

its current estimate. As summarized in Algorithm 5.1, the weight vector β = [β0, . . . , βB−1]T is

computed and SPICE executed at every iteration.
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Algorithm 5.1 α = LIKES(ȳ)

Initialize α = [α0, . . . , αB−1]T

while stopping criterion == FALSE do
• Ξ̄←

∑
b αbΞ̄b

• βb ← Tr
(
Ξ̄
−1

Ξ̄b

)
, b = 0, . . . , B − 1

• α← SPICE ITERATION(β, ȳ)
end while

Unfortunately, both the matrix inversion needed for the computation of β and the execution

of SPICE are slow operations for vectors ȳ of moderate sizes. Following the guidelines from

Section 5.1, we propose to replace the K̄ × K̄ SCM ȳȳH in (5.14) by its averaged and cropped

version Ŝ, which is just N̄L̃ × N̄L̃. Recall that the matrices Ξ̄ and Ξ̄b must be cropped

accordingly so that their dimensions are consistent with Ŝ. Although the resulting algorithm,

henceforth referred to as simplified -LIKES (SLIKES), does not provide the exact ML estimate, it

enables a considerable reduction of the computational time. It can be shown that the expressions

for SLIKES are the same as those presented earlier if we replace ȳ by Ŝ1/2 and ȳHΞ̄−1ȳ by

Tr{ŜH/2Ξ̄−1Ŝ1/2}, where Ŝ1/2 is an N̄L̃× N̄L̃ matrix satisfying that Ŝ1/2ŜH/2 = Ŝ.

Unfortunately, in order for the square root Ŝ1/2 to exist, the modified SCM needs to be

positive semidefinite which, in turn, means that the unbiased estimate of the autocorrelation

cannot be used (c.f. Section 5.1.3). However, since the biased estimate is expected to bias

the estimate of α, it is convenient to devise an algorithm capable of operating on the unbiased

sample estimate yet based on the ML philosophy. Hinging on the idea of relaxing the positivity

constraints αb ≥ 0, the next section proposes such an algorithm, which in addition requires fewer

samples to operate.

5.2.2 Unconstrained ML Estimation

Since Λ(α) in (5.14) is twice differentiable, relaxing the constraint α � 0 enables us to find a

minimum just by setting the gradient equal to zero. By noting that Ξ̄ =
∑

b αbΞ̄b, it is possible

to write

∂Λ(α)

∂αb
= Tr

(
Ξ̄−1Ξ̄b

)
− Tr

(
Ξ̄−1Ξ̄bΞ̄

−1ȳȳH
)
. (5.17)

Due to the regularity of this function, the gradient vanishes when a minimum of Λ(α) is attained.

Setting the right side of (5.17) to zero and applying some algebraic manipulations, this condition
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becomes

Tr
(
(Ξ̄−1 − Ξ̄−1ȳȳHΞ̄−1)Ξ̄b

)
= 0 ∀b. (5.18)

To the best of our knowledge, no analytical solution has been found for this non-linear system

of equations. In fact, even for the simple case where the Ξ̄b are Toeplitz, one must resort to

numerical computations [Fuhrmann, 1991]. A method that can be used is the celebrated inverse

iteration algorithm (IIA) from [Burg et al., 1982]. However, similarly to LIKES, IIA suffers from

a high complexity, especially for moderate K̄, and may easily become unstable, which demands

intense efforts to stay in the positive definite region (see Section 5.1.2).

Since the condition in (5.18) can be rewritten as

Tr
(
(Ξ̄− ȳȳH)Ξ̄−1Ξ̄bΞ̄

−1
)

= 0 ∀b, (5.19)

a possibility to refine an estimate
¯
α is to set Ξ̄−1 =

¯
Ξ̄−1 and compute the α satisfying

Tr
(
(Ξ̄− ȳȳH)

¯
Ξ̄−1Ξ̄b

¯
Ξ̄−1

)
= 0 ∀b. (5.20)

This expression can be rewritten as Aα = c, where

[A]b,b′ = Tr
(
¯
Ξ̄−1Ξ̄b

¯
Ξ̄−1Ξ̄b′

)
(5.21a)

[c]b = Tr
(
¯
Ξ̄−1Ξ̄b

¯
Ξ̄−1ȳȳH

)
(5.21b)

for b, b′ = 0, . . . , B − 1. The IIA algorithm from [Burg et al., 1982] iteratively uses this system

of equations to refine the previous estimate
¯
α. Since the solution α∗ = A−1c may fall out of

the feasible region, the update rule sets the new iterate to
¯
α+ κd, where d = α∗ −

¯
α and κ is

a factor that simultaneously ensures that
¯
α + κd is in the feasible region of the unconstrained

problem4 and the objective is reduced with respect to
¯
α.

Although this algorithm converges to a local minimum, it is seen from (5.21a) that the

K̄ × K̄ matrix
¯
Ξ̄ must be inverted and its determinant evaluated at every iteration. Since

the computational cost of these operations may be prohibitive in many practical settings, even

for moderate values of K̄, a sensible approximation is to substitute the raw SCM ȳȳH by its

averaged and cropped version Ŝ. The resulting algorithm will be referred to as the simplified

IIA (SIIA) and, depending on our choice for L̃, may achieve considerable computational cost

reductions. The resulting procedure is summarized as Algorithm 5.2.

4 Note that, in the unconstrained problem, it is necessary to check that Ξ̄ is positive definite. This is not the
case in the constrained setting since the positive definiteness of Ξ̄ is guaranteed by the fact that αb ≥ 0 ∀b —
recall that the Ξ̄b are positive definite.
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Algorithm 5.2 α = SIIA(Ŝ)

Initialize α = [α0, . . . , αB−1]T

while stopping criterion == FALSE do
• Ξ̄←

∑
b αbΞ̄b

• [A]b,b′ ← Tr
(
Ξ̄
−1

Ξ̄bΞ̄
−1

Ξ̄b′

)
• [c]b ← Tr

(
Ξ̄
−1

Ξ̄bΞ̄
−1
Ŝ
)

• α∗ ← A−1c
• d← α∗ −α
• Choose κ as explained
• α← α+ κd

end while

As an initialization, we propose to approximate Ξ̄−1 ≈ Ŝ−1 in (5.19) so that the initial

value for α can be chosen as the solution to the following linear system of equations:

Tr
(

(Ξ̄− Ŝ)Ŝ−1Ξ̄bŜ
−1
)

= 0 ∀b. (5.22)

or, equivalently ∑
b′

αb′ Tr
(
Ŝ−1Ξ̄bŜ

−1Ξ̄b′

)
= Tr

(
Ŝ−1Ξ̄b

)
∀b.

Finally note that, since this algorithm is designed to solve the unconstrained ML problem,

we shall not expect that all the components of the resulting α be non-negative. A discussion on

the implications of this fact is deferred to Section 5.3. Note as well that even though the SIIA

can be several times faster than the IIA, the computations involved can still be too burdensome

for some applications. The next section alleviates this issue by proposing two simpler algorithms

that rely on an LS approximation.

5.2.3 Least Squares Estimation

Note that the condition in (5.18) can be rewritten as

Tr
(
Ξ̄−1(IK̄ − ȳȳHΞ̄−1)Ξ̄b

)
= 0 ∀b,

which would immediately hold if one had ȳȳHΞ̄−1 = IK̄ . This suggests approximating Ξ̄ ≈ ȳȳH

somehow, for example in the least squares sense, i.e., one may use the vector α that minimizes

the Frobenius distance ||ȳȳH − Ξ̄||2F . However, ȳȳHΞ̄−1 is a poor approximation of IK̄ since

ȳȳH is rank one. Thus, it is not surprising that better results are obtained, in general, when
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ȳȳH is replaced by the averaged and cropped Ŝ which, apart from being of higher rank, shares

the block structure of Ξ̄b. This improves the consistency of the approximation and allows to

consider only one representative from each block-diagonal in the Frobenius criterion. By defining

ŝ , vec



M̃ L̃−1Ŝ
H [L̃− 1]
...

M̃1Ŝ
H [1]

M̃0Ŝ[0]

M̃1Ŝ[1]
...

M̃ L̃−1Ŝ[L̃− 1]


and vb , vec



M̃ L̃−1Ξ̄
H
b [L̃− 1]
...

M̃1Ξ̄
H
b [1]

M̃0Ξ̄b[0]

M̃1Ξ̄b[1]
...

M̃ L̃−1Ξ̄b[L̃− 1]


,

where M̃ l , L̃ − l accounts for the number of times the l-th block is present in Ŝ or Ξ̄b, the

problem of minimizing ||Ŝ − Ξ̄||2F can be stated as the LS program

min
α
||ŝ− V α||2, (5.23)

where V , [v0,v1, . . . ,vB−1]. Considering the blocks Ŝ[l] along with their Hermitian versions

Ŝ[l]H naturally imposes that αb ∈ R. Although this yields a compact representation, a more

efficient choice when computing this solution is to separately consider real and imaginary parts.

For simplicity and efficiency, we may think of solving (5.23) without enforcing α � 0. The

resulting solution is given by αWLS , V †ŝ, where WLS stands for weighted least squares5. This

algorithm simply projects the modified SCM onto the space spanned by the B basis matrices in

Ξ̄b. On the other hand, if the constraint α � 0 is enforced, the resulting algorithm is termed

constrained WLS (CWLS). Note that both these algorithms are equally well motivated even if

the underlying distribution is not Gaussian. They resemble the parametric counterpart of the

LS algorithm from [Ariananda and Leus, 2012].

5.2.4 Estimation Using SPICE

SPICE is a collection of algorithms that cast the problem of sparse parameter estimation as an

optimization program of the form

minimize
α�0

Tr
(
UHΞ̄−1U

)
+ βTα, (5.24)

5Simulations reveal that, in most cases, WLS works better than the pure LS, which is the result of making
M̃k = 1 ∀k. However, for brevity, we omit the discussion of this algorithm.
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where U is either a matrix or a column vector whose dimensions are consistent with Ξ̄, and β � 0

is a vector of the same length as α. These algorithms are derived in [Stoica et al., 2011a,Stoica

et al., 2011c,Stoica et al., 2011b,Stoica and Babu, 2012,Babu and Stoica, 2012] under different

conditions, where the program (5.24) is solved as a second-order cone program (SOCP) or in

a fixed-point fashion. Although, to the best of our knowledge, no SPICE algorithm has been

proposed for the case where the basis matrices Ξ̄b have a rank greater than one, an extension,

summarized here as Algorithm 5.3, can be readily found.

Algorithm 5.3 α = SPICE ITERATION(β,U)

Initialize α = [α0, . . . , αB−1]T

while stopping criterion == FALSE do
• Ξ̄←

∑
b αbΞ̄b

• Cb ← αbΞ̄
H/2
b Ξ̄−1U , b = 0, . . . , B − 1

• cb ← Tr
(
CH
b Cb

)
, b = 0, . . . , B − 1

• αb ←
√
cb/βb, b = 0, . . . , B − 1

end while

Note that Algorithm 5.3 contains the operations needed in the corresponding line of Algo-

rithm 5.1. In the case of LIKES we set U = ȳ whereas in the case of SLIKES U is set to Ŝ1/2.

In the remainder of this section we apply SPICE directly to our problem, first considering the

raw SCM ȳȳH and then the averaged and cropped version Ŝ. The first algorithm will be simply

referred to as SPICE whereas the second one will be dubbed simplified SPICE (SSPICE).

In [Stoica et al., 2011a, Stoica et al., 2011c], the so-called extended invariance principle

[Ottersten et al., 1998] is invoked to simplify the problem of covariance matching, achieving

an estimate that asymptotically matches the ML solution. This estimate, which is also seen

to work in the non-Gaussian case [Stoica and Babu, 2012], is the minimizer of the following

criterion [Stoica et al., 2011a]

||Ξ̄−1/2(R̂− Ξ̄)||2F , (5.25)

where R̂ = ȳȳH if the observations are composed of exactly one realization ȳ, or [Stoica et al.,

2011c]

||Ξ̄−1/2(Ŝ0 − Ξ̄)Ŝ
−1/2
0 ||2F , (5.26)

if the number of realizations available is such that a full-rank SCM Ŝ0 can be constructed. Note

that the statistical motivation for (5.26) is stronger than for (5.25) [Stoica et al., 2011c]. Since in

our setting only a single realization is available, we will replace Ŝ0 by the averaged and cropped

Ŝ in order to apply this second criterion.
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STANDARD SPICE

When R̂ = ȳȳH , expression (5.25) can be expanded as

Tr
(
Ξ̄
)

+ ||ȳ||2 · ȳHΞ̄−1ȳ − 2||ȳ||2, (5.27)

so that the problem becomes

minimize
α�0

ȳHΞ̄−1ȳ +
Tr
(
Ξ̄
)

||ȳ||2
. (5.28)

Clearly, (5.28) is a particular case of (5.24) where U = ȳ and βb = Tr
(
Ξ̄b

)
/||ȳ||2 and can be

solved using Algorithm 5.3.

SIMPLIFIED SPICE

As mentioned above, we propose to apply SPICE over the averaged and cropped SCM Ŝ. Using

simple algebra, it can be seen that the problem of minimizing (5.26), with R̂ replaced by Ŝ, can

be rewritten as

minimize
α�0

Tr
(
ŜH/2Ξ̄−1Ŝ1/2

)
+ Tr

(
Ŝ−1Ξ̄

)
. (5.29)

This is a particular instance of (5.24) where U = Ŝ1/2 and βb = Tr
(
Ŝ−1Ξ̄b

)
, and can be

efficiently solved using Algorithm 5.3. The resulting estimator will be referred to as simplified

SPICE (SSPICE).

Although (standard) SPICE is an efficient method in the context of array processing and

spectral analysis for line-spectrum/direction of arrival estimation [Stoica et al., 2011c, Stoica

et al., 2011b,Stoica and Babu, 2012,Babu and Stoica, 2012], the need to invert a K̄ × K̄ matrix

at each iteration makes its application to spectrum sensing difficult. For concreteness, and since

we have observed that the rank-1 criterion in (5.25) does not yield a good estimation performance

in our experiments, we will only consider SSPICE in the rest of the chapter. Note that this fact

agrees with the claim in [Stoica et al., 2011a] stating that, although the minimizer of (5.25)

provides a good indication of the sparsity pattern of α, it does not result in good estimates for

the coefficients αb themselves.
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5.3 Remarks

NON-NEGATIVITY CONSTRAINTS

Among the above algorithms, SIIA and WLS do not enforce the constraint α � 0. The resulting

estimates may thus contain negative entries αb, which may be set to zero in order to reconstruct

the power spectrum or to evaluate the GLR statistic.

SCM SELECTION

Based on the biased and unbiased traditional estimates of the autocorrelation of ȳ, we proposed

two ways of constructing an averaged and cropped SCM, each one with different properties (see

Section 5.1.3). A simple guideline to choose the proper averaging method to be used with one

of the proposed algorithms is to look at whether it allows Ŝ to have negative eigenvalues or not.

In the latter case, arising in SLIKES and SSPICE, only the biased estimate can be used, since

this is the only one guaranteeing this requirement (c.f. Theorem 5.1). In the former case, either

method will work.

The choice of the parameters N, N̄, L and L̃ must fit the application requirements and

guarantee the properties that the considered algorithm requires of Ŝ. Besides the issue described

in the previous paragraph, one must take care to ensure that Ŝ is invertible when needed. To

this end, Theorem 5.1 can be used to determine whether a particular candidate combination of

parameters is allowed. In practice, since the values of N̄ and N are imposed by the C-ADC,

one may only be allowed to set L and L̃. The former can be adjusted to satisfy performance

requirements, whereas the latter can be used to trade performance for complexity. According

to our experience, good values for L̃ are those that make the product N̄L̃ a few times greater

than B.

CONVERGENCE AND CONSISTENCY

From an optimization point of view, all algorithms described above enjoy interesting convergence

properties. For instance, LIKES guarantees convergence to a local minimum of the negative log-

likelihood function since the cost is always decreased at each iteration [Stoica and Babu, 2012].

A similar argument establishes local convergence for SLIKES. This property is also satisfied by

the IIA, where each iteration provides an improving direction [Burg et al., 1982] and the step

size should be selected so that the cost is decreased. Moreover, since the arguments in [Burg

et al., 1982] assume a general positive definite SCM, it is clear that they remain valid if the



5.3 Remarks 125

modified SCM is used, thus showing local convergence for SIIA. Regarding non-ML algorithms,

note that both WLS and CWLS arise from convex criteria, which means that they can be solved

using convex solvers, which are globally convergent. As for SPICE, global convergence of the

alternating algorithm is established in [Stoica et al., 2011a]. For SSPICE, global convergence

follows from the arguments in [Stoica et al., 2011c].

The consistency of the algorithms employing the modified SCM, namely SLIKES, SIIA,

WLS, CWLS and SSPICE, can be informally established based on the following argument: for

fixed L̃, the averaged and cropped SCM Ŝ is a consistent estimator for the cropped Ξ̄, which

means that Ŝ converges in probability to Ξ̄ for K̄ → ∞. Consistency then follows by noting

that the criteria used by these algorithms are minimized for Ξ̄ = Ŝ whenever Ŝ falls in the

feasible set, i.e., provided that Ŝ is in the span of B̄ with non-negative coefficients. Thus, as Ŝ

becomes closer and closer to the feasible region, the resulting estimate becomes closer to Ξ̄.

CFAR DETECTION

Note from (5.2), (5.3) and (5.4) that the distribution of the observations under H0 depends on

the αb. This implies that, in general, the distribution of a test statistic under H0, including the

GLR from (5.5), will depend on the parameters of the model. Even if the statistic is invariant

to scalings, its distribution under H0 will depend on the αb whenever B > 2. Therefore, it is

difficult to set the test threshold to satisfy a typical PFA requirement since the values of the

αb, b = 1, . . . , B − 1, are unknown in practice. Fortunately, we expect that the influence of

these parameters on the distribution of G is relatively small if different channels have different

frequency supports, and thus one may approximately achieve a target PFA.

In any case, one may argue that any detector for spectrum sensing faces similar difficulties.

Although (see Chapter 1) searching for the test that maximizes PD within the family of tests

with a given PFA is a widespread convention, spectrum regulations in practice will not set PFA

but PD, which motivates proceeding in the opposite direction: search for the test that minimizes

PFA within the family of tests with a given PD. However, specifying PD is difficult — a complete

set of parameters such as signal power, noise power, SNR, the power of adjacent channels, etc,

must be given as well. Thus, the practical difficulty faced by our GLR detector is not larger

than the one faced by any other detector. We leave it as a future research line to investigate

possible means of dealing with this issue.
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5.4 Simulation Results

Although it was simple to establish the good asymptotic properties of the presented algorithms,

performance assessment for finite K is not so immediate, especially for detection, where an

analytical evaluation is intractable. For this reason, in this section we accomplish this task via

Monte Carlo simulation.

All the algorithms to be considered use the averaged and cropped version of the SCM

except for LIKES and IIA, which are sometimes presented for the sake of comparison. In all

simulations, SLIKES and SSPICE operate on the biased SCM, while the rest of algorithms

(SIIA, WLS and CWLS) use its unbiased counterpart. Both dense and sparse samplers are

considered. The former are generated by drawing the entries of Φ̌ from independent zero-mean

complex Gaussian distributions with unit variance. In order to provide our results with more

generality, this procedure is repeated at every Monte Carlo iteration so that the final performance

measures are averaged over this family of sampling matrices. For sparse samplers, we use the

multi-coset pattern generated by a length-10 minimal sparse ruler, which corresponds to (see

also Section 1.1.2 and Chapter 6):

Φ̌ =


1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 1

 . (5.30)

The general setting is depicted in Figure 5.2, where the true PSD is shown along with the

reconstructed PSD. The latter is obtained by substituting the corresponding estimate of α in

(1.13). The sensed band contains six 4-QAM signals, seven OFDM signals and white noise. The

power of the signals is given by αb = 3× (b mod 3+1), b = 0, 1 . . . , 12, whereas the noise power

is set to α13 = 10. The QAM signals use a root raised cosine pulse with a roll-off factor of

0.3. The OFDM signal uses 512 subcarriers, where the last and first 50 are set to zero; a cyclic

prefix with length 1/4 of the symbol period, and a 4-QAM constellation in each subcarrier. We

observe that, although the distribution of these signals is not exactly Gaussian — especially in

the case of the QAM signals —, all the schemes are still capable of estimating the power of each

channel with acceptable accuracy.

In order not to confine ourselves to specific modulations, in the remaining simulations we

generate the samples xb[k] by passing zero-mean circularly symmetric white Gaussian noise

of power αb through an energy-normalized bandpass prototype FIR filter with 31 coefficients



5.4 Simulation Results 127

0 1 2 3 4 5 6
0

5

10

15

20

25

30

ω [rad/samp]

P
S

D

 CWLS

 WLS

 SSPICE

 SIIA

 SLIKES

Theoretical

Figure 5.2: PSD estimates for (from left to right) six QAM signals and seven OFDM signals.
Many curves overlap since the estimates are close to each other (K = 10240, dense sampler,
N = 10, N̄ = 5, L̃ = 6).

and bandwidth 0.4π rad/samp, except when a large number of channels is considered, where

the order is increased and the bandwidth reduced to avoid frequency overlap6. The resulting

signals are then shifted to uniformly spaced carrier frequencies via multiplication by a complex

exponential. The last signal xB−1 is in all cases white Gaussian noise.

5.4.1 Estimation Performance

We start by illustrating the consistency of the proposed schemes. In Figure 5.3, the MSE of the

reconstructed PSD is represented vs. K along with the CRB, which is obtained by applying

a linear transformation [Kay, 1993, Sec. 3.8] to the bound for α from [Stoica and Moses,

2005, Stoica and Babu, 2011]. Note that α necessarily satisfies α � 0, which means that the

constrained CRB must be used. However, it is shown in [Gorman and Hero, 1990] that this

bound coincides with the unconstrained CRB at those points where α � 0. For simplicity, in

this experiment we only consider points satisfying the latter condition. The MSE is estimated as

the squared Euclidean distance between the reconstructed and the theoretical PSD, normalized

by the number of PSD samples. Thus, the MSE is measured in squared units of power per

radian.

6Note that the proposed schemes can be used without modification even if the channels overlap.
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Figure 5.3: Comparison of the estimation performance of the different algorithms presented in
the chapter (α = [4, 9, 1]T , dense sampler, N = 5, N̄ = 2, L̃ = 9).

We also show in this figure, for comparison purposes, the PSD MSE of the constrained

and unconstrained ML estimators obtained with the LIKES and IIA algorithms. Note that

SSPICE is not defined for the leftmost point since K is too small for the biased SCM to be non-

singular. We observe that SIIA and SLIKES achieve an estimation performance which is almost

identical to the performance of IIA or LIKES, respectively, yet with a much lower computational

complexity. The advantage of using a constrained estimate is also noticed.

The influence of the compression ratio on the MSE is investigated in Figure 5.4, where

SLIKES and SSPICE were omitted for simplicity. Clearly, the MSE is in all cases a decreasing

function of N̄/N since a larger N̄/N entails a larger K̄. Interestingly, small ratios N̄/N can

be used without affecting the performance meaningfully. On the other hand, the influence of

the number of channels B in the estimation MSE is analyzed in Figure 5.5. The vector α is set

to α = [1, 1, . . . , 1, 10]T in all cases. As intuition predicts, the MSE increases with B since the

number of parameters to be estimated becomes larger.

5.4.2 Detection Performance

The interest here is to decide over the presence of the first signal, that is, whether α0 = 0 or

α0 > 0 (see (5.3)). We use the schemes from Section 5.2 to construct detectors by substituting

their respective estimates in the GLR from (5.5). Note that only the estimate obtained via

LIKES results in the GLR test, the others being approximations. Any negative component of

α is set to zero prior to evaluation of (5.5), since otherwise Ξ̄ may not be positive definite.
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Figure 5.4: A large portion of the samples can be discarded without a meaningful performance
loss (K = 900, α = [4, 9, 1]T , dense sampler, N = 30, L̃ = 16).

20 40 60 80 100 120
0

50

100

150

200

250

300

Number of Channels (B−1)

P
S

D
 M

S
E

 WLS

 SIIA

Figure 5.5: Influence of the number of channels in the estimation performance. αb = 1 for
b = 0, 1 . . . , B − 2 and αB−1 = 10 (K = 5120, dense sampler, N = 10, N̄ = 5, L̃ = 11).
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Figure 5.6: ROC comparing the algorithms of this chapter. (K = 300, α = [0.2, 9, 1]T , sparse
sampler, N = 10, N̄ = 5, L̃ = 5).

Figure 5.6 shows the ROCs of the proposed schemes. We observe that the probability of

detection of LIKES, SLIKES, SIIA and SSPICE is roughly the same. On the other hand, the LS

criterion is seen not to result in good detection rules. In fact, we observe that the ROC curves

corresponding to WLS and CWLS are not even concave, meaning that their performance can

be improved by using randomized versions of these tests [Lehmann and Romano, 2005].

Finally, Figure 5.7 represents the probability of detection for fixed PFA = 0.10 vs. the

number of channels. The LS detectors were omitted for the reasons provided in the previous

paragraph. It is observed that the influence of B on the probability of detection is not as

important as its influence on the MSE: only small variations are noticed. It is also seen that

this influence is more important in SSPICE for larger values of L̃.
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5.5 Conclusions

The problem of power estimation and activity detection for WSS was formulated for the case

when a frequency band is observed through an C-ADC. We proposed a collection of methods

that capitalize on the prior knowledge of the spectral structure of the transmitted signals.

Under a Gaussian assumption, we saw that computing the ML estimate is computationally

intensive, which motivated us to seek low-complexity approximations. Further schemes and

approximations were also proposed for the case where the Gaussian assumption is dropped. In

both cases, we relied on the usage of an averaged and cropped version of the SCM.

The proposed algorithms (SLIKES, SIIA, WLS, CWLS and SSPICE) produce consistent

estimates and trade performance for complexity. Although they require much fewer compu-

tational resources than existing methods, we observed via Monte Carlo simulations that their

performance is similar. Moreover, it was observed that the observations can be strongly com-

pressed without a meaningful performance degradation.

The work presented in this chapter was published on the IEEE Transactions on Signal

Processing [Romero and Leus, 2013b] and presented in part in the 2013 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP 2013) [Romero et al., 2013].
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5.A Proof of Theorem 5.1

Let us define Ȳ , [ȳ[0], ȳ[1], . . . , ȳ[L− 1]] and Ỹ , [Ȳ ,0N̄×L̃−1]. Since the columns of Ȳ are

drawn from a continuous distribution, they are linearly independent with probability one and,

consequently, rank{Ȳ } = min{L, N̄}. Let us also consider the group of (L+ L̃−1)× (L+ L̃−1)

circular rotation matrices Rl, where Rl is defined as the l-th circular shift of the columns of the

identity matrix to the left. Except for their dimensions, the Rl are defined here as in Section

5.1.3. Note that R−l = RH
l and RlRl′ = Rl+l′ .

With this notation, it is possible to rewrite Ŝ[l] more conveniently as Ŝ[l] = clỸ RlỸ
H ,

with cl = 1/M l. It follows that Ŝ = Ỹ dUỸ
H
d , where Ỹ d = IL̃ ⊗ Ỹ and

U =


c0R0 c1R−1 . . . cL̃−1R−L̃+1

c1R1 c0R0 . . . cL̃−2R−L̃+2
...

...
. . .

...

cL̃−1RL̃−1 cL̃−2RL̃−2 . . . c0R0

 . (5.31)

This matrix can also be written asU = R̄d(U0⊗IL+L̃−1)R̄
H
d , where R̄d = diag

{
R0,R1, . . . ,RL̃−1

}
is a block diagonal matrix with the blocks Rl on its diagonal and

U0 ,


c0 c1 . . . cL̃−1

c1 c0 . . . cL̃−2
...

...
. . .

...

cL̃−1 cL̃−2 . . . c0

 . (5.32)

In the biased case, where cl = c0 ∀l, we can go a step further by factoring

U0 ⊗ IL+L̃−1 = c0(1L̃ ⊗ IL+L̃−1)(1L̃ ⊗ IL+L̃−1)H , (5.33)

which means that Ŝ can be written as Ŝ = c0AŜA
H
Ŝ

for AŜ , Ỹ dR̄d(1L̃ ⊗ IL+L̃−1). Noting

that c0 > 0 concludes the proof of the first part.

The same factorization also shows that [Bernstein, 2009, Ch. 2]

rank{Ŝ} = rank{c0AŜA
H
Ŝ
}

= rank{AŜ}.
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Since AŜ has the special form of

AŜ = Ỹ dR̄d(1L̃ ⊗ IL+L̃−1) =


Ỹ R0

Ỹ R1

...

Ỹ RL̃−1

 ,

it is possible to compute the rank by counting the number of linearly independent columns. If

L ≤ N̄L̃, where N̄L̃ is the number of rows, we obtain L columns from the non-null columns

of Ỹ R0 and one extra column for each Ỹ Rl with l = 1, 2, . . . , L̃ − 1. Therefore there are

min(L + L̃ − 1, N̄ L̃) independent columns. If L > N̄L̃, the number of independent columns

is also N̄L̃. Consequently, we have established that rank{Ŝ} = min(L + L̃ − 1, N̄ L̃), which

concludes the proof of the second part.

Proving the third part is slightly more involved since the factorization of the biased estimate

does not apply to its unbiased counterpart. We start by considering the case L ≤ N̄ and then

move to the case L > N̄ . Since all entries of Ȳ are different from zero with probability one,

there exists an N̄ × N̄ invertible matrix of elementary row operations F such that

F Ȳ =

[
IL

0

]

or, alternatively, F Ỹ = E, with

E =

[
IL 0

0 0

]
. (5.34)

Clearly, the block diagonal matrix Fd = IL̃ ⊗ F is also invertible and, consequently,

rank{Ŝ} = rank{FdŜFH
d } (5.35a)

= rank{EdR̄d(U0 ⊗ IL+L̃−1)R̄
H
d E

H
d } (5.35b)

= rank{EdR̄d(U0 ⊗ IL+L̃−1)R̄
H
d } (5.35c)

= rank{EdR̄d(U0 ⊗ IL+L̃−1)} (5.35d)

where Ed = IL̃ ⊗ E. The third equality is shown in Appendix 5.B, whereas the fourth is a

consequence of the fact that R̄d is invertible. In order to prove the third part of the theorem,

we note that rank{U0} = L̃ in the unbiased case [Bernstein, 2009, Ch. 2], which means that
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U0 ⊗ IL+L̃−1 is invertible. Therefore,

rank{Ŝ} = rank{EdR̄d} = L̃ rank{E} = L̃ · L

This concludes the proof for the case L ≤ N̄ . In particular, for L = N̄ we have that Ŝ is full

rank with probability one. Thus, for L > N̄ , it is easy to see that Ŝ will also be full rank with

probability one, since the resulting matrix is obtained by adding further random contributions

to the averaged SCM that corresponds to the N̄ first vectors ȳ[l].

5.B Proof of Expression (5.35c)

The purpose of this section is to show that

rank{EdUEH
d } = rank{EdU}. (5.36)

Although in Appendix 5.A we made use of this expression from left to right, here we will proceed

from right to left by noting that left-multiplying U by Ed amounts to a row selection where we

take the first L rows of every block of L̃ + L − 1 rows. The rows that are not selected are set

to zero but, as far as the rank is concerned, this is equivalent to removing those rows. Right

multiplying by EH
d performs the analogous operation with the columns. Although the rank of

EdU can be less than or equal to the rank of U , we will see that once we have left-multiplied

by Ed, the right multiplication by EH
d entails no further rank reduction.

In other words, we must show that the columns of EdU that EH
d sets to zero in EdUE

H
d

are linearly dependent on the columns that are not set to zero. To do so, we must examine

the structure of U . From (5.31) we observe that U is a sparse matrix since the blocks clRl

have exactly one non-null element in each row and column. As we will see, to establish (5.36) it

suffices to analyze the position of the non-null elements of U . To simplify the explanation, let

us define Ū as a matrix which is zero where U is zero and one where U is different from zero.

Let uk, k = 0, 1, . . . , L̃(L + L̃ − 1) − 1, denote the k-th column of U . We define Uk ⊂
{0, 1, . . . , L̃(L + L̃ − 1) − 1} as the set containing the indices of the nonzero entries of uk. It

is easy to see that all the columns of Ū are present in the first block-column since the rest

of the block-columns are just cyclic shifts of the first one. In particular we have that, for

k = 0, 1, . . . , s− 1,

Uk = Us+(k+1)s = U2s+(k+2)s = . . . = U (L̃−1)s+(k+L̃−1)s
(5.37)

where s = L+ L̃− 1 and (·)s means remainder of integer division by s. Clearly, these sets have
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L̃ elements:

Uk = {k, s+ (k + 1)s, 2s+ (k + 2)s, . . . , (L̃− 1)s+ (k + L̃− 1)s}

= {ns+ (k + n)s, n = 0, 1, . . . , L̃− 1} (5.38)

for k = 0, 1, . . . , s − 1. Note that because Ū is symmetric, the elements in Uk are the same as

those in the subscripts of (5.37).

Let ũk, k = 0, 1, . . . , L̃(L+ L̃−1)−1, denote the k-th column of EdU . As discussed above,

the left multiplication by this matrix amounts to setting to zero the rows of U whose indices

are not in (see (5.34))

C = {n(L+ L̃− 1) + k : n = 0, 1, . . . , L̃− 1; k = 0, 1, . . . , L− 1}.

In other words, only the rows with indices in C are preserved. Thus, if the set Ũk contains the

indices of the non-null entries of ũk, it is clear that Ũk = Uk ∩ C and also that

Ũk = Ũs+(k+1)s = Ũ2s+(k+2)s = . . . = Ũ (L̃−1)s+(k+L̃−1)s
, (5.39)

which follows from (5.37). This expression allows us to arrange the columns of EdU in s

equivalence classes. We say that the column ũq is in the k-th class if q is in

Bk = {k, s+ (k + 1)s, 2s+ (k + 2)s, . . . , (L̃− 1)s+ (k + L̃− 1)s}

= {ns+ (k + n)s, n = 0, 1, . . . , L̃− 1} (5.40)

Note that Ũq ∩ Ũq′ = ∅ if q and q′ belong to different classes. Also, a collection of |Ũk| or fewer

columns of class k is necessarily independent, since the coefficients of the non-null entries of ũk

are taken from U0. Conversely, a collection of more than |Ũk| elements of class k is necessarily

a dependent set of vectors.

With these observations in mind it is clear that the right-multiplication of EdU by EH
d is

not going to change the rank provided that this column selection respects at least |Ũk| columns

from class k, for all k. The number of columns surviving in class k is clearly |Bk ∩C|. But, from

(5.38) and (5.40) it follows that Bk = Uk, which in turn means that |Bk ∩ C| = |Uk ∩ C| = |Ũk|.
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Chapter 6

Sampler Design for Compressive
Covariance Sampling

This chapter is concerned with the design of linear compression systems for CCS. The model

from Section 1.1.2 is adopted, where the covariance matrix Ξ of the uncompressed observations

y is linearly parameterized in terms of a basis B of HT matrices. The goal is to design a

compression matrix Φ such that the compression operation, represented as ȳ = Φy, preserves

all the second-order statistical information of interest. To formalize this notion, we put forth

abstract criteria, irrespective of any algorithm, that establishes which samplers are admissible.

The design of both sparse and dense samplers, operating in either a periodic or non-periodic

fashion, is addressed for several common linear parameterizations, with special attention to those

maximizing the compression ratio.

This chapter is structured as follows. Section 6.1 sets the theoretical background, where

the notions of maximum compression ratio and covariance sampler are introduced. Section 6.2

develops some tools for the design of covariance samplers, which are applied in Sections 6.3

and 6.4 to develop universal and non-universal covariance samplers, respectively. Asymptotic

compression ratios are discussed in Section 6.5. Finally, Sections 6.6 and 6.7 respectively provide

some remarks and conclusions.

6.1 Theoretical Framework

The definition of maximum compression ratio requires to first specify which samplers we are

willing to accept. As mentioned above, we are interested in those samplers preserving all relevant

second-order statistical information, i.e., those samplers that allow to recover the second-order

statistics of y from those of ȳ. In order to formalize this notion, we start by associating the
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compression matrix Φ ∈ CK̄×K with a linear map that relates the covariance matrices of y and

ȳ. This function is defined as

span
R
B φ−−−→ span

R
B̄

Ξ −−−→ φ(Ξ) = ΦΞΦH ,
(6.1)

where B is a linearly independent set of B HT matrices and spanR B is referred to as the

covariance subspace.1 We next specify which sampling matrices are admissible:

Definition 6.1. A matrix Φ defines a B-covariance sampler, or simply a covariance sampler

when there is no ambiguity, if the associated function φ, defined in (6.1), is invertible.

The maximum compression ratio is the largest value of ρ , K/K̄ for which a covariance

sampler Φ ∈ CK̄×K can be found. Above this value, it is not possible to consistently estimate the

second-order statistics of y, even if an arbitrarily large number of realizations of ȳ are observed,

since the statistical identifiability of Ξ is lost [Lehmann and Casella, 1998]. For convenience,

throughout the chapter we regard K as given and attempt to minimize K̄.

One may argue that the requirement in Definition 6.1 is too strong since it suffices to

require φ to be invertible only for those matrices in the covariance subspace that are positive

semidefinite. More generally, the prior information may constrain Ξ to be in a certain non-linear

set2 A such as the set of positive semidefinite matrices, the set of covariance matrices of auto-

regressive processes with a given order, the non-linear sets in [Ottersten et al., 1998], etc. In

those cases, we may reformulate Definition 6.1 to require φ to be invertible only in A∩ spanR B.

However, this relaxation is unnecessary, as shown by the following lemma:

Lemma 6.1. Let φ be the function defined in (6.1), where B is a linearly independent set of B

HT matrices, let A be a set of matrices satisfying that dimR[A ∩ spanR B] = B and let φ|A be

the restriction of φ to A ∩ spanR B, defined as:

A ∩ span
R
B

φ|A−−−−−→ φ(A ∩ span
R
B)

Ξ −−−−→ φ|A(Ξ) = φ(Ξ).
(6.2)

Then, φ is invertible if and only if φ|A is invertible.

Proof. See Appendix 6.A.

1For mathematical convenience, φ is not only defined for positive semidefinite matrices.
2We say that a set A is linear if α0a0 +α1a1 ∈ A for any elements a0,a1 ∈ A and scalars α0, α1. A non-linear

set is a set which does not satisfy this condition.
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Therefore, the non-linear information captured by A is irrelevant from the linear compres-

sion perspective whenever dimR[A ∩ spanR B] = B. If this condition is not satisfied, one must

choose a different basis B′ such that A∩ spanR B′ = A∩ spanR B and dimR[A∩ spanR B′] = |B′|,
which is always possible. This establishes the generality of Definition 6.1 and enables us to work

with covariance subspaces without further concerns. In particular, if A is the cone of positive

semidefinite matrices, then B satisfies dimR[A ∩ spanR B] = B in most cases of interest:

Lemma 6.2. Let A be the set of positive semidefinite matrices. Then dimR[A∩ spanR B] = B if

B satisfies at least one of the following conditions:

1. Ξ ≥ 0 for all Ξ ∈ B

2. ∃Ξ ∈ spanR B such that Ξ > 0

Proof. 1) means that B ⊂ [A ∩ spanR B]. Then dimR[A ∩ spanR B] ≥ dimR B = B. Noting

that dimR[A ∩ spanR B] ≤ B for any B shows that dimR[A ∩ spanR B] = B. On the other

hand, if 2) holds, we can assume without any loss of generality that B = {Ξ0, . . . ,ΞB−1} where

Ξ0 = Ξ > 0. If B′ = {Ξ0,Ξ1 + cΞ0, . . . ,ΞB−1 + cΞ0}, then spanR B = spanR B′ for any c.

Choose c = |minb λmin(Ξb)/λmin(Ξ0)|, with λmin representing the minimum eigenvalue. Then

B′ satisfies 1), which concludes the proof.

Lemma 6.2 establishes that positive semidefiniteness plays no role in the compression of the

covariance subspaces considered in this thesis and in most practical linear parameterizations.

Clearly, a matrix Φ may define a covariance sampler for certain sets B but not for others.

If a matrix Φ is a covariance sampler for any choice of B, we call it universal :

Definition 6.2. A sampling matrix Φ ∈ CK̄×K defines a universal covariance sampler if it is

a B-covariance sampler for any linearly independent set B of K ×K HT matrices.

Knowing B is always beneficial since Φ may be tailored to obtain optimal compression ratios

and estimation performance. Universal samplers are motivated by those cases where B, or even

B, is unknown at the time of designing the compression matrix. Other notions of universal

samplers have been previously introduced in different contexts [Feng and Bresler, 1996,Mishali

and Eldar, 2009,Baraniuk et al., 2008,Candès and Wakin, 2008,Yen et al., 2013].

6.1.1 Interpretation

Due to the definition of domain and codomain in (6.1), φ clearly represents a surjective map.

Therefore, the notion of invertibility actually means that φ must be injective, that is, for any
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set of real coefficients αb and α′b,

φ

(∑
b

αbΞb

)
= φ

(∑
b

α′bΞb

)
⇒ αb = α′b ∀b. (6.3)

This condition is, in turn, equivalent to∑
b

αbΞ̄b =
∑
b

α′bΞ̄b ⇒ αb = α′b ∀b, (6.4)

which means that B̄ = {Ξ̄0, . . . , Ξ̄B−1} must be linearly independent. Thus, determining

whether a given matrix Φ defines a B-covariance sampler amounts to checking whether B̄ = φ(B)

is linearly independent or not. Alternatively, (6.4) states that no two different linear combina-

tions of the matrices in B̄ can result in the same Ξ̄, which means that covariance samplers can

also be defined as those samplers preserving the identifiability of the coefficients αb.

To the best of our knowledge, Definition 6.1 is the first attempt to formalize the design of

samplers for CCS problems using abstract criteria not depending on specific algorithms. In the

sequel, we will provide means of determining whether a matrix defines a covariance sampler or,

in some cases, even a universal covariance sampler.

6.1.2 Notable Covariance Subspaces

In Section 6.2 we will provide general tools to design covariance samplers. We then particularize

those results to some of the most common covariance subspaces, which are introduced next.

Recall that, although the covariance subspaces contain complex-valued matrices, the scalars are

real (see Section 1.1.2).

TOEPLITZ SUBSPACE

A matrix is Toeplitz if it is constant along its diagonals [Gray, 2006]. The set of all K × K
HT matrices, represented as TK , is a subspace of CK×K over the real scalar field,3 and it is the

largest subspace considered in this chapter. The standard basis of TK is defined as the set

BT , {IK} ∪ {T1, · · · ,TK−1} ∪ {T̃ 1, · · · , T̃K−1}, (6.5)

3The reason is that any linear combination with real coefficients of HT matrices is also HT. This statement is
false for complex coefficients.
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where Tk denotes the HT matrix with all zeros except for the entries on the diagonals +k and

−k, which have ones, and T̃ k represents the HT matrix with all zeros except for the entries on

the diagonal +k, which have the imaginary unit , and those on the diagonal −k, which have

−. More formally,

Tk , JkK + (JkK)T k ≥ 1 (6.6)

T̃ k , JkK − (JkK)T k ≥ 1, (6.7)

where JK is the first linear shift of IK to the right, i.e., the matrix whose element (k, k′) is one if

k′−k = 1 and zero otherwise. The basis BT shows that dimR TK = 2K− 1. Another important

basis for this subspace, which arises in spectrum estimation problems, is the Fourier basis:

BF , {Ξ0, · · · ,Ξ2K−2}, (Ξb)k,k′ =
e

2π
2K−1

(k−k′)b

2K − 1
. (6.8)

CIRCULANT SUBSPACE

In some cases, for example when the covariance matrix of y is diagonal in the frequency or

angular domain, which typically results from a polyphase interpretation of the C-ADC in the

frequency domain [Yen et al., 2013,Ariananda et al., 2013], the matrix Ξ is circulant. A circulant

matrix is a matrix whose k-th row equals the k-th circular rotation of the zeroth row4 to the

right [Gray, 2006]. In other words, the element (k0, k1) equals the element (k′0, k
′
1) if (k0−k1)K =

(k′0 − k′1)K . In our case, the matrices in the circulant subspace must be HT and circulant

simultaneously. A possible basis is

BC , {IK} ∪ {C1, · · · ,CK−1
2
} ∪ {C̃1, · · · , C̃ K−1

2
}, (6.9)

for K odd and

BC , {IK} ∪ {C1, · · · ,CK
2
−1} ∪ {C̃1, · · · , C̃ K

2
−1} ∪ {TK

2
} (6.10)

for K even, where

Cb , Tb + TK−b, (6.11)

C̃b , T̃ b − T̃K−b. (6.12)

Clearly, the dimension of this subspace is K in both cases.

4Recall the conventions introduced in Section 1.4.
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BANDED SUBSPACE

Banded covariance matrices arise when the autocorrelation sequence of a stationary process

vanishes for large time lags [Ariananda and Leus, 2012]. A d-banded matrix is a matrix where

all the elements above the diagonal +d and below the diagonal −d (these diagonals noninclusive)

are zero. A possible basis for the subspace of HT d-banded matrices is given by

BdB , {IK} ∪ {T1, · · · ,Td} ∪ {T̃ 1, · · · , T̃ d}, (6.13)

which is a subset of BT . The dimension is therefore 2d+ 1.

6.2 Design of Covariance Samplers

This section presents a collection of results that can be used to determine whether a compression

matrix Φ defines a covariance sampler or not, and to design these matrices for a given B. Before

delving into the derivation, let us consider the following fact from linear algebra:

Lemma 6.3. Let B = {Ξ0, · · · ,ΞB−1} be a set of Hermitian matrices. If B is linearly indepen-

dent over the real scalar field, that is,

B−1∑
b=0

αbΞb = 0, αb ∈ R ⇒ αb = 0 ∀b, (6.14)

then it is also independent over the complex scalar field, i.e., (6.14) also holds when αb ∈ C.

Proof. It easily follows by combining expression (6.14) with the fact that Ξb = ΞH
b ∀b.

The importance of this basic fact is that it allows us to focus on the complex extension of

φ, defined as

span
C
B φC−−−−→ span

C
B̄

Ξ −−−→ φC(Ξ) = ΦΞΦH .
(6.15)

In other words, Φ defines a covariance sampler iff the associated φC is an invertible function.

An equivalent statement is provided by the following lemma, which is the basic tool to be used

in the design of covariance samplers.

Lemma 6.4. Let kerφC denote the set of matrices Ξ ∈ spanC B satisfying φC(Ξ) = 0. Then, a

matrix Φ defines a covariance sampler if and only if kerφC = {0}.
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Proof. It is an immediate consequence of Definition 6.1 and Lemma 6.3.

6.2.1 Design of Sparse Samplers

Designing sparse samplers involves manipulating difference sets, which contain all possible dis-

tances between elements of another set:

Definition 6.3. The difference set of A ⊂ Z, denoted as ∆(A), is defined as:

∆(A) = {δ ≥ 0 : ∃a1, a2 ∈ A satisfying δ = a2 − a1}. (6.16)

Note that the difference set considers no repetition of elements, i.e., every distance shows up

at most once. The cardinality of ∆(A) is upper bounded by one plus the number of unordered

subsets of A with two elements:

|∆(A)| ≤ |A| · (|A| − 1)

2
+ 1, (6.17)

where the +1 term accounts for the fact that 0 ∈ ∆(A) for any non-empty A.

Define the correlation vector ξb associated with the HT matrix Ξb as the the first column

of Ξb. The following theorem is a quick method to verify whether a sparse sampler defined by

a set K is a covariance sampler (see Section 1.1.2).

Theorem 6.1. Let B = {Ξb}B−1
b=0 be a linearly independent set of HT matrices, let {ξb}B−1

b=0 be

the associated set of correlation vectors, and let ξ̄b be the vector whose entries are the elements

of ξb indexed by ∆(K). Then, K defines a B-covariance sampler if and only if rankC = B,

where

C =

[
ξ̄0 ξ̄1 . . . ξ̄B−1

ξ̄∗0 ξ̄∗1 . . . ξ̄∗B−1

]
. (6.18)

Proof. Observe that Ξ̄b contains at least one element from the δ-th diagonal of Ξb iff |δ| ∈ ∆(K).

Now vectorize the matrices in B̄ and arrange the resulting vectors as columns of a matrix. By

removing repeated rows and duplicating the row corresponding to the main diagonal we obtain

C. Therefore, the number of linearly independent columns in C equals the number of linearly

independent matrices in B̄. The result follows from Lemma 6.4 by noting that kerφC = {0} iff

rankC = B.

From (6.18), it is easy to conclude5 that 2|∆(K)| − 1 ≥ B in order for C to be full column

5Note the existence of a duplicate row in C.
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rank. Combining this expression with (6.17) results in the following necessary condition for K
to define a covariance sampler:

K̄ · (K̄ − 1) + 1 ≥ B. (6.19)

6.2.2 Design of Dense Samplers

Designing sampling matrices is oftentimes involved due to the nature of the design criteria. In

many cases, a simple but effective approach is to draw Φ̌ at random using a distribution that

provides an admissible sampler with a certain probability [Candès and Wakin, 2008, Baraniuk

et al., 2008]. This chapter relies on this idea to propose probabilistic methods capable of gen-

erating dense covariance samplers for CCS. Interestingly, these techniques do not require any

knowledge about the structure of the covariance subspace other than its dimension. The next

result establishes the minimum dimensions of a random matrix Φ̌ to define a covariance sampler.

Theorem 6.2. Let Φ̌ ∈ CN̄×N , with N̄ ≤ N , be a random matrix with a continuous probability

distribution.6 Then, with probability one, the matrix Φ = IL⊗Φ̌ defines a B-covariance sampler

if and only if B ≤ N̄2
(2L− 1), where B is the cardinality of the HT basis set B.

Proof. See Appendix 6.B.

Note that the matrices in spanR B̄, where B̄ is the corresponding basis of the compressed

subspace, are Hermitian and block-Toeplitz with N̄×N̄ blocks. It can be seen that the dimension

of such a subspace is at most N̄
2
(2L−1), which is exactly the one achieved by the random design

from Theorem 6.2 when B = N̄
2
(2L − 1) (see Section 6.1.1). Therefore, no other design can

achieve a higher compression ratio.

6.3 Universal Covariance Samplers

After having laid the mathematical framework, we are ready to present methods that produce

covariance samplers independently of which basis of HT matrices is considered. The first result

of this section simplifies the task of checking whether a given matrix defines a covariance sampler

for all possible bases to that of checking it just for a single basis.

Lemma 6.5. Let B be a basis for TK . Then, a sampler Φ is universal if and only if it is a

B-covariance sampler.
6Recall that a distribution µ is continuous if it is absolutely continuous with respect to Lebesgue measure, that

is, µ(B) = 0 for all Borel sets of CN̄×N with zero Lebesgue measure [Billingsley, 1995]. This hypothesis was also
considered in Theorem 5.1.
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Proof. Clearly, if Φ is universal, it is also a B-covariance sampler. Conversely, if Φ is a B-

covariance sampler, it is also a B′-covariance sampler for any basis B′ of HT matrices since the

restriction of an injective map is always injective.

The rest of this section capitalizes on this result to find sparse and dense universal covariance

samplers.

6.3.1 Sparse Samplers

The next necessary and sufficient condition for a sparse sampler to be universal basically states

that all autocorrelation lags must be identifiable from the compressed observations.

Theorem 6.3. The set K ⊂ {0, . . . ,K − 1} defines a universal covariance sampler if and only

if ∆(K) = {0, . . . ,K − 1}.

Proof. Consider the basis BT from (6.5). If ∆(K) = {0, . . . ,K − 1}, the matrix C from Theo-

rem 6.1 becomes

C =

[
IK −ĨK
IK ĨK

]
, (6.20)

where ĨK is the submatrix of IK that results from removing the first column. Since C has rank

2K − 1, K defines a BT -covariance sampler and, due to Lemma 6.5, it is universal.

If one or more elements of {0, . . . ,K−1} are missing in ∆(K), at least two of the rows of C

are missing, meaning that rank[C] < 2K−1. Then, rank[C] = 2K−1 iff {0, . . . ,K−1} ⊂ ∆(K).

From Theorem 6.1, K defines a BT -covariance sampler iff ∆(K) = {0, . . . ,K − 1}. Now apply

Lemma 6.5.

This theorem provides a simple means of checking whether K is universal or not. Interest-

ingly, this is closely related to the classical problem in number theory known as the sparse ruler

problem, or as the representation of integers by difference bases (see [Miller, 1971, Leech, 1956]

and references therein). Its application to array processing dates back to the 60’s [Moffet, 1968].

Definition 6.4. A length-(K − 1) (linear) sparse ruler is a set K ⊂ {0, 1, . . . ,K − 1} satisfying

∆(K) = {0, 1, . . . ,K − 1}. It is called minimal if there exists no other length-(K − 1) sparse

ruler with smaller cardinality.

Intuitively, we may associate this set with a classical ruler (the physical object) with some

marks erased, which is still capable of measuring all integer distances between 0 and its length
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using pairs of marks. Two examples of minimal sparse rulers are shown in Figure 6.1, where

red dots correspond to the marks that have not been erased. Sparse rulers exist for all K,

although they are not necessarily unique. For instance, two different length-10 sparse rulers are

{0, 1, 2, 3, 6, 10} and {0, 1, 2, 5, 7, 10}. The most remarkable properties of a length-(K−1) sparse

ruler are that the endpoints are always present, i.e., {0,K − 1} ⊂ K, and that its reflection

(K − 1) − K = {(K − 1) − k : k ∈ K} is also a sparse ruler. Trivially, if K is minimal, then

(K − 1) − K is also minimal. Therefore, (minimal) sparse rulers exist at least in pairs unless

K = (K − 1)−K. The cardinality K̄ = |K| of a sparse ruler is lower bounded as

K̄ ≥ 1

2
+

√
2(K − 1) +

1

4
, (6.21)

which follows directly from (6.17) and is only attained for K − 1 = 0, 1, 3 and 6 (see e.g.

[Linebarger et al., 1993]); or as (see [Rédei and Rényi, 1949,Leech, 1956]):

K̄ ≥
√
τ(K − 1), (6.22)

where τ = maxϕ 2(1− sinϕ
ϕ ) ≈ 2.4345; and, if it is minimal it is upper bounded by [Pearson

et al., 1990]:

K̄ ≤
⌈√

3(K − 1)
⌉
, K − 1 ≥ 3. (6.23)

Thus, in the non-periodic case (L = 1), Theorem 6.3 reduces our design problem to find-

ing a length-(K − 1) sparse ruler, for which design algorithms abound. A trivial example is

{0, . . . ,K − 1}, which clearly represents a universal sampler since in that case ȳ = y. More

sophisticated constructions were discussed in [Rédei and Rényi, 1949,Leech, 1956,Pearson et al.,

1990, Wichmann, 1963, Linebarger et al., 1993, Pumphrey, 1993, Pal and Vaidyanathan, 2010].

However, if the compression ratio is to be maximized, then one should look for a minimal sparse

ruler, which is an exhaustive-search problem. Fortunately, there exist tables for values of K − 1

up to the order of 100. Although higher values of this parameter demand, in principle, intensive

computation, one may resort to the designs in [Pearson et al., 1990,Wichmann, 1963,Linebarger

et al., 1993], which provide nearly minimal rulers despite being really simple.

On the other hand, it is not clear how to design sampling patterns in the periodic case

(L > 1) since periodicity needs to be enforced on K. Before that, the next definition is required.

Definition 6.5. A length-(K − 1) periodic sparse ruler of period N , where N divides K, is a

set K ⊂ {0, 1, . . . ,K − 1} satisfying two conditions:

1. if k ∈ K, then k + lN ∈ K for all l ∈ Z such that 0 ≤ k + lN < K
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Figure 6.1: Example of a length-10 minimal sparse ruler (above) and length-20 minimal sparse
ruler (below).

2. ∆(K) = {0, 1, . . . ,K − 1}.

It is called minimal if there exists no other periodic sparse ruler with the same length and period

and smaller cardinality.

Observe that any periodic sparse ruler is also a sparse ruler, whereas the converse need not

be true. Clearly, Theorem 6.3 could be rephrased to say that K is universal iff it is a length-

(NL−1) periodic sparse ruler of period N . The problem of designing sparse covariance samplers

thus becomes that of designing periodic sparse rulers. The next result simplifies this task by

stating that a length-(NL− 1) periodic sparse ruler of period N is indeed the concatenation of

L length-(N − 1) sparse rulers:

Theorem 6.4. A set K is a periodic sparse ruler of length NL− 1 and period N if and only if

there exists a sparse ruler N of length N − 1 such that

K = {n+ lN : n ∈ N , l = 0, 1, . . . , L− 1}. (6.24)

Proof. See Appendix 6.D.

One of the consequences of Theorem 6.4 is that increasing the number of blocks in a periodic

sparse sampler cannot improve the compression ratio. For example, concatenating two equal

length-(N − 1) minimal sparse rulers with N̄ elements results in a length-(2N − 1) sparse ruler

with 2N̄ elements. Note, however, that the situation is different if the periodicity requirement

is dropped. For instance, a minimal length-10 sparse ruler has 6 elements, whereas a length-21

minimal sparse ruler has 8 < 6× 2 elements.

As a corollary of Theorem 6.4, we conclude that a minimal periodic sparse ruler is the

concatenation of minimal sparse rulers. Thus, the problem of designing optimal sparse universal

covariance samplers (either periodic or non-periodic) reduces to designing a minimal length-

(N − 1) sparse ruler.

Table 6.1 illustrates the minimum value of N̄ = |N | (labeled as N̄LSR) for several values of

N , enabling us to obtain the optimum compression ratio for block lengths N up to 60, which
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N 5 6 7 8 9 10 11 12 13 14 15 16

N̄CSR 3 3 3 4 4 4 4 4 4 5 5 5

N̄HLSR 3 3 3 4 4 4 4 4 4 5 5 5

N̄LSR 4 4 4 5 5 5 6 6 6 6 7 7

N 17 18 19 20 21 22 23 24 25 26 27

N̄CSR 5 5 5 6 5 6 6 6 6 6 6

N̄HLSR 5 5 5 6 6 6 6 6 6 6 6

N̄LSR 7 7 8 8 8 8 8 8 9 9 9

N 28 29 30 31 32 33 34 35 36 37 38

N̄CSR 6 7 7 6 7 7 7 7 7 7 8

N̄HLSR 7 7 7 7 7 7 7 7 8 8 8

N̄LSR 9 9 9 10 10 10 10 10 10 10 11

N 39 40 41 42 43 44 45 46 47 48 49

N̄CSR 7 8 8 8 8 8 8 8 8 8 8

N̄HLSR 8 8 8 8 8 8 8 8 8 9 9

N̄LSR 11 11 11 11 11 11 12 12 12 12 12

N 50 51 52 53 54 55 56 57 58 59 60

N̄CSR 8 8 9 9 9 9 9 8 9 9 9

N̄HLSR 9 9 9 9 9 9 9 9 9 9 10

N̄LSR 12 12 13 13 13 13 13 13 13 13 14

Table 6.1: Values of N̄ for a length-(N − 1) minimal circular sparse ruler (N̄CSR), length-bN2 c
minimal linear sparse ruler (N̄HLSR) and length-(N − 1) minimal linear sparse ruler (N̄LSR).

covers most practical cases. For higher N , one may resort to another table, to a computer

program, or to the asymptotic considerations in Section 6.5. However, although there is no

closed form expression for the maximum achievable compression ratio ρ, the bounds in (6.22)

and (6.23) show that

N⌈√
3(N − 1)

⌉ ≤ ρ ≤ N√
τ(N − 1)

. (6.25)

6.3.2 Dense Samplers

Deriving conditions for universality of dense samplers is simpler than for sparse samplers since

most mathematical complexity has been subsumed by Theorem 6.2. Moreover, the results are

also simpler and can be expressed in closed form.

Theorem 6.5. Let Φ̌ be an N̄ × N random matrix satisfying the hypotheses of Theorem 6.2.
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Then, Φ = IL ⊗ Φ̌ defines a universal covariance sampler with probability 1 if and only if

N̄ ≥
√

2NL− 1

2L− 1
. (6.26)

Proof. If B is a basis for TK , then |B| = 2K − 1 = 2NL − 1. From Theorem 6.2, Φ is a B-

covariance sampler iff 2NL − 1 ≤ N̄
2
(2L − 1), which is equivalent to (6.26). Universality then

follows from Lemma 6.5.

Expression (6.26) can be interpreted as N̄
2
(2L− 1) ≥ 2NL− 1, where 2NL − 1 is the

dimension of the uncompressed subspace and N̄
2
(2L−1) is the maximum dimension of a subspace

of Hermitian block-Toeplitz matrices. Thus, this design provides optimal compression, which is

achieved when

N̄ =

⌈√
2NL− 1

2L− 1

⌉
, (6.27)

and given by

ρ =
N

N̄
≈

√
(2L− 1)N2

2NL− 1
. (6.28)

6.4 Non-Universal Covariance Samplers

Universal samplers are used when no structure exists in the covariance subspace or when it

is unknown. However, when prior information is available, the values that Ξ̄ can take on

are restricted, thus enabling a stronger compression. This section analyzes this effect for the

covariance subspaces introduced in Section 6.1.2. Since the Toeplitz subspace has already been

considered in Section 6.3, we directly proceed to analyze circulant and d-banded subspaces.

6.4.1 Circulant Covariance Subspace

SPARSE SAMPLERS

Constraining Ξ to be circulant yields considerable compression gains with respect to the Toeplitz

case since the requirements on every period of K can be relaxed. In particular, every period

must be a circular sparse ruler, which is a much weaker requirement than that of being a linear
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sparse ruler. This concept is related to the modular difference set defined next. Recall from

Section 1.4 that (y)A denotes the remainder of the integer division of y by A.

Definition 6.6. Let A be a set of integers. The A-modular difference set of A, denoted as

∆A(A), is defined as

∆A(A) = {δ ≥ 0 : ∃a1, a2 ∈ A satisfying δ = (a2 − a1)A}. (6.29)

Clearly, for any A ⊂ {0, 1, . . . , A − 1}, we have that ∆(A) ⊂ ∆A(A), which means that

|∆A(A)| is never less than |∆(A)|. Actually, ∆A(A) will typically be larger than ∆(A) since

the fact that δ is in ∆A(A) implies that A− δ is also in that set. For example, if A = {0, 1, 5}
and A = 10, then ∆(A) = {0, 1, 4, 5} ⊂ ∆10(A) = {0, 1, 4, 5, 6, 9}. Finally, the cardinality of the

modular difference set is upper bounded by noting that any pair of elements in a set A with

cardinality |A| generates at most two distances in ∆A(A):

|∆A(A)| ≤ |A| · (|A| − 1) + 1. (6.30)

Now it is possible to state the requirements to compress circulant subspaces:

Theorem 6.6. Let BC be given by (6.9) or (6.10). Then, the set K ⊂ {0, . . . ,K − 1} is a

BC-covariance sampler if and only if ∆K(K) = {0, . . . ,K − 1}.

Proof. See Appendix 6.E.

Theorem 6.6 is therefore the dual of Theorem 6.3 for circulant subspaces. However, in this

case the conclusion does not lead to a linear sparse ruler but to a circular one:

Definition 6.7. A length-(K−1) circular (or modular) sparse ruler is a set K ⊂ {0, . . . ,K−1}
satisfying ∆K(K) = {0, . . . ,K − 1}; it is said to be minimal if no other length-(K − 1) circular

sparse ruler exists with smaller cardinality.

Similarly to linear sparse rulers, a geometric interpretation is possible in terms of a physical

ruler. Suppose that we wrap around a conventional ruler (made of some flexible material) until

the first mark and the last mark lie at unit distance, thus making a circular ruler. Now assume

that some of the marks are erased, but that it is still possible to measure all distances between 0

and the length of the original ruler using pairs of marks. The advantage with respect to a linear

ruler is that any pair of marks provides, in general, two distances, which are the lengths of the

two circular segments that they define. Two length-20 circular sparse rulers are illustrated in
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(b) Example of length-20 circular sparse ruler de-
signed with a length-10 linear sparse ruler.

Figure 6.2: Comparison of two length-20 circular sparse rulers. The ruler on the left, with 5
elements, is minimal whereas the one on the right, with 6 elements, is not.

Figure 6.2, the one on the left being minimal. Other examples of length-(K − 1) circular sparse

rulers are {0, . . . ,K − 1} and {0, . . . , bK2 c}, which are termed trivial circular sparse rulers.

Circular sparse rulers, also known as difference cycles, were analyzed by the mathematical

community using finite group theory and additive number theory (see [Miller, 1971] for an

overview of the main results). Among the most remarkable properties, we note that a reflection

of a circular sparse ruler is also a circular sparse ruler (see Section 6.3.1) and that any circular

rotation of a circular sparse ruler K, defined as

K(i) = {(k + i)K : k ∈ K}, i ∈ Z, (6.31)

is also a circular sparse ruler. Moreover, since ∆(K) ⊂ ∆K(K) for any K ⊂ {0, . . . ,K − 1}, any

linear sparse ruler is also a circular sparse ruler. Hence, the cardinality of a minimal circular

sparse ruler can never be greater than the cardinality of a minimal linear sparse ruler if both have

the same length. It is possible to go even further by noting that any length-bK2 c linear sparse

ruler is also a length-(K − 1) circular sparse ruler. For example, Figure 6.2b shows a length-20

circular sparse ruler constructed with a length-10 linear sparse ruler. From this observation and

(6.23), we obtain

|K| ≤

⌈√
3

⌊
K

2

⌋ ⌉
(6.32)
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for any minimal circular sparse ruler. On the other hand, expression (6.30) yields

|K| ≥ 1

2
+

√
K − 3

4
. (6.33)

A length-(K − 1) circular sparse ruler can be designed in several ways. For certain values

of K, minimal rulers attaining (6.33) can be obtained in closed form (see [Xia et al., 2005,

Sec. III-B], also [Singer, 1938]). Other cases may require exhaustive search, which motivates

sub-optimal designs. Immediate choices are length-(K−1) or length-bK2 c minimal linear sparse

rulers [Ariananda and Leus, 2012]. In fact, the latter provides optimal solutions for most values

of K below 60 (see Table 6.1). Further alternatives include [Domı́nguez-Jiménez et al., 2012].

Circular sparse rulers seem to have been introduced in signal/array processing in [Romero

and Leus, 2013a] and used later in [Krieger et al., 2013, Ariananda et al., 2013, Domı́nguez-

Jiménez and González-Prelcic, 2013]. Theorem 6.6 basically states that a covariance sampler

for circulant subspaces is a length-(K − 1) circular sparse ruler, which gives a practical design

criterion just for the non-periodic case. We now move on to introduce periodicity:

Definition 6.8. A length-(K − 1) periodic circular sparse ruler of period N , where N divides

K, is a set K ⊂ {0, 1, . . . ,K − 1} satisfying:

1. if k ∈ K, then k + lN ∈ K for all l ∈ Z such that 0 ≤ k + lN < K;

2. ∆K(K) = {0, 1, . . . ,K − 1}.

It is called minimal if there is no other periodic circular sparse ruler with the same length and

period but smaller cardinality.

Hence, Theorem 6.6 could be rephrased to say that K is a BC-covariance sampler iff it is

a length-(NL − 1) periodic circular sparse ruler of period N . Although designing these rulers

may seem difficult, the next result simplifies this task by stating that every period is, indeed, a

circular sparse ruler.

Theorem 6.7. A set K is a periodic circular sparse ruler of length NL− 1 and period N if and

only if there exists a circular sparse ruler N of length N − 1 such that

K = {n+ lN : n ∈ N , l = 0, 1, . . . , L− 1} (6.34)

Proof. See Appendix 6.F.
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Table 6.1 reveals that the cardinality N̄ of a minimal circular sparse ruler is not monotone

with N . For example, minimal length-19 circular sparse rulers have 6 elements whereas minimal

length-20 circular sparse rulers have 5 elements (see [Miller, 1971] for a proof). Table 6.1 also

illustrates the compression gain due to the knowledge that Ξ is circulant. For example, when

N = 60, a universal sampler has a compression ratio of N
N̄

= 60
14 ≈ 4.28, whereas a covariance

sampler for circulant subspaces has a compression ratio of N
N̄

= 60
9 ≈ 6.67.

Although maximum compression ratios cannot be expressed in closed form, simple bounds

follow from (6.32) and (6.33):

N⌈√
3
⌊
N
2

⌋ ⌉ ≤ ρ ≤ 2N

1 +
√

4N − 3
. (6.35)

DENSE SAMPLERS

Similarly to universal sampling, designing dense samplers is much easier than designing sparse

samplers. The following corollary of Theorem 6.2 follows by noting that any basis for the

circulant subspace has K = NL elements.

Corollary 6.1. Let Φ̌ be an N̄ ×N random matrix satisfying the hypotheses of Theorem 6.2

and let BC be given by (6.9) or (6.10). Then, with probability one, the matrix Φ = IL ⊗ Φ̌

defines a BC-covariance sampler if and only if

N̄ ≥
√

NL

2L− 1
. (6.36)

The optimum compression ratio is, therefore,

ρ =
N

N̄
≈
√

(2L− 1)N

L
. (6.37)

For large L, this represents an approximate gain of
√

2 with respect to the universal case.

6.4.2 Banded Covariance Subspace

SPARSE SAMPLERS

The prior knowledge that Ξ is d-banded may also provide compression gains. In particular, we

will see that, for sparse samplers, d-banded subspaces with N ≤ d ≤ N(L− 1) are compressed

in the same way as circulant subspaces.
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Theorem 6.8. Let BdB be given by (6.13) with N ≤ d ≤ N(L− 1). Then, the set

K = {n+ lN, n ∈ N , l = 0, 1, . . . , L− 1}, (6.38)

where N ⊂ {0, . . . , N −1}, defines a BdB-covariance sampler if and only if N is a length-(N −1)

circular sparse ruler.

Proof. See Appendix 6.G.

Observe that the condition d ≤ N(L− 1) is a mild assumption since we are only requiring

that the last N − 1 lags of the associated autocorrelation sequence be zero.7 Note as well that

other cases rather than N ≤ d ≤ N(L− 1) may be considered, resulting in different conclusions.

For example, in the non-periodic case (L = 1) it can be shown from Theorem 6.1 that the only

requirement on K define an BdB-covariance sampler is that ∆(K) = {0, . . . , d}.

From Theorem 6.8 and Theorem 6.7, it follows that K must be a length-(NL− 1) periodic

circular sparse ruler of period N , which means that samplers for d-banded subspaces mimic those

for circulant subspaces. Thus, one should apply the design and compression ratio considerations

from Section 6.4.1. Interestingly, note that the latter does not depend on d provided that this

parameter remains within the aforementioned limits.

DENSE SAMPLERS

From Theorem 6.2 and noting that d-banded subspaces have dimension 2d+ 1 we obtain:

Corollary 6.2. Let Φ̌ be an N̄ ×N random matrix satisfying the hypotheses of Theorem 6.2

and let BdB be given by (6.13). Then, with probability one, the matrix Φ = IL ⊗ Φ̌ defines a

BdB-covariance sampler if and only if

N̄ ≥
√

2d+ 1

2L− 1
. (6.39)

According to this result, the maximum compression ratio is:

ρ =
N

N̄
≈

√
(2L− 1)N2

2d+ 1
, (6.40)

which clearly improves the ratio in (6.28) since d ≤ NL− 1.

7Strictly speaking, we only need the lags NL−N + 1 through NL− 1 to be zero since the lags greater than
NL− 1 are not relevant in the model.
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6.5 Asymptotic Regime

We next provide the optimal compression ratios for universal dense samplers and bound the

optimal ratios for universal sparse samplers as N̄ and N become larger.

• Dense Samplers: The maximum compression ratio ρDS of universal dense samplers is

given by (6.28). Asymptotically in N , we have that ρDS →
√

2L−1
2L N , which becomes

ρDS →
√

N
2 in the non-periodic case and ρDS →

√
N if the number of periods L also

becomes large. Alternatively, we observe that N̄ →
√

2L
2L−1N as N becomes large, which

means that N̄ →
√

2N in the non-periodic case and N̄ →
√
N as L→∞.

• Sparse Samplers: In [Leech, 1956,Pearson et al., 1990] it is established that the quotient

N̄
2
/N asymptotically converges to a constant c, which is between8 τ ≈ 2.434 and 3, with

N̄ and N − 1 respectively denoting the cardinality and length of a minimal linear sparse

ruler. Therefore, the asymptotic optimal compression ratio is given by

ρSS →
√
N

c
. (6.41)

In terms of N̄ , this means that N̄ →
√
cN . Interestingly, if we use nested arrays [Pumphrey,

1993, Pal and Vaidyanathan, 2010], the maximum achievable compression we can obtain

for suitable choices of the parameters is ρNA →
√

N
4 , which is therefore suboptimal.

However, they present the advantage of having a simple design. The scheme in [Wich-

mann, 1963,Pearson et al., 1990] allows the simple construction of sparse rulers satisfying

N̄
2
/N < 3, which entail compression ratios greater than

√
N
3 even for finite N̄ and N .

To sum up, dense samplers provide better asymptotic compression ratios than sparse sam-

plers. The compression loss between both approaches is quantified by the constant c, and hence

between 36% and 42% compression may be lost for large L if we use sparse sampling instead of

dense sampling. Similar observations arise for non-universal samplers by using the expressions

in Section 6.4.

Interestingly, these expressions show that the compression ratio can be made arbitrarily

large just by increasing the number of observations. This conclusion agrees with [Masry, 1978].

8As an informal guess, consider the length-90 minimal sparse ruler, which has 16 elements. A simple approxi-
mation yields c ≈ 162/91 ≈ 2.8132.
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6.6 Discussion

The compression ratio was defined such that it is independent of the number of realizations of

ȳ: note that each one is compressed using that ratio. In case of an arbitrarily large number

of realizations, the maximum compression ratio separates consistency from inconsistency in

the estimation. However, the notion of consistency is not truly meaningful in case of just

one realization. For those cases, the values presented here provide simple guidelines to select

suitable compression ratios and a guess of the quality of the estimation, in the sense that a good

performance is expected when the actual compression ratio is much lower than the maximum

one and vice versa.

6.7 Conclusions

We have formalized the problem of sampler design for CCS under the notion of covariance

sampler, which are those preserving the second-order statistics. Based on a linear compression

model and a linear covariance parameterization, we found optimal covariance samplers for a

number of important cases, including Toeplitz, circulant, and banded covariance subspaces,

both operating in a periodic or non-periodic fashion.

Two compression architectures were considered, namely sparse and dense samplers. For

Toeplitz subspaces, the design of optimal sparse samplers is related to the minimal linear sparse

ruler problem, which, despite requiring exhaustive search, can be approximately solved using

simple methods. For circulant and banded subspaces, optimal sparse samplers deal with circular

sparse rulers, which enable stronger compression ratios than their linear counterpart. On the

other hand, a much simpler technique was presented to design dense samplers: a compression

matrix drawn using a continuous distribution was seen to be a covariance sampler with proba-

bility one if its dimensions are properly set. As opposed to the presented sparse designs, which

are optimal only within the family of sparse samplers, the random designs proposed here result

in samplers which are optimal in general, that is, no other covariance sampler (either dense or

sparse) can do better.

The work in this chapter was published on the IEEE Transactions on Information Theory

[Romero et al., 2015d] and presented in part in the 2013 and 2014 Information Theory and

Applications Workshop (ITA 2013 and ITA 2014) [Romero and Leus, 2013a].
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6.A Proof of Lemma 6.1

Clearly, if φ is invertible so is φ|A. In order to prove the converse statement, it suffices to

show that φ is injective if φ|A is injective. This is a simple consequence of the definition of

the codomains for both functions. Therefore, we need to prove that, given any two vectors

c = [c0, · · · , cB−1]T and d = [d0, · · · , dB−1]T in RB, the matrices

Ξc =
∑
b

cbΞb and Ξd =
∑
b

dbΞb (6.42)

must satisfy that

φ(Ξc) = φ(Ξd) ⇒ Ξc = Ξd (6.43)

or, equivalently, that

φ(Ξc) = φ(Ξd) ⇒ c = d, (6.44)

since B is linearly independent. To do so, let us consider B linearly independent vectors

α0, · · · ,αB−1, where αi = [αi,0 . . . αi,B−1]T , such that the B matrices

Ξαi =
∑
b

αi,bΞb, i = 0, . . . , B − 1 (6.45)

are in A. This operation is possible since dimR[A ∩ spanR B] = B. Moreover, since φ|A is

injective and {Ξαi}B−1
i=0 is a linearly independent set of matrices, it follows that the matrices

Ξ̄αi = φ|A(Ξαi) = φ(Ξαi) =
∑
b

αi,bΞ̄b (6.46)

also form an independent set of matrices. On the other hand, since the B vectors αi constitute

a basis for RB, it is possible to write c and d as:

c =
∑
i

c̃iαi and d =
∑
i

d̃iαi, (6.47)

for some c̃i, d̃i ∈ R, which in turn means that

Ξc =
∑
i

c̃iΞαi and Ξd =
∑
i

d̃iΞαi (6.48)
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or

φ(Ξc) =
∑
i

c̃iΞ̄αi and φ(Ξd) =
∑
i

d̃iΞ̄αi . (6.49)

Noting that the matrices Ξ̄αi are linearly independent leads to the statement

φ(Ξc) = φ(Ξd) ⇒ c̃i = d̃i ∀i, (6.50)

which is equivalent to (6.44), thus concluding the proof.

6.B Proof of Theorem 6.2

In order to show Theorem 6.2, we will compute the dimension of kerφC and derive the conditions

under which dim kerφC = 0, which, in virtue of Lemma 6.4, are the conditions determining

whether Φ defines a covariance sampler. The computation of kerφC is accomplished in several

steps. First, we find ker φ̃C, where φ̃C is defined as the extension of φC to CK×K :

CNL×NL φ̃C−−−−→ CN̄L×N̄L

Ξ −−−→ Ξ̄ = ΦΞΦH .
(6.51)

We then compute dim kerφC by noting that

kerφC = span
C
B ∩

(
PNL ∩

(
BN,L ∩ ker φ̃C

))
, (6.52)

where PNL represents the set of (not necessarily Hermitian) NL × NL Toeplitz matrices and

BN,L represents the set of NL × NL matrices with Toeplitz N × N blocks. The matrices in

BN,L can thus be written as 
A0,0 , · · · , A0,L−1

...
...

AL−1,0 , · · · , AL−1,L−1

 (6.53)

where the blocks Al,l′ ∈ CN×N are Toeplitz. Expression (6.52) follows from the fact that

kerφC = spanC B ∩ ker φ̃C and

span
C
B ⊂ PNL ⊂ BN,L. (6.54)



6.B Proof of Theorem 6.2 159

On the other hand, the fact that the probability measure is absolutely continuous with

respect to Lebesgue measure means that the probability that any row (or column) of Φ̌ is

in a given subspace of dimension less than N (resp. N̄) is zero. Another consequence is that

rank Φ̌ = N̄ ≤ N with probability one and, as a result, the (right) null space of Φ̌ has dimension

N − N̄ . Let us denote by V an N × (N − N̄) matrix whose columns span this null space. For

the same argument, it is clear that the probability that the columns of V are contained in a

given subspace of dimension less than N is zero.

We start by computing a basis for ker φ̃C in terms of V .

Lemma 6.6. Let El,l′ ∈ CL×L be the matrix with all entries set to zero but the (l, l′)-th entry,

which is one, and let en denote the n-th column of the identity matrix IN . Let also φ̃C be defined

as in (6.51), and let the columns of V = [v0, · · · ,vN−N̄−1] ∈ CN×(N−N̄) form a basis for the

null space of Φ̌. Then, a basis for ker φ̃C is given by

W =
L−1⋃
l=0

L−1⋃
l′=0

Wl,l′ , (6.55)

where

Wl,l′ =
{
El,l′ ⊗ en ⊗ vHm , n = 0, 1, . . . , N − 1, m = 0, 1, . . . , N − N̄ − 1

}
∪
{
El,l′ ⊗ eHn ⊗ vm, n = 0, 1, . . . , N̄ − 1, m = 0, 1, . . . , N − N̄ − 1

}
. (6.56)

Proof. See Appendix 6.C.

Now let us evaluate the intersection BN,L ∩ ker φ̃C, which means that we must look for the

matrices in ker φ̃C whose N × N blocks have a Toeplitz structure. For the sake of simplicity,

let us proceed on a block-by-block basis by separately considering the subspaces generated by

each Wl,l′ . Clearly, only the (l, l′)-th block of size N × N can be nonzero in the matrices of

spanCWl,l′ . This block is in the subspace spanned by the following basis:

{en ⊗ vHm , n = 0, 1, . . . , N − 1, m = 0, 1, . . . , N − N̄ − 1}

∪ {eHn ⊗ vm, n = 0, 1, . . . , N̄ − 1, m = 0, 1, . . . , N − N̄ − 1}. (6.57)

Therefore, all the blocks in this subspace can be written as∑
n

∑
m

αn,m(en ⊗ vHm) +
∑
n

∑
m

α′n,m(eHn ⊗ vm) (6.58)
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for some αn,m ∈ C and α′n,m ∈ C. The blocks with Toeplitz structure must necessarily satisfy

N−1∑
n=−N+1

βnPn =

N−1∑
n=0

N−N̄−1∑
m=0

αn,m(en ⊗ vHm) +

N̄−1∑
n=0

N−N̄−1∑
m=0

α′n,m(eHn ⊗ vm) (6.59)

for some βn ∈ C, where Pn equals JnN for n ≥ 0 and (J−nN )T for n < 0, with JN defined in

Section 6.1.2.

Expression (6.59) represents a system of linear equations in αn,m, α′n,m, and βn, with N2−
N̄

2
+2N−1 complex unknowns and N2 equations. On the other hand, since Φ̌, and consequently

V , follows a continuous distribution, there are min(N2, N2−N̄2
+2N−1) independent matrices

in (6.59). Consequently, if N2 ≥ N2 − N̄
2

+ 2N − 1 the only solution is βn = 0 ∀n, and

BN,L ∩ ker φ̃C = {0}, which in turn means that kerφC = {0}. Therefore, a sufficient condition

for Φ to define a covariance sampler (see Lemma 6.4) is

N̄
2 ≥ 2N − 1. (6.60)

Conversely, if N2 < N2− N̄2
+ 2N −1 the subspace of solutions has dimension N2− N̄2

+ 2N −
1−N2 = 2N − N̄2− 1. Therefore, the blocks of the matrices in BN,L ∩ ker φ̃C can be written as

a linear combination of 2N − N̄2 − 1 Toeplitz matrices P̄ k. By considering all blocks, it follows

that BN,L ∩ ker φ̃C is generated by the following basis:{
El,l′ ⊗ P̄ k, l, l′ = 0, 1, . . . , L− 1; k = 0, 1, . . . , 2N − N̄2 − 2

}
. (6.61)

Thus, any matrix in BN,L ∩ ker φ̃C can be written as

Ξ =
∑
l,l′,k

cl,l′,kEl,l′ ⊗ P̄ k. (6.62)

Now we compute the dimension of PNL ∩
(
BN,L ∩ ker φ̃C

)
. First note that dim(BN,L ∩

ker φ̃C) = L2(2N − N̄2 − 1). In order for Ξ ∈ BN,L ∩ ker φ̃C to be Toeplitz, we require that

cl,l′,k only depend on the difference l − l′, which reduces the dimension of this subspace to

2N − N̄2− 1 times the number of block diagonals, i.e., (2N − N̄2− 1)(2L− 1). Moreover, since

any two adjacent block diagonals share N −1 diagonals, this imposes (2L−2)(N −1) additional

equations and thus

dim
(
PNL ∩

(
BN,L ∩ ker φ̃C

))
= (2N − N̄2 − 1)(2L− 1)− (2L− 2)(N − 1).
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At this point, note that PNL is the smallest subspace containing both PNL∩BN,L∩ker φ̃C and

spanC B. Since Φ̌ was generated according to a continuous distribution, then with probability

one these two subspaces will not overlap — except for the zero matrix — unless the sum of

their dimensions exceeds the dimension of the parent subspace, which is 2NL − 1. Invoking

Lemma 6.4 we find that Φ defines a covariance sampler if and only if

(2N − N̄2 − 1)(2L− 1)− (2L− 2)(N − 1) +B ≤ 2NL− 1

or, equivalently

B ≤ N̄2
(2L− 1). (6.63)

It remains only to show that one only needs to look at (6.63) in order to assess whether a

matrix Φ defines a covariance sampler, the condition in (6.60) being completely irrelevant. This

follows from the fact that (6.60) implies (6.63). Indeed, if we multiply both sides of (6.60) by

(2L− 1), we obtain

N̄
2
(2L− 1) ≥ (2N − 1)(2L− 1) (6.64a)

= (2NL− 1) + 2(N − 1)(L− 1) (6.64b)

≥ (2NL− 1) ≥ B (6.64c)

where the second inequality follows from the fact that (N − 1)(L− 1) ≥ 0 and the third one is

a consequence of the linear independence of B. Therefore, (6.60) implies (6.63), and Φ defines

a covariance sampler if and only if (6.63) holds.

6.C Proof of Lemma 6.6

Computing ker φ̃C amounts to finding a basis for the subspace of matrices Ξ in CNL×NL satisfying

ΦΞΦH = 0. Vectorizing this expression produces (Φ∗ ⊗ Φ) ξ = 0, where ξ = vec Ξ (see

e.g. [Bernstein, 2009]). Thus, ker φ̃C is given, up to inverse vectorization, by the null space of

the (N̄L)2 × (NL)2 matrix Φ∗ ⊗Φ.

Since the columns of V constitute a basis for the null space of Φ̌ and since Φ = IL ⊗ Φ̌,

the columns of V̄ = IL ⊗ V constitute a basis for the null-space of Φ. It can be shown that

ker φ̃C is composed of matrices of the form Ξ = V̄ CH +DV̄
H

, where C and D are arbitrary

matrices of the appropriate dimensions. It follows that the null space of Φ∗ ⊗Φ is spanned by
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the columns of the matrix

W̄ = [INL ⊗ V̄ , V̄
∗ ⊗ INL]. (6.65)

By the properties of the Kronecker product [Bernstein, 2009], the fact that Φ̌ has maximum

rank implies that Φ∗⊗Φ has maximum rank too, which means that its null space has dimension

(N2 − N̄2
)L2. However, since V̄ is NL × (N − N̄)L, it is clear that W̄ has 2(N − N̄)NL2

columns, which is greater than (N2− N̄2
)L2. Thus, in order to obtain a basis for the null space

of Φ∗ ⊗Φ we should remove dependent columns from W̄ . This procedure is carried out by the

following lemma:

Lemma 6.7. Let V ∈ CN×(N−N̄), with N̄ ≤ N , be a matrix whose columns generate the null

space of Φ̌ ∈ CN̄×N , which follows a continuous distribution, and let V̄ = IL ⊗ V . Then, the

columns of W̄ , defined by (6.65), span the same subspace as the columns of ¯̄W , which is defined

as

¯̄W = [INL ⊗ V̄ , V̄
∗ ⊗ IL ⊗ FN,N̄ ], (6.66)

where FN,N̄ = [IN̄ , 0N̄,N−N̄ ]T .

Proof. The procedure we follow in this proof is to remove linearly dependent columns from W̄ .

Since the case L > 1 is quite tedious, here we only show this result for the case L = 1. The

proof for the former case follows the same lines and it is easily extrapolated, but it requires

overloading the notation. For L = 1 we have that

W̄ = [IN ⊗ V , V ∗ ⊗ IN ]. (6.67)

Now scale the last N(N − N̄) columns of W̄ to obtain

W̄
′
= [IN ⊗ V , G⊗ IN ], (6.68)

where G is the result of scaling the columns of V ∗ such that the first row contains only ones9:

G =


1 1 . . . 1

g1,0 g1,1 . . . g1,N−N̄−1
...

...
. . .

...

gN−1,0 gN−1,1 . . . gN−1,N−N̄−1

 (6.69)

9This is always possible whenever the elements of the first row of V are all different from zero. However, it is
possible with probability one to choose V such that it generates the null space of Φ̌ and satisfies this condition.
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Now consider a submatrix of W̄
′

obtained by retaining the first N(N − N̄) columns and the

columns with indices N(N − N̄) +Ni, . . . , N(N − N̄) +N(i+ 1)− 1, i.e.,

W̄
′
i =


V 0 . . . 0 IN

0 V . . . 0 g1,iIN
. . .

0 0 . . . V gN−1,iIN

 , (6.70)

where i = 0, . . . , N − N̄ − 1. Scaling the diagonal blocks on the left yields:

W̄
′′
i =


V 0 . . . 0 IN

0 g1,iV . . . 0 g1,iIN
. . .

0 0 . . . gN−1,iV gN−1,iIN

 . (6.71)

Now, since Φ̌ follows a continuous distribution, the last N−N̄ columns of [V , IN ] can be written

as linear combinations of the first N columns, which means that the last N − N̄ columns of W̄
′
i

are linearly dependent of the others. Repeating this operation for i = 0, . . . , N − N̄ − 1 and

removing from W̄ the columns declared as dependent at each i gives

¯̄W = [IN ⊗ V , V ∗ ⊗ FN,N̄ ], (6.72)

which clearly spans the same subspace as W̄ . For L ≥ 1 we obtain (6.66).

Note that, indeed, the matrix defined in (6.66) has (N2−N̄2
)L2 columns, which means that

they constitute a basis for the null space of Φ∗⊗Φ. Upon considering the inverse vectorization

of the columns of ¯̄W , we obtain the sought basis in matrix form:

W =
{
El,l′ ⊗ em ⊗ vHm , l, l′ = 0, 1, . . . L− 1, m = 0, 1, . . . , N − 1, m = 0, 1, . . . , N − N̄ − 1

}
∪
{
El,l′ ⊗ eHm ⊗ vm, l, l′ = 0, 1, . . . L− 1, m = 0, 1, . . . , N̄ − 1, m = 0, 1, . . . , N − N̄ − 1

}
.

6.D Proof of Theorem 6.4

Clearly, if N is a length-(N−1) sparse ruler, then (6.24) defines a periodic sparse ruler. To show

the converse statement, assume that K is a periodic sparse ruler and take N = K∩{0, . . . , N−1}.
Then, {0, . . . , NL − 1} ⊂ ∆(K) and, in particular, {N(L − 1), . . . , NL − 1} ⊂ ∆(K), meaning
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that

∀δ ∈ {N(L− 1), . . . , NL− 1}, ∃q, q′ ∈ K s.t. q′ − q = δ.

Due to the periodicity of K, any k ∈ K can be uniquely decomposed as k = nk + lkN , where

nk ∈ N and lk ∈ {0, . . . , L− 1}. Denote as nq, nq′ , lq and lq′ the corresponding coefficients of

the decomposition of q and q′. Therefore, the condition above becomes

∀δ ∈ {N(L− 1), . . . , NL− 1}, ∃nq, nq′ ∈ N (6.73)

and lq, lq′ ∈ {0, . . . , L− 1} s.t. nq′ − nq + (lq′ − lq)N = δ.

Since nq′ − nq ≤ N − 1 and δ ≥ N(L− 1), it is clear that lq′ − lq must equal L− 1 in order for

the condition nq′ −nq + (lq′ − lq)N = δ to hold. Then, after subtracting N(L− 1), the following

equivalent expression arises:

∀δ ∈ {0, . . . , N − 1}, ∃nq, nq′ ∈ N s.t. nq′ − nq = δ.

Hence, N is a sparse ruler.

6.E Proof of Theorem 6.6

Assume that K is odd. The proof for K even follows similar lines. If ∆(K) = {0, . . . ,K − 1},
then the matrix from Theorem 6.1 is given by:

C =



1 0T
K̃

0T
K̃

0K̃ IK̃ −IK̃
0K̃ V K̃ V K̃

1 0T
K̃

0T
K̃

0K̃ IK̃ IK̃
0K̃ V K̃ −V K̃


(6.74)

where K̃ = K−1
2 , 0K̃ is an K̃ × 1 vector with all zeros and V K̃ is an K̃ × K̃ Hankel matrix with

ones on the antidiagonal and zeros elsewhere, i.e., its (i, j)-th element equals 1 if i+ j = K̃ − 1

and 0 otherwise. Since all the columns are linearly independent, rank(C) = K and, according

to Theorem 6.1, K is a BC-covariance sampler.

Now consider removing elements from ∆(K). It can readily be seen that C is not full rank

iff there is some δ ∈ {0, . . . ,K − 1} such that δ /∈ ∆(K) and K − δ /∈ ∆(K). Equivalently, we
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can say that C is full rank iff ∆K(K) = {0, . . . ,K − 1}.

6.F Proof of Theorem 6.7

Let us start by showing that if N is a circular sparse ruler, then K is a periodic circular sparse

ruler or, in other words, if ∆N (N ) = {0, . . . , N −1}, then ∆NL(K) = {0, . . . , NL−1}. Consider

any δ ∈ {0, . . . , N − 1}. Since δ ∈ ∆N (N ), at least one of the following two conditions will hold:

C1: ∃n1, n2 ∈ N , n2 ≥ n1 such that (n2 − n1)N = n2 − n1 = δ, (6.75)

C2: ∃n1, n2 ∈ N , n2 < n1 such that (n2 − n1)N = N + n2 − n1 = δ.

In both cases, all the elements of the form δ + lN , with l = 0, . . . , L− 1, are in ∆NL(K):

• C1: consider k2 = n2 + lN and k1 = n1 for any l = 0, . . . , L − 1. Since k1, k2 ∈ K, it

follows that (k2 − k1)NL = n2 + lN − n1 = δ + lN ∈ ∆NL(K).

• C2: first make k1 = n1 and k2 = n2 + N + lN with l = 0, . . . , L − 2. Since k1, k2 ∈ K,

then (k2 − k1)NL = n2 +N + lN − n1 = δ + lN ∈ ∆NL(K). It remains only to show that

δ + lN ∈ ∆NL(K) when l = L − 1. To this end, consider k1 = n1 and k2 = n2, which

results in (k2−k1)NL = NL+n2−n1 = N(L−1)+N+n2−n1 = N(L−1)+δ ∈ ∆NL(K).

To sum up, we have shown that δ+ lN ∈ ∆NL(K) for any δ = 0, . . . , N − 1 and l = 0, . . . , L− 1,

which establishes that K is a circular sparse ruler.

For the converse theorem, suppose that K is a circular sparse ruler, i.e., ∆NL(K) =

{0, . . . , NL− 1}. In particular, all modular distances of the form δ = {0, . . . , N − 1} are present

in ∆NL(K), which means that one or both of the following two conditions will be satisfied:

C1’: ∃k1, k2 ∈ K, k2 ≥ k1 such that (k2 − k1)NL = k2 − k1 = δ, (6.76)

C2’: ∃k1, k2 ∈ K, k2 < k1 such that (k2 − k1)NL = NL+ k2 − k1 = δ. (6.77)

But, if N = K ∩ {0, . . . , N − 1}, then δ ∈ ∆N (N ) in both cases:

• C1’: clearly, we can assume without any loss of generality that k1 ∈ N . According to

whether k2 is also in N or not, we distinguish two scenarios:

– k2 ∈ N : in this case, it is clear that (k2 − k1)N = k2 − k1 = δ ∈ ∆N (N ).

– k2 /∈ N : since 0 ≤ δ < N , it follows that k2 can be written as k2 = n + N for some

n ∈ N with n < k1. Therefore, (n− k1)N = N + n− k1 = k2 − k1 = δ ∈ ∆N (N ).
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• C2’: since 0 ≤ δ < N , it can be seen that N(L−1) < k1−k2 ≤ NL, which in turn requires

k2 ∈ N and k1 = n + N(L − 1) for some n ∈ N with n > k2. Now consider the circular

distance between n and k2:

(k2 − n)N = N + k2 − n = N + k2 − [k1 −N(L− 1)] = k2 − k1 +NL = δ ∈ ∆N (N ).

Therefore, we have shown that δ ∈ ∆N (N ) for all δ = 0, . . . , N − 1, which means that N is a

circular sparse ruler.

6.G Proof of Theorem 6.8

If we form the matrix C in Theorem 6.1 using the matrices from (6.13), we conclude that K
defines a covariance sampler iff {0, . . . , d} ⊂ ∆(K). The latter condition is equivalent to:

∀δ ∈ {0, . . . , d}, ∃n1, n2 ∈ N and l1, l2 ∈ {0, . . . , L− 1}

such that n2 − n1 + (l2 − l1)N = δ. (6.78)

We next show that, if N is a circular sparse ruler, then δ ∈ ∆(K) for all δ ∈ {0, . . . , N(L−
1)}, which in turn implies (6.78). Consider two cases:

• Case 0 ≤ δ < N(L−1): It suffices to write δ as δ = nδ+ lδN , with nδ ∈ {0, . . . , N−1} and

lδ ∈ {0, . . . , L− 2}. Since nδ ∈ ∆N (N ), then nδ can be represented either as nδ,2−nδ,1 or

as N + nδ,2 − nδ,1, with nδ,1, nδ,2 ∈ N . In the former case just make n2 = nδ,2, n1 = nδ,1,

l2 = lδ and l1 = 0. In the latter case make n2 = nδ,2, n1 = nδ,1, l2 = lδ + 1 and l1 = 0.

• Case δ = N(L− 1): this is trivial since N(L− 1) ∈ ∆(K) for any non-empty choice of N .

Now, in order to prove the converse theorem, we show that if {0, . . . , N − 1} ⊂ ∆(K), then

{0, . . . , N−1} ⊂ ∆N (N ). Choose δ ∈ {0, . . . , N−1}. Since δ ∈ ∆(K), it is clear that there exist

some n1, n2 ∈ N and l1, l2 ∈ {0, . . . , L − 1} such that n2 − n1 + (l2 − l1)N = δ. In particular,

(l2 − l1) can be either 0 or 1. Therefore, for any δ ∈ {0, . . . , N − 1}, there exists n1, n2 ∈ N
such that either n2− n1 = δ or N + n2− n1 = δ. Noting that this condition is equivalent to the

condition {0, . . . , N − 1} ⊂ ∆N (N ) concludes the proof.
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Chapter 7

Learning Power Spectrum Maps

from Compressed Measurements

This chapter presents a novel family of spectrum cartography techniques to estimate PSD maps

from the observations gathered by a collection of inexpensive sensors reporting strongly com-

pressed measurements to a fusion center (FC) — each sensor acquires the frequency band of

interest using a C-ADC, estimates the power of the output sequence using sample statistics, and

transmits a quantized version of the resulting estimate to the FC. The cartography model from

Section 1.1.1, where the second-order statistics of the signal of interest are linearly parametrized

in terms of space-dependent coordinates, enables us to reformulate the estimation problem as a

vector-field regression task.

After stating the problem in Section 7.1, two cartography techniques that perform nonpara-

metric and semiparametric regression in reproducing kernel Hilbert spaces (RKHSs) of vector-

valued functions are proposed in Section 7.2. Noting that the resulting optimization problems

mimic those arising in support vector machines (SVMs) entails numerous benefits in terms of

implementation issues and theoretical understanding. These schemes are extended in Section 7.3

to allow for multiple measurements per sensor, to accommodate non-uniform quantization, and

to enforce nonnegativity constraints. Section 7.4 then provides an online algorithm for non-

parametric regression based on stochastic gradient descent in RKHSs, and Section 7.5 discusses

implementation issues. The performance of the proposed techniques is evaluated via Monte

Carlo simulations in Section 7.6 and, finally, conclusions are drawn in Section 7.7.
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7.1 Problem Formulation

We adopt the cartography model from Section 1.1.1, which extends the wideband model —

already used in Chapter 5 — to incorporate spatial dependence. Within this framework, recall

that the PSD at frequency f and location z can be expressed as

Ξ(z; f) =

B−1∑
b=0

αb(z)Ξb(f). (7.1)

Since the (linearly independent) basis functions Ξb(f) are known a priori, estimating Ξ(z; f) is

tantamount to estimating the αb(z), which will be seen as B functions of the spatial coordinate

z. Because the Ξb(f) are normalized such that
∫∞
−∞ Ξb(f)df = 1, the coordinate αb(z) represents

the power of the signal received from the b-th transmitter at point z.

Suppose that a collection of Z sensors is deployed across the area of interest at positions

Z , {z0, . . . ,zZ−1}. For concreteness, we assume that the spectrum sensor located at z ac-

quires the received signal using a C-ADC. Alternative schemes include the one described in

Appendix 7.A, which is based on the pseudo-random filters from [Mehanna and Sidiropoulos,

2013]. The compressed observations obtained by this sensor are given by

ȳ(z) = Φ(z)y(z), z ∈ Z, (7.2)

where (see Section 1.1.2) Φ(z) = IL⊗ Φ̌(z) is the compression matrix of the sensor z and y(z)

is a vector containing K Nyquist samples of the received signal. Using the coordinates from

(7.1), the covariance matrix of y(z) can be written as

Ξ(z) =
B−1∑
b=0

αb(z)Ξb. (7.3)

On the other hand, the power of the compressed observations is

η̄2(z) ,
1

K̄
E
{
ȳT (z)ȳ(z)

}
=

1

K̄
Tr
(
Φ(z)Ξ(z)ΦT (z)

)
. (7.4)

Substituting (7.3) in (7.4) yields

η̄2(z) = βT (z)α(z), (7.5)

where the entries of β(z) , [β0(z), . . . , βB−1(z)]T are given by βb(z) , K̄
−1

Tr
(
Φ(z)ΞbΦ

T (z)
)
.

As will become clear later, it is desirable that rankR{β(z)}z∈Z = B, otherwise the components
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of α(z) will not be identifiable in general.

The sensor at position z estimates η̄2(z) using sample statistics, for instance, by computing

ˆ̄η2(z) = 1
K̄
||ȳT (z)||2. Afterwards, the estimate ˆ̄η2(z) is uniformly quantized according to the

map

Q(ˆ̄η2) , bˆ̄η2/(2ε)c ∈ Z, (7.6)

where 2ε is the quantization step. The result q(z) , Q(ˆ̄η2(z)) is sent to the FC through

a control channel. Depending on the quality of the estimate, it may be possible that either

Q(η̄2(z)) = Q(ˆ̄η2(z)) or Q(η̄2(z)) 6= Q(ˆ̄η2(z)). The latter case will be termed a measurement

error.

The problem considered in this chapter is that of estimating the vector-valued spatial field

α : Rd → RB based on the knowledge of the vectors {β(z)}z∈Z , the quantized observations

{q(z)}z∈Z , and the set Z = {z0, . . . ,zZ−1} ⊂ Rd. As opposed to q(z), the vectors β(z) and

the positions z may not need to be communicated since the FC may know them a priori. For

simplicity, we start by considering the setting where each sensor reports a single measurement

to the FC. More general scenarios will be discussed in Sections 7.3.1 and 7.4.

7.2 Cartography Learning

Suppose that no measurement errors have occurred. Upon receiving q(z), the FC learns that α

satisfies

2εq(z) ≤ βT (z)α(z) < 2ε(q(z) + 1). (7.7)

The problem becomes that of choosing a member of the family of functions on Rd satisfying (7.7)

for all z ∈ Z. A standard approach is to constrain this search to a function space F determined

by the prior information and seek the smoothest member which is consistent with (7.7). If J is

a continuous real (non-necessarily linear) functional defined on F which takes small values for

smooth arguments, this problem can be formally stated as1

minimize
α∈F

J(α)

s.t. 2εq(z) ≤ βT (z)α(z) ≤ 2ε(q(z) + 1), z ∈ Z.
(7.8)

1Note that the second inequality need not be strict since J is continuous.
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For notational convenience, we define q̃(z) , (2q(z) + 1)ε and rewrite (7.8) as

minimize
α∈F

J(α)

s.t. |q̃(z)− βT (z)α(z)| ≤ ε, ∀z ∈ Z.
(7.9)

In the presence of measurement errors, the value of some of the q̃(z) has been incorrectly de-

termined, and the true α does not satisfy |q̃(z) − βT (z)α(z)| ≤ ε at those positions. For this

reason, the feasible set of (7.9) need not contain the true α, and one must rely on prior infor-

mation to provide a reasonable estimate. To do so, it is customary to rely on the regularization

inductive principle, where the goal is to minimize an empirical risk functional penalized by a

smoothness-enforcing term (see e.g. [Schölkopf and Smola, 2001,Cherkassky and Mulier, 2007]):

minimize
α∈F

Remp(α; {(z,β(z), q̃(z))}z∈Z) + λJ(α). (7.10)

The empirical risk Remp measures how much α deviates from the observations {(z,β(z),

q̃(z))}z∈Z and it is defined below. The regularization constant λ > 0 is adjusted to attain

the desired trade-off between smoothness and reliance on the observations: in general, a small

λ results in estimates with low smoothness but good fit, whereas a large λ produces smooth

estimates with a poor fit. The dilemma embodied in the choice of λ is consequently that of

trusting the prior information vs. trusting the data. A modern approach to address this decision

is by means of complexity control techniques that minimize generalization risks [Schölkopf and

Smola, 2001,Cherkassky and Mulier, 2007], among which the most popular example is, perhaps,

cross-validation.

For reasons that will become clear, we choose Remp to penalize deviations from (7.7) in a

linear fashion. In terms of the so-called ε-insensitive function, defined as uε(x) , max(0, |x|− ε)
[Cherkassky and Mulier, 2007,Smola and Schölkopf, 2004], this criterion reads as:

Remp(α; {(z,β(z), q̃(z))}z∈Z) ,
1

Z

∑
z∈Z

uε(q̃(z)− βT (z)α(z)). (7.11)

Because the empirical risk defined in (7.11) can be regarded as a convex surrogate of the number

of measurement errors in the same way as the `1-norm replaces the `0-norm as a regularizer in

sparse regression [Cherkassky and Mulier, 2007, Sec. 9.3], it follows that Remp captures the

sparsity present in the measurement errors.

In the rest of this section, we propose two batch estimation methods based on solving (7.10)

for different choices of the function space F and penalty J . While both of them are parametric

along the frequency dimension, they differ as to how they model the variations across space.
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The PSD map estimate can then be recovered by substituting the resulting α in (7.1).

7.2.1 Nonparametric Regression

A powerful nonparametric regression approach can be obtained by endowing F with the structure

of an RKHS [Berlinet and Thomas-Agnan, 2004] and setting J to a non-decreasing function of

the norm induced by the associated inner product. If J(α) = ||α||2F = 〈α,α〉, where 〈 , 〉
denotes the inner product on F , then the problem becomes:

minimize
α∈F

1

Z

∑
z∈Z

uε(q̃(z)− βT (z)α(z)) + λ||α||2F . (7.12)

Due to the nature of α, in our case F must be an RKHS of vector-valued functions from

Rd → RB [Micchelli and Pontil, 2005,Carmeli et al., 2010]. To specify this RKHS, we use a repro-

ducing kernel, which is a functionK : Rd×Rd → RB×B that satisfies certain conditions [Micchelli

and Pontil, 2005]. Simple constructions for K can be found using kernels for scalar RKHSs. For

instance, a diagonal kernel is a function of the form K(z, z′) = diag {k0(z, z′), . . . , kB−1(z, z′)},
z, z′ ∈ Rd, where the ki are valid scalar kernels. An example of those, used in our experiments

in Section 7.6, is the Gaussian kernel

kb(z
′, z) = exp

{
−||z

′ − z||2

σ2
b

}
, (7.13)

where σ2
b is a parameter controlling the width of kb and translates into the variability that

we expect of the scalar field αb. Because they result in translation and unitary invariant ker-

nels [Schölkopf and Smola, 2001, Sec. 2.3], radial basis functions, such as the one in (7.13), are

especially interesting in spectrum cartography applications where the propagation takes place

in a uniform and isotropic medium.

Among the most remarkable properties of reproducing kernels, we have that K(z′, z) =

K(z, z′)T and that K(z, z) is positive semidefinite. The kernel matrix is the block matrix given

by (recall the notation introduced in Section 1.4):

K̃ ,
Z−1∑
i,j=0

(eZ,ie
T
Z,j)⊗K(zi, zj) ∈ RBZ×BZ (7.14)

and can be shown to be positive semidefinite [Micchelli and Pontil, 2005, eq. (2.4)].

The problem (7.12) is infinite-dimensional in nature but, exploiting the theory of RKHSs, a

solution can be found solving a finite-dimensional optimization program. Let us form the vector
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q̃ , [q̃(z0), . . . , q̃(zZ−1)]T and the matrices B̌ , [β(z0), . . . ,β(zZ−1)] and B , IZ � B̌. Then,

we have the following:

Proposition 7.1. Let c(zi) ∈ RB, i = 0, . . . , Z−1, and let c = [cT (z0), . . . , cT (zZ−1)]T ∈ RBZ

be a solution to2

minimize
c,ζ,ζ?

1TZ(ζ + ζ?) + λZcT K̃c

s.t. ζ ≥ q̃ −BT K̃c− ε1Z
ζ? ≥ −q̃ +BT K̃c− ε1Z
ζ, ζ? ≥ 0Z ,

(7.15)

Then, the function defined by

α(z) =

Z−1∑
i=0

K̃(z, zi)c(zi) (7.16)

is a solution to (7.12).

Proof. See Appendix 7.B.

The quadratic problem (7.15) is convex. Applying the change of variables č = K̃1/2c, where

K̃1/2 represents a symmetric square root of K̃, it can be seen that (7.15) is a standard SVM

problem without offset term. This connection between nonparametric regression and SVMs en-

tails numerous benefits both in terms of implementation and theoretical understanding [Micchelli

and Pontil, 2005, Wang et al., 2001, Smola et al., 1998]. In particular, the resulting expansion

(7.16) is expected to be sparse in the sense that many of the c(zi) are zero, which yields sparse

representations for the estimated PSD maps. On the other hand, it is known that (7.15) can be

solved more efficiently in the dual domain, where it becomes

minimize
α,α?

1

4Zλ
(α−α?)T K̄(α−α?)

− (q̃ − ε1Z)Tα+ (q̃ + ε1Z)Tα?

s.t. 0Z ≤ α ≤ 1Z ,0Z ≤ α? ≤ 1Z ,

(7.17)

with

K̄ , BT K̃B. (7.18)

2Throughout the chapter, ζ and ζ? denote different variables. The superscript ∗, which does not represent
complex conjugate (these vectors are real), is adopted here since it is standard practice in SVM theory.
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The primal variables solving (7.15) can be recovered from the dual solution (α,α?) using

c =
1

2λZ
B(α−α?) (7.19a)

ζ = max(0Z , q̃ −BT K̃c− ε1Z) (7.19b)

ζ? = max(0Z ,−q̃ +BT K̃c− ε1Z). (7.19c)

7.2.2 Semiparametric Regression

One of the major strengths of SVMs and the regression scheme from Section 7.2.1 is their non-

parametric nature, which, for instance, confers them properties as universal approximators [Mic-

chelli, 1984]. Parametric methods, on the other hand, have a limited flexibility but can easily

accommodate many forms of prior information. Halfway between both approaches are semi-

parametric techniques, which combine the advantages of both parametric and nonparametric

methods [Smola et al., 1999,Schölkopf and Smola, 2001].

In semiparametric regression, we decompose the hypothesis into a nonparametric and a

parametric component as

α = αnpar +αpar. (7.20)

As in Section 7.2.1, the nonparametric component αnpar is a function in an RKHS F ′. The

parametric component αpar, on the other hand, is a function of the form

αpar(z) =
B′−1∑
b=0

Ψb(z)db, (7.21)

where {Ψb(z)}B′−1
b=0 is a collection of basis functions Ψb : Rd → RB×B and db ∈ RB. In spectrum

cartography, for instance, we may be aware of the location of some transmitters and the path

loss exponent. One can therefore define the basis functions

Ψb(z) = fb(||z − z′b||)eB,beTB,b, (7.22)

where fb models attenuation as a function of distance and z′b ∈ Rd is the location of the b-

th transmitter. This example showcases a further advantage of semiparametric models: they

facilitate understanding the data [Smola et al., 1999]. In particular, the estimated db contains

information about the power transmitted by the b-th source.

After having introduced the nonparametric scheme from Section 7.2.1, one may think that a

possible approach to estimate α is to fit the data with the parametric component and then fit the
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residuals with the nonparametric component. This approach is called backfitting and is known to

provide good estimates only in very restricted situations [Smola et al., 1999,Schölkopf and Smola,

2001]. Indeed, a good approximation performance can only be obtained if we simultaneously fit

both components, as described next.

Let F denote the space of functions of the form (7.20), where αnpar is in the RKHS F ′

and αpar is of the form (7.21). The problem of semiparametric regression is [Smola et al.,

1999,Schölkopf and Smola, 2001]:

minimize
α∈F

1

Z

∑
z∈Z

uε(q̃(z)− βT (z)α(z)) + λ||αnpar||2F ′ , (7.23)

where || · ||F ′ is the norm induced by the inner product of F ′. Observe that the parametric

component αpar is not regularized.

Since the problem (7.23) is again infinite-dimensional, the theory of RKHSs is required

to work out a solution. Let K be the reproducing kernel of F ′ and let the basis functions

{Ψb(z)}B′−1
b=0 be given. Let us also define the block matrix

Ψ̃ ,
Z−1∑
i=0

B′−1∑
b=0

(eZ,ie
T
B′,b)⊗Ψb(zi) ∈ RBZ×BB

′
(7.24)

and assume that Ψ̃ is full rank.

Proposition 7.2. Let c(zi),db ∈ RB, and let c = [cT (z0), . . . , cT (zZ−1)]T ∈ RBZ and d =

[dT0 , . . . ,d
T
B′−1]T ∈ RBB′ be a solution to

minimize
c,d,ζ,ζ?

1TZ(ζ + ζ?) + λZcT K̃c

s.t. ζ ≥ q̃ −BT K̃c−BT Ψ̃d− ε1Z
ζ? ≥ −q̃ +BT K̃c+BT Ψ̃d− ε1Z
ζ, ζ? ≥ 0Z .

(7.25)

Then, the function α, defined by

α(z) =
Z−1∑
i=0

K(z, zi)c(zi) +
B′−1∑
b=0

Ψb(z)db, (7.26)

is a solution to (7.23)

Proof. See Appendix 7.C.
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The problem (7.25) is the generalization of a semiparametric SVM [Smola et al., 1999] to

the regression of vector-valued functions. The dual problem is

minimize
α,α?

1

4Zλ
(α−α?)T K̄(α−α?)

− (q̃ − ε1Z)Tα+ (q̃ + ε1Z)Tα?

s.t. Ψ̃TB(α−α?) = 0

0Z ≤ α ≤ 1Z ,0Z ≤ α? ≤ 1Z ,

(7.27)

which, except for the equality constraint, is identical to (7.17).

The primal variable c solving (7.25) can be computed from the solution (α,α?) of (7.27)

using the Karush-Kuhn-Tucker (KKT) conditions [Boyd and Vandenberghe, 2004], resulting in

(7.19a). The primal variable d can also be obtained from these conditions, but the resulting

expressions are prone to numerical problems. A more convenient alternative follows by observing

that the bidual (i.e., the dual of the dual) of (7.25) is again (7.25). This means that the primal

variables are actually the Lagrange multipliers of (7.27). In particular, d can be obtained as

the multipliers associated with the equality constraint in (7.27). Note that these multipliers are

often available without additional computational costs, for instance if one uses interior-point

methods (see Section 7.5). Finally, the variables ζ and ζ? can be recovered as

ζ = max(0Z , q̃ −BT K̃c−BT Ψ̃d− ε1Z) (7.28a)

ζ? = max(0Z ,−q̃ +BT K̃c+BT Ψ̃d− ε1Z). (7.28b)

CONDITIONALLY POSITIVE DEFINITE KERNELS

From (7.19a) and the equality constraint in (7.27), we observe that the optimum c is in the null

space of Ψ̃T , that is, it satisfies Ψ̃Tc = 0. Therefore, (7.25) is equivalent to

minimize
c,d,ζ,ζ?

1TZ(ζ + ζ?) + λZcT K̃c

s.t. ζ ≥ q̃ −BT K̃c−BT Ψ̃d− ε1Z
ζ? ≥ −q̃ +BT K̃c+BT Ψ̃d− ε1Z
ζ, ζ? ≥ 0Z , Ψ̃Tc = 0.

(7.29)

The equality constraint allows us to handle conditionally positive definite (CPD) kernels (see

e.g. [Schölkopf and Smola, 2001, Sec. 2.4]), which are defined next by generalizing the definition

for scalar kernels to the vector case:
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Definition 7.1. A reproducing kernel K : Rd×Rd → RB is CPD with respect to {Ψb(z)}B′−1
b=0

if, for every finite Z ⊂ Rd, satisfies cT K̃c ≥ 0 for all c such that Ψ̃Tc = 0, where K̃ and Ψ̃

were respectively defined in (7.14) and (7.24).

We now generalize our semiparametric method to allow regression with CPD kernels —

note that any conventional positive definite kernel is also CPD. Among other advantages, this

enables us to accommodate thin-plate splines (TPS) regression, which was successfully applied

to cartography problems in [Bazerque et al., 2011]. See below for more details.

In view of Definition 7.1, a CPD kernel can be used in (7.29) without further modifica-

tions [Smola et al., 1999]. The problem is still convex since the objective is convex in the

feasible set. However, this form is particularly prone to numerical problems3 since K̃ is not

positive semidefinite. For this reason, one may apply the change of variable c = P⊥
Ψ̃
c̃, where

P⊥
Ψ̃
∈ RBZ×BZ is the orthogonal projector onto the null space of Ψ̃T :

minimize
c̃,d,ζ,ζ?

1TZ(ζ + ζ?) + λZc̃TP⊥
Ψ̃
K̃P⊥

Ψ̃
c̃

s.t. ζ ≥ q̃ −BT K̃P⊥
Ψ̃
c̃−BT Ψ̃d− ε1Z

ζ? ≥ −q̃ +BT K̃P⊥
Ψ̃
c̃+BT Ψ̃d− ε1Z

ζ, ζ? ≥ 0Z .

(7.30)

Now it is clear that P⊥
Ψ̃
K̃P⊥

Ψ̃
is positive semidefinite. The projector P⊥

Ψ̃
can be computed as

P⊥
Ψ̃

= IBZ − Ψ̃(Ψ̃T Ψ̃)−1Ψ̃T . (7.31)

A similar argument carries over to the dual problem (7.27). From (7.18), (7.19a) and (7.27),

we find that if K is CPD, then (α−α?)T K̄(α−α?) ≥ 0 for feasible α,α?. Hence, the objective

is again convex but prone to numerical errors. Since in the feasible set

B(α−α?) = P⊥
Ψ̃
B(α−α?), (7.32)

3In fact, it will not be accepted by most convex/quadratic solvers.
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the problem (7.27) is equivalent to

minimize
α,α?

1

4Zλ
(α−α?)T K̄Ψ(α−α?)

− (q̃ − ε1Z)Tα+ (q̃ + ε1Z)Tα?

s.t. Ψ̃TB(α−α?) = 0

0Z ≤ α ≤ 1Z ,0Z ≤ α? ≤ 1Z ,

(7.33)

where K̄ has been replaced with the positive semidefinite matrix

K̄Ψ , BTP⊥
Ψ̃
K̃P⊥

Ψ̃
B. (7.34)

For efficiency, one is interested in solving (7.33) and recovering the optimal d and c̃ in

(7.30) from that solution. This operation was simple when we computed the primal solution of

(7.25), since the bidual of (7.25) was again (7.25). However, due to the substitution of K̄ by

K̄Ψ, (7.30) is no longer the dual of (7.33) and, correspondingly, d and c̃ cannot be obtained

directly as the Lagrange multipliers of (7.33). Instead, a more careful procedure is required. As

shown in Appendix 7.D, c can be obtained using (7.19a), whereas d has to be computed as

d = ν − (Ψ̃T Ψ̃)−1Ψ̃T K̃c, (7.35)

with ν the multiplier associated with the equality constraint in (7.33).

THIN-PLATE SPLINES

TPS regression can be obtained as a particularization of the above scheme. As opposed to the

Gaussian kernels from (7.13), where one has to adjust σ2
i based on prior information, TPS do

not require parameter tuning. The name of this approach comes from scalar TPS interpolation,

where the interpolant mimics the shape of a thin metal plate in Rd+1 anchored to the data

points, which is known to minimize the bending energy [Bookstein, 1989].

To generalize TPS to the vector case (B > 1), we may choose (see [Wahba, 1990, eq.

(2.4.9)]; also [Bazerque et al., 2011]) Ψ0(z) = IB, Ψ1(z) = z0IB, . . . ,Ψd(z) = zd−1IB, where

z , [z0, . . . , zd−1]T , and

K(z, z′) = %(||z − z′||22)IB, (7.36)
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where

%(z) ,

z2s−d log(z) if d is even

z2s−d otherwise
(7.37)

for s a positive integer parameter, typically set to s = 2. The kernel in (7.36) is CPD, as shown

in [Wahba, 1990, p. 32] for the scalar case.

The norm in the RKHS F ′ defined by (7.36) (semi-norm when defined on F) can be com-

puted as [Wahba, 1990,Bazerque et al., 2011]

||α||2F = ||αnpar||2F ′ =

B−1∑
b=0

∫
Rd
||∇2αb(z

′)||2Fdz′, (7.38)

where || · ||F denotes Frobenius norm and ∇2 denotes Hessian. This expression is indeed the

sum of the bending energy of the B components of α. Observe that the parametric part of α is

in the null space of this semi-norm since the second-order derivatives of Ψb(z) vanish for all b.

7.3 Extensions

This section presents several extensions of the proposed schemes that either improve their prac-

tical applicability or exploit the prior information more efficiently.

7.3.1 Extension to Multiple Measurements per Sensor

In a practical scenario, it is reasonable that the sensors report more than one measurement

to the FC. A sensor can obtain multiple measurements by separately estimating the power of

different output branches of the C-ADC, that is, considering the sequences {ȳ
[
k̄ + lN̄

]
}l for

different values of k̄ ∈ {0, . . . , K̄ − 1}; or by modifying their compression matrix Φ̌(z) for each

observation. To improve the accuracy of the estimate, the resulting vectors β(z) at each sensor

should be different from one measurement to another and, if possible, linearly independent.

Suppose that each sensor reports M measurements to the fusion center — the case where

each sensor reports a different number of measurements can be addressed with straightforward

modifications. The setting from the previous sections can be immediately extended by regarding

the different measurements generated by each sensor as produced by M different sensors that

occupy the same physical position. To this end, we construct K̃ ∈ RBZM×BZM , Ψ̃ ∈ RBZM×BB′ ,
B ∈ RBZM×ZM and q̃ ∈ RZM by considering every location M times. However, this approach is
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highly inefficient as can be noted from the fact that every row or column of K̃ is present at least

M times. Even if the kernel is strictly positive definite [Schölkopf and Smola, 2001, Sec. 2.2],

the resulting K̃ is rank deficient, meaning that no unique solution of (7.15) exists. As described

next, more convenient alternatives arise if the whole derivation takes into account multiple

measurements from the very beginning.

NONPARAMETRIC REGRESSION

Introducing multiple measurements in the criterion (7.12) produces

minimize
α∈F

1

ZM

∑
z∈Z

M−1∑
m=0

uε(q̃m(z)− βm(z)Tα(z)) + λ||α||2F , (7.39)

where q̃m(z) and βm(z) correspond to the m-th measurement reported by the sensor located

at z. By arranging the observations in the vector q̃ , [q̃0(z0), q̃1(z0), . . . , q̃M−1(zZ−1)]T and

the matrix B̌ , [β0(z0),β1(z0), . . . ,βM−1(zZ−1)] and following the same procedure as in Ap-

pendix 7.B, we find that the optimum α satisfies (7.16) when c is a solution to

minimize
c,ζ,ζ?

1TZM (ζ + ζ?) + λZMcT K̃c

s.t. ζ ≥ q̃ −BT K̃c− ε1ZM
ζ? ≥ −q̃ +BT K̃c− ε1ZM
ζ, ζ? ≥ 0ZM ,

(7.40)

with K̃ ∈ RBZ×BZ given by (7.14), and

B = (IZ ⊗ 1TM )� B̌ ∈ RBZ×ZM . (7.41)

Observe that all these expressions boil down to those in Section 7.2.1 when M = 1. The

optimization variable c has dimension BZ, rather than BZM in the trivial approach described

at the beginning of Section 7.3.1. Moreover, K̃ can be kept of size BZ × BZ rather than

BZM ×BZM , which accelerates the computation of K̃ and the evaluation of α (see (7.16)).

The dual of (7.40) is

minimize
α,α?

1

4ZMλ
(α−α?)TBT K̃B(α−α?)

− (q̃ − ε1ZM )Tα+ (q̃ + ε1ZM )Tα?

s.t. 0ZM ≤ α ≤ 1ZM ,0ZM ≤ α? ≤ 1ZM

(7.42)



182 Chapter 7. Learning Power Spectrum Maps from Compressed Measurements

and the primal variable c has to be recovered using

c =
1

2λZM
B(α−α?). (7.43)

SEMIPARAMETRIC REGRESSION

With semiparametric regression, the extension follows the same guidelines as described for non-

parametric regression. In the multiple-measurement setting, (7.23) becomes

minimize
α∈F

1

ZM

∑
z∈Z

M−1∑
m=0

uε(q̃m(z)− βm(z)Tα(z)) + λ||αnpar||2F ′ . (7.44)

We now reproduce how the expressions used for CPD kernels in Section 7.2.2 generalize to the

case M > 1. To recover the ones used for positive definite kernels in Section 7.2.2, it suffices

to set P⊥
Ψ̃

= IBZ . By defining q̃ ∈ RZM , B ∈ RBZ×ZM and K̃ ∈ RBZ×BZ as we did in this

section for nonparametric regression, the problem (7.30) becomes

minimize
c̃,d,ζ,ζ?

1TZM (ζ + ζ?) + λZM c̃TP⊥
Ψ̃
K̃P⊥

Ψ̃
c̃

s.t. ζ ≥ q̃ −BT K̃P⊥
Ψ̃
c̃−BT Ψ̃d− ε1ZM

ζ? ≥ −q̃ +BT K̃P⊥
Ψ̃
c̃+BT Ψ̃d− ε1ZM

ζ, ζ? ≥ 0ZM ,

(7.45)

where Ψ̃ is given by (7.24). On the other hand, the dual problem (7.33) becomes

minimize
α,α?

1

4ZMλ
(α−α?)T K̄Ψ(α−α?)

− (q̃ − ε1ZM )Tα+ (q̃ + ε1ZM )Tα?

s.t. Ψ̃TB(α−α?) = 0

0ZM ≤ α ≤ 1ZM ,0ZM ≤ α? ≤ 1ZM ,

(7.46)

where K̄Ψ , BTP⊥
Ψ̃
K̃P⊥

Ψ̃
B. The primal variables can be recovered using (7.43) and (7.35).

Again, important computational savings result from this approach, either when α is estimated

or evaluated.
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7.3.2 Non-uniform Quantization

Until now, we have used uniform quantization, but when the probability distribution of ˆ̄η2(z)

is not uniform, better alternatives exist. In particular, we may define a certain number ∆ of

quantization regions with boundaries 0 = δ0 < δ1 < . . . < δ∆ and quantize ˆ̄η2(z) to q(z) =

Q(ˆ̄η2(z)) if δq(z) ≤ ˆ̄η2(z) < δq(z)+1. Expressions (7.39) and (7.44) remain valid if ε and q̃(z) are

respectively replaced with

ε(q(z)) =
δq(z)+1 − δq(z)

2
and q̃(z) =

δq(z)+1 + δq(z)

2
. (7.47)

All other expressions in the previous sections can be easily generalized to the case of non-

uniform quantization just by replacing the vector ε1ZM with ε = [ε(q0(z0)), ε(q1(z0)), . . . ,

ε(qM−1(zZ−1))]T .

7.3.3 Enforcing Non-negativity

The schemes described in the previous sections do not exploit the fact that the αb represent

power and, consequently, they are nonnegative. Although it is not straightforward to enforce

nonnegativity in the whole domain of α, several approaches can be used to enforce this property

on a discrete set of points. A simple trick is to introduce virtual sensors — notion similar to

that of virtual examples [Schölkopf et al., 1996] — by enlarging the set Z with those locations

where we wish to enforce nonnegativity. If z is one of such locations, we may assume that a

virtual sensor at z reports the following B measurements:

q̃m(z) =
δ0 + δ∆

2
, εz,m =

δ∆ − δ0

2
, βm(z) = eB,m, m = 0, . . . , B − 1. (7.48)

The problem with this approach is that it allows negative values even at those points where

a virtual sensor has been placed. The reason is that virtual sensors are treated like any other

physical sensor, even though their measurements are error-free. If one is not willing to tolerate

these violations of nonnegativity, a different approach needs to be adopted. For example, one

may introduce the constraint K̃P⊥
Ψ̃
c̃+Ψ̃d ≥ 0BZ in (7.40) or (7.45) to enforce the nonnegativity

of the αb at the locations of the physical sensors.
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7.4 Online Implementation

The schemes described in the previous sections are batch algorithms: all observations have to be

collected before the learning stage starts. Since their complexity is superlinear in the number of

observations, obtaining PSD maps using those methods may become prohibitive. Therefore, it

is of interest to develop online approaches, where each observation is processed at the time when

it is received to update the estimate of α. This enables implementations with linear complexity

and allows us to track changes in the field of interest.

Although online schemes can be trivially found by using batch algorithms with sliding

windows [Sebald and Bucklew, 2000], fully online algorithms are preferable [Diethe and Girolami,

2013]. An elegant approach to solve regression problems in an RKHS hinges on stochastic

gradient descent in the function space, as applied in [Kivinen et al., 2004] to propose the NORMA

algorithm. For regression in RKHSs of vector-valued functions, a modification called ONORMA

has been proposed in [Audiffren and Kadri, 2013]. This algorithm can be applied to solve (7.12)

by defining the instantaneous regularized error as

Rinst(α,β, z, q̃) , uε(q̃ − βTα(z)) + λ||α||2F . (7.49)

Observe that the objective in (7.12) follows from averaging Rinst for all observations.

Suppose that, at time t = 1, 2, . . ., an observation is received from the sensor located at

position zt. Multiple observations per sensor are possible with straightforward modifications.

The update rule for the stochastic gradient descent algorithm is

α(t+1) = α(t) − κt∇αRinst(α
(t),β(zt), zt, q̃(zt)), (7.50)

where, in this context, the step size κt > 0 is called learning rate.4 Using [Audiffren and Kadri,

2013, Eq. (2)], we find that

∇αRinst(α,β, z, q̃) = kz∂zuε(q̃ − βTz)|z=α + 2λα (7.51a)

= −u′ε(q̃ − βTα) · kzβ + 2λα, (7.51b)

where kz is the kernel operator of F (see Appendix 7.B), ∂z represents a sub-gradient with

respect to z and u′ε is a sub-derivative of uε; for example

u′ε(x) =
sign {x− ε}+ sign {x+ ε}

2
. (7.52)

4All the expressions in this section can be readily rewritten for the case where κt is replaced by a matrix,
which provides more flexibility to set the learning rates for different components of α.
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Substituting (7.51b) in (7.50) yields

α(t+1) = (1− 2κtλ)α(t) + κtu
′
ε(q̃(zt)− βT (zt)α

(t)(zt)) · kztβ(zt) (7.53)

Applying the representer theorem [Micchelli and Pontil, 2005, Th. 5] up to time t − 1 leads to

the following representation:

α(t) =
t−1∑
i=1

kzic
(t)(zi) (7.54)

for some vectors c(t)(zi) ∈ RB, i = 1, . . . , t − 1. If different observations come from different

sensors, the operators kzi , i = 1, . . . , t + 1, are linearly independent, which means that the

vectors of coefficients must be updated as

c(t+1)(zi) = (1− 2κtλ)c(t)(zi), i = 1, . . . , t− 1 (7.55a)

c(t+1)(zt) = κtu
′
ε(q̃(zt)− βT (zt)α

(t)(zt)) · β(zt). (7.55b)

As an initialization, one can set α(1) = 0.

Due to the decomposition in (7.54), the number of parameters increases linearly with the

number of observations. However, from (7.55a) we observe that the coefficients c(zi), i =

1, . . . , t− 1 are shrunk by a factor of (1− 2κtλ) at each iteration provided that 2κtλ < 1, which

we assume. For this reason, it is common to truncate this sequence at some point [Kivinen et al.,

2004,Audiffren and Kadri, 2013], thus maintaining the following hypothesis:

α(t) =

t−1∑
i=max(1,t−τ)

kzic
(t)(zi) (7.56)

for some τ > 1. However, in the application at hand, it makes more sense to maintain one term

per sensor since their number remains constant. Thus, the hypothesis in (7.54) can be replaced

with

α(t) =
∑
z∈Z

kzc
(t)(z) (7.57)

and, every time an observation (q̃(znew),β(znew)) is received from the sensor at location znew ∈



186 Chapter 7. Learning Power Spectrum Maps from Compressed Measurements

Z, the update from (7.53) becomes

c(t+1)(z) = (1− 2κtλ)c(t)(z), z ∈ Z, z 6= znew (7.58)

c(t+1)(znew) = (1− 2κtλ)c(t)(znew) + κtu
′
ε(q̃(znew)− βT (znew)α(t)(znew)) · β(znew).

The convergence of this algorithm is characterized by the next result, which extends [Aud-

iffren and Kadri, 2013, Thm. 1] to our setting.

Theorem 7.1. If λmax(K(z, z)) < U <∞ for all z, ||β(zt)||2 ≤ V for all t, and κt , κt−1/2

with κλ < 1, then the sequence {α(t)}t satisfies

1

T

T∑
t=1

Rinst(α
(t),β(zt), zt, q̃zt) ≤ (7.59)

inf
α∈F

[
1

T

T∑
t=1

Rinst(α,β(zt), zt, q̃zt)

]
+

e1√
T

+
e2

T

where e2 = U2V 2/(8λ2κ) and e1 = 4(U2V 2κ+ e2).

Proof. The proof of [Audiffren and Kadri, 2013, Thm. 1] generalizes the proof of [Kivinen

et al., 2004, Thm. 4] to the vector-valued case. To prove Theorem 7.1, one can follow the same

approach with two small differences. First, the proof in [Audiffren and Kadri, 2013] involves

a gradient, rather than a subgradient, in (7.50). It can be seen that this subtlety requires no

modification since the vector version of the argument used to establish [Kivinen et al., 2004, eq.

(49)] holds for both gradients and subgradients, and this is the only part of the proof that

requires the properties of gradients/subgradients.

Secondly, in the proof in [Audiffren and Kadri, 2013], the fitting term of the instantaneous

regularized error (in our case the first term of (7.49)) seen as a function of the vector α(z),

say f(v) = uε(q̃ − βTv), is not dependent on t. In our case, this dependence exists through

β(zt) and q̃zt . However, it can be seen that the proof of [Audiffren and Kadri, 2013] can easily

accommodate this situation provided that the functions share a common Lipschitz constant.

That is, for ft(v) = uε(q̃zt − β(zt)
Tv), there must exist a c such that

|ft(v1)− ft(v2)| ≤ c||v1 − v2||2 (7.60)
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for all v1,v2 ∈ RB and t = 1, . . . , T . In our case, it can be noted that

|ft(v1)− ft(v2)| = |uε(q̃zt − β(zt)
Tv1)− uε(q̃zt − β(zt)

Tv2)|

= |β(zt)
T (v2 − v1)| ≤ ||β(zt)||2||v1 − v2||2 (7.61)

where the second equality is due to the fact that uε(z) is a Lispchitz function of z with constant

1. Thus, (7.60) holds for any c ≥ max1≤t≤T ||β(zt)||2.

In summary, the averaged instantaneous error from the online algorithm converges to the

to the regularized empirical error of the batch solution.

7.5 Implementation Issues

This section describes some considerations to take into account when solving the optimization

problems presented in this chapter by numerical methods.

First, standard algorithms to solve problems of the form (7.17) include sequential minimal

optimization (SMO), an algorithm proposed in [Platt, 1999] for SVMs. In the case at hand, a

simplification is possible due to the absence of bias term [Kecman et al., 2003]. However, for

moderate problem sizes (BZ < 5000 for the primal or MZ < 5000 for the dual), interior-point

methods are regarded as the most reliable [Schölkopf and Smola, 2001, Ch. 10]. They also

come with the advantage of providing the Lagrange multipliers, useful for recovering the primal

variables. Other problems discussed in this chapter, including (7.40), (7.45), and (7.46), can

also be reliably solved using interior-point methods.

Second, as in any quadratic program, special caution must be taken to ensure that the

matrix in the quadratic term does not have negative eigenvalues. This situation, which is caused

by finite-precision arithmetic effects, is possible even when a strictly positive definite kernel is

used. In those cases, one may replace the matrix K̃ with K̃−cIBZ , where c = min(0, λmin(K̃)).

Third, if we are not interested in modeling dependencies among the components αb(z), b =

0, . . . , B − 1, it is possible to use a diagonal kernel K and diagonal basis functions Ψb. If,

moreover, all these components are modeled in the same way, as in TPS, both the kernel and

the basis functions are of the form

K(z, z′) = K(z, z′)IB (7.62a)

Ψb(z) = Ψb(z)IB, b = 0, . . . , B′ − 1 (7.62b)

for certain scalar functions K and Ψb. This structure yields considerable simplifications in the
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computation of the matrices involved in the optimization problems of this chapter, as explained

in Appendix 7.E.

7.6 Simulation Results

We now illustrate the performance of the proposed techniques via Monte Carlo simulation. To

this end, the propagation model that we adopt is the standard inverse polynomial law given by

αb(z) =
δAb

δ + ||z − zb||c
, b = 0, . . . , B − 2, (7.63)

where δ = 10−3 is a small constant to ensure that the denominator does not vanish, c = 3 is

the pathloss exponent and the parameters Ab and zb respectively represent transmit-power and

source location. The noise power is set to αB−1(z) = 0.75 across the whole region.

The Z sensors, which are deployed uniformly at random, report M measurements to the FC.

These measurements are generated as qm(z) = Q(|ˆ̄η2
m(z) + %m(z)|) = Q(|βTm(z)α(z) + %m(z)|),

where %m(z) ∼ N (0, σ2
%) is measurement noise that models errors in the estimation of ˆ̄η2

m(z),

for example due to finite observation windows. The estimates are quantized to n bits using two

different schemes. Under uniform quantization (UQ), we determine the range of ˆ̄η2
m(z) using

Monte Carlo simulation and set the boundaries δ0 < δ1 < . . . < δ∆ of the quantization regions,

where ∆ = 2n, in such a way that δi+1 − δi is constant for all i and the probability of clipping

P
{

ˆ̄η2
m(z) > δ∆

}
is approximately 10−3. Under constant-probability quantization (CPQ), these

boundaries are chosen so that P
{
δj ≤ ˆ̄η2

m(z) < δj+1

}
≈ P

{
δl ≤ ˆ̄η2

m(z) < δl+1

}
, ∀j, l.

We will analyze nonparametric methods using the diagonal Gaussian kernel (GK) from

(7.13) and semiparametric methods using TPS. Note that, in all cases, the relevant spectral

information about the compressed signal is captured by the entries of the vector βm(z). For the

sake of generality, we do not specify this structure; instead, we generate the components of the

vectors βm(z) as independent uniform random variables over the interval [0, 1] for all z and m.

The first experiment is a simple example of cartography estimation in the two-dimensional

region [0, 1] × [0, 1] ⊂ R2 where the band of interest contains the contributions of B − 1 = 3

independent sources with radiation parameters given by A1 = 0.9, A2 = 0.8, A3 = 0.7, z1 =

(0.2, 0.8), z2 = (0.4, 0.5) and z3 = (0.8, 0.9). Figure 7.1 shows the true and estimated fields for a

particular realization of sensor locations Z, marked with white crosses, and vectors βm(z). GK

regression is implemented with σ2
b = 0.1 for b = 1, 2, 3 and σ2

4 a very large constant, enforcing

nonnegativity with B virtual measurements per sensor. Each sensor transmits 6 measurements

quantized to 8 bits using CPQ, and σ2
% is set such that 15% of the measurements contain some
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Figure 7.1: Comparision of the true and estimated maps for Z = 40 sensors, M = 6 mea-
surements per sensor, 8 bits/measurement, λ = 10−7, constant probability quantization and
nonnegativity enforcement.

error. Although each sensor transmits only 6 bytes, it is observed that the reconstructed PSD

maps match well the true ones for all the three sources and background noise.

The rest of experiments illustrate the influence of specific parameters/algorithms on the

estimation performance, measured by the normalized mean squared error:

NMSE ,
E
{
||α(z)− α̂(z)||22

}
E
{
||α(z)||22

} . (7.64)

The expectation is taken with respect to z, which is uniformly distributed on the spatial region

of interest. After every estimate α̂(z) is obtained, the NMSE is approximated using the Monte

Carlo method. The result of this operation may also be averaged over multiple realizations

of the sensor locations and vectors βm(z). The region of interest is set to the unidimensional

interval [0, 1] ⊂ R1, where B − 1 = 4 sources radiate with parameters z1 = 0.1, z2 = 0.2, z3 =

0.4, z4 = 0.8, A1 = 0.8, A2 = 0.9, A3 = 0.8 and A4 = 0.7.

To analyze the effects of compression, Figure 7.2 represents the NMSE, averaged over

multiple realizations, as a function of Z for several numbers of bits/sample using both GK and

TPS regression. To capture solely compression effects, we apply uniform quantization with no

measurement errors. It is seen that the proposed estimators are consistent with Z in all cases.

Although it is observed that TPS generally outperforms GK-based regression, this need not be
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Figure 7.2: Effects of compression (B = 5, M = 5 measurements per sensor, uniform quantiza-
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Figure 7.3: Influence of the extensions discussed in Section 7.3 on the estimation performance
(B = 5, Z = 40, 2 bits/measurement, σ2

% = 0, λ = 10−6).
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Figure 7.4: Influence of the measurement noise (B = 5, Z = 40, M = 5, Gaussian kernel, λ =
10−6, nonnegativity not enforced).

the case in other scenarios with other nonparametric and semiparametric methods since their

relative performance depends on the fields to be estimated as well as on the specific choice of

the kernels and basis functions.

The extensions introduced in Section 7.3 are compared in Figure 7.3, which represents the

NMSE vs. M for several settings. It can be noted that the estimates are not consistent in M ,

which is a consequence of the fact that the number of sensors is fixed — the field can only be

accurately estimated in a finite set of points. It is also observed that TPS is much more sensitive

than GK to the enforcement of nonnegativity via virtual measurements and that CPQ leads to

better results than UQ. However, it can be seen this last observation ceases to hold when the

measurement variance σ2
% is sufficiently large, as shown in Figure 7.4, which suggests that other

quantization schemes must be investigated. Figure 7.4 further shows that the impact of σ2
% is

heavier for larger ∆. As predicted by intuition, a finer quantization demands a higher accuracy

in the estimates ˆ̄η2
m(z), which in turn requires longer observation windows.

Figure 7.5 compares the batch methods from Sections 7.2 and 7.3 with the online algorithm

from Section 7.4. At every time slot, each sensor reports one measurement and the FC updates

its estimate. To do so, the batch methods are executed with all the data received up to that

time slot. On the top panel, it is observed the influence of the step size κt on the evolution of the
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regularized risk, which is evaluated at each point using the whole set of observations, including

past and future. As usual, a larger κt results in a faster convergence but a larger residual error

in the steady state. However, it is seen on the bottom panel that the NMSE is less sensitive to

this effect.

Finally, Figure 7.6 represents the evolution of the normalized mean-square error for several

values of σ2
%. It is observed that a larger σ2

% results in a slower convergence and a larger residual

error. However, even for large σ2
% (e.g. for σ2

% = 0.2, 88 % of the measurements contain an error),

the algorithm is capable of converging.

7.7 Conclusions

From a spectrum cartography perspective, we have proposed a family of methods for nonpara-

metric/semiparametric estimation of spatial vector fields observed by a collection of sensors

which linearly compress and quantize their measurements. Based on the regularization induc-

tive principle, the problem is formulated within the framework of regression of vector-valued

functions in RKHSs and can be cast as an SVM problem. The resulting estimates inherit the

properties of SVMs, such as the sparsity of their expansion coefficients.

Existing techniques for semiparametric regression were generalized to accommodate regres-

sion of vector-valued functions with CPD kernels, TPS representing a particular case. The pro-

posed batch methods were extended to allow multiple measurements per sensor, non-uniform

quantization, and non-negative enforcement. An alternative online implementation was also

proposed based on stochastic gradient descent in the RKHS.

The work in this chapter has been submitted to IEEE Transactions on Signal Processing

[Romero et al., 2015b] and was presented in part in the 40th IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP 2015) [Romero et al., 2015c] and the 49th

Annual Conference on Information Systems and Science (CISS 2015) [Romero et al., 2015a].

7.A Acquisition with Pseudo-Random Filters

This appendix describes how the acquisition architecture from [Mehanna and Sidiropoulos, 2013],

based on pseudo-random filters, can be used in place of the one proposed in Section 7.1, based on

C-ADCs. To simplify the exposition, our notation assumes analog processing, but the operations

described here may also be implemented digitally.

Suppose that a sensor located at position z passes y(z; t) through a linear and time-invariant
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filter with impulse response φ(z; t). The filtered signal has power

η̄2(z) , E
{
|φ(z; t) ? y(z; t)|2

}
=

∫ ∞
−∞
|Φ(z; f)|2Ξ(z; f)df, (7.65)

where Φ(z; f) is the Fourier transform of φ(z; t). From (7.1), it follows that

η̄2(z) =
B−1∑
b=0

αb(z)

∫ ∞
−∞
|Φ(z; f)|2Ξb(f)df. (7.66)

By defining βb(z) ,
∫∞
−∞ |Φ(z; f)|2Ξb(f)df and forming the vector β(z) , [β0(z), . . . , βB−1(z)]T ,

expression (7.66) reduces to (7.5).

The sensor at z estimates η̄2(z) using either digital or analog processing, and sends a

quantized version of the estimate to the FC, as described in Section 7.1. The filters φ(z; t) can

be generated using pseudo-random sequences, where multiple measurements can be obtained by

initializing the random generator with different seeds (see Section 7.3.1).

7.B Proof of Proposition 7.1

In any vector-valued RKHS F , for every point z ∈ Rd there exists a linear operator kz : RB → F
satisfying

βTα(z) = 〈α, kzβ〉 (7.67)

for all β ∈ RB [Micchelli and Pontil, 2005]. It can be thought of as a matrix of scalar operators:

kz =


k

(0,0)
z . . . k

(0,B−1)
z

...
. . .

...

k
(B−1,0)
z . . . k

(B−1,B−1)
z

 . (7.68)

The reproducing kernel is the result of evaluating kz, seen as a function on Rd, at a given

z′ ∈ Rd; that is, K(z′, z) , kz(z′) ∈ RB×B. Since the evaluation is linear in an RKHS,

(kz(z′))β2 = (kzβ2)(z′) and, consequently:

βT1K(z′, z)β2 = βT1 (kzβ2)(z′) = 〈kzβ2, kz′β1〉. (7.69)

In virtue of the representer theorem [Micchelli and Pontil, 2005, Th. 5], for λ > 0, the
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solution of the problem (7.12) has the form

α =
∑
z∈Z

kzc(z) (7.70)

for some vectors {c(z)}z∈Z ⊂ RB. Then, we can rewrite (7.12) in terms of the coefficient vectors

c(z) by noting that

βTα(z) =
∑
z′∈Z
〈kz′c(z′), kzβ〉 =

∑
z′∈Z

βTK(z, z′)c(z′), (7.71)

where the first equality follows from the linearity of the inner product and the second one is a

consequence of (7.69); and

||α||2F = 〈α,α〉 =
∑
z,z′∈Z

〈kzc(z), kz′c(z
′)〉 (7.72a)

=
∑
z,z′∈Z

cT (z′)K(z′, z)c(z), (7.72b)

which follows from (7.69). Equivalently, we may write ||α||2F = cT K̃c and βT (zi)α(zi) =

βTi K̃c, where K̃ is defined in (7.14), c = [cT (z0), . . . , cT (zZ−1)]T ∈ RBZ , and βi , eZ,i⊗β(zi).

Therefore, (7.12) becomes

minimize
c∈RBZ

1

Z

Z−1∑
i=0

uε(q̃(zi)− βTi K̃c) + λcT K̃c. (7.73)

By noting that ε ≥ 0 implies that uε(z) = max(0, z − ε) + max(0,−z − ε), the problem

(7.73) is equivalent to

minimize
c∈RBZ

1

Z

Z−1∑
i=0

[
max(0, q̃(zi)− βTi K̃c− ε)

+ max(0,−q̃(zi) + βTi K̃c− ε)
]

+ λcT K̃c,

(7.74)
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which, after scaling the objective and introducing the slack variables ζzi and ζ∗zi , reads as

minimize
c∈RBZ ,ζzi ,ζ∗zi

Z−1∑
i=0

[
ζzi + ζ∗zi

]
+ λZcT K̃c

s.t. ζzi ≥ q̃(zi)− βTi K̃c− ε i = 0, . . . , Z − 1,

ζ∗zi ≥ −q̃(zi) + βTi K̃c− ε i = 0, . . . , Z − 1,

ζzi , ζ
∗
zi ≥ 0, i = 0, . . . , Z − 1.

(7.75)

Finally, by defining ζ , [ζz0 , . . . , ζzZ−1 ]T , ζ? , [ζ∗z0
, . . . , ζ∗zZ−1

]T and B = [β0,β1, . . . ,βZ−1] =

IZ � B̌, we obtain (7.15).

7.C Proof of Proposition 7.2

Let ψb : RB → F , b = 0, . . . , B′ − 1, be an operator with value Ψb(z) at point z when seen as

an element of F . Then, αpar can be written as

αpar =
B′−1∑
b=0

ψbdb. (7.76)

Using [Argyriou and Dinuzzo, 2014, Th. 3.1] to extend the semiparametric representer

theorem [Schölkopf and Smola, 2001, Th. 4.3] to the vector case, we find that the solution of

(7.23) can be written as

α =
∑
z∈Z

kzc(z) +
B′−1∑
b=0

ψbdb, (7.77)

where kz is the kernel operator of F ′ (see Appendix 7.B). Substituting (7.77) in (7.23) and

following the same steps as in Appendix 7.B yields

minimize
c,d

1

Z

Z−1∑
i=0

uε(q̃(zi)− βTi (K̃c+ Ψ̃d)) + λcT K̃c, (7.78)
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where βi , eZ,i ⊗ β(zi). After scaling and introducing the slack variables ζzi and ζ∗zi , the

problem (7.78) becomes

minimize
c,d,ζzi ,ζ

∗
zi

Z−1∑
i=0

[
ζzi + ζ∗zi

]
+ λZcT K̃c

s.t. ζzi ≥ q̃(zi)− βTi (K̃c+ Ψ̃d)− ε, i = 0, . . . , Z − 1,

ζ∗zi ≥ −q̃(zi) + βTi (K̃c+ Ψ̃d)− ε, i = 0, . . . , Z − 1,

ζzi , ζ
∗
zi ≥ 0, i = 0, . . . , Z − 1,

(7.79)

or, in vector form, (7.25).

7.D Derivation of (7.35)

This appendix describes how to obtain the optimal c̃ and d in (7.30) from the optimal solution of

(7.33). If (7.30) were the dual of (7.33), then these variables could be recovered as the Lagrange

multipliers of (7.33). However, this is not the case since (7.33) is not the true dual of (7.30),

although both are trivially related. In particular, the true dual of (7.30) is

minimize
c̃,α,α?

λZc̃TP⊥
Ψ̃
K̃P⊥

Ψ̃
c̃− (q̃ − ε1Z)Tα+ (q̃ + ε1Z)Tα?

s.t. 2λZP⊥
Ψ̃
K̃P⊥

Ψ̃
c̃+ P⊥

Ψ̃
K̃B(α−α?) = 0BZ ,

Ψ̃TB(α−α?) = 0BB′ ,

α− 1Z ≤ 0Z , −α ≤ 0Z ,

α? − 1Z ≤ 0Z , −α? ≤ 0Z .

(7.80)

The fact that c̃ shows up both in (7.30) and in (7.80) is a consequence of the fact that P⊥
Ψ̃
K̃P⊥

Ψ̃

is not invertible. Since the dual of (7.80) is again (7.30), both c̃ and d can be immediately

recovered from the solution of (7.80): d is the Lagrange multiplier associated with the first

equality constraint, whereas c̃ is directly the one solving (7.80).

Observe that, due to the second equality constraint, B(α − α?) = P⊥
Ψ̃
B(α − α?) in the

feasible set, meaning that the first equality constraint can be rewritten as

2λZP⊥
Ψ̃
K̃P⊥

Ψ̃
c̃+ P⊥

Ψ̃
K̃P⊥

Ψ̃
B(α−α?) = 0BZ . (7.81)
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This equation is solved for c̃ when

c̃ =
1

2λZ
B(α−α?) +N (P⊥

Ψ̃
K̃P⊥

Ψ̃
), (7.82)

where the notation N (A) is used to represent any vector in the null space of A. Since the

component in N (P⊥
Ψ̃
K̃P⊥

Ψ̃
) does not affect the problem, without any loss of generality we can

take it to be the zero vector. Substituting (7.82) in (7.80) produces (7.33).

Although we have arrived at an equivalent problem, due to the transformations introduced,

the Lagrange multipliers of (7.80) are not the same as those of (7.33). Fortunately, the latter

can be easily recovered from the former. Let us associate the multipliers µ1, µ2, ν1, ν2, ν3

and ν4 to the constraints in (7.80); and associate the multipliers µ′2, ν ′1, ν ′2, ν ′3 and ν ′4 to the

constraints in (7.33), following the same order as they have been listed here. By stating the

KKT conditions of (7.33) and (7.80), it can be seen that if α and α? solve (7.33) with multipliers

µ′2, ν ′1, ν ′2, ν ′3 and ν ′4, then the following values satisfy the KKT conditions of (7.80):

c̃ =
1

2λZ
B(α−α?), µ1 = −c̃, (7.83a)

µ2 = µ′2 − (Ψ̃T Ψ̃)−1Ψ̃T K̃c̃, (7.83b)

ν1 = ν ′1, ν2 = ν ′2, ν3 = ν ′3, ν4 = ν ′4. (7.83c)

Due to the second constraint in (7.80), it is clear that c̃ = P⊥
Ψ̃
c̃, which means that c = c̃.

Finally, from (7.83b) and noting that d = µ2, expression (7.35) arises.

7.E Efficient Matrix Computation for Decoupled Models

As explained at the end of Section 7.5, when K(z, z′) and Ψb(z) are of the form (7.62), consid-

erable simplifications are possible. Note that, in this case, K̃ can be written as

K̃ = K̃0 ⊗ IB, (7.84)

where K̃0 ∈ RZ×Z is a matrix whose (i, j) entry equals K(zi, zj). Correspondingly, the matrix

Ψ̃ can be written as

Ψ̃ = Ψ̃0 ⊗ IB, (7.85)

where Ψ̃0 ∈ RZ×B′ is a matrix whose (i, b) element equals Ψb(zi). Using (7.84) and (7.85), the

computation of the matrices involved in the optimization problems of the previous sections can

be efficiently obtained as described next.
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From (7.41) and (7.84)

BT K̃ = [(IZ ⊗ 1TM )� B̌]T (K̃0 ⊗ IB)

= ΓT [(IZ ⊗ 1M )⊗ B̌T
](K̃0 ⊗ IB)

= ΓT [(IZ ⊗ 1M )K̃0 ⊗ B̌
T

]

= ΓT [(K̃0 ⊗ 1M )⊗ B̌T
]

= [(K̃0 ⊗ 1TM )� B̌]T ,

(7.86)

where Γ is a selection matrix containing ones and zeros arranged such that A�B = (A⊗B)Γ.

Likewise, from (7.41) and (7.85) we find that

BT Ψ̃ = [(Ψ̃T
0 ⊗ 1TM )� B̌]T . (7.87)

Using the properties of the Kronecker product, P⊥
Ψ̃

can be written as

P⊥
Ψ̃

= IBZ − (Ψ̃0(Ψ̃T
0 Ψ̃0)−1Ψ̃T

0 )⊗ IB (7.88a)

= (IZ − Ψ̃0(Ψ̃T
0 Ψ̃0)−1Ψ̃T

0 )⊗ IB (7.88b)

= P⊥
Ψ̃0
⊗ IB, (7.88c)

where P⊥
Ψ̃0

= IZ − Ψ̃0(Ψ̃T
0 Ψ̃0)−1Ψ̃T

0 . This expression reduces the inversion of a BB′ × BB′

matrix, as required from (7.31), to the inversion of a B′ ×B′ matrix.

From (7.34), we find that K̄Ψ can be computed as

K̄Ψ = BT (P⊥
Ψ̃0
⊗ IB)(K̃0 ⊗ IB)(P⊥

Ψ̃0
⊗ IB)B

= BT (P⊥
Ψ̃0
K̃0P

⊥
Ψ̃0
⊗ IB)B

= ((IZ ⊗ 1TM )� B̌)T (P⊥
Ψ̃0
K̃0P

⊥
Ψ̃0
⊗ IB)((IZ ⊗ 1TM )� B̌)

= ΓT ((IZ ⊗ 1TM )⊗ B̌)T (P⊥
Ψ̃0
K̃0P

⊥
Ψ̃0
⊗ IB)((IZ ⊗ 1TM )⊗ B̌)Γ

= ΓT [(IZ ⊗ 1M )P⊥
Ψ̃0
K̃0P

⊥
Ψ̃0

(IZ ⊗ 1TM )⊗ B̌T
B̌]Γ

= (IZ ⊗ 1M )P⊥
Ψ̃0
K̃0P

⊥
Ψ̃0

(IZ ⊗ 1TM ) ◦ B̌T
B̌

= (P⊥
Ψ̃0
K̃0P

⊥
Ψ̃0
⊗ 1M1TM ) ◦ B̌T

B̌.

(7.89)

Finally, d from (7.35) can be obtained as:

d = ν − [(Ψ̃T
0 Ψ̃0)−1Ψ̃T

0 K̃0 ⊗ IB]c. (7.90)
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

In the end, all the problems addressed in this thesis have a common theme: how to efficiently

exploit our knowledge about the structure of certain signals in order to detect their presence or

to estimate their power in a noisy environment. How detailed this knowledge is will decisively

impact our ability to achieve our goal. In each case, a model that provides a partial statistical

characterization of the observations serves as a starting point for the development of functions

of the data, either detectors or estimators, that return the information we are looking for. Our

methods range from those exploiting spatial structure, such as the rank-1 channel assumption, to

those exploiting amplitude information, such as the CM property or the Gaussian assumption,

and those exploiting spectral information, such as bandlimitedness or second-order statistics.

We moved a step towards expanding the state of the art in settings that we found of special

practical relevance. For instance, in no case did we assume that the noise power or the channel

between the primary user and the spectrum sensor were known. Our interest centered mainly

on spectrum sensing for wireless microphone signals in television bands, spectrum sensing in

time-varying channels, and spectrum sensing for waveforms of known spectral characteristics.

The information that our methods are capable of inferring ranges from binary data regarding

whether a certain primary user is operating in a given band, to detailed descriptions on how the

power radiated by the primary source spreads across space. It may be used by secondary users

to carefully plan their transmission strategies, for instance by selecting one band or another, by

setting its radiation pattern, or by adjusting its rate or power.

The main tools required were taken from detection theory, estimation theory, and statistical

learning. In the first chapters, we made extensive use of the generalized likelihood ratio as

a tool to leverage the partial knowledge of the signal structure. Although the performance
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obtained with this widely used approach is satisfactory in general, it is not necessarily optimal,

and this fact prompted us to consider alternative approaches such as the search for (locally)

optimal detectors within a family satisfying certain invariances. In this context, we addressed

a fundamental question in multivariate analysis of variance regarding the existence of locally

most powerful invariant tests for homogeneity of covariance problems (see the Appendix).

We have also considered the introduction of compression in the acquisition stage, which

allowed us to estimate the occupancy state of wide frequency bands at a low hardware cost

and power consumption. In this context, we addressed the problem of power estimation and

activity detection of multiple wide-sense stationary processes immersed in noise of unknown

variance. But this setting also lends itself to an in-depth treatment on how to compress the

second-order statistics of this class of processes. We faced this fundamental problem, where

we found optimum structures capable of maximizing the compression ratio while preserving all

relevant second-order information. The applicability of our results extends well beyond spectrum

sensing applications.

Finally, we delved into the problem of spectrum cartography, where contemporary tools of

regression theory and statistical learning were applied to develop nonparametric and semipara-

metric schemes that learn power spectrum maps from the observations reported to the fusion

center by a collection of inexpensive sensors. It was observed that a relatively small amount

of highly compressed measurements suffices to reconstruct accurate representations of how the

radiated power in different frequency channels spreads across a certain spatial region.

8.2 Open Lines and Future Work

Although the last few years have witnessed a great progress in spectrum sensing methods, there

still remains a long way ahead to achieve fully intelligent exploitation of all prior information.

For example most existing techniques rely on frequentist or Bayesian approaches, which may be

useful in order to achieve good performance in terms of mean-squared error, probability of false

alarm, probability of detection, etc; but can hardly accommodate past experience. On the other

hand, contemporary machine learning tools may allow a rapid adaptation to changing conditions,

but are difficult to analyze and manipulate in terms of the aforementioned performance metrics.

It is envisioned that bridging this gap will be of critical importance for the upcoming DSA

systems.

Broadly speaking, we can say that the vast majority of existing spectrum sensing methods

do not exploit the fact that the spectrum sensor repeatedly observes the channel — in practice,

such a sensor must typically provide a decision after each observation window (see e.g. [IEEE,
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2011]). Instead, these methods implicitly assume that a single window is provided and a single

decision needs to be made. Thus, numerous benefits may arise from exploiting past experience

via learning, quite along the philosophy of cognitive radio. Note that, in particular, online

learning methods would be highly desirable.

Another manifestation of this issue can be found when dealing with deleterious signal

contributions. In particular, note that the interference inflicted by a distant primary or secondary

user may be temporally or spatially correlated. Similarly, a machine operating in the vicinity

of that sensor may introduce correlated noise. Learning the spatial and spectral features of

these disturbances may assist decisively in improving detection/estimation performance. But

exploiting this information requires devising models capable of capturing the (possibly time-

fluctuating) nature of these processes and inference methods capable of exploiting the learned

structure.

Approaching these somewhat Utopian goals will require extensive research in this area.

Meanwhile, a number of more specific research directions that are related to the topics covered

in this thesis are briefly summarized next.

8.2.1 Spectrum Sensing in a Single Channel

• In the context of detecting WM signals, we assumed that the noise process was spatially

and temporally white. However, in accordance with what was explained above, it would

be convenient to generalize our methods to accommodate correlated noise.

• Furthermore, the proposed schemes assume the presence of at most one WM waveform in

the band of interest. However, it is not uncommon in practice that multiple WMs operate

simultaneously in the same frequency band. Efficient methods that cope with the presence

of multiple WM waveforms are yet to be devised.

• Regarding the detection of primary signals in time-varying channels, our schemes could be

extended to accommodate further forms of signal structure other than the CM property

or the Gaussian distribution. Allowing for colored noise would also be of interest.

• As pointed out in Section 4.3.3, multiantenna detection in rapidly-changing channels was

left as an open line. A possible approach is the application of tests for homogeneity of

covariance.
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8.2.2 Spectrum Sensing in Multiple Channels

• Although we developed a number of computationally efficient techniques to estimate the

power received from each of the primary users that operate in a wide frequency band, ac-

tivity detection in such setting constitutes a future line of research. In particular, the only

detector we discussed relies on a GLR test and is not CFAR due to the (possible) presence

of more than one primary user in the band of interest. However, this is not a limitation of

just our detection scheme — the power of other primary users may affect the probability of

detection/false alarm of potentially any detector. Circumventing this drawback is there-

fore of clear interest, otherwise setting the test threshold may be troublesome. To do so,

one of the first steps should be to investigate how the detection performance requirements

must be specified: one can no longer ask a detector to guarantee a certain probability of

detection under any circumstance; instead, one must first provide the conditions under

which those requirements must be fulfilled.

• It would be of great interest to extend our techniques in order to accommodate sensors

with multiple antennas and/or temporal channel variations.

• As for sampler design for CCS, most existing schemes rely either on specific algorithms

or on identifiability criteria (see Chapter 6), but further design criteria are yet to be

explored. For instance, it seems natural to seek sampler designs minimizing the Cramér-

Rao bound for unbiased estimation of the parameters of interest [Romero and López-

Valcarce, 2014a]. Devising deterministic designs that maximize the compression ratio

under some minimal performance constraints would be particularly relevant. Moreover,

further sampling schemes such as gridless or continuous irregular sampling have to be

investigated from a CCS perspective.

• Future research may also consider non-linear covariance parameterizations as well as non-

linear compression. This includes, for instance, exploiting information about the rank of

the covariance matrix or the knowledge that the signal of interest is auto-regressive of

order p.

• CCS may be applied in other contexts such as big data analytics due to its ability to

meaningfully reduce the dimension of the data set. Both inference and compression meth-

ods need to be revisited to accommodate the special needs imposed by big data records.

In particular, online, adaptive and distributed implementations for existing estimation

methods are yet to be devised.
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8.2.3 Spectrum Cartography in Multiple Channels

• When presenting our cartography scheme from Chapter 7, we only considered a limited

number of choices for the reproducing kernel Hilbert space. Future research may take

advantage of this degree of freedom in order to capture the propagation information via

kernel selection.

• Another interesting line is that of designing the compression matrices and the quantizers

that sensors implement. In this sense, vector quantization techniques, where multiple

measurements are simultaneously quantized, may be useful.

• It may be worth delving deeper into the connections between the proposed regression

techniques and support vector machines. They may provide some insight into how to

choose the regularization parameter λ without resorting to cross-validation [Cherkassky

and Mulier, 2007].

• Our regression scheme from Chapter 7 considered sensors with an extremely simple ar-

chitecture. However, similar approaches carry over to settings where the sensors apply

the procedures described in earlier chapters. For instance, each sensor may report to the

fusion center a compressed and quantized version of the ML estimates from Chapters 2

to 5. This may allow to obtain cartography methods capable of constructing PSD maps

for wireless microphones or in presence of time-varying channels. In the latter case, it

would be interesting to jointly exploit the observed time dynamics of the channels and the

observed motion of the sources.

• Rather than reporting just a quantized version of a power estimate, sensors may quantize

multiple lags of the autocorrelation and send the result to the fusion center. How to recover

PSD maps from that information is yet to be investigated.
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Appendix: On the Existence of

Locally Optimal Invariant Tests for

Homogeneity of Covariance Matrices

Given a set of samples drawn from several multivariate Gaussian distributions, the problem is

to decide whether the associated covariance matrices are all identical or not. Although many

hypothesis tests have been proposed in the past, a complete analysis focusing on those tests

that preserve the problem invariances has not been provided yet. In particular, whether locally

optimal tests exist within this family for the important case of close hypotheses has remained

as an open problem.

In this appendix, the conditions under which locally optimal invariant tests exist are derived

and, in those cases where they do, expressions for their statistics are presented in closed form.

Wijsman’s theorem is applied to derive the likelihood ratio of the maximal invariant statistic.

It then follows that a locally optimal invariant test exists only in those cases where this ratio

determines locally a family of equivalent tests for all values of the parameters of the model. The

related scale problem is also considered, where the covariance matrices of different populations

are known to be scaled versions of each other. It is shown in this case that a locally optimal

invariant test always exists.

A.1 Introduction

The assumption that a set of Gaussian populations have the same covariance matrix is central

in a wide variety of classical problems in statistics and signal processing, such as discriminant

analysis [Anderson, 2003, Muirhead, 2005], multiple-output regression [Hallin and Paindaveine,

2009], N -sample location [Hallin and Paindaveine, 2009], low-rank matrix approximation [Chen,

2008], time-frequency analysis [Huillery et al., 2008], speech recognition [Kumar and Andreou,
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1998] and synthetic aperture radar imaging [Amirmazlaghani et al., 2009], just to name a few.

Therefore, statistical procedures must be employed in practice to decide whether this assumption

holds or not. In fact, the problem of testing equality of covariance matrices has become one of

the fundamental problems in multivariate analysis of variance (MANOVA) [Anderson, 2003].

A standard test for this problem relies on the GLR test [Kay, 1998], which was first derived

in [Wilks, 1932]. In cases where the number of observations is not the same for all populations,

this test was shown to be biased [Das Gupta, 1969] and a slight modification to obtain an

unbiased test was proposed by Bartlett [Anderson, 2003]. This test has been widely analyzed

over the past decades and we now know asymptotic expansions of the distributions under both

hypotheses, moments, exact distributions, etc (see [Anderson, 2003,Muirhead, 2005,Hallin and

Paindaveine, 2009] and references therein). Although no optimality properties are associated

with the Bartlett test, it seems to be the default procedure for many statisticians and engineers

up to now.

Several alternatives to the GLR test have been explored in the past, including Schott’s

Wald test [Schott, 2001] and Nagao tests [Nagao, 1973], which can be seen as simplifications

with the same asymptotic performance. For the case where the dimension of the problem is large

relative to the number of observations, several heuristic tests have been proposed in [Schott,

2007] and [Srivastava and Yanagihara, 2010]. Later, the asymptotic equivalence of several of the

these tests was established in [Hallin and Paindaveine, 2009], where locally and asymptotically

optimal adaptive tests [Lehmann and Romano, 2005] were also proposed using Le Cam’s local

asymptotic normality [Le Cam, 1986].

Interestingly, all of the tests above are invariant to certain transformations that are inherent

to the problem. For example, note that scaling all the observations by any non-null constant

should not affect our decision regarding whether all the populations have the same covariance

matrix or not. This is not coincidental and, in fact, it is typically argued that any test not

satisfying a certain family of invariances associated with the problem is not1 reasonable [Gabriel

and Kay, 2002]. This fact suggests looking for those tests within the family of invariant tests

which are uniformly optimal (see Section 1.1.1). In the general problem of testing equality of

covariance matrices, it is known that no such a test exists [Muirhead, 2005], and researchers

were traditionally forced to resort to heuristic invariant criteria [Muirhead, 2005, Sec. 8.2.8.].

Nevertheless, even when a uniformly optimal test does not exist, it may be possible to find a

locally optimal test in the challenging scenario of close hypotheses [Ramirez et al., 2013].

The purpose of this appendix is to look at the problem of testing homogeneity of covariance

matrices from an invariance perspective. Although the conditions under which uniformly optimal

1See also [Lehmann and Romano, 2005, Sec. 1.5] for further motivation of why we should require a test to be
invariant.
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invariant tests exist have already been derived, little is known about the existence of locally

optimal invariant tests in the regime of close hypotheses. In this appendix, we determine the

cases where those tests exist and obtain expressions for their statistic in closed form. Our

main tool is Wijsman’s Theorem [Wijsman, 1967, Gabriel and Kay, 2002], which allows direct

computation of the likelihood ratio of the maximal invariant statistic [Lehmann and Romano,

2005, Scharf, 1991] by integrating the densities of the observations over a group defining the

invariances of the problem. The importance of this theorem relies on the fact that it avoids

the explicit evaluation of the distribution of the maximal invariant statistic, which is typically

intractable.

The main contribution of this appendix is to show that, when the same number of observa-

tions is available for all populations, the locally most powerful2 invariant (LMPI) test is given by

a linear combination of two statistics. The first one is the sum of squared traces of the (appro-

priately normalized) sample covariance matrices of each population, whereas the second one is

the sum of their squared Frobenius norms. The fact that the relative weight of these two terms

depends on parameters of the model means that no LMPI test exists in the general case. Only

in the case with scalar observations and in the case with two vector observations per population3

does this linear combination determine a family of equivalent tests for any value of the model

parameters. Every member of that family is, therefore, an LMPI test. This completely solves

the existence of LMPI tests when the number of observations is the same for all populations.

On the other hand, if the latter condition does not hold, an LMPI test only exists if it coincides

with the uniformly most powerful invariant (UMPI) test, that is, in the case with two scalar

populations. For completeness, it is also shown that, in the related scale problem, where all

covariance matrices are known to be scaled versions of each other, an LMPI test always exists

since the relative weight of both statistics does not depend on the parameters of the model.

The rest of the appendix is structured as follows: Section A.2 formulates the problem of

testing equality of covariance matrices and provides a review of existing methods. We next move

to discuss invariance in Section A.3, where Wijsman’s theorem is applied to obtain the likelihood

ratio of the maximal invariant statistic. It turns out that no UMPI test exists in general, which

prompts us to adopt an approximation of close hypotheses in Section A.4 and determine those

cases where a locally optimal invariant test can be found. Finally, in Section A.5 we consider

the scale problem, where a locally optimal test exists, and in Section A.6 we highlight some

important conclusions.

2Throughout the appendix, the terms optimal and most powerful would be used interchangeably.
3Or just one observation if the mean vector is known.
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A.2 Testing Equality of Covariance Matrices

We now formalize the problem of deciding whether the covariance matrices of a collection of

Gaussian populations are all the same or not. It will be assumed that the same number of

observations are available from all populations. The reason is that it can be shown that no

locally optimal test exists for different number of observations per population except in the

simple case with two scalar populations, where a UMPI test can be found. After stating the

observation model, we summarize a number of existing tests for this problem, highlighting the

connections among them. In order to keep the notation simple and natural, the conventions

adopted in this appendix differ from those adopted in the previous chapters.

A.2.1 Problem Formulation

Suppose that we are given a set of complex4 vector-valued samples {xn,k, n = 0, . . . N − 1, k =

0, . . .K − 1} ⊂ CM×1, where xn,k represents the k-th sample drawn from the n-th population,

thus having a total of KN samples. We collect the samples from the n-th population in the ma-

trix Xn , [xn,0, xn,1 . . .xn,K−1] and the whole dataset in the matrix X , [X0, X1, . . .XN−1].

A probability measure is defined such that the data samples are multivariate circularly sym-

metric Gaussian distributed, mutually independent, with mean and covariance matrix depending

on the population, that is, xn,k ∼ CN (µn,Ξn). Thus,

πM · p(xn,k) = |Ξn|−1exp
{
−(xn,k − µn)HΞ−1

n (xn,k − µn)
}
,

where p(xn,k) denotes the density of xn,k with respect to Lebesgue measure. Due to the mutual

independence between data vectors, the joint density of those drawn from the n-th population

can be expressed as5

πMKp(Xn) = |Ξn|−K×

exp

{
−
∑
k

(xn,k − µn)HΞ−1
n (xn,k − µn)

}
. (A.1)

4This appendix assumes complex data due to the signal processing perspective adopted, but a similar derivation
is possible in the case of real-valued observations, with appropriate changes in some of the constants involved.

5In order not to overload the notation, throughout the appendix we will omit the sum and product limits when
it is clear from the context.
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An alternative expression, which will be used later, arises from application in (A.1) of the identity∑
k

(xn,k − µn)(xn,k − µn)H = (A.2)

K(x̄n − µn)(x̄n − µn)H +
∑
k

(xn,k − x̄n)(xn,k − x̄n)H ,

where x̄n ,K−1
∑

k xn,k is the sample mean of the n-th population. Thus (A.1) can be rewritten

as

πMKp(Xn) =|Ξn|−K etr
{
−Ξ−1

n V̂x,n

}
× (A.3)

etr
{
−KΞ−1

n (x̄n − µn)(x̄n − µn)H
}
,

where V̂x,n is the scatter matrix of the n-th population, defined as

V̂x,n ,
∑
k

(xn,k − x̄n)(xn,k − x̄n)H . (A.4)

Since all populations are assumed to be mutually independent, the density of the whole data

record can be readily obtained as p(X) =
∏
n p(Xn).

The problem of testing equality of covariance matrices, also known as homogeneity of

covariance matrices or homoscedasticity, can be formulated as the problem of testing the null

hypothesis H0, stating that there exists Ξ such that Ξn = Ξ ∀n, against the alternative H1,

which states that there exist some n, m such that Ξn 6= Ξm. In this framework, the covariance

matrices and the mean vectors are the unknown parameters of the model. Note in particular

that assuming unknown means only makes sense if K > 1, since otherwise the problem becomes

ill-posed. Interestingly, it can be seen that the case with known means is equivalent to the case

with unknown means if in the latter we replace the sample means by their true values in the

definition of the scatter matrices and K by K + 1 in the expressions below. In such case the

requirement K > 1 is replaced by K > 0.

At this point we find it convenient to introduce some matrix notation. First, defin-

ing X̄n , x̄n1
H
K enables us to write V̂x,n = (Xn − X̄n)(Xn − X̄n)H . Then, upon defining

X̄ , [X̄0, X̄1, . . . X̄N−1], the global scatter matrix, defined as

V̂x ,
∑
n

V̂x,n, (A.5)
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can be written as

V̂x = (X − X̄)(X − X̄)H . (A.6)

A.2.2 Existing Tests

We now review some of the tests for homogeneity of covariance matrices that can be found in

the literature. All of them are derived from some standard criterion except for the Nagao test,

which is heuristic. Other tests of this kind can be found for the case N = 2 in [Muirhead,

2005, Sec. 8.2.8.].

GENERALIZED LIKELIHOOD RATIO TEST

The GLR test rejects the hypothesis H0 for high values of

G(X) =

sup
µ0,...,µN−1,Ξ0,...,ΞN−1

p (X;µ0, . . . ,µN−1,Ξ0, . . . ,ΞN−1)

sup
µ0,...,µN−1,Ξ

p (X;µ0, . . . ,µN−1,Ξ, . . . ,Ξ)
. (A.7)

As derived by Wilks [Wilks, 1932], this test statistic can be expressed in closed-form as6,7:

G(X) ∝ |V̂x|N∏
n |V̂x,n|

, (A.8)

Observe that this test can only be used when K > M , since otherwise the determinants in the

denominator vanish. The well-known Bartlett test [Anderson, 2003] is a modification of the

GLR test that corrects the bias arising when the number of observations of different populations

is not the same [Das Gupta, 1969].

WALD TEST

The Wald test for homogeneity of covariance matrices was first derived by Schott in [Schott,

2001], and rejects the null hypothesis for high values of

T Wald(X) ∝
∑
n

Tr

((
V̂x,nV̂

−1
x

)2
)
− 1

N

∑
n

∑
m

Tr
(
V̂x,nV̂

−1
x V̂x,mV̂

−1
x

)
. (A.9)

6The symbol ∝ means equality up to a monotonically increasing function (see Section 1.4).
7Recall that two statistics related by a monotonically increasing function define the same test if the thresholds

are set accordingly.
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Asymptotically, the performance of the Wald test is the same as that of the GLR test [Kay,

1998]. Therefore, the tests defined by (A.8) and (A.9) are asymptotically equivalent, though

(A.9) is easier to compute, especially for large N .

LOCALLY ASYMPTOTICALLY OPTIMAL GAUSSIAN TEST

Using Le Cam’s asymptotic theory of statistical experiments [Le Cam, 1986], Hallin and Pain-

daveine derived the locally asymptotically optimal (most stringent) test for homogeneity of

covariances [Hallin and Paindaveine, 2009]. When the populations are Gaussian distributed,

their test statistic reduces to

T LAOGT(X) ∝
∑
n<m

Tr

((
V̂ −1
x (V̂x,n − V̂x,m)

)2
)
. (A.10)

NAGAO TEST

Several tests have been proposed based on different heuristic criteria. Perhaps the most remark-

able example is due to Nagao [Nagao, 1973] and is based on the distribution of the statistic in

(A.8). This test rejects H0 for large values of

T Nagao(X) ∝
∑
n

Tr

((
V̂x,nV̂

−1
x −N(K − 1)2IM

)2
)
. (A.11)

It can be readily checked that, except for the GLR test and the Bartlett test, all tests above

are equivalent to the test based on the Frobenius norm (Frobenius test):

T Frobenius(X) =
∑
n

||V̂ −1/2
x V̂x,nV̂

−1/2
x ||2F . (A.12)

Note that we do not have this equivalence whenever the number of available observations is

not the same for all populations. Furthermore, as will be shown, when the LMPI test exists,

it is also equivalent to (A.12). Finally, it is interesting to note that all the previous tests are

equivalent in the two-population scalar problem, i.e., for (N = 2,M = 1), and it can be shown

that the resulting test is uniformly most powerful unbiased [Muirhead, 2005].
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A.3 Optimal Invariant Test

The existence of a great variety of tests for equality of covariance matrices owes to the fact that

no uniformly optimal test exists, as can be easily checked by noting that the likelihood ratio does

not define equivalent tests for all values of the model parameters {Ξ0, . . . ,ΞN−1,µ0, . . . ,µN−1}.
A typical approach to sidestep this difficulty is to focus on the family of those tests satisfying

certain invariances that are inherent to the problem. These invariances are formalized by means

of groups of transformations, and must be chosen so that no test violating any of them could

reasonably be accepted. We begin this section by identifying the invariances of the problem.

A.3.1 Problem Invariances

The problem at hand is invariant to three classes of transformations, namely,

• invertible linear transformations common to all populations,

• translations common to all vectors in a given population,

• permutations of the populations.

Moreover, although the problem is also invariant to permutations of the observations belonging

to each population, it can be seen that this invariance is implicit in the distribution and, conse-

quently, the final test statistic will be invariant to these permutations as a desirable byproduct.

In order to apply Wijsman’s theorem in the next section, we need to endow these trans-

formations with a group structure. The first two invariances can be considered simultaneously

by properly defining a group of affine transformations. These transformations map xn,k to

gxn,k = Axn,k + bn, where A ∈ CM×M is an invertible matrix and bn ∈ CM×1. To consider

this transformation while restricting ourselves to the n-th population, define Bn , bn1
H
K and

write gXn = AXn +Bn. Similarly, if we consider the whole set of observations, we can write

gX = AX +B by defining B = [B0, . . .BN−1]. Formally speaking, this group is given by the

set G1 , {g = (A,B) : A ∈ A,B ∈ B} together with a composition operation, where A is

the set of all M ×M invertible matrices and B is the set of M ×NK matrices with the block

structure B = [b01
H
K , b11

H
K , · · · , bN−11

H
K ].

A permutation of populations is a transformation X 7→ π(X) = [Xπ[0],Xπ[1], . . . ,Xπ[N−1]],

where π[·] is a permutation of the first N non-negative integers. Let G2 denote the set of

population permutations π(X) induced by the set of all permutations Π = {π[·]} of the first

N non-negative integers. When this set is considered together with the natural composition

operation π1π2, it constitutes a group.
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Both forms of invariance can be manipulated simultaneously by regarding G1 and G2 as

subgroups of a larger group G = {g = (A,B, π) : (A,B) ∈ G1, π ∈ G2} together with the op-

eration (A(1),B(1), π1)(A(2),B(2), π2) = (A(1)A(2),A(1)π1(B(2)) +B(1), π1π2). This group acts

on the data as gX = (A,B, π)X = Aπ(X) +B = π(AX) +B, and induces a transformation

ḡ in the parameters of the distributions as

ḡ {Ξ0, . . . ,ΞN−1,µ0, . . . ,µN−1} = {AΞπ[0]A
H , . . . , (A.13)

AΞπ[N−1]A
H ,Aµπ[0] + b0, . . . ,Aµπ[N−1] + bN−1}.

Recall that a group G defines an equivalence relation ∼ as follows: X ∼ Y iff there exists

some g ∈ G such that gX = Y . In the context of invariant statistics, the classes of equivalence

defined by this equivalence relation are called orbits and play a central role in Wijsman’s theorem.

To simplify the ensuing derivation, it is convenient at this point to introduce the equivalent

(normalized) data set Y = g0X, where g0 , (A0,−A0X̄, 1π) for 1π the identity permutation

and A0 ∈ CM×M an invertible matrix satisfying

V̂y = A0V̂xA
H
0 = IM . (A.14)

Note that the normalized data set has zero mean, i.e. Ȳ = 0. This normalization does not incur

any loss of information since any invariant statistic T satisfies T (X) = T (gX), ∀g ∈ G.

A.3.2 Maximal Invariant Statistic

It is well known [Lehmann and Romano, 2005, Scharf, 1991] that any invariant statistic is a

function of the maximal invariant statistic, which is, in turn, a function of the data assigning

the same value to all possible observations X lying in the same orbit and different values to

observations in different orbits. In other words, if δ represents a maximal invariant statistic,

δ(X) = δ(X ′) ⇔ ∃g ∈ G such that X ′ = gX. (A.15)

Intuitively, a maximal invariant is a canonical transformation returning a representative for each

orbit. Note as well that any injective transformation of a maximal invariant is again a maximal

invariant, which means that this class of statistics are not unique.

A possible maximal invariant that we may arbitrarily choose when N > 2 and M > 2 is as

follows: first take the sufficient statistic, given by

{V̂x,0, . . . , V̂x,N−1, x̄0, . . . , x̄N−1}. (A.16)
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Next normalize the data as described in Section A.3.1. Since the sample means become zero in

that case, this is equivalent to consider just the sample scatter matrices {V̂y,1, . . . , V̂y,N}. It is

still possible to apply a pair of transformations without violating the normalization condition

in (A.14). First, we can permute the normalized sample scatter matrices in the decreasing

order of their traces — this is possible with probability one —, i.e., we take the ordered set

{V̂y,n0 , V̂y,n1 , . . . , V̂y,nN−1}, where n0, n1, . . . , nN−1 are such that Tr
(
V̂y,n0

)
> Tr

(
V̂y,n1

)
>

. . . > Tr
(
V̂y,nN−1

)
. Similarly, it is possible to multiply the observations by a unitary matrix

that we can write as A0 = D0U0, where D0 = diag
{
ejϕ0 , . . . , ejϕN−1

}
, U0 is a unitary matrix

and ϕn ∈ R ∀n. We can set U0 such that U0V̂y,n0U
H
0 is diagonal, ϕ1, . . . , ϕN−1 such that the

first row and column of A0V̂y,n1A
H
0 is formed by positive real numbers and ϕ0 such that the

(0, 1) and (1, 0) elements of A0V̂y,n2A
H
0 are also real and positive. To sum up, we have found

that the following statistic is maximally invariant:

{A0V̂y,n0A
H
0 ,A0V̂y,n1A

H
0 , . . . ,A0V̂y,nN−1A

H
0 }. (A.17)

The UMPI test exists if and only if the maximal invariant is scalar valued since the test

statistic is a maximal invariant itself. In view of (A.17), we conclude that no UMPI test exists

for N > 2 and M > 2. In fact, it can be shown that the UMPI test will exist only in the case

where M = 1 and N = 2.

It is interesting to note that the problem can be parameterized in terms of the so-called

maximal invariant parameters just by mimicking the procedure in this section with the parame-

ters of the distribution. For convenience, however, in the next section we apply a different choice

of maximal invariant parameters which still summarizes the relevant information. We define the

precision matrices

Sn , Ξ−1
n , (A.18)

the average precision matrix

S ,
1

N

∑
n

Sn, (A.19)

and the homogeneity matrices

∆n , S−1/2(Sn − S)S−1/2, (A.20)

where S−1/2 is the Hermitian square root of S; and show, in the next section, that the maximal

invariant statistic can be written solely in terms of ∆n.
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A.3.3 Most Powerful Invariant Test

As stated above, the UMPI test, when it exists, is a function of the maximal invariant statistic.

The standard approach to derive this test is to first find a maximal invariant statistic m and

then to compute the associated likelihood ratio, which is defined as

U(m) ,
p(m;µ0, . . . ,µN−1,Ξ0, . . . ,ΞN−1)

p(m;µ0, . . . ,µN−1,Ξ, . . . ,Ξ)
. (A.21)

This requires the computation of the likelihood functions associated with this statistic under both

hypotheses, which is typically a highly involved task. However, in many cases, one can apply

Wijsman’s theorem [Wijsman, 1967] to directly compute the likelihood ratio of the maximal

invariant statistic by integrating the likelihood functions under both hypotheses over the group

defining the invariances with respect to an invariant group measure. Although Wijsman only

proved this result for Lie groups, the theorem can be easily extended to accommodate finite

groups [Gabriel and Kay, 2005, App. B]. In our case, G is a composition of a Lie group G1

and a finite group G2, but we can sidestep this difficulty by considering a measure ν which is

the product measure of the counting measure in G2 and a left-invariant measure8 over a σ-field

containing G1. With this in mind, the likelihood ratio of the maximal invariant statistic can be

computed as:

U(m) =

∫
G p(gX;µ0, . . . ,µN−1,Ξ0, . . . ,ΞN−1) Γg ν(dg)∫

G p(gX;µ0, . . . ,µN−1,Ξ) Γg ν(dg)
, (A.22)

where Γg is the Jacobian of the transformation g ∈ G. Observe that one must be able to replace

X in either the numerator or the denominator of (A.22) by any other Y = gX, g ∈ G, without

altering the value of the integral. This fact simplifies the application of Wijsman’s Theorem to

the problem at hand, which reads as follows:

Theorem A.1. The likelihood ratio of the maximal invariant statistic when applied to the

normalized data is given by:

U(m) =κ ·
∑
π

∫
A

etr
{
−AHA

}
× (A.23)

× etr

{
−
∑
n

∆nAV̂y,π[n]A
H

}
|AHA|LdA,

where the integral is with respect to Lebesgue measure, L , (K − 1)N −M and κ is a constant

8 Note that the fact that only invertible matrices are considered in G1 need not be taken into account since
the set of singular matrices has measure zero (see Appendix A.A).
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given by

κ ,
π−M

2

N !

∏
n |∆n + I|K−1

E {|AHA|L}
. (A.24)

The expectation in the denominator of (A.24) is taken assuming that the entries of A are

independent standard complex Gaussian random variables.

Proof. See Appendix A.A.

Since the tests defined by (A.23) for different values of the model parameters ∆n are not

equivalent, it follows that no UMPI test exists in general. The same conclusion was obtained

in the past (c.f. [Muirhead, 2005]) for the case of two populations by noting that the maximal

invariant statistic is vector-valued.

As a remarkable exception, when M = 1 and N = 2, it can be seen that Theorem A.1

provides a statistic which is an increasing function of (v̂2
x,0 − v̂2

x,1)2/(v̂2
x,0 + v̂2

x,1)2, where v̂2
x,i

represents the sample variance of the i-th population. This is a scalar maximal invariant [Muir-

head, 2005] and defines a UMPI test that rejects H0 for high values of this statistic. Moreover,

it can also be seen that this test is equivalent to those in Section A.2.2, which shows that all

those tests are UMPI whenever M = 1 and N = 2.

A.4 Locally Optimal Invariant Tests

Although the likelihood ratio of the maximal invariant statistic was seen to depend on the

parameters of the model, sometimes this dependence fades out in the asymptotic regime of close

hypotheses and, consequently, a locally optimal test can be found (see e.g. [Ramirez et al., 2013]

and references therein). For the problem at hand, this assumption means that the matrices Ξn

are close to each other. The following sections are intended to derive this locally optimal test

for the cases where it exists.

A.4.1 Locally Most Powerful Invariant Tests

The assumption of close hypotheses means that the homogeneity matrices ∆n are small. Per-

forming a second-order Taylor expansion with respect to ∆n about ∆n = 0 over the second
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exponential in (A.23) gives

etr

{
−
∑
n

∆nAV̂y,π[n]A
H

}
≈ 1−

∑
n

Tr
(
∆nAV̂y,π[n]A

H
)

+
1

2

[∑
n

Tr
(
∆nAV̂y,π[n]A

H
)]2

. (A.25)

By substituting this approximation in (A.23) and using the fact that
∑

n ∆n = 0, one obtains

that U(m) ≈ U ′(m) , κ′ + κ
2 · L(m), where

L(m) =

∫
A

etr
{
−AHA

}∑
π

[∑
n

Tr
(
∆nAV̂y,π[n]A

H
)]2

|AHA|LdA, (A.26)

κ is given by (A.24), and κ′ is a constant given by

κ′ = κ ·
∑
π

∫
A

etr
{
−AHA

}
|AHA|LdA (A.27a)

= κ ·N ! · πM
2

E
{
|AHA|L

}
. (A.27b)

In the expression above and throughout the appendix, the expectations are taken by con-

sidering that the entries in A are independent standard complex Gaussian random variables.

The following theorem shows that L(m) is actually a linear combination of two statistics.

First, we define the following constant matrices

M1 , E
{
|AHA|LÃT

1M1TMÃ
}

(A.28a)

M2 , E
{
|AHA|LÃT

Ã
}
, (A.28b)

where Ã is an M ×M matrix whose (i, j)-th entry is the squared magnitude of the (j, i)-th

entry in the matrix A, and the constant c , πM
2
N(N−2)!

M(M−1) . Then, we have the following:

Theorem A.2. Let λn be a vector with the eigenvalues of the homogeneity matrix ∆n and

let Φ =
∑

n λnλ
T
n . Then, the statistic L(m) in (A.26) is given by

L(m) = α
∑
n

||V̂y,n||2F + β
∑
n

Tr2
(
V̂y,n

)
+ γ, (A.29)
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where the constants α, β and γ are defined as:

γ , − c M(M − 1)

N
Tr (ΦM1) (A.30a)

α ,

πN(L+ 2)!(N − 2)!Φ if M = 1

c · [−Tr (ΦM1) +M Tr (ΦM2)] if M > 1.
(A.30b)

β ,

0 if M = 1

c · [Tr (ΦM1)− Tr (ΦM2)] if M > 1.
(A.30c)

Proof. See Appendix A.B.

From (A.29), we observe that the likelihood ratio of the maximal invariant statistic in

the regime of close hypotheses is a linear combination of two statistics: the sum of squared

traces and the sum of squared Frobenius norms of the normalized sample scatter matrices. The

constants α and β determine the relative weight of these two statistics. However, since these

constants depend on the model parameters ∆n, Theorem A.2 shows that the locally optimal

test uses a different weight for these two statistics depending on the actual values of those

parameters. Consequently, no test can be found that is uniformly optimal even in the regime of

close hypotheses, i.e., no locally optimal test exists for the general vector-valued case. However,

it is remarkable that in certain particular cases, which are summarized next, the tests defined

by (A.29) for different values of the parameters are all equivalent, resulting in locally optimal

tests. Before considering those situations, it is convenient to rewrite Theorem A.2 in terms of

the original unnormalized data set.

Corollary A.1.

1. When M = 1, the statistic L(m) in (A.26) is given by L(m) = αL′(m) + γ where

L′(m) ,

∑
n v̂

2
x,n

v̂2
x

. (A.31)

Here, we have defined v̂x,n ,
∑

k(xn,k − x̄n)2, which is the scaled sample variance of the

unnormalized scalar population {xn,0, . . . , xn,K−1}, with x̄n ,
∑

k xn,k, and v̂x ,
∑

n v̂x,n,

which is the scaled sample variance of all populations.
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2. When M > 1, the statistic L(m) in (A.26) is given by

L(m) = α
∑
n

||V̂ −1/2
x V̂x,nV̂

−1/2
x ||2F + β

∑
n

Tr2
(
V̂
−1/2
x V̂x,nV̂

−1/2
x

)
+ γ (A.32)

= α
∑
n

Tr
(

(V̂ −1
x V̂x,n)2

)
+ β

∑
n

Tr2
(
V̂ −1
x V̂x,n

)
+ γ,

where V̂
−1/2
x denotes the Hermitian square root of the inverse of V̂x.

A.4.2 Existence of the LMPI Test

In some cases, the dependence of the test U ′(m) on the model parameters reduces to a scaling

factor and an additive constant, which means that all values of these parameters yield equivalent

tests. In other words, any of these tests is locally optimal invariant. The conditions under which

this effect takes place are summarized next. Note that the LMPI test, when exists, is equivalent

to the Frobenius test from (A.12).

CASE M = 1

If M = 1, an LMPI test exists, which rejects H0 for high values of the statistic in (A.31).

Interestingly, this is the generalized kurtosis test statistic from Chapter 4, which was derived

following a completely different approach. The name stems from the fact that this statistic is a

function of the sample excess kurtosis of the observations.

CASE K = 2

In this case, it can easily be shown that the statistic L(m) in (A.26) is given by L(m) =
α+β

4 L
′(m) + γ, where

L′(m) =
∑
n

((xn,1 − xn,2)H V̂ −1
x (xn,1 − xn,2))2. (A.33)

Clearly, the statistic in (A.33) defines an LMPI test.

CASE K = 1 WITH KNOWN MEAN

The case K = 2 suggests that a similar test must be available for the related problem where

the mean is known. Without any loss of generality, let us assume that that mean is zero:

µ = µn = 0 ∀n. The problem is thus not invariant to translations by a vector bn, as discussed



222 Locally Optimal Invariant Tests for Homogeneity of Covariance Matrices

in Section A.3.1, but the derivation is quite similar to the one followed above. In that case, it

can be shown that there exists an LMPI test and that it is given by (xn denotes xn,1):

L′′(m) =
∑
n

(xHn V̂
−1
x xn)2. (A.34)

A.5 Scale test

A classical problem related to that of testing equality of covariance matrices when M > 1 is

the so-called scale test (see e.g. [Hallin and Paindaveine, 2009]). In this case, we know that

Ξn = ξnΞ for some ξn > 0, n = 0, . . . , N − 1, i.e., all the covariance matrices are scaled versions

of each other. Consequently, the homogeneity matrices ∆n are scaled versions of the identity

matrix IM and, therefore, Φ is a scaled version of the matrix with all ones. In this way, it can

be seen that the dependence of the test statistic on the parameters of the model reduces to a

scaling factor, which means that the locally optimal tests for different values of the parameters

are actually equivalent. Before providing the expression for the test statistic, we evaluate the

matrices M1 and M2 in (A.28a) and (A.28b) explicitly.

Lemma A.1. The matrices M1 and M2 defined in (A.28a) and (A.28b) can be written as

(1/c′)Mi = aiIM + bi1M1TM , where c′ is a constant given in Appendix A.D and

a1 ,
1

3
Γ(L+ 3) + 2(M − 1)Γ(L+ 2)

+ (3p− 4)Γ(L+ 1)− 1

3
(L+ 3)(L+ 2)

− (L+ 2)(2(M − 2) + 1/3)Γ(L+ 1)

b1 ,
1

3
(L+ 3)(L+ 2) + (M − 2)2Γ(L+ 1)

+
2

3
Γ(L+ 3) + (L+ 2)(2(M − 2) + 1/3)Γ(L+ 1)

a2 , Γ(L+ 3) +MΓ(L+ 1)− 1

3
(L+ 3)(L+ 2)

b2 , (M − 2)Γ(L+ 1) +
1

3
(L+ 3)(L+ 2),

with L , (K − 1)N −M and Γ(n) , (n− 1)(n− 2) · · · 2 · 1 for n ∈ N.

Proof. See Appendix A.D.

Making use of the expressions in Theorem A.2 and Lemma A.1 we conclude the following:
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Theorem A.3. The statistic of the LMPI test for scale of covariance matrices is given by

U ′(m) ∝ α′
∑
n

Tr
(

(V̂ −1
x V̂x,n)2

)
+ β′

∑
n

Tr2
(
V̂ −1
x V̂x,n

)
,

where

α′ , − a1 −Mb1 +Ma2 +M2b2,

β′ , a1 +Mb1 − a2 −Mb2.
(A.35)

A.6 Conclusions

We have considered locally optimal tests for equality of covariance matrices within the family of

tests preserving the invariances of the problem. In the case of a different number of observations

per population there is no invariance to permutations and, consequently, no locally optimal

invariant test exists, except for the case with M = 1 and N = 2, where a UMPI test can be

found. In the case where the number of observations per population is the same, a LMPI test

exists only in certain particular cases, where it is equivalent to the Frobenius test. It was also

shown that another case where an LMPI test can be found is the related scale problem.

A.A Proof of Theorem A.1

We first compute the numerator in expression (A.22) — the denominator will follow next by

considering the case Ξn = Ξ ∀n. We decide to construct ν, which must be a left-invariant

measure with respect to the transformations in G, as the product measure of an invariant

measure ν1 in G1, for instance the one with density δ1(A,B) , |AHA|−N−M , and the counting

measure ν2 in G2. With this in mind, we apply Fubini’s Theorem [Billingsley, 1995] to the

numerator in (A.22), producing

∑
π

∫
A

[∏
n

∫
CM

p
(
AYπ[n] +Bn;µn,Ξn

)
dbn

]
|AHA|LdA. (A.36)

From (A.3), it follows that

p
(
AYπ[n] +Bn;µn,Ξn

)
= (A.37)

π−MK |Ξn|−K etr
{
−Ξ−1

n AV̂y,π[n]A
H
}
× etr

{
−KΞ−1

n (bn − µn)(bn − µn)H
}
.
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Observe that the first factor does not depend on bn whereas the second does not depend on A.

Therefore, the integral of (A.37) with respect to dbn becomes etr
{
−Ξ−1

n AV̂y,π[n]A
H
}

times a

positive constant κ1,n given by

κ1,n , π−MK |Ξn|−K
∫
CM

etr
{
−KΞ−1

n (bn − µn)(bn − µn)H
}
dbn

=
|Ξn|1−K

πM(K−1)KM

∫
CM

exp
{
−(bn − µn)H

(
1
KΞn

)−1
(bn − µn)

}
πM

∣∣ 1
KΞn

∣∣ dbn

=
|Ξn|1−K

πM(K−1)KM
,

where the second equality follows from the fact that bn can be interpreted as a Gaussian random

vector with mean µn and covariance matrix 1
KΞn. This means that (A.36), or equivalently the

numerator of (A.22), equals

κ1 ·
∑
π

∫
A

etr

{
−
∑
n

Ξ−1
n AV̂y,π[n]A

H

}
|AHA|LdA, (A.38)

where κ1 ,
∏
n κ1,n. This expression can be written in terms of the parameters S and ∆n

defined in Section A.3.2 as

κ1 ·
∑
π

∫
A

etr
{
−AHSA

}
etr

{
−
∑
n

S1/2∆nS
1/2AV̂y,π[n]A

H

}
|AHA|LdA. (A.39)

Applying the change of variable A← S1/2A we obtain

κ̄1 ·
∑
π

∫
A

etr
{
−AHA

}
etr

{
−
∑
n

∆nAV̂y,π[n]A
H

}
|AHA|LdA, (A.40)

where

κ̄1 = |S|−(K−1)N · κ1 =

∏
n |∆n + IM |K−1

πMN(K−1)KMN
. (A.41)

The denominator follows from substituting Ξn = Ξ ∀n, or equivalently ∆n = 0 ∀n, in

(A.40), which results in

κ̄0 ·
∑
π

∫
A

etr
{
−AHA

}
|AHA|LdA, (A.42)

where κ̄0 = π−MN(K−1)K−MN . Now identifying A with a matrix of independent standard
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complex Gaussian random variables and summing along all permutations of N elements, (A.42)

becomes

κ̄0 ·N ! · πM
2

· E
{
|AHA|L

}
. (A.43)

Finally, combining (A.40) and (A.43) concludes the proof.

A.B Proof of Theorem A.2

We begin by proving the following result:

Lemma A.2. The test statistic L(m) in (A.26) is given by

L(m) = τ0 + τ1

∫
A

etr
{
−AHA

}∑
n,k

Tr2
(
AH∆nAV̂y,k

)
|AHA|LdA, (A.44)

where τ1 = N(N − 2)! and

τ0 = −(N − 2)! · πM
2

· Tr (ΦM1) . (A.45)

Proof. The sum of the integral in (A.26) can also be written as

∑
π

[∑
n

Tr
(
∆nAV̂y,π[n]A

H
)]2

=
∑
π

∑
n

Tr2
(
∆nAV̂y,π[n]A

H
)

+
∑
π

∑
n

Tr
(
∆nAV̂y,π[n]A

H
) ∑
m 6=n

Tr
(
∆̄mAV̂y,π[m]A

H
)
,

where
∑

m 6=n means
∑N−1

m=0,m 6=n. Expanding these sums over all permutations of N elements

yields:

∑
π

[∑
n

Tr
(
∆nAV̂y,π[n]A

H
)]2

= (N − 1)!
∑
n

∑
k

Tr2
(
∆nAV̂y,kA

H
)

(A.46)

+ (N − 2)!
∑
n

∑
k

Tr
(
∆nAV̂y,kA

H
) ∑
m6=n

∑
l 6=k

Tr
(
∆̄mAV̂y,lA

H
)
,
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where we have made use of the following identities:∑
π

f(π[n]) = (N − 1)!
∑
k

f(k) (A.47)∑
π

f(π[n])g(π[m]) = (N − 2)!
∑
k

∑
l 6=k

f(k)g(l) if m 6= n,

where f(·) and g(·) are two arbitrary functions. Using
∑

n ∆n = 0, the second term in the right

hand side of (A.46) becomes

− (N − 2)!
∑
n

∑
k

Tr
(
∆nAV̂y,kA

H
)∑
l 6=k

Tr
(
∆nAV̂y,lA

H
)

= −(N − 2)!
∑
n

∑
k

Tr
(
∆nAV̂y,kA

H
)

Tr
(
∆nA(IM − V̂y,k)AH

)
= −(N − 2)!

∑
n

Tr2
(
∆nAA

H
)

+ (N − 2)!
∑
n

∑
k

Tr2
(
∆nAV̂y,kA

H
)
,

where both equalities owe to the fact that
∑

k V̂y,k = IM . Substituting this expression in (A.46)

gives

∑
π

[∑
n

Tr
(
∆nAV̂y,π[n]A

H
)]2

= N(N − 2)!
∑
n

∑
k

Tr2
(
∆nAV̂y,kA

H
)
− (N − 2)!

∑
n

Tr2
(
∆nAA

H
)
,

which in combination with (A.26) yields (A.44) with τ1 = N(N − 2)! and

τ0 = −(N − 2)!

∫
A

etr
{
−AHA

}∑
n

Tr2
(
AH∆nA

)
|AHA|LdA. (A.48)

Separating the integral along n results in

τ0 = −(N − 2)!
∑
n

∫
A

etr
{
−AH

n An

}
Tr2

(
AH
n ∆nAn

)
|AH

n An|LdAn. (A.49)

If WnΛ̄nW
H
n is an eigenvalue decomposition of ∆n, applying the change of variable An ←

WnAn, equation (A.49) simplifies to

τ0 = −(N − 2)!

∫
A

etr
{
−AHA

}∑
n

Tr2
(
AHΛ̄nA

)
|AHA|LdA. (A.50)

Since the vector λn contains the diagonal elements of Λ̄n, it is possible to rewrite Tr2
(
AHΛ̄nA

)
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as [1TMÃλn]2. Using this identity in (A.50) yields, after some algebra,

τ0 = −(N − 2)! · πM
2

E
{
|AHA|L Tr

(
ΦÃ

T
1M1TMÃ

)}
.

Interchanging the order of the trace and expectation, expression (A.45) immediately follows.

Now, for reasons that will become clear later, we consider separately the cases M = 1 and

M > 1 in the rest of the proof.

A.B.1 Case M = 1

When M = 1, all matrices in (A.44) become scalars. For clarity, let us denote these scalars as

a for A, λn for Λ̄n and v̂y,k for V̂y,k. Then, the integral in (A.44) reads as

∑
n,k

λ2
nv̂y,k

2

∫
C−{0}

|a|2L+4exp
{
−|a|2

}
da. (A.51)

Noting that the integral in (A.51) is nothing but the (2L + 4)-th order moment of a standard

complex Gaussian distribution, it follows this integral equals π(L+ 2)!. Substituting this value

in (A.44) results in

L(m) = τ0 + τ1π(L+ 2)!
∑
n

λ2
n

∑
k

v̂y,k
2. (A.52)

Now, by taking the constants α, β and γ in the same way as in Theorem A.2, expression (A.29)

comes up.

A.B.2 Case M > 1

When M > 1 the simplifications above do not apply, thus making the proof more involved.

However, an important simplification follows by noting that L(m) can be rewritten in terms of

the eigenvalues of the scatter matrices V̂y,k. The following lemma provides this expression.

Lemma A.3. The test statistic in (A.44) can be written in terms of the eigenvalues of the scatter

matrices as

L(m) = τ0 + τ1

∑
k

σTkGσk, (A.53)



228 Locally Optimal Invariant Tests for Homogeneity of Covariance Matrices

where σk is a vector with the eigenvalues of V̂y,k and

G = πM
2

E
{
|AHA|LÃΦÃ

T
}
. (A.54)

Proof. First decompose the integral in (A.44) as a sum of integrals depending on k:

∑
k

∫
A

etr
{
−AH

k Ak

}∑
n

Tr2
(
AH
k ∆nAkV̂y,k

)
|AH

k Ak|LdAk. (A.55)

Now consider the eigenvalue decompositions ∆n = WnΛ̄nW
H
n and V̂y,n = UkΣkU

H
k , and apply

the change of variable Ak ← WnAkU
H
k to (A.55) in order to diagonalize the terms inside the

trace: ∑
k

∫
A

etr
{
−AH

k Ak

}∑
n

Tr2
(
AH
k Λ̄nAkΣk

)
|AH

k Ak|LdAk.

Now considering all the integrals with the same variable and making σk = diag {Σk}, expression

(A.53) immediately follows with

G =

∫
A

etr
{
−AHA

}
ÃΦÃ

T |AHA|LdA. (A.56)

Interpreting the elements of A as standard Gaussian random variables results in (A.54).

Since G is an M ×M matrix, its computation requires to evaluate, in principle, M2 expec-

tations. However, this task is considerably simplified by noting that the value of the statistic

should not depend on the order of the eigenvalues in σk. The next result will elucidate the

structure of the aforementioned matrix.

Lemma A.4. Given any vector v ∈ RM and matrix G ∈ CM×M , if the product vTGv is invari-

ant to permutations of the elements of v, that is, if vTGv = vTP TGPv for any permutation

matrix P , then G must be of the form G = γ̄I + γ̃1M1TM .

Proof. See Appendix A.C.
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Application of Lemma A.4 to (A.53) results in

L(m) = τ0 + τ1

[
γ̄
∑
k

||σk||2 + γ̃
∑
k

(σTk 1M )2

]
(A.57a)

= τ0 + τ1

[
γ̄
∑
k

||V̂y,k||2F + γ̃
∑
k

Tr2
(
V̂y,k

)]
, (A.57b)

where the second equality follows from the fact that ||σk||2 = ||V̂y,k||2F and σTk 1M = Tr
(
V̂y,k

)
.

Now it remains only to compute the constants γ̄ and γ̃. The following lemma provides G, which

is enough to compute γ̄ and γ̃:

Lemma A.5. The elements of the matrix G defined in (A.54) when M > 1 are given by

gii =
πM

2

M
Tr (ΦM2) (A.58)

for i = 0, 1, . . .M − 1, where

gij =
πM

2

M(M − 1)
Tr (ΦM1)− gii

M − 1
(A.59)

for i, j = 0, 1, . . .M − 1 and j 6= i.

Proof. Since the elements on the diagonal are all the same, we have that gii = 1
M

∑
k gkk =

1
M Tr (G), which means that (A.58) immediately follows. Regarding the off-diagonal elements,

it is clear that

gij =
1TMG1M − Tr (G)

M(M − 1)
=

1TMG1M
M(M − 1)

− gii
M − 1

(A.60)

when i 6= j. Substituting (A.54) in (A.60) results in (A.59).

Finally, taking into account that gii = γ̄ + γ̃ and gij = γ̃, it is clear that

γ̄ =
πM

2

M(M − 1)
[−Tr (ΦM1) +M Tr (ΦM2)] (A.61a)

γ̃ =
πM

2

M(M − 1)
[Tr (ΦM1)− Tr (ΦM2)]. (A.61b)

Now, if we rewrite (A.57b) as (A.29) with α = τ1γ̄, β = τ1γ̃ and γ = τ0, the constants in (A.30)
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follow.

A.C Proof of Lemma A.4

We first decompose

vTGv =
∑
i

giiv
2
i +

∑
i

∑
j 6=i

gijvivj , (A.62)

where gij and vi are, respectively, the (i, j)-th and the i-th elements of G and v. It is easily

seen that, in order for vTGv to be invariant, both terms in the sum are necessarily invariant.

Then, one must be able to average them over the set of permutations of M elements and the

result must be the same. For the first term one obtains that∑
i

giiv
2
i =

1

M !

∑
π

∑
i

giiv
2
π[i] =

1

M

∑
i

gii
∑
k

v2
k, (A.63)

where we have applied the first expression in (A.47). Expression (A.63) means that all the

elements on the diagonal of G are identical. Regarding the second term in (A.62), one can write

∑
i

∑
j 6=i

gijvivj =
1

M !

∑
π

∑
i

∑
j 6=i

gijvπ[i]vπ[j] (A.64a)

=
1

M(M − 1)

∑
i

∑
j 6=i

gij
∑
k

∑
l 6=k

vkvl, (A.64b)

where we have made use of the second equation in (A.47). Similarly, expression (A.64a) imposes

that all the entries off the diagonal of G are equal to each other, thus concluding the proof.

A.D Proof of Lemma A.1

Since the traces Tr (ΦM1) and Tr (ΦM2) in Theorem A.2 must not depend on the ordering of

the entries of the vectors λn, these matrices are of the form (see Lemma A.4)

Mi = a′iIM + b′i1M1TM , (A.65)

and therefore our problem reduces to the computation of the four constants a′1, b′1, a′2, b′2. The

(rather tedious) derivation of these constants is based on decomposing |AHA| using the Schur
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determinant formula [Horn and Johnson, 1985], and exploiting the independence among the

elements of A. Here, we provide the derivation of the diagonal entries in M1, that is a′1 + b′1.

The derivation of the remaining constants follows similar guidelines.

Let us start by writing A =
[
a1 A1

]
, where a1 is the first column of A and A1 ∈

CM×(M−1) comprises the remaining columns. Applying Schur’s determinant formula we can

write

a′1 + b′1 = E

|AH
1 A1|L

(
aH1 P

⊥
A1
a1

)L∑
j

|Aj,i|2
2 ,

where P⊥A1
is the projection matrix onto the subspace orthogonal to the column span of A1,

and Aj,i denotes the entry in the j-th row and i-th column of A. Now, taking into account

the independence between a1 and A1, we can introduce a unitary transformation of A without

modifying its distribution, and such that aH1 P
⊥
A1
a1 = |A1,1|2. Thus, noting that the previous

equation is valid for any value of i, we can select i = 1 to obtain

a′1 + b′1 = E
{
|AH

1 A1|L
}

E

|A1,1|2L
∑

j

|Aj,1|2
2 ,

which reduces the problem to that of calculating two different expectations. For the first one,

and following the previous lines, it is easy to show that

c′ , E
{
|AH

1 A1|L
}

= E

{
|AH

2 A2|L
(
aH2 P

⊥
A2
a2

)L}
= E

{
|AH

2 A2|L
}

E
{(
|A1,2|2 + |A2,2|2

)L}
, (A.66)

where we have defined A1 =
[
a2 A2

]
. Moreover, noting that 2|Ai,j |2 is distributed as a χ2

random variable with k = 2 degrees of freedom (2|Ai,j |2 ∼ χ2
k), and taking into account that,

for W ∼ χ2
k, the moments are E {Wm} = 2m Γ(m+k/2)

k/2 , we conclude that

c′ = E
{
|AH

1 A1|L
}

= E
{
|AH

2 A2|L
}

Γ(L+ 2). (A.67)
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For the second expectation, we expand the sum to obtain

E

|A1,1|2L
M−1∑

j=0

|Aj,1|2
2 = E

{
|A1,1|2L+4

}

+ E

|A1,1|2L
M−1∑
j=1

|Aj,1|4
+ 2

M−1∑
j=1

E
{
|A1,1|2L+2|Aj,1|2

}

+ E

|A1,1|2L
M−1∑
j=1

M−1∑
k=1
k 6=j

|Aj,1|2|Ak,1|2

 . (A.68)

Finally, taking independences into account, and applying the formula for the moments of χ2

random variables, we obtain

a1 + b1 = Γ(L+ 3) + 2(M − 1)Γ(L+ 2) +M(M − 1)Γ(L+ 1). (A.69)
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Romero, D. and López-Valcarce, R. (2013). Spectrum sensing in time-varying channels using

multiple antennas. In Proc. IEEE Int. Workshop Sig. Process. Advances Wireless Commun.,

pages 135–139, Darmstadt, Germany.
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