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Abstract

The key idea behind Cognitive Radio (CR) is to allow opportunistic access to tem-
porally and/or geographically unused licensed bands, avoiding conflicts with the
rightful license owners in those bands. To achieve this, novel interference manage-
ment algorithms are required to limit the interference seen by the primary (licensed)
users. A key aspect of any interference management scheme is spectrum monitoring,

that allows to detect and track primary (licensed) users.

This PhD. Thesis contributes to the field of CR in two different ways. First,
we address the problem of primary user monitoring using novel detection schemes
which exploit multiple antennas, wideband processing, and the available a priori
knowledge about primary transmissions. Then, we propose a general framework for
interference management in cognitive radio networks in which certain interaction is

allowed between primary and secondary systems.

Specifically, the detection problems investigated in this thesis include multi-
antenna detection exploiting a priori spectral information when the noise statistics
are assumed known. In this setting we will also derive novel diversity order analysis
of the proposed detectors. The case of multiantenna detection under unknown noise
statistics is covered under different hypotheses, including both the detection of pri-
mary signals with spatial rank larger than one and detection in presence of spatially
unstructured noise. Additionally we study the problem of multichannel monitoring.
In this context, wideband acquisition can be performed using traditional analog to
digital converters or the recently proposed analog to information converters. When
the channelization of the primary network is assumed known, we show that guard
bands and weak channels can be used to improve detection performance, both when
the detection is performed from a set of samples at Nyquist rate, or from a set of

Compressed measurements.

Finally, we propose a general framework for interference management in cogni-



tive radio networks in which the primary network is allowed to dynamically adjust
the tolerable interference margin to be met by the secondary system. In particular,
we propose a game theoretical formulation which allows us to study the perfor-
mance gain which can be expected from this limited interaction between primary
and secondary systems. Moreover, we show that certain architectures fulfilling these
requirements are implementable in practice and present good performance in both

static and dynamic environments.



Resumen

Introducciéon

En los ultimos afios hemos sido testigos de una importante escalada del precio de
ciertas bandas de frecuencia. Este aumento del precio de los recursos espectrales
se debe principalmente a la creciente demanda de ancho de banda por parte de los
operadores a raiz de los nuevos servicios y aplicaciones emergentes. Sin embargo,
al mismo tiempo, gran parte de las frecuencias asignadas a los operadores presenta
una baja utilizaciéon. Esta paradoja es consecuencia de una politica de asignacion
de frecuencias estatica que se ha mostrado ineficiente (FCC, 2002, 2003). Esto es
debido a que los operadores de comunicaciones (tanto de telefonia como de otras
redes de difusién) no utilizan la totalidad de los recursos espectrales en todos los

lugares en todo momento.

Asi existe un interés considerable en el desarrollo de esquemas de acceso dindmico
que permitirfan mejorar la utilizacién espectral (FCC, 2002, 2003). En este sentido
el paradigma de Radio Cognitiva (CR) (Mitola and Maguire Jr., 1999) se plantea
como la tecnologia que permitiria un esquema de acceso dindmico en bandas espec-
trales actualmente en explotacién bajo licencia. La idea clave detrds de CR es crear
radios mas inteligentes que puedan adaptarse a su entorno. Por lo tanto, en las
bandas con licencia los nodos cognitivos seran capaces de detectar y monitorizar a
los usuarios primarios (que tienen los derechos de explotacién), para asi hacer uso
de la los recursos que éstos no utilicen. Por ejemplo, la Comisién Federal de Co-
municaciones de los EE.UU. (FCC) ha aprobado recientemente el uso la banda de
television VHF y UHF por parte de dispositivos secundarios (FCC, 2010), siempre

evitando interferir con los operadores de televisién.

Sin embargo para que la tecnologia que requiere la Radio Cognitiva sea posible

es necesario por una parte el desarrollo de nuevos esquemas de deteccién de usuarios
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primarios, y por otra nuevos métodos de gestion de interferencia.

En primer lugar, la interferencia producida a los usuario primarios se debe
mantener en niveles suficientemente bajos en todas las condiciones. Sin embargo, el
medio inaldmbrico presenta diversos fenémenos derivados de la propagacién de las
senales, tales como desvanecimientos o nodos ocultos, por lo que la senal recibida
puede ser muy débil. Por ello se requieren detectores capaces de operar en estas
bajas condiciones de senial a ruido (SNR) de forma fiable (Akyildiz et al., 2008).

Por otro lado, los sistemas de CR puede dar lugar a redes muy complejas, en
las que usuarios primarios y secundarios interactiian en entornos cambiantes con el
tiempo. De esta forma también son necesarios nuevos mecanismos de analisis de
prestaciones y gestién de interferencia que permitan asegurar el funcionamiento del

sistema en cualquier situacion.

En esta tesis se estudian estos dos aspectos de un sistema de radio cognitiva. Por
un lado, se analizan las mejoras de rendimiento obtenidas por detectores asicronos,
tanto mediante el uso de multiples antenas como por medio del procesado simultdneo
de varios canales primarios. Por otra parte, se presenta una arquitectura completa de
un sistema CR en la que se permite una cierta interaccion entre las redes primaria
y secundaria, produciendo una mejora global de las prestaciones del sistema. A
continuacién presentamos un resumen de las contribuciones mas relevantes que se
proponen en el marco de esta tesis, junto con una revisién de la literatura relacionada

con las mismas.

Monitorizacion espectral

La monitorizacién espectral se basa en la capacidad de detecciéon de senales pri-
marias y/o secundarias muy débiles a través de las observaciones locales de los no-
dos cognitivos, ya sea individualmente o de forma colaborativa. Si bien la detecciéon
colaborativa tiene el potencial de compensar ciertos efectos de propagacién, tales
como desvanecimientos o el problema del nodo oculto (Ganesan and Li, 2007a,b),
ésta se construye sobre esquemas de deteccién locales que necesitan ser optimiza-
dos. Debido a eso, en este trabajo nos centraremos principalmente en esquemas de

deteccion local.

Tradicionalmente los esquemas de deteccién local se pueden dividir en tres

grandes grupos, en funcién de los grados de conocimiento y sincronizacién con la
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red primaria.

1. Filtro adaptado: la estrategia de detecciéon éptima en ruido gausiano esta-
cionario es el filtro adaptado (Kay, 1998), requiriendo que el usuario secundario

esté enganchado a la red primaria.

2. Deteccién basada en caracteristicas: ciertas propiedades de la senal primaria,
tales como la presencia de pilotos o cicloestacionariedad, pueden ser explotadas
para mejorar las prestaciones de los diversos detectores. Sin embargo, tanto la
deteccién basada en filtro adaptado como la deteccion basada en caracteristicas
son muy sensibles a errores de sincronizacién (Cabric, 2008). Con SNR muy
baja, es dificil obtener una sincronizacién con la precision requerida con la

frecuencia portadora y/o tasa de muestreo.

3. Deteccion asincrona: Estos sistemas de deteccion se basan en ciertas propiedades
de la senal que no requieren sincronizacién, como pueden ser energia o estruc-
tura temporal/espacial. Entre estos, el mas popular es el detector de energia,
que se reduce a integrar la energia recibida en una banda de frecuencias y
comparar esta energia con un umbral, que en general depende del nivel de
ruido presente en el sistema. Sin embargo, cualquier incertidumbre con re-
specto al nivel de ruido se traduce en la degradacién grave del rendimiento del
detector (Tandra and Sahai, 2008).

Las razones expuestas motivan la biisqueda de detectores asincrénos robustos a
incertidumbre en el nivel de ruido. Dos opciones serian el uso de muiltiples antenas
en el proceso de detecciéon o procesado simultaneo de un ancho de banda grande
abarcando multiples canales primarios. Adicionalmente, cabe preguntarse si existen
caracteristicas de la senal primaria que podrian ser explotadas por un detector sin
necesidad de una sincronizacion precisa. De hecho, en muchos casos el sistema
secundario dispone de cierta informacién acerca de las transmisiones primarias, tal
como informacién acerca de la canalizacién y/o modulacién, que podria ser utilizada

para aumentar las prestaciones de deteccion.

A lo largo de esta tésis asumiremos tanto la modulacién como la canalizacién
de la red primaria conocidas por el monitor espectral. Este conocimiento se traduce
en informacién sobre la forma espectral de las transmisiones primarias. Ademas,
dado que requerimos unos niveles de sincronizacién reducida centraremos nuestro
estudio en sefiales gausianas. Los motivos para la adopcién de un modelo gausiano

para la senal principal son los siguientes. En primer lugar, si la distribucién real
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es desconocido, y dado que el ruido se supone gausiano, una distribuciéon gausiana
para la senal primaria es la menos informativa de todas las posibles. Segundo, si
el sistema primario utiliza una modulacién multiportadora, comtun para casi todos
los estandares de comunicaciones modernos, una distribuciéon gausiana es una muy
buena aproximacién de la distribucién real (Tellado, 2000). En tercer lugar, el
modelo matematico resultante es lo suficientemente sencillo como para permitir el

desarrollo de esquemas de deteccién implementables en la practica.

Sistemas de deteccién con multiples antenas

La tecnologia de multiples antenas en sistemas de comunicacién ya ha alcanzado
una gran madurez, por lo que es muy probable que se incorpore en futuros termi-
nales de CR. En términos de transmisién/recepcion, varias antenas proporcionan
un medio para aumentar la capacidad del canal para un ancho de banda fijo, asi
como para paliar efectos derivados del multitrayecto a través del uso de codificacion
espacio-temporal (Larsson and Stoica, 2003). Recientemente miiltiples autores han
estudiado los beneficios de contar con multiples antenas para mejorar las presta-

ciones de deteccién en el contexto de sistemas CR.

La ganancia ofrecida por el uso de multiples antenas en sistemas de deteccion
basados en el detector de energia fue analizado en Pandharipande and Linnartz
(2007) bajo el supuesto de que la informacién de canal es conocida por la red secun-

daria. Sin embargo, esto no es realista en a practica y el canal debe ser estimado.

En la literatura se han propuesto diversos esquemas de deteccién suponiendo un
modelo gausiano para la senal y el ruido cuando el canal es desconocidos. Estamos
particularmente interesados en detectores basados en el test de razén de verosimil-
itud generalizado (GLRT), ya que por lo general son simples y ofrecen un buen
rendimiento. El GLRT para senales temporalmente blancas de rango espacial 1 y
ruidos iid se aplica a deteccién en sistemas CR en Taherpour et al. (2010); Wang
et al. (2010). Sila matriz de covarianza de la senal no esté estructurada, el GLRT se
corresponde con el test de esfericidad (Mauchly, 1940), aplicado a CR en Lim et al.
(2008); Zhang et al. (2010a). Asumiendo la varianza del ruido conocida los autores
de Lim et al. (2008); Zhang et al. (2010a) desarrollan el el GLRT cuando las senales
primarias tienen rango espacial P > 1. Otro caso de interés viene dado cuando
el ruido no presenta la misma varianza en todas las antenas. En este supuesto, el
GLRT para deteccién de senales sin estructura espacial estd dado en Wilks (1935)

y se aplicé a radioastronomia en Leshem and Van der Veen (2001a,b).



Sin embargo, exceptuando Lim et al. (2008); Zhang et al. (2010a), donde los au-
tores asumen varianza de ruido conocida, todos los detectores asumen o bien senales
primarias de rango 1 o bien sin estructura espacial. Ninguno de estos trabajos con-
sidera tampoco el impacto de una cierta correlacién temporal en la senal primaria,
que como hemos visto se puede considerar conocida en muchos casos de interés. En

este aspecto las contribuciones mas resenables de esta tésis son las siguientes:

e Deteccién multiantena explotando informacién espectral de las trans-
misiones primarias en ruido con estadisticos conocidos. Partiendo del
detector 6ptimo (aunque no implementable) de Neyman-Pearson se derivan

una familia de detectores multiantena con diferentes niveles de complejidad:

1. Detector de energia generalizado (GED, Seccién 2.3.3). Este detector estd
basado en el detector de energia y simplemente suma la energia presente
en cada una de las antenas una vez ponderada por una mascara espectral.
Asi, este detector ignora cualquier correlacién espacial existente entre
las diferentes antenas. El andlisis de sus prestaciones (Apéndice 2.A.1)
demuestra que éstas dependen tinicamente de la relacién senal a ruido
(SNR) total (suma de las SNRs en cada unas de las antenas) y no de la

realizacién particular del canal.

2. Detector basado en combinacién por seleccién (SC, Seccion 2.4.1). Este
detector elige la antena con mayor energia ponderada, que es la usada en el
test. Su andlisis demuestra que es éptimo cuando una de las componentes
del canal es mucho mayor que las demads, y por tanto sus prestaciones

dependen de la componente esférica del canal (Apéndice 2.A.2).

3. Detector basado en combinacién con igual ganancia (EGC, Seccién 2.4.2).
Bajo la suposiciéon de que todas las antenas presentan una SNR similar,
el detector 6ptimo explota la correlacion existente entre las antenas aline-
ando las fases de los diversos términos de la matriz de covarianza antes de
proceder a su combinacién. El detector propuesto en este escenario pre-
senta una complejidad reducida, aunque requiere de los productos cruza-

dos entre las senales presentes en las diversas antenas.

4. Detector basado en combinacién de razén maxima (MRC, Seccién 2.4.3).
El detector 6ptimo cuando no se asume ningin tipo de estructura sobre
el canal espacial es viene dado por el mayor autovalor de la matriz de

covarianza espacial empirica. Este detector requiere entonces obtener el
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Figura I: Prestaciones de deteccion en entornos con desvanecimientos. Pr4 = 0.05,
L =4, K = 256. (a) Canales Ricean vs. Rayleigh (Senal OFDM). (b) Explotando

la informacién espectral en canales Rayleigh (senal GSM).

autovalor maximo de una matriz, ademas de calcular los productos cruza-
dos entre diversas antenas, ofreciendo generalmente buenas prestaciones
(Apéndice 2.A.4).

Si definimos y; como el vector de dimension K x 1 compuesto por las mues-
tras temporales obtenidas de la antena [ = 1,..., L; la matriz de datos Y =
[y1y2---yr]; la matriz de covarianza temporal de la senal transmitida por el
sistema primario C, de dimension K x K y normalizada tal que tr{C} = Ky,
o2 la potencia de ruido igual para cada una de las antenas, podemos presentar

los detectores descritos en la siguiente tabla:

Detector Test
SC / OR %ﬂ maxi<m<r, YA Cyn,

GED s Sk el Cry
EGC KL102 Zﬁ:l an:l ‘ngYn’
MRC 77 Amax (Y CY)

Es interesante resaltar que esta familia de detectores presenta ciertos com-

promisos entre complejidad y prestaciones. Este compromiso es estudiado a



través de un analisis tedrico y simulaciones, que muestra el precio que pagan
los detectores SC y GED por admitir implementaciones distribuidas. Como
comclusiones més relevantes podemos destacar las incluidas en la Figura I(a),
donde se muestran las prestaciones de los diversos detectores para un canal
estocastico con desvanecimientos. Se puede ver que mientras el MRC ofrece
las mejores prestaciones, tanto en escenarios con visién directa entre nodos pri-
mario y secundario como en escenarios Rayleigh, esta ventaja es pequena con
respecto al detector EGC, que presenta una complejidad de implementacion
mucho menor. Sin embargo estos dos detectores requieren extraer las cor-
relaciones cruzadas entre las diversas antenas, por lo que no son dados a una
implementacién distribuida. Por otra parte, mientras que los detectores GED
y SC ofrecen unas menores presaciones, si admiten una implementacién dis-
tribuida. Entre ellos el GED ofrece mejores prestaciones, a costa de transmistir
una cantidad mayor de informacion al centro de fusién que realizara la decisién
final.

Por otra parte, la Figura I(b) muestra las ventajas de utilizar la informacién
espectral disponible a la hora de realizar el proceso de deteccién para el caso
de una senal GSM. En la Fig. I(b) se pueden ver las prestaciones obtenidas
cuando la senal recibida se asume blanca, caso en el que estamos despreciando
la informacion espectral de la sefial, comparadas con las prestaciones obtenidas
por el sistema que si considera esta informacion. Se puede ver que en este
escenario la ganancia obtenida es de hasta 3dBs para un mismo esquema de

deteccién, por tanto de complejidad similar.

Deteccién multiantena de senales primarias con rango espacial ar-
bitrario bajo estadisticos de ruido desconocidos. Asumiendo senales
gausianas, derivamos el GLRT para senales temporalmente blancas y trans-
misiones primarias con un rango P mayor que uno, tanto para ruidos con
la misma varianza en las diversas antenas, como para el caso de varianzas

diferentes.

Este escenario presenta importantes implicaciones practicas. Por una parte,
tenemos que los sistemas de comunicaciones modernos utilizan senales pri-
marias con rango espacial mayor que uno con mucha frecuencia. Por ejemplo, si
varios usuarios independientes transmiten simultaneamente en el mismo canal
de frecuencia, o si un usuario primario emplea un estandar de comunicaciones
moderno. Esto ultimo es debido a que los nuevos estandares de comunicaciones

recientes emplean técnicas de multiplexado espacial y/o técnicas de extraccién
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de diversidad con multiples antenas. Asi se puede conseguir un aumento de la
cantidad de informacion transmitida y aumentar la diversidad espacial medi-
ante el uso de cddificacién en espacio-tiempo Paulraj et al. (2008). La senal
recibida por un sensor multiantena exhibird un rango espacial mayor que uno
en cualquiera de los estos casos. Otra caracteristica fundamental del modelo
propuesto es la relajacién de la condicién de que la varianza de ruido deben
ser igual en todas las antenas. Esto es debido a que las tolerancias de los com-
ponentes analdgicos en las cadenas de recepcién en diferentes antenas daran
lugar en general a desviaciones en el nivel de ruido de antena a antena. A no
ser que se haga un calibrado preciso de estas desviaciones, los detectores que
asumen la misma varianza de ruido en todas las antenas presentan una impor-
tante pérdida de prestaciones. En cambio, si estas desviaciones se introducen

en el modelo, obtendremos detectores robustos a errores de calibracion.

En el caso de considerar igual varianza de ruido en todas las antenas el GLRT

admite una expresiéon cerrada, dada por

% 25:1 Ai g
(H,L-L:l )\i)l/L

L—-P’
|: ﬁ Zz‘L:P+1 Aq :|
( )

L 1/(L—P
i=P+1 Ai)

donde )\; denota el i-ésimo autovalor de la matriz de covarianza espacial
Y'Y /K. Esta expresion muestra como el GLRT se puede ver como un co-
ciente entre dos medidas de esfericidad: uno de los términos refleja como de
diferente es la senal de ruido blanco mientras que el segundo es una medida
de la esfericidad del subespacio de ruido, y se puede ver como una referencia

de esfericidad debido a la longitud muestral finita.

Por otra parte el problema de deteccién con ruidos de diferentes varianzas no
ofrece una solucién cerrada, por lo que se proponen dos opciones: un algoritmo
iterativo y un detector asintético en baja SNR (Seccién 3.3.2). El desarrollo
del algoritmo iterativo se basa en dividir el problema de optimizacién origi-
nal, no convexo, en dos subproblemas de optimizacién convexa que se pueden
ir resolviendo iterativamente, en lo que se conoce como un esquema de opti-
mizacion alternativa. Este esquema presenta muy buenas prestaciones para
el modelo considerado, aunque, en ciertos casos, puede resultar excesivamente
complejo para su implementacién practica. Considerando un modelo de baja

SNR se puede simplificar el proceso de optimizacién y obtener una expresién
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Figura II: Probabilidad de deteccién fallida vs. P asumiendo (a) ruidos iid y (b)
ruidos no non-iid.

cerrada para el GLRT asintético, dada por

P
TT 6
=1

donde f; representa el i-ésimo autovalor de la matriz de coherencia espacial
(matriz de covarianza espacial Y#Y /K normalizada por su diagonal). Este
GLRT asintotico estd dado por el producto de los P mayores autovalores de
la matriz de coherencia espacial, después de ser ponderados por un término

exponencial que hace que todos tengan un peso similar en la funcién final.

El estudio mediante simulaciones de las prestaciones de los detectores prop-
uestos muestra claramente la ventaja de utilizar detectores para senales de
rango mayor que uno, tal y como se puede ver en la Figura II. Aqui se puede
ver que, cuando las senales presentan un rango espacial intermedio los detec-
tores propuestos ofrecen las mejores prestaciones para el modelo considerado.
Por otra parte, para rangos igual a 1 y para rangos proximos a ser de rango
completo, sus prestaciones convergen a las de los detectores desarrollados bajo

esta suposiciones.

La sensibilidad de los detectores a errores de calibracién de las diversas antenas

se muestra en la Figura III. En ésta se puede ver la sensibilidad de los detectores
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Figura III: Curvas ROC (SNR= -8 dB, P =1, L = 4, K = 128) (a) asumiendo
ruidos iid y (b) con un error de calibracién entre antenas.

desarrollados bajo la suposicién de igual varianza de ruido en todas las antenas
cuando esto no se cumple. Se puede ver que incluso para pequenas desviaciones
en esta potencia de ruido nominal sus prestaciones se degradan notablemente,
mientras que los detectores que asumen diferentes varianzas son robustos frente

a estos errores de calibrado.

Desarrollo y anélisis de esquemas de deteccién multiantena en pres-
encia de interferencia. Si se una asume interferencia suficientemente fuerte
como para enmascarar al ruido térmico presente en las antenas, ésta se podria
modelar como un proceso ruidoso que presenta una matriz de covarianza ar-
bitraria y no necesariamente incorrelada entre antenas. Un escenario con este
tipo de interferencia, se puede dar, por ejemplo, si el nodo detector recibe una
senal muy fuerte de otros nodos secundarios, bien de su propia red o de otras
redes secundarias. En este caso, si la senal primaria a detectar es de banda
estrecha, las contribuciones secundarias se puede modelar como ruido blanco

con estructura espacial arbitraria.

Bajo estas condiciones, el GLRT no se puede obtener en forma cerrada para
el caso general. Sin embargo el problema de optimizacién se puede reducir a

un problema de optimizacién escalar, de forma que el GLRT exacto esta dado
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Figura IV: Probabilidad de detecciéon en funcién de la SNR en un escenario con
Pry=0.05 L=4y K =128.

por

A (U (I 4 pC)1UYy)
max ,

p det(IK + ,OC)

donde la matriz de datos recibida Y presenta la descomponsiciéon en valores
singulares Y = Uy Sy Vy. Es decir, el detector éptimo ignora la informacién
espacial de la senal recibida, dada por {Sy,Vy} y se queda dnicamente con
la matriz unitaria Uy, con la informacién temporal de la sefial en cada una

de las antenas.

Si particularizamos este detector para el caso de baja SNR (que resulta ser
exacto para sefiales pasobanda planas en la banda de paso) si se obtiene un

detector en forma cerrada, dado por
Amax(U¥CUY).

Este detector ofrece buenas prestaciones en el rango de SNRs de interés, tal y
como se puede ver en la Figura I'V. Esta figura también muestra una excelente
coincidencia entre los resultados empiricos y el andlisis de prestaciones teérico
realizado en el régimen asintético para un nimero de muestras grande. Por

otra parte, a partir de los resultados tedéricos se puede ver que las prestaciones
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del detector dependen directamente de la métrica de esfericidad

tr{Ix + poC}/K
(det(Ix 4 poC))" 5

donde pg se define como la SNR efectiva en el receptor. Esta métrica mide
la distancia entre la matriz de covarianza temporal Ix + pgC y una version
escalada de la matriz identidad. Asi esta distancia aumenta con la SNR pyg,
y, para una SNR dada se maximiza para una matriz C que concentra toda su
energia en un unico autovalor. Es decir, en presencia de interferencia de banda
ancha, las sefiales que presentan fuertes picos frecuenciales son més sencillas

de detectar.

A la hora de evaluar las prestaciones de un detector se han propuesto varias

posibilidades, incluyendo medidas de la ganancia por diversidad en recepcién de un

detector multiantena. En este sentido Duan et al. (2010) propone usar una definicién

analoga a la empleada en comunicaciones, asintdtica para SNRs grandes. De cardcter

asintético, aunque basada en la J-divergencia es la dada en Kim et al. (2009). Por

otra parte, en el contexto de radar diversidad es, sin embargo, un concepto de baja

SNR. Por ejemplo, Daher and Adve (2010) define diversidad para valores intermedios

de la probabilidad de deteccidon. FEn esta tesis utilizamos ambas aproximaciones:

primero proponemos un analisis asintotico de la diversidad en deteccién, de forma

similar a Duan et al. (2010), y, en segundo lugar, desarrollamos el concepto de

Daher-Adve para sistemas de radio cognitiva:

e Analisis de diversidad en sistemas de deteccién multiantena. Con el

fin de comparar y clasificar los diferentes detectores en presencia de candles
dindmicos, proponemos el uso de dos métricas diferentes. Por una parte el
concepto de diversidad utilizado en comunicaciones, que se corresponde a la
pendiente asintética de la probabilidad media de “no-deteccién” Py/p con

respecto a la SNR (en escala log-log) para valores altos de la SNR:

log pMD

dasympt. = logsnr

La segunda métrica propuesta se basa en considerar también la pendiente de la
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probabilidad de deteccién media alrededor del punto en que ésta es Pp = 1/2.

OPp(snr)

Osnr Pp(snr)=1/2 .

dlow =

Estas dos métricas resumen las prestaciones obtenidas por un sistema multi-
antena, de forma que pueden ser empleadas para comparar y clasificar diversos

esquemas de deteccién.

En la Figura V(a) se puede ver un ejemplo del primer concepto de diversidad,
que resulta ser igual para los diversos detectores GED, SC, EGC y MRC, y se
corresponde con el nimero de antenas presente en el sistema, de forma similar
a lo que ocurre en el campo de comunicaciones. Por otra parte, la Figura V(b)
muestra el comportamiento de la segunda métrica de diversidad, mas adecuada
para sistemas de radio cognitiva. Aqui podemos ver que esta métrica si tiene
en cuenta las prestaciones de detecciéon que podriamos esperar en un entorno
de CR, que se refieren a la minima SNR de funcionamiento y el concepto de
diversidad propiamente dicho. Este ltimo se relaciona con la variacién de las
prestaciones de deteccion a partir de la SNR minima de funcionamiento. Se
puede ver que el MRC ofrece mejores prestaciones consiguiendo una diversidad
diow que crece de forma lineal en el niimero de antenas L como o(\/E L)yel

EGC presenta un crecimiento o(vKL). A pesar de que no hemos podido
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obtener una expresion cerrada para el orden de diversidad del detector SC,
creemos que este podria ser del orden o(v/ K log L), lo que se ajustaria bien a

las graficas obtenidas.

Deteccion simultanea de multiples canales

El sistema de sensado de un nodo CR debe ser capaz de monitorizar anchos de banda
grandes para asi aprovechar todas las posibilidades de transmisién existentes. Asi,
un monitor espectral que puede procesar miltiples canales primarios simultanea-
mente mejorara la agilidad del sistema de radio cognitiva. Ademas, el procesado de
multiples canales proporciona informacién adicional para estimar los estadisticos del
ruido. Esto se debe principalmente a la disponibilidad de bandas de guarda entre
canales adyacentes, asi como la presencia de ciertos canales bien no utilizados o muy

débiles, que ayudan a la estimacién de la varianza de ruido.

Otros autores han propuesto con anterioridad esquemas de sensado de banda
ancha. En Hwang et al. (2010) se asume la varianza de ruido conocida, mientras que
los anchos de banda y frecuencias centrales de las transmisiones primarias, as{ como
su numero, se suponen desconocido. Por otra parte, Taherpour et al. (2008, 2009)
asumen canalizacion del sistema principal conocida y varianza del ruido desconocida.
Sin embargo, estos métodos no explotan la informacién sobre la forma espectral de
las transmisiones primarias, y asumen un numero minimo de canales no utilizados

en la banda bajo examen.

En un entorno de banda ancha, puede no ser posible la adquisicién de la senal
recibida a tasa de Nyquist. Novedosos métodos de muestreo permiten reconstruir
las senales recibidas a partir de un conjunto de muestras comprimidas si se cumplen
ciertas propiedades de la senal (Donoho, 2006). La tecnologia clave que posibilita
ésto es el muestreo comprimido, una técnica capaz de construir soluciones dispersas
para un sistema de ecuaciones indeterminado. Varios autores han aplicado muestreo
comprimido al problema de monitorizacién espectral. Suponiendo un modelo de
espectro que consiste en varias senales pasobanda planas en la banda de paso, y
teniendo en cuenta los bordes entre las diversas bandas, la senal observada es dispersa
en el dominio “bordes”. Este hecho se utiliza en Tian and Giannakis (2007); Polo
et al. (2009) para proponer un algoritmo de reconstruccién espectral. Asumiendo
que la informacién de canalizacién de la red primaria es conocida, Vazquez-Vilar
et al. (2010a) propone un algoritmo de estimacién de los parametros necesarios para

la reconstruccién de la banda de interés.
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alarma.

En este trabajo presentamos el analisis del problema de deteccién asumiendo
canalizacién conocida y nivel de ruido desconocido. Las principales contribuciones

relativas a la monitorizaciéon multicanal son las siguientes:

e Deteccion GLRT de multiples canales con nivel de ruido descono-
cido. Partiendo del desarrollo del detector GLRT para bandas con multiples
canales se derivan varios esquema de deteccion practicos. A pesar de que en
este caso no es posible obtener una expresién cerrada para los detectores, estos

presentan la siguiente forma

~0
52

donde g, se corresponde con la energia observada en el canal bajo escrutinio
y 62 es una estimacién del nivel de ruido, que se debe computar a partir de un
sencillo procedimiento iterativo. El analisis del proceso de estimacion del nivel
de ruido muestra que, tanto las bandas de guarda entre canales consecutivos
como los propios canales en caso de presentar senales recibidas con un nivel
de potencia muy bajo, pueden ser usados para mejorar la estimacion del nivel

de ruido y asi mejorar las prestaciones en deteccion.

Por otra parte, el analisis de las prestaciones de estos detectores permite cuan-
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factor de actividad en la banda de (a) a = 0.1y (b) a = 0.3.

tificar las ventajas del empleo de deteccién de banda ancha en lugar de realizar
un muestreo canal a canal. Asi la Figura VI muestra las prestaciones obtenidas
para la monitorizacién de una banda compuesta por N canales primarios di-
vidiéndola en subbandas que cubren M canales, y que son procesadas por el
esquema presentado. Asumiendo un tiempo de deteccion fijo para la mon-
itorizacién de los N canales podemos ver que las prestaciones de deteccion
mejoran con el nimero de canales procesados simultaneamente M y empeoran

a mayor utilizacién de la banda.

Deteccién en multiples canales partiendo del muestreo comprimido
de la senal recibida. Proponemos un esquema de deteccién de senales pri-
marias basado en el GLRT a partir de un conjunto de datos comprimidos. Para
ello establecemos una conexion entre ciertas técnicas de muestreo comprimido
y el problema de estimacién basado en el Méximo a Posteriori. Esto permite
presentar una formulacién para estimacion espectral basada en un algoritmo
iterativo que ofrece unas prestaciones similares a los (més complejos) métodos

clésicos basados en optimizacion convexa.

Mientras que los detectores presentados bajo este modelo no admiten una
expresion en forma cerrada, son sencillos de implementar en forma de un pro-

cedimiento iterativo. La Figura VII muestra como a pesar de que los métodos
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basados en muestreo comprimido ofrecen peores prestaciones que un método
trabajando a tasa de Nyquist, se puede ver que el algoritmo iterativo propuesto
ofrece virtualmente las mismas prestaciones que una formulaciéon convexa, mu-

cho mas compleja.

Gestion de interferencia

Para lograr un verdadero acceso dinamico a los recursos espectrales hoy asignados a
operadores con licencia se han propuesto diversos enfoques. El que ha recibido una
mayor atencién por parte de la comunidad cientifica ha sido un aceso jerarquico en
el que los usuarios secundarios se encargan de limitar el nivel de interferencia visto

por el usuario primario de la banda.

Algunas de las arquitecturas que se han propuesto en este sentido a lo largo de
los tltimos anos son Kim et al. (2008); Le and Hossain (2008); Xing et al. (2007);
Fattahi et al. (2007); Etkin et al. (2007); Menon et al. (2008). Sin embargo, todas
estas obras se construyen sobre la suposicién de que los usuarios primarios no son
conscientes de la presencia de una red secundaria. Por lo tanto el proceso de gestion
de interferencia recae principalmente en el sistema secundario. En particular, o bien
(i) hay un nivel de interferencia maxima que el sistema de atencién primaria estd
dispuesto a tolerar y la actividad de la red secundaria se debe ajustar dentro de esta
restriccién, o bien (ii) los usuarios secundarios pueden acceder de forma oportunista

al espectro bajo la condicién de no interferir con los usuarios con licencia.

Un concepto diferente se presenta en Jayaweera and Li (2009), denominado
cesion de espectro dindmica (DSL). Un esquema DSL se caracteriza por el papel
activo del usuario principal, que pueden interactuar con el sistema secundario con
el fin de definir el nivel de interferencia permitido. Este esquema permite que el
sistema se adapte a las condiciones cambiantes del entorno, y puede mejorar la uti-
lizacién del espectro. En esta tésis por una parte cuantificamos cual es el incremeto
en prestaciones que se puede obtener por el uso de un sistema DSL, y por otra

presentamos y analizamos una arquitectura DSL completa. En concreto:

e Andlisis de la ganancia de prestaciones obtenida con paradigmas
basados en DSL. Se propone un analisis tedrico de la ganancia de rendimiento
obtenido permitiendo un cierto grado de interaccién entre los sistemas primario

y secundario. Para ello se define una familia de métricas de prestaciones y se
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formula un juego de Stackelberg en el que el usuario primario maximiza su
funcién de recompensa ajustando el nivel de interferencia permitida al sistema
secundario, mientras este tultimo debe ajustarse al margen de interferencia

marcado Q.

Este andlisis muestra que la ganancia en rendimiento puede ser en efecto con-
siderable en entornos dindmicos en los que los coeficientes del canal o la confi-
guracién de las redes (nimero de usuarios, posiciones de los mismos...) varian
con el tiempo. En concreto, se concluye que la métrica de prestaciones media
obtenidas por un esquema DSL y por un sistema que asume (g fijo son

U3 = Bfmax{U; (Qo)},

Uy = max{E[U;(Qo)]},

respectivamente, donde Uy (Qo) son las prestaciones que el sistema obtiene
para una determinada realizacién del canal y para un valor de )y dado. A
partir de estas expresiones, y por la inigualdad de Jensen, se puede ver que
USSI > U;ixed con igualdad si se trata de un sistema estatico. Es decir, un

esquema DSL ofrecera una cierta ventaja en condiciones dindmicas.

La Figura VIII muestra la comparacion entre un sistema basado en DSL y
un esquema en el que el nivel de interferencia permitido esta fijo, cuando se
emplean unas métricas de prestaciones concretas. Se puede ver que, dada la
variabilidad del entorno, el esquema DSL mejora al esquema fijo incluso para
el punto de funcionamiento éptimo de éste. Es decir, en este contexto tanto los
usuarios de la red primaria como los de la secundaria pueden beneficiarse de la
utilizacién de un esquema DSL. Ademas, los sistemas DSL, al ser adaptativos,

son robustos con respecto al conocimiento inexacto de ciertos parametros del
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sistema.

e Aplicacién practica de arquitecturas DSL. El anélisis previo no puede ser
aplicado directamente a un escenario real, ya que no es evidente como se puede
implementar un juego de Stackelberg en el que el usuario primario no puede
conocer cual es la respuesta éptima por parte sistema secundario. Sin embargo,
simplificando el modelo y asumiendo un juego competitivo entre los sistemas
primario y secundario es posible desarrollar un esquema DSL implementable,
que, ademds presenta un tUnico equilibrio de Nash. Esto es, en régimen esta-
cionario las prestaciones del sistema se ajustan a las que se derivan de este
equilibrio, por lo que puede ser estudiado mediante herramientas analiticas en

clertos casos de interés.

Este esquema presenta ademads ciertas virtudes que lo hacen adecuado para
su implementacion practica. Por una parte las interacciones entre el sistema
primario y secundario se reducen a la diseminacién del nivel de interferencia
permitido QQg. Ademads, no se requieren complejos esquemas de estimacion y
monitorizacion de canal, ya que el sistema se puede implementar tan sélo a

partir de ciertas medidas de potencia en cada uno de los nodos.

En la Seccion 5.4.4 se puede encontrar un anélisis exhaustivo de la arquitectura
propuesta. De este andlisis se deduce ademaés que la degradacién de presta-
ciones en entornos dindamicos es minima a pesar de que en estos casos no hay
garantias de que el sistema converja al equilibrio de Nash. Esto sucede incluso
para entornos complejos con un numero variable de usuarios y en el que los

canales presentan desvanecimientos lentos.

Conclusiones

La presente tesis se enmarca dentro del campo de la radio cognitiva. Este paradigma
se basa en dotar a la proxima generacion de radios de una mayor inteligencia que les
permitan adaptarse al entorno y asi poder acceder a bandas con licencia sin interferir

con los usuarios primarios de las mismas.

La tesis se divide en dos partes diferenciadas. En los primeros capitulos pre-
sentamos diversos esquemas de monitorizacién espectral que utilizan la informacién
disponible sobre la senal primaria asi como su estructura espacial. En concreto,
en los capitulos 2 y 3 estudiamos el problema de deteccién con multiples antenas

aprovechando la informacién disponible sobre la red primaria. Asi, se proponen
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diversos detectores con diferentes grados de complejidad adecuados para diferentes
escenarios. En conjunto, esta tesis presenta un conjunto de herramientas, que de-
pendiendo de los pardmetros conocidos sobre la red primaria y el tipo de sistema de
deteccién a disefiar, permiten obtener un detector adecuado al modelo considerado,
que puede estar basado en un tnico nodo con multiples antenas, o en varias ante-
nas distribuidas en diferentes nodos. Para cada uno de los detectores presentados
se ofrece un anadlisis de prestaciones, bien analiticamente en los casos en los que
es matematicamente factible, o bien mediante simulaciones en otro caso. En este
sentido se proponen un analisis del orden de diversidad en deteccién en canales con

desvanecimientos.

El capitulo 4 aborda el tema de adquisicién y deteccion de banda ancha, tanto
cuando la senal recibida se muestrea a tasa de Nyquist como cuando la detecciéon
se debe realizar a partir de un conjunto de datos comprimidos. En ambos casos el
proceso de deteccién tiene informacion simultdnea de multiples canales que puede
utilizar para mejorar las prestaciones de deteccién. En concreto, tanto las bandas de
guarda presentes entre canales como los canales vacios ofrecen informacién implicita
sobre el nivel de ruido presente en el sistema, que puede ser usado para mejorar el

disenio de los detectores mientras su nivel de complejidad apenas se ve afectado.

La segunda parte de la tesis se centra en el estudio de una arquitectura general
para la gestién de interferencia en redes de radio cognitiva. Asi, en el capitulo 5 se
analizan las ventajas de permitir una cierta interaccién entre el sistema primario y
el sistema secundario, concluyendo que esta ventaja puede ser notable en entornos
dindmicos. En este sentido, y dada la actual tendencia creciente en el uso de dis-
positivos moéviles, el estudio de sistemas en entornos dindmicos presenta una enorme

relevancia a la hora de disenar la proxima generacién de estandares de comunicacion.

Los resultados presentes en esta tesis han dado lugar a varios articulos en presti-
giosas revistas internacionales, tales como la IEEE Transactions on Vehicular Tech-
nology o el IEEE Transactions on Wireless Communications, mientras que otros ain
se encuentran en proceso de revision. Adicionalmente, y de cara a la diseminacién de
la investigacion realizada, se han presentado resultados parciales en algunas de las
conferencias con mayor impacto en el &mbito de procesado de senal, como es el IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), asi
como en conferencias especificas en el campo de Radio Cognitiva, como pueden ser
la ICST Conference on Cognitive Radio Oriented Wireless Networks (CrownCOM)

o el IEEE International Workshop on Signal Processing Advances for Wireless Com-
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munications (SPAWC).

Finalmente resaltar que partes importantes de esta tésis se han realizado en
colaboraciéon con otros grupos de investigacion de todo el mundo. En concreto,
dentro del marco de los proyectos nacionales de investigacion SPROACTIVE (ref-
erence TEC2007-68094-C02-01/TCM) y COMONSENS (CONSOLIDER-INGENIO
2010 CSD2008-00010), la parte del capitulo 3 relativa a la deteccién de senales pri-
marias de rango mayor que 1 se ha desarrollado en colaboracién con el Grupo de
Tratamiento Avanzado de la Senal (GTAS, Universidad de Cantabria), mientras que
la parte relativa a la deteccién en presencia de interferencia se ha realizado en co-
laboracién con el Grupo de Investigacién de Procesado de Senal y Comunicaciones
(SPCOM, Universidad politécnica de Cataluna). Por otra parte, una estrecha co-
laboracién con el Communications and Information Sciences Lab (CISL, University
of New Mexico) ha permitido la realizacién del capitulo 5, relativo al andlisis de un
nuevo paradigma de gestién de interferencia. Adicionalmente, se ha iniciado una
colaboracién con el centro de investigacién de Philips (Philips Research, Holanda)
que ha dado lugar a una publicacién conjunta estudiando la diversidad de los es-
quemas de deteccién en comunicaciones. Esta tésis se ha realizado en parte durante

una estancia
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1.1 Cognitive Radio: Motivation

In the recent years we have witnessed a constant increase in the price of the spectral
resources. The main reason is the rising demand of spectrum as a result of emerging

communication standards and services.

However this scarcity of spectral resources happens while most of the allocated
spectrum is underutilized. This paradox occurs only due to the inefficiency of tra-
ditional static spectrum allocation policies, which translates in a waste of spectral
resources (FCC, 2002, 2003). Most of the useful spectrum is allocated to licensed
users (e.g. mobile carriers, TV broadcasting companies) that do not transmit at all
the geographical locations all the time. If this spectrum is opened for unlicensed

use (e.g. private users, short range networks, ...) it is highly likely that a vast array
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of new services will appear. One example of this is the huge innovation that has
occurred in WiFi and Bluetooth operating in unlicensed bands, even though these

two standards share just scraps of spectrum with many other technologies.

The wireless industry has considerable interest in the development of dynamic
spectrum access (DSA) as a means to improve spectral efficiency (FCC, 2002, 2003).
Cognitive radio (CR) (Mitola and Maguire Jr., 1999) is receiving considerable at-
tention as the enabling technology to achieve DSA in licensed bands. The key idea
behind CR is to create smarter radios which are aware of, and can adapt to, their
environment. Hence, in licensed bands CR nodes will monitor primary users in or-
der to transmit in temporally and/or spatially unused slots. For example, the U.S.
Federal Communications Commission (FCC) has recently issued a Second Report
and Order FCC (2010), allowing operation on an unlicensed basis in the TV white
spaces of VHF and UHF bands to both fixed and portable devices. While this or-
der requires secondary users to access a database with information of the available
resources, it is expected that these first steps start a major change to DSA in most

of the spectrum once the CR, technology is mature enough.

One of the problems pointed out in FCC (2010) is that the available sens-
ing technology is not reliable enough to guarantee that the interference produced
to licensed (primary) users is kept at sufficiently low levels. Wireless propagation
phenomena such as shadowing and fading pose significant challenges to the reliable
detection of primary users. The received primary signal may be very weak, resulting
in very low Signal-to-Noise Ratio (SNR) operation conditions and “hidden node”
situations. Hence novel powerful spectrum monitoring techniques are required in
order to increase CR network agility (Akyildiz et al., 2008).

On the other hand, CR schemes may lead to very complex networks, in which
primary and secondary users coexist in dynamic environments. This may lead to
unexpected behavior and/or an impact on system performance. Hence, new schemes
and analytical tools are required to control and model the interactions between the

different elements of the system.

1.2 Previous work

While CR is a relatively novel area (Mitola’s landmark paper appeared in 1999 (Mi-
tola and Maguire Jr., 1999)), it has received significant research interest in the last

few years. In this section we present the most relevant previous work directly related
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to this thesis.

1.2.1 Spectrum Monitoring

Spectrum monitoring is based on the detection of weak signals from primary trans-
mitters through the local observations of cognitive users, either individually or in a
collaborative fashion. While cooperative sensing has the potential to overcome the
effects of shadowing (Ganesan and Li, 2007a,b), it still relies on standalone detectors

whose performance should be optimized.

Three schemes are generally used for sequential individual sensing of primary
channels, each of them requiring different degrees of knowledge and synchronization

with the primary network:

1. Matched filter detection: If the secondary user is locked! to the primary net-
work, the optimal detection strategy in stationary Gaussian noise is matched
filtering (Kay, 1998). Note that matched filter detection schemes require full
synchronization with the primary network and thus they are difficult to im-
plement in the low SNR conditions cognitive networks are expected to work

in.

2. Feature based detection: Certain properties of the primary signal, such as
the presence of any pilots or cyclostationary features, could in principle be
exploited in order to obtain powerful detectors. However, such approaches
become very sensitive to synchronization errors (Cabric, 2008). With very low
SNR, the synchronization loops of the monitoring system cannot be expected
to provide the required accuracy for the carrier frequency and/or clock rate

estimates.

3. Asynchronous detectors: These detection schemes do not assume any synchro-
nization with the primary signal. Hence they rely on other signal properties
such as certain temporal and/or spatial structure. Among these, the most
popular one is the energy detector, which does not require (or exploit) any
a priori knowledge about the signal structure. The detector reduces to inte-
grating received energy in a given frequency band and comparing it to a noise

level dependent threshold. However, computation of the threshold in energy

'Meaning that both frequency and timing synchronization loops are locked to a given set of
signals.
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detection requires knowledge of the noise variance. Any uncertainty regard-
ing this parameter translates to severe performance degradation, so that the
detection/false alarm requirements may not be satisfied (Tandra and Sahai,
2008).

The reasons exposed motivate the search for asynchronous detectors robust to
noise uncertainty, two possibilities being the use of multiple-antenna sensors and
wideband monitoring covering multiple frequency channels. Moreover, if certain
information about the primary network, such as channelization and modulation,
is available to the spectrum monitor, it should be exploited to increase detection
performance. In this thesis we will consider that this knowledge can be summarized

as the spectrum shape / temporal correlation of the received signal.

Several authors considered the problem of exploiting temporal structure of the
received signal. Under the assumption that the power spectral density (psd) of
the signal is completely known, Zhang et al. (2010b) derives the optimal Neyman-
Pearson detector for both scalar and vector-valued signals. However, in spectrum
sensing applications the propagation channel is unknown, and thus only partial
knowledge of the second order statistics is available in practice. A possible approach
in that case is to neglect this partial knowledge, and consider test statistics that
quantify the departure of the sample temporal autocorrelation matrix of the ob-
servations from the noise temporal covariance (Zeng and Liang, 2009a,b). Under
the assumption that the signal is bandlimited, while its actual bandwidth, spec-
tral shape and carrier frequency are unknown, Derakhtian et al. (2009) proposes a
heuristic detector. Alternatively, metrics quantifying the distance of the sample cor-
relation matrix from a “candidate” matrix summarizing a priori knowledge can be
used: in the single antenna setting, for example, Perez-Neira et al. (2009) assumes
the signal psd known up to a scaling and a shift, respectively modeling uncertainty
about the power level and carrier frequency of the signal. Also assuming a single
antenna, Quan et al. (2011) adopts a similar approach when the carrier frequency
is known, as it often occurs in practice: for instance, for frequency division multiple
access (FDMA) primary networks with public channelization parameters. However,
all these works either assume that temporal correlation of the primary signal is un-
known to the receiver or they do not consider the multiple-antenna and wideband

settings.
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Multiantenna detection

The gain offered by multiple antenna processing in energy detection schemes was
analyzed in Pandharipande and Linnartz (2007) under the assumption of channel
information available to the secondary system. This assumption is not realistic
in practice and the channel needs to be estimated. Assuming a temporally white
Gaussian model for both signal and noise, spatially white noise with unknown (equal)
variance across antennas, and an unknown spatial covariance matrix for the signal,

several detectors have been proposed in the literature.

We are particularly interested in the works based on the generalized likelihood
ratio test (GLRT), since this approach usually results in simple detectors with good
performance Mardia et al. (1979). Under rank-1 spatial covariance for the signal and
assuming iid noises, the GLRT is derived in Besson et al. (2006) and its application
to CR was presented in Taherpour et al. (2010); Wang et al. (2010). When the
signal covariance matrix is unstructured, and the noise assumed iid, the GLRT is
the well-known test for sphericity (Mauchly, 1940), which was applied to CR in Lim
et al. (2008); Zhang et al. (2010a). In these works the authors derived the GLRT
for primary signals with spatial rank P > 1 under the assumption of iid noises
with known variance. In Wilks (1935) the GLRT was derived for the case of an
unstructured signal covariance matrix for non-iid noises. This detector was later
applied to array signal processing in Leshem and Van der Veen (2001a,b). Other
detectors which can handle different (unknown) noise variances have been proposed
in Boonstra and Van dgeen (2003); Zeng and Liang (2009b).

However, all of thém either assume rank-1 primary signals or unstructured
primary signals. Moreover, they do not exploit any available information about the

spectral shape of the primary signals.

Once a multiantenna detector is proposed its performance must be evaluated.
In order to quantify and compare the performance gain of multiantenna systems
in fading environments, several metrics have been considered, including different
concepts of detection diversity. One option is to adopt a definition analogous to the
one from the communications literature for a certain performance tradeoff (between
the probabilities of detection and false alarm), as proposed in Duan et al. (2010).
A similar asymptotic definition based on J-divergence is given in Kim et al. (2009).
In the context of radar, diversity order is however a low-SNR concept. For example,
Daher and Adve (2010) define diversity order as the slope of the average probability
of detection (Pp) curve with respect to the SNR at Pp = 0.5.
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Wideband detection

In order to improve detection performance, the sensing system may also perform
simultaneous acquisition of multiple frequency channels. This scheme improves the
agility of the detector since multiple channels are processed at once and it provides
the spectrum monitor with additional information to estimate the noise statistics
as we will see in Chapter 4. This is mainly due to the availability of guard bands
between adjacent channels, as well as to the fact that the presence of unused/weak

channels within the subband can be exploited for noise variance estimation.

Wideband spectrum sensing has been previously considered by several authors.
In Hwang et al. (2010), knowledge of the noise variance is assumed, but the band-
widths and central frequencies of primary transmissions, as well as their number, are
assumed unknown and estimated in turn. In the setting of Taherpour et al. (2008,
2009) primary system channelization is known, and the noise variance is regarded
as unknown. However, these methods do not exploit a priori information about the
psd of primary transmissions, and they assume that a minimum number of unused

channels exist in the subband under examination.

In a wideband setting, it may not be feasible to acquire the received signal at
Nyquist rate. Novel sampling methods allow the reconstruction of the received sig-
nals from a set of compressed measurements if certain properties are met (Donoho,
2006). The key technology allowing this is compressive sensing, which is able to
construct sparse solutions from a set of underdetermined equations. Several authors
have applied compressed sensing to the detection of primary users in cognitive radio
systems. Assuming a spectrum model consisting of several flat bandpass signals,
and considering the edges between them, the observed signal is sparse in the “spec-
tral edges domain”. This fact is used in Tian and Giannakis (2007) to propose a
spectrum reconstruction algorithm from compressed samples of the signal autocorre-
lation estimate. This method was extended in Polo et al. (2009) in order to process

directly a compressed version of the received signal (and not of its autocorrelation).

These methods do not assume information about the primary network channel-
ization, so that the spectral edges could occupy any position within the frequency
band.
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1.2.2 Interference Management

In order to improve spectral efficiency, the wireless industry has prompted proposals
for various dynamic spectrum access (DSA) approaches. A DSA scheme in which
secondary users are allowed to opportunistically access the spectrum on the basis
of no-interference to the primary (licensed) users, denoted as hierarchical access, is

arguably the method that has received the most attention in recent literature.

Various architectures have been proposed and investigated in recent years to
achieve hierarchical dynamic sharing of licensed bands (see Kim et al. (2008); Le
and Hossain (2008); Xing et al. (2007); Fattahi et al. (2007); Etkin et al. (2007);
Menon et al. (2008) and references therein). A common assumption in these works
is that the licensed users which own the spectrum rights are unaware of the presence
of secondary users. Hence the burden of interference management relies mainly on
the secondary system. In particular, either (i) there is a maximum interference level
that the primary system is willing to tolerate, and the secondary powers/activity
are to be adjusted within this constraint, or (ii) secondary users are allowed to
opportunistically access the spectrum on the basis of no-interference to the primary

(licensed) users.

As opposed to this is the the concept of dynamic spectrum leasing (DSL), first
presented in Jayaweera and Li (2009). A DSL scheme is characterized by the active
role of the primary user, which may interact with the secondary system in order
to define the allowed interference cap. This scheme allows the system to adapt to

changing environmental conditions and may lead to a better spectral utilization.

1.3 Contributions

This thesis treats different aspects of a cognitive radio system. On the one hand,
assuming a non-interfering DSA network we propose and analyze novel asynchronous
multiantenna detectors and wideband detection schemes. Then, in the last chapter,
we will study a DSA system in which certain interference is allowed at primary users,

namely a DSL network.
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1.3.1 Multiantenna and multichannel detection of primary users

In the previous section we showed the importance of deriving powerful asynchronous
detectors for cognitive radio systems. To this end we need to exploit any available
information about the primary network. In most of the analysis in this thesis we
assume that the modulation / channelization of the primary network known to the
spectral monitor, which translates into a priori knowledge on the spectral shape of

the primary transmissions.

Additionally, we focus our study on Gaussian signals. The reasons for adopting
a Gaussian model for the primary signal are as follows. First, under asynchronous
sampling, the actual distribution is unknown; and since the noise is assumed Gaus-
sian as well, the Gaussian pdf for the signal is the least informative one for the
detection problem. Second, if the primary system uses multicarrier modulation
with a sufficiently large number of subcarriers (which is the case in e.g. broad-
casting applications), the Gaussian model is accurate (Tellado, 2000). Third, this
model is tractable and leads to useful detectors under other distributions: note that
Gaussianity is a common assumption in the development of signal detectors, either
explicitly or implicitly, as many ad hoc methods that limit themselves to the use
of second-order statistics of the observations can often be derived from a Gaussian

model (the Energy Detector is the most prominent example).

The main contributions of this thesis in spectrum monitoring are the following:

e Derivation and analysis of different multiantenna detectors exploit-
ing a priori knowledge of the spectral shape of the primary trans-
missions when the noise statistics are assumed known. From the
(non-implementable) Neyman-Pearson optimal detector we derive a family of
practical multiantenna detectors with different levels of complexity. This will
allow us to study both the advantages of exploiting spectral information and

multiantenna processing under different scenarios.

e Diversity order analysis of multiantenna detection systems in cog-
nitive radio. In order to compare and rank the different detectors in fading
environments we propose the use of two different performance metrics which
reflect the diversity gain obtained by multiantenna systems. The first is analo-
gous to the one used in communications and measures the asymptotic slope of
the probability of misdetection with respect to the SNR (in log-log scale) for

increasing SNRs. The second is borrowed from the radar community and is re-
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lated to the behavior of the probability of detection around the point at which
it equals 1/2. These key measures show the advantage of multiple antenna

processing when detecting primary signals.

e Multiantenna detection of primary signals with spatial rank larger
than one when the noise statistics are assumed unknown. Under the
Gaussian assumption, we derive the GLRT when both signal and noise are
assumed temporally white and the primary signal may present an arbitrary
spatial rank larger than one, both for spatially iid noises and when the noise

is spatially uncorrelated but not necessarily iid.

We emphasize the practical implications of this scenario. A primary signal
with spatial rank larger than one will occur, for example, if multiple indepen-
dent users (e.g. from adjacent cells) simultaneously access the same frequency
channel. Alternatively, many state-of-the-art communication standards con-
sider the simultaneous transmission of different data streams through multiple
antennas to achieve multiplexing gain and/or the use of space-time codes to
enhance spatial diversity. For these systems, the signal received at the multi-
antenna sensor will exhibit a spatial rank equal to the number of independent
streams or the spatial size of the code, respectively. On the other hand, tol-
erances in the components of the analog frontends at different antennas will
result in deviations of the noise level from antenna to antenna, and as it turns
out, detectors derived under the iid assumption are very sensitive to these

calibration errors.

e Derivation and analysis of multiantenna detection of primary sig-
nals under strong interference. Assuming strong interference, modeled
as temporally white noise with arbitrary spatial covariance matrix, we derive
the GLRT for detection of primary signals with known temporal structure.
We additionally propose a low SNR asymptotic analysis of this detector which
can be tightened in the SNR range of interest. This analysis shows the ex-
isting tradeoff between the spectral shape of the primary signal and detection

performance when the spatial structure of the signal is masked by the noise.

This scenario may occur in the presence of strong cochannel interference gen-
erated by other secondary users. In this case, the secondary contributions can

be modeled as noise with arbitrary and unknown spatial covariance.

e Wideband detection in the presence of unknown noise level. Intu-

itively, if multiple primary channels are simultaneously acquired and channel-
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ization information is available, the guard bands between adjacent channels
could be used to estimate the noise power. We will show that when consider-
ing the problem of GLRT detection of one of the channels, not only the guard
bands but also the empty/weak channels are used to improve the noise esti-
mate. This analysis shows the advantages of performing wideband detection

instead of channel-by-channel scanning.

e Wideband detection from compressed measurements. We propose a
primary user detection scheme from a set of compressed samples based on the
GLRT when the channelization of the primary network is assumed known.
From a Maximum a Posteriori formulation we establish a connection between
the estimation problem of the unknown parameters and certain compressed
sensing techniques. Additionally, we propose a simple iterative procedure that
conducts to similar detection performance as by using more complex convex

optimization schemes.

1.3.2 DSL: an Interference Management Scheme

A DSL based paradigm allows certain amount of secondary interference at the pri-
mary system. Then primary user detection becomes less important in comparison
to interference management. The main contribution in this section is the study of a

family of DSL architectures showing their interference management capabilities.

e Performance gain of DSL based paradigms. We present a theoretical
analysis of the performance gain obtained by allowing a certain amount of
interaction between primary and secondary systems. To this end, we define a
family of performance metrics and propose a Stackelberg game formulation for
the interactions between primary and secondary systems. We show that the
performance gain obtained by allowing this interaction can be indeed large in

dynamic environments.

e Practical DSL scheme. Finally, we analyze certain practical DSL schemes
which are shown to have a unique Nash equilibrium. In the stationary regime,
the global performance of the system can be assumed to be the performance
at the (unique) Nash equilibrium, which makes its analysis tractable. More-
over, the proposed DSL schemes show a graceful degradation under dynamic

conditions and thus perform well in practice.
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1.4 Structure of the thesis

This thesis is divided in two different parts. In the first we address different spectrum
monitoring schemes, focusing on multiantenna and wideband detectors. Then, in
the second part, we propose a general framework for interference management in

cognitive radio networks.

In Chapter 2 we will study the problem of multiantenna detection exploiting
a priori spectral information when the noise statistics are assumed known. In this
chapter we will also pose the diversity order analysis of the proposed detectors. The
case of multiantenna detection under unknown noise statistics will be covered in
Chapter 3, including both the detection of primary signals with spatial rank larger
than one, and detection in the presence of spatially unstructured noise. Chapter
4 covers the topic of wideband acquisition and detection, both when the band is
acquired at Nyquist rate and when the detection must be performed from a set of

compressed measurements.

The analysis of a family of DSL schemes is presented in Chapter 5. Concluding

remarks, as well as future lines of research, are included in Chapter 6.

1.5 Notation

Any non-standard notation used in this thesis is defined for the particular chapter
at the point where the symbols first occur. For reader’s reference, we also include a

comprehensive list of the notation in Table 1.1.



Symbol Description
R(a), S(a) Real and imaginary parts of «
||, arg(a) Absolute value and argument of «
()T, (HH Transpose and conjugate transpose
|- lle (resp. || - 1) norm ¢ (resp. norm 2)
det(A), tr(A) Determinant and trace of A
A2 (resp. A=1/2) Hermitian square root matrix of A (resp. A™1)
diag(a) Diagonal matrix with diagonal equal to a
adj(A) Adjugate matrix of A
vec (A) Column-wise vectorization of A
® Hadamard product
& Kronecker product
0y, Zero L x 1 vector or L X L matrix
1 L x 1 all-ones vector
Iz Identity matrix of size L x L
ay, k-th column of matrix A
ey k-th column of the identity matrix
E[] Expectation operator
var{-} Variance operator
cov{z,y} Covariance between vectors  and y
CN (1, R), N (11, R) (Complex circular) Gaussia? random (.iistribution
of mean p and covariance matrix R
U(a,b) Uniform random distribution with support [a, b]
Q(x) Q-function: tail probability of the standard normal distribution

1(-) Indicator function
o) f(z) € O(g(x)) iff lim,_, f(2)/g(x) equals a constant
) f(z) € o(z) iff imgy—yo f(x)/x =0

Table 1.1: Notation used in this Thesis.
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14 Chapter 2. Calibrated Multiantenna Detection
2.1 Introduction

Primary user monitoring in Cognitive Radio systems is based on the detection of
the signal from a primary transmitter from the local observations of cognitive users,
either individually or in a collaborative fashion. In either case, it is very likely that
future CR terminals will incorporate multiple antennas, given that multiple-input
multiple-output (MIMO) technologies for communications have reached considerable

maturity (Larsson and Stoica, 2003).

In terms of transmission/reception, multiple antennas provide a means to in-
crease channel capacity without bandwidth expansion, as well as to overcome the
effects of fading via space-time coding (Larsson and Stoica, 2003). Several authors
have recently studied the benefits of having multiple antennas in terms of enhanc-
ing detection performance in the context of CR systems, see e.g. Pandharipande
and Linnartz (2007); Taherpour et al. (2010); Lunden et al. (2009). However, these
schemes do not exploit that in several cases certain primary network parameters,
such as channelization, modulation type, etc., are available as a priori knowledge. In
this chapter we study the problem of multiantenna detection in the low SNR regime
when some a priori information, summarized into knowledge about the spectral

shape of primary transmissions, is available to the spectrum monitor.

To this end, we first pose the Neyman-Pearson (NP) detector for this problem.
This detector is not implementable due to the presence of unknown parameters,
which need to be estimated. The maximum likelihood (ML) estimation of these
parameters in different scenarios leads to a family of multiantenna detectors which

result in an increased diversity gain with respect to single-antenna systems.

2.2 System model

Here we formalize the signal model that will be used in this chapter, and which,

with some additional refinements, will also be useful in the following chapters.

Multiantenna reception

We assume the primary system employs Frequency Division Multiplexing with fixed
channelization. The spectrum monitor is equipped with L antennas with their re-

spective Radio Frequency (RF) chains. A given primary channel is selected and
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downconverted to baseband, where it is sampled at fs samples/s to obtain K
complex-valued samples at each antenna (7" = K/ fs is the observation time). The

samples at the [-th antenna are collected into the K x 1 vector y; which can be

written as
y; = his + ony, 1<I<L, (2.1)
where
e s=[sps1 - - sxg_1]" comprises the samples of the primary signal.

e h; is the complex-valued channel gain at antenna [. If the channel is vacant,
then h; = 0 for all [.

e n; ~ CN(0,Ix) comprises the noise samples at antenna I.

e 02 > 0 is the background noise power, assumed known and equal at all the

antennas®.

e The noise processes at different antennas are assumed statistically indepen-
dent, i.e. Elnnl/] = I 1(1 = n).

By introducing the vectors

the model (2.1) can be compactly written as
y=h®s+on. (2.3)

Without loss of generality we assume E[|sx|?] = 1, since the signal power can be

absorbed into the channel vector h. Then, the average SNR per antenna is given by

_E[lhes|l  |hlE
= Elonlll] ~ Lo® 24

1Since the noise variance is assumed known at each of the antennas, the derivation can be trivially
extended to the case of different noise levels by rescaling the input signals so that all present noise
variance equal to one.
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16 Chapter 2. Calibrated Multiantenna Detection

Primary signal model

In order to protect primary users from interference, the operational range of spec-
trum sensors must include primary signals well below decodability levels; in such
situations, attempting to synchronize with the potentially present primary signal is
unrealistic. Hence, we regard {s;} as a wide-sense stationary random process with
power spectral density (psd) Sss(e?). We additionally adopt a Gaussian model for

the primary signal.

Then we have that s ~ CAV(0, C), where C = E[ss”/]. Provided that the chan-
nelization and modulation parameters of the primary system are fixed and public
(as would be the case, e.g., for broadcast networks), then Ss4(e’) is known (and so
is C). Note that C is Toeplitz with ones on the diagonal. In general, {s;} will be

colored (and C # I) as a result of interchannel guard bands, pulse shaping, etc.

In the sequel we will find useful the following asymptotic eigendecomposition

of the primary signal temporal covariance matrix.

Let C = UAUY with A = diag(Ag A1 --- Ax_1) be an eigendecomposition of
C, and let W be the K x K orthonormal IDFT matrix. As K — oo (long observation
time) we have the following asymptotic result (Kay, 1998):

S Ao = Ses(@PK), 0< k<K —1. (2.5)

Hence, we have the asymptotic equivalence of the sequences of matrices {C} and
{WAWH} for K = 1, 2,...Gray (2006), which has been exploited extensively in
the literature; as shown in Zhang et al. (2010c), the loss in detection performance

when adopting the approximation
C~WAWH (2.6)

often becomes negligible even for moderate values of K.

The following spectral shape parameters will feature in the statistical analysis

of the detectors:

~ 1 1 K-1
bo = - tr{C"} = > (2.7)

Q

k=0

1 s

2/ St (e™)0w  for K — oo. (2.8)
m —Tr
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Note that b; = 1 since E[|sg|?] = 1. For white {s;}, C = I so that b, = 1 for all n

(in general, one has b, > 1 by Jensen’s inequality).

2.3 Problem formulation

S

The Neyman-Pearson lemma, when implementable, results in optimal detectors in
the sense that the probability of detection is maximized for a given probability of
false alarm (Kay, 1998). While in our setup the NP test is not implementable in
practice it will lead to a series of practical detectors with a strong connection to the
diversity combining techniques employed in communications (Simon and Alouini,
2004).

2.3.1 Neyman-Pearson detector

Based on the LK x 1 vector y from (2.3), and under the Gaussian model, the

corresponding hypothesis test is given by

Ho: y~CN(0,Rp) (primary is absent) (2.9)
Hi: y~CN(0,Ry) (primary is present) (2.10)

where we have introduced

Ro = o1, (2.11)
Ry =0’I+hh” ® C, with |h|3>0. (2.12)

This is a composite test (Kay, 1998), since h is unknown.

Let now G = hh” ® C. The NP test for this Gaussian detection problem is
an estimator-correlator (Kay, 1998) declaring #; true if y*2 exceeds a threshold,
where z is the minimum mean squared error (MMSE) estimator of z =h ® s given

y and h. After some straightforward manipulations we obtain

72 =GR{y, (2.13)
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18 Chapter 2. Calibrated Multiantenna Detection

so that
Tye = yz (2.14)
=y7G(c’1+G)ly (2.15)
= yf(hh' ® C)(¢?1 + hhf ® C)~'y. (2.16)

Note that this test cannot be directly implemented, since it requires knowledge of
hh?.

Single-antenna case

At this point it is instructive to consider the single-antenna case. If L = 1, then
G = |h|*>C, and the NP test statistic can be written as

Tap = Z Mmﬁ (2.17)
pyar o2+ |h|2)\k ’

where v = [vgvy - vi_1]T = UMy, so that B C {0,1,...,K — 1} is the set of
indices of nonzero eigenvalues of C. In view of (2.5), for large K one has v ~ Wiy
(the DFT of the observations), and B is the support of Sss(e’). In the following

asymptotic cases, the NP test becomes independent of |h|?:

e High SNR case: if |h|2\, > o? for all k € B, then y2 ~ Y, 5 |vg|?. Thus the
NP test reduces to an Energy Detector (ED) over the spectral support of the

H

primary signal. If C is full rank, then y?z ~ vfv = yfy, i.e. the standard

energy detector.

e Low SNR case: if |h|?\; < o for all k € B, then the NP test declares H; true
if > e Melvk|? = yH Cy exceeds a threshold. This is also the Locally Most
Powerful (LMP) test for this problem, derived from weak signal detection
theory (Kay, 1998). In contrast to the ED test, it makes use of the available
information about the primary signal spectrum, since y” Cy can be interpreted
as the energy at the output of a filter with frequency response Ssls/g(ej‘“) (a

matched filter) fed by the observations y.
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2.3.2 Detection with multiple antennas

However, with L > 1 antennas, neither in the high nor low SNR regimes does the
dependence of the NP test with hh? disappear. In the following we will focus in

the case of asymptotically small SNR, of interest in Cognitive Radio systems.

For asymptotically small SNR, if we make use of the first order Taylor expansion

721_1 ~ 0—121, one has that the test Typ is proportional to

Ty = y(hh® @ C)y (2.18)

L L
= Y hikiylcy, (219)

i=1 j=1
= g'cCg, (2.20)

where we defined
L

g =gure = »_hivi. (2.21)

=1

Here, as in the single antenna case, Ty can be interpreted as the energy at the
output of a matched filter, which now is fed by a linear combination g of the signals
received at each of the antennas. We use the subscript MRC since this processing is
akin to the Mazimal Ratio Combining technique for multiantenna receivers (Simon
and Alouini, 2004), by which the signals collected at each of the antennas are phased-
aligned and combined with optimal weighting to maximize the SNR at the combiner
output and prior to the demodulation stage. Note that the computation of the NP
test statistic for low SNR does not require knowledge of the total channel gain, but
only of the spherical component h = h/||hl||s. The threshold can be set to achieve a

given false alarm rate under Hy, i.e. under ||h|j2 = 0.

Now if we neglect the magnitude gains of the channel coefficients in (2.21), then

g can be approximated as

L
g~grac =y e My, (2.22)
=1

where 0; = arg{h;}. In this case we correct the phase of the signals received at each
of the antennas before the linear combination. This is analogous to the Equal Gain

Combining (EGC) technique in diversity reception.
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The resemblance with different diversity combining techniques suggests a third
detector based on Selection Combining (SC). In this case g is approximated by the
signal at the branch with highest SNR:

g~ gsc =y, with m =argmax |h;]% (2.23)
1<i<L

Note that if the channel gains at all branches have similar magnitudes, then
grac =~ gMmrce. On the other hand, when one of the channel gains is much larger

than the remaining ones, then gsc ~ gMmre-

However, as the reader should have noted, none of these three schemes (MRC,
EGC and SC) is directly implementable, since they depend on unknown channel
parameters. In order to avoid this problem, one option is to replace the unknown
parameters by their estimate. Inspired by the Generalized Likelihood Ratio (GLR)
approach, in Section 2.4 we present different scenarios in which the Maximum Likeli-
hood (ML) estimates of the unknown parameters can be obtained; substituting these
ML estimates in the corresponding statistics will in turn yield practical detectors.
A second approach in order to handle the unknown parameters h;, is to disregard
antenna crosscorrelation and assume equal weighting for the energy estimates at the

different antennas. In this case we obtain the following detector:

2.3.3 Generalized energy detector

By disregarding in Ty the cross terms depending on h;h; for i # j and assume
|hi| = |hj| for i # j, (2.19) reduces to

L
1 o Ha
Terp = KLo2 ;% Cy; 50 YGED, (2-24)
1=

where the scaling factor (K LO‘2)_1 was introduced for convenience and 7yggp is the
decision threshold. We refer to this test as “Generalized Energy Detector” (GED),
as it merely collects the (spectrally weighted) energy at all the branches.

Notice that this detector is applicable to distributed settings with L collabo-
rating single-antenna sensors: each node reports its local statistic y” Cy; (scaled
by the inverse of the local noise variance, if different nodes are affected by different

noise levels) to a Fusion Center, where all such statistics are added together.

The asymptotic performance of this detector is analyzed in Appendix 2.A.1,
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showing that for sufficiently large K and for a fixed threshold yqgp, the probabilities

of false alarm and detection are respectively given by

Vb2
Py =0 (\/ﬁ Yoo — (1 +Cb2) ) ' (2.26)

Pex = Q (\/KL%ED_l> : (2.25)

V/LbaC? + 203 + by

Note that the performance of the GED test depends only on the average SNR (,

but not on the spherical component h of the channel vector.

2.4 Parameter estimation and detection

In order to derive the low SNR ML estimates of the unknown parameters under the
different models, we first obtain the likelihood function of the estimation problem.
The log-likelihood function under #H; is log f(y |h) = —logdet Ry + —yHRfly,
where R depends on h as per (2.12). In the low SNR regime, using the fact that

log(1 4+ z) ~ z for small |z|, we can approximate

g

t
logdet Ry ~ K Llogo? + r—z (2.27)
o
On the other hand,
1 1 17 1
-1 _ ~
YD Y | .
Thus, noting that tr G = trhh tr C = ||h||2K, for low SNR one has
Klnl2 2 H

o2 o? ot
2.4.1 Selection Combining detector

The SC detector is based on the approximation (2.23), and thus requires the estima-
tion of the index I of the antenna with largest SNR. ML estimation of this index in
the general case is difficult, and thus we resort to the low SNR approximation (2.29);
in addition, we will assume that h = he;, where €; is the [-th unit vector. The rea-

son for this is that, as mentioned above, the SC approach is expected to provide


valcarce
Highlight


22 Chapter 2. Calibrated Multiantenna Detection

close-to-optimal performance in scenarios in which the SNR at one of the antennas

is dominant.
Under this assumption, one has ||h|3 = |h|?> and y7 Gy = |n|?y Cy, in (2.29).
Therefore, the ML estimate of [ is just [ = arg max; ylH Cy;. The resulting decision

rule is given by

2 Ysos (2.30)
H

where the scaling factor (Ko?)~! does not affect the test. Thus, the SC detector
picks the antenna with largest spectrally weighted energy and uses that energy as
statistic. Note that this amounts to an OR fusion rule, applicable to distributed
settings: the channel is declared busy if the spectrally weighted energy at any of the
L nodes exceeds a threshold. In that case, only one bit of information has to be sent

to the Fusion Center by each node, in contrast with the GED scheme.

In Appendix 2.A.2 the asymptotic performance analysis of the SC detector is

given. For large K and for a local threshold v5¢, we obtain the global false alarm

L
1 _ Ysc — 1
Py =1 (1 Q (\/W>> . (2.31)

On the other hand, the probability of detection cannot be expressed in closed form,

rate

although it can be straightforwardly computed by means of a multivariate Gaussian
integration routine; see Appendix 2.A.2. It must be noted that, in contrast with
GED, the performance of the SC detector does depend on the spherical component

of the channel vector.

2.4.2 Equal Gain Combining detector

For EGC detection, an estimate of the phases {6;}%, introduced at the different
branches is needed in order to combine the respective signals as per (2.22). Consid-
ering again the low SNR approximation (2.29), it is seen that in order to obtain the

ML estimates we must maximize the following quantity w.r.t. 61, ..., 0:

L L
v Gy = > [hullhmlyy Cyme 2Om =0, (2.32)

n=1m=1
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Let anm = |hnl|hm|yH Cyp. Since apg, = ak,,,, it is clear that

mn?

yiGy = Zamm+2z Z R{apme 7m0}

n=1m= n+1

< Zamm+2z Z |@nml, (2.33)

n=1m=n+1

with equality iff 0, — 0, = arg{anm} for all (n,m) such that m > n. These con-
stitute a set of L(L — 1)/2 (linear) conditions on our L free parameters, which in
general cannot be satisfied if L > 3. Nevertheless, careful inspection of the resulting
detection statistic g Cg with g = ZlL: 1 e y; reveals that it is a function of the
phase differences émn = ém — én only. Thus, if we take these phase differences as
our free optimization variables and neglect the dependence among them, the cor-
responding ML estimates are Orn = arg{yCy,,}. This yields the following EGC

detection rule:

1
Tece = KLo2 Z Z |YmCYn‘ ’VEGca (2.34)

n=1m=1 Ho

which is intuitively satisfying: the lack of knowledge about the phase differences is

sidestepped by considering the modulus of the crosscorrelation terms.

Unfortunately, finding the distribution of Tpge (under either hypothesis) is
intractable. An asymptotic Gaussian approximation is used in Appendix 2.A.3,

showing that for large K for a given threshold vgqc,
YeGC — <1+L 1\/ ;;)
JEL=1+(1-1)3)b

-~ YeGe — (1 + KCBQ)
e (ﬁ\/fM(HOQ + 2b3k¢ + Bz) (250)

Po~Q | VKL , (2.35)

where x = ||h||?/||h/|2 = ||h||?. Note that (2.36) is a function of the scaled average
SNR per antenna x(, and that the scaling term x € [1, L] achieves its maximum
value when all elements of h have the same magnitude. Note that it is precisely in

such scenarios that one expects the EGC detector to perform best.
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2.4.3 Maximal Ratio Combining detector

For MRC detection, an estimate of the spherical component of the channel vector

h = h/||h|s is needed. Let us introduce the data matrix Y = [ y; --- ya |-
Focusing again on the low SNR approximation (2.29), the ML estimate of h must
maximize
y?Gy = y"(bn" @ C)y
= hi(Y#CY)*h
= |2 (YZCY)*h. (2.37)

This is achieved when h is the unit-norm eigenvector of (Y7 CY)* associated to
its largest eigenvalue (up to a phase term e/® which does not affect the test). This
results in the following scaled MRC detection rule:

. Amax(YHCY) 7
Tyurc = a(KUQ) 5 Y™MRC- (2.38)
0

Note that neither Tyge nor Tyre lend themselves to distributed implementation,
since they require the computation of (spectrally weighted) crosscorrelations across

the different antennas.

The statistical analysis of the MRC detector amounts to finding the distribution
of the largest eigenvalue of the random matrix Y CY under each hypothesis. For
a general covariance matrix C, this remains an open problem. In Appendix 2.A.4
we present the analysis for a special case of practical interest: strictly bandlimited
primary signals using a fraction B of the total channel bandwidth, and with flat psd
within their passband. In this case, the distribution of Tz under Hg asymptotically
follows a (shifted and scaled) Tracy-Widom distribution, which can be used to set
the threshold yyrce for a given probability of false alarm. For fixed threshold yygrc
the asymptotic probability of detection is given by

YMRC — (51 + %)

PEGC ~
D Q 61/\/E

(2.39)

where 6; = 1+ by L(.
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2.5 Detection diversity in fading environments.

In the analysis of the previous section we considered that the SNR at each antenna
is fixed. In practical conditions this is unlikely to occur. Consider a slow fading
scenario in which the channel gains remain constant during the sensing window,
then h becomes a random variable and for a fixed threshold, the probability of

detection Pp is a random variable with expected value given by
Po(@) = BelPo} = [ F(OPD(Q) . (2.0

with f¢(¢) the probability density function (pdf) of ¢, and ¢ = E¢{¢} the mean
value of the SNR.

In the following we will assume that h can be modeled with a Ricean distribu-
tion (Simon and Alouini, 2004). This accounts for the line-of-sight (LOS) component
and for the non-line-of-sight (NLOS) scattering. Hence at each realization we can

model the channel vector as

— n - 1 =~
h= 2(y/——h+/——h], 2.41
o < 1+n 1+n ( )
where ¢ denotes the average SNR and 7 stands for the Rice factor, the LOS channel
component h is defined as h = [/ &2 ...e/M%) with § ~ U(0,27) modeling the
relative phase of the antennas of a uniform linear array, h is a zero-mean complex

Gaussian vector modeling the NLOS channel component with iid components ~
CN(0,1), and independent of 6.

The worst-case scenario in terms of detection performance is given by the NLOS
channel, i.e. n = 0 with pure Rayleigh fading. We will see next that in this scenario
the probability of misdetection (asymptotically) decreases only linearly with the
SNR (in log scale) with a slope that is given by the asymptotic detection diversity
of system. However, this asymptotic measure does not reflect the true detection
performance of a detector in the SNR range of interest. To overcome this problem
we will also present an analysis based on the diversity measure first proposed by
Daher and Adve in the context of radar, related to the probability of detection
around the SNR at which Pp = 1/2.
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2.5.1 High SNR diversity order analysis

We restrict here our analysis to the worst case given by iid Rayleigh fading scenarios?,

i.e. (2.41) with = 0. In this case, the instantaneous SNR ¢ = ||h|?/(Lo?) has the

following pdf (Simon and Alouini, 2004):
Lk ¢t

fQ) = 77—

(L—1) L exp {~L¢/C}, ¢>0. (2.42)

We will next present the analysis for the GED. This analysis can be extrapolated
with minor changes to the MRC detector. First, from (2.26), the probability of
misdetection of the GED for a fixed threshold vqgp is given by

Pup =1- P, (2.43)

—Q (1+ CB2) — YGED . (2.44)

LbyC¢2+2b3¢+by
V KL
Using a first-order Taylor approximation of the argument of the Q-function in (2.43)
about ¢ = 0, one finds that in the low SNR regime,

[132 + %(1 - VGED):| (1 — vaep)

Vb2/KL ‘ Vb2/(KL)

In a fading environment, Pyp in (2.45) becomes a random variable. Its mean value

PMD ~ Q (2.45)
can be upper bounded by noting that

Qz) < =e %2 z>0. (2.46)

DN =

By using this bound in (2.45) and then averaging over h, the average probability of

2The analysis can be readily extended to Rayleigh fading with a certain correlation matrix Y.
The resulting asymptotic diversity will depend on the rank of X. We refer the interested reader to
Lépez-Valcarce et al. (2009).
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detection Pyp = E[Pyp] can be bounded as
_ 1 1—
PMD S — exp ﬂ
2 2\/ba /(K L)

62 + %(1 - ’YGED)
2/62/(KL)

x E [exp< —( (2.47)

Using similar steps to those in (Larsson and Stoica, 2003, Sec. 4.4), one finds that

pMD < CLciiL, (248)
where .
1 1-— 2y/byL/ K
CL = 5 eXp { — YoED } = b 2 / (249)

is a constant independent of the average SNR. Hence the diversity order, that is,
the slope of Pyp versus the SNR when plotted on a log-log scale, is upper bounded
by the number of antennas L of the receiver system. This shows the advantage
of having multiple antennas for channel sensing under fading conditions even when
considering the simple GED detector. By carrying a similar analysis, the MRC
detector can be shown to present the same asymptotic diversity order in Rayleigh

fading environments.

Note that this analysis cannot be applied to EGC and SC detectors, since their
performance depends on the actual SNR at each of the antennas and not on the
global instantaneous SNR. If we define ¢ = 1/0%[|h1|? |hal? --- |ha?]7 as the
vector with the instantaneous SNR at each of the antennas, an analysis of the SC
detector follows by the fact that, we have that

Pup = / Fe(O)Pun(¢)a¢ (2.50)
L oo
~ @
2~ wwrben) (2.51)
0 L
—< /0 f<1<<1>P§}]%<<1>8<1> = Pup, (2:52)

where in (2.51) we disregarded the correlation among antennas so that PIS/%(Q)

corresponds to the probability of misdetection of a single antenna system with the
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instantaneous SNR given by (; and in (2.52) we used the symmetry between anten-

nas.

Then, the miss probability at each of the antennas can be upper bounded using
(2.48) with L = 1. Then one obtains

Pup =~ Pyp < CECE, (2.53)

and, as a result, GED, MRC, and SC detectors cannot have a diversity order larger
than L. In fact, as we will numerically show in Section 2.6 the diversity order bound
is tight in the high SNR regime for the proposed detectors. Hence the four of them

achieve full asymptotic diversity in uncorrelated Rayleigh fading.

2.5.2 Daher-Adve diversity order analysis

The asymptotic diversity order analysis presented in the previous section is a high-
SNR concept. However, spectrum sensors for CR systems are expected to provide
high detection performance at much lower SNR values. This calls for a different
definition of the diversity order better suited to the detection problem. In the
context of radar processing, Daher and Adve (2010) define diversity order as the
slope of the average probability of detection (Pp) curve with respect to the SNR
at Pp = 0.5. This notion of diversity is more adequated to CR networks because
(i) it indicates a minimum operational SNR from which a detection scheme starts
working reasonably well (i.e. Pp > 0.5) and (ii) describes how fast Pp approaches 1

from this minimum operational SNR.

In this section, we characterize different spectrum sensing schemes in indepen-
dent Rayleigh fading in terms of the Daher-Adve diversity order. As opposed to
Daher and Adve (2010), in which the steering vectors are assumed known and a
single snapshot is used per sensor for detection, when sensing on wireless channels,
the channel is not known and sensing times are longer in order to acquire several

signal samples.

Let the minimum operational SNR (* of the detector be defined by Pp((*) =
0.5. Following (Daher and Adve, 2010), the diversity order d is defined as

= 2h(0) with  Pp(C*)

d , =_.
o¢ E=C 2

(2.54)

S
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Unfortunately, Pyp = E[Pyp] does not admit a closed form solution for any
of the detectors presented. In the high SNR asymptotic analysis we resorted to an
upper bound of Pyp which allowed us to obtain the analytical integral which is
tight for high SNR. However, it is not possible to use a similar approach here since
we are interested in intermediate SNRs. In order to obtain an approximation of
the diversity order we propose the following first-order piecewise approximation of
Pyp(¢), where ¢* is such that Pyp(¢*) = 0.5:

1, 0<( <,
Pup(¢) = §—a(C—¢Y), G < (<, (2.55)
0, ¢ > (o,

where (1 = (* — &, (2 = (* + 5. and a is the negative of the slope of Pyp(¢) at
¢ =" e

. 9Pup(¢) _ 9Pp(Q)
o= - 2B ‘C:c* - 2 ‘C:C*. (2.56)
Using (2.42) and (2.55), one obtains
P = [ L(OPm() & (257)
0

efon () o (.9

5&(%%JA1>F(%%L+1N} (2.58)

where the incomplete Gamma function is defined as
1 Y a1t
Iz, a) = / t“"eTvO, (2.59)
I'(a) Jo

with T'(a) = [ t* te™'9t the standard Gamma function.

Taking derivatives in (2.57), and after some algebra, one arrives at the following

approximation for the Daher-Adve diversity order

N ¢* 1 _ g_ 1
i=alon (G o) o (G- me) | (250

where gr(x) = I'(Lz, L + 1). While (2.60) may look like a rough approximation

of the diversity order, we will show in Section 2.6 that it effectively captures the

behavior of Pp in Rayleigh fading environments. We proceed now to compute the
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parameters ¢* and a for the different detection schemes.

GED detector performance

Using the asymptotic distribution (2.26), one readily obtains the parameters ¢* and
a for the GED detector:

. 1
(GED = 5 (veED — 1), (2.61)
KLb b b ~1/2
aAGED = 2 [ L(yerp — 1)2% + 2(yGED — 1)% +1 ; (2.62)
2w bs b3

where we used that the derivative of the Q-function is given by

9Q(r) = Lexp(—:/UQ). (2.63)

ox Vor

Now, finding the value of ¢* at which (2.57) equals 0.5 is not straightforward.
However, an obvious candidate is (* ~ CGEDp» since the instantaneous probability of

misdetection satisfies Py ((ipp) = 0.5. With egep = , this yields

1
2aGED<éED
dcep ~ acep (g1 (1 + ecep) — 91 (1 — €geD)) (2.64)

where both aggp and (&g depend on the system parameters K, L, b; and Pra.
Noting that the bracketed term in (2.64) is less than 1, the following upper bound

is obtained: _
KLb
dgeDp < agep < o 2. (2.65)

As L — oo and for any € > 0, we have that® g7 (1+¢) — 1 whereas gr,(1—¢) — 0.
Thus, for large L, dgep ~ aGED.-

Remark 2.1. Hence, Daher-adve diversity order of the GED detector under uncor-
related Rayleigh fading is asymptotically bounded by O (\/ K LBQ). Moreover, for
small values of (* this bound becomes asymptotically tight, i.e. for a small mini-
mum operational SNR, dgrp grows with the square root of the number of antennas
L multiplied by the parameter by = tr{C?}/K. Since by > 1 with equality for tem-
porally white primary signals, we have that Daher-adve diversity increases with the

temporal correlation of the primary signals.

3Intermediate steps can be found in Appendix 2.B.
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MRC Detection performance

In this case, the parameters for the first-order piecewise approximation of (2.39) are

1
Gine = 557 (8+ VEZF B~ 4numc) (2:66)

= L
[KL203 1~ Rro
p— — 2-
aMRC T W (2.67)

where 8 = YMRrC — %, so that

K L2b2
2

dMmre < aMre < (2.68)

with dyre — amre as L — oo.

Remark 2.2. Note however that for small values of ¢*, that is, detectors capable of
working in harsh SNR conditions, the Daher-Adve diversity of the MRC increases

as O(y/ K L?b3) while, the GED only achieves O(v/K Lby), i.e. Daher-Adve diversity

does reflect the improved performance of MRC over GED.

SC detection performance

In order to compute the Daher-Adve diversity order for the SC detector, we neglect

again the correlation among different antennas under ;. Then

Pun = [ Fe(€)Pun(€)6 [ I fc(C)Pﬂ£(<)8C] g

We now approximate the integral using the same technique as in the previous points.
Using the results obtained for the GED, particularized for L = 1, after some algebra,

one arrives at

) = = 1 * ~ L
Pup(¢) = [1 — 2asc( sinh < —) e_CSc/C] : (2.69)
2ascC
where
.1
Csc = b (ysc — 1), (2.70)
= — . ~1/2
Kb2 2b4 b3
=4/ = —1)= +2 —1)= +1 . 2.71
asc o (('YSC ) 5 +2(ysc )b% + ) (2.71)
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Figure 2.1: Theoretical versus the empirical distributions for a DVB-T OFDM signal
with L = 2: (a)-(d), and for a square root raised cosine signal with rolloff factor 1/2
and L = 4: (e)-(h).

Taking the derivative of (2.69), one finds that

L(Y2-1) [Gc ~ me
dsc ™ (Qascf* ) [ Z*Qasc +1 (2.72)
One must solve for ¢* in Pyp(¢*) = & in (2.69), i.e.,
1 Tk . _C* /E*
1-— 7 = 2agc(” sinh e e osa/S (2.73)

which can be solved numerically.

Remark 2.3. While we are not able here to obtain a closed-form expression for
the Daher-Adve diversity order of the SC detector we conjecture that it grows as
O(VK log(Lbs)), similarly to the result obtained in Daher and Adve (2010) for
an OR based detector. In fact, in the next section we numerically show that the
diversity order of the SC detector is smaller than that of the GED, i.e. dsc <

O/ KLb).
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2.6 Numerical results and discussion

In this section we examine the performance of the proposed detectors via both
Monte Carlo simulations and analytical results. The detectors considered are the
Generalized Energy Detector (GED), the Selection Combining based detector (SC'),
the Equal Gain Combining detector (EGC') and the asymptotic GLRT given by the
Maximal Ratio Combining detector (MRC').

Analytical statistic distributions.

In order to validate the approximations used in the derivation of the analytical
results for deterministic channels, we show in Fig. 2.1 the theoretical versus the
empirical distributions for a set of different scenarios. The first series of plots,
namely Figs. 2.1 (a)-(d), were obtained using a primary digital television DVB-T
signal? with bandwidth B = 7.61 MHz quantized to 9-bit precision. This channel
was downshifted to baseband and asynchronously sampled at f; = 8 MHz, thus
in this case the OFDM signal spectrum is bandpass flat occupying a bandwidth
fraction of ~ 97%. The receiver acquires K = 1024 samples at each of the L = 2
antennas with same instantaneous per antenna SNR equal to —11 dB. From Fig. 2.1
(a)-(d) itdis-apparent the good match between analytical and empirical distributions
for the four detectors, Secondly, Fig. 2.1 (e)-(h) asswme-that-theprimary network

emplovs-a16-OQAM primary onal-shaped—w

ifted-to-baseband-and-asy S, vt Nyquistrate; We assume
512, L = 4 and instantaneous SNR at each of the antennas equal to
—7, =12, —14 and —18 dB respectively. We can see that under the Hypothesis
Ho, the analytical distributions closely match the simulation results for the four
detectors. On the other hand, under H; we observe a deviation between analytical
and theoretical results for the EGC and for the MRC. The analytical distribution of
the EGC statistic was obtained under the assumption that the SNR of each of the
individual antennas was largerthanzerq under H;. However, in the simulated setup
for K = 512 the weakest antenna’s SNR (—18 dB) is not sufficiently large in order
for this approximation to hold. On the other hand, the analytical distribution of the
MRC was derived under the flat bandpass signal assumption. Here, in the analytical

representation we assumed a flat spectrum with frequency support corresponding to

48K mode, 64-QAM, guard interval 1/4, inner code rate 2/3.
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Figure 2.2: Detection ROC curves of the detectors with (a) L = 2 and (b) L =
4 antennas assuming the same instantaneous per antenna SNR. Lines represent
analytical results while markers show simulation results.

the points of the square root raised cosine mask larger than 1/2, hence the deviation

observed.

Effect of the number of antennas.

In order to show the effect of the number of antennas on the proposed detectors, we
present here the Receiver Operation Characteristic (ROC) curves of a system with
L = 2 antennas compared to a system with L = 4 for a constant total number of
samples LK = 2. The primary signal is assumed to be a flat OFDM signal occu-
pying a bandwidth fraction of ~ 97% with parameters equal to those in the previous
experiment. Figure 2.2 shows the detection performance of the different schemes
when the SNR at each of the antennas is fixed to —10 dB. By comparing Fig. 2.2(a)
and Fig. 2.2(b) we first note that the performance of the GED is independent of the
number of antennas, since it depends only on the received average SNR. For equal
SNR at each antenna and equal total number of samples LK MRC and EGC detec-
tors increase their performance with the number of antennas, whereas that of the
SC detector worsens. This effect comes from the fact that all the antennas present
similar SNR and the number of samples acquired from one antenna decreases with

the number of antennas as 1/L. Since the SC detector uses the information of the
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Figure 2.3: Detection performance versus the SNR spread factor « for fixed Pry =
0.05, L =4, K = 512 and average SNR equal to —5 dB.

best antenna only, as the number of antennas increases its performance decreases.
On the other hand, it is interesting to note that for equal per antenna SNR the
EGC detector may perform better than the MRC detector. This is apparent from
the fact that the EGC detector is derived under the assumption of equal pewes at
each antenna; hence, the EGC detector is exploiting additional a prior: information
in this scenario. Finally, note that for L = 4 antennas we observe a mismatch be-
tween theoretical and empirical results for the MRC and EGC detectors, especially
for the latter. Given the reduced number of samples (K = 512), and the order of
the probability of misdetection, the asymptotic approximations are not accurate in

this setting.

Effect of the instantaneous per antenna SNR.

We now compare the proposed detectors for different instantaneous channels. Fig-
ure 2.3 presents the simulation results for different values of x = ||h||2, which is equal
to 1 when all the SNR is concentrated at one antenna, while it is equal to L when it
is spread over all the antennas. Here we assume that all the antennas have the same
SNR, except one of them, which may present a higher SNR. The remaining system
parameters are Pry = 0.05, L =4, K = 512 and average instantaneous SNR equal
to —5 dB for primary OFDM signals.

From Fig. 2.3 the advantage of exploiting the available a priori information
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Figure 2.4: Detection performance versus the SNR under spatial fading. Pr4 = 0.05,
L =4, K = 256. (a) Ricean versus Rayleigh fading. OFDM signal. (b) Exploiting
spectral information under Rayleigh fading. GSM signal.

becomes apparent. When the received energy is concentrated in one antenna, the
SC detector, designed under this model, outperforms the remaining detectors. On
the other hand, when the energy is spread across the antennas EGC' detector shows
good performance, even better than the obtained by the MRC. It is interesting to
note that both GED and MRC performances depend on the total received SNR and
not on how this SNR is spread over the antennas. In this sense the MRC detector
offers good performance in the whole range of s, and thus should be robust to
unknown spatial fading. We also note that the asymptotic analytical results, while
inaccurate at some points given the small number of samples, show the right global

behavior.

Detection in fading environments.

In the previous points we considered that the SNR at each antenna is fixed for
the whole experiment. Figure 2.4(a) presents the simulation results for Ricean and
Rayleigh fading environments versus the average SNR ¢ when Ppy = 0.05, L = 4,
K = 256 and primary signals are bandpass OFDM. We can see that in Rayleigh
environments (n = 0) the MRC' detector outperforms other detectors. The reason is

that MRC' performance is robust to different channel realizations which may occur
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in fading environments (see Fig. 2.3). Interestingly, the FGC detector presents
only a small degradation in fading environments, and, in fact, when the Rice factor
grows it may outperform the MRC detector. This justifies the use of this detector in
practical settings, in which it may be not feasible to compute the largest eigenvalue

due to complexity restrictions.

Exploiting spectral shape a priori information.

We now study the detection performance gain of exploiting available information
about the spectral shape of primary signals. To this end, we consider a GMSK sig-
nal generated according to the GSM cellular standard, downconverted to baseband
and I/Q sampled at 300 Ksamples/s. The psd of this signal is shown in the inset
in Fig. 2.4(b). The channel from the primary user is assumed to present spatial
Rayleigh fading (n = 0), which is accurate in scenarios without LOS to the primary

user. The remaining simulation parameters are Pr4 = 0.05, L = 4, K = 256.

In Fig. 2.4(b) we compare the performance of the proposed detectors when
they exploit the available spectral information against the case they assume a white
primary signal, i.e., assuming spectral mask Cxg = Ix. We can see that the per-
formance gain of exploiting spectral information can be indeed large, regardless of
the employed detector. In the setup considered here, exploiting spectral information

gives around 3 dB detection gain when using the equivalent detector, hence with
similar complexity. @

Asymptotic diversity order of the different detectors.

Figure 2.5 shows the two different regimes that conduct to the concepts of high
SNR asymptotic diversity and Daher-Adve diversity orders in independent Rayleigh
fading.

First, in Fig. 2.5(a) we can see the high SNR behavior of the probability of
misdetection. The probability of miss has been plotted in the range of the mean
SNR ¢ € [-10, 10] dB assuming GMSK signals with parameters as in Fig. 2.4(b) for
K = 256, Py, = 0.01. We can observe the advantage of having a larger number of
antennas in terms of asymptotic detection diversity. As can be seen in Fig. 2.5(a),
in Rayleigh fading environments the number of antennas determines the asymptotic
slope of the misdetection probability curve versus the SNR. Here we show the bound
obtained for the GED. Note that the asymptotic bound presents in all the cases the
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Figure 2.5: High SNR and Daher-Adve diversity orders. (a) High SNR detection
performance. (b) Detection performance around Pp = 1/2. Solid lines: simulation
results. Dashed lines: analytical approximations.

right slope, though it becomes looser as the number of antennas increases.

On the other hand, assuming white primary signals, Fig. 2.5(b) shows the
behavior of the probability of detection (in linear scale) around the point at which it
equals 1/2. The Pp({) curves for different detectors in Rayleigh fading, obtained by
Monte Carlo simulation, are compared to the corresponding piecewise linear approx-
imations from the previous sections. These match the empirical curves reasonably

well around Pp =~ %

Daher-Adve diversity.

From Fig. 2.5(b) it is apparent that the detection performance around Pp = 3 can

be accurately described using two parameters: the minimum operational SNR ¢*
and the Daher-Adve diversity order d.

Figure 2.6 shows the analytical approximations for the diversity order and the
minimum operational SNR C* as a function of the number of antennas L, for white
primary signals in the same set-up as in Fig. 2.5(b). From Figs. 2.6(a) and (b) the
performance advantage of the MRC detector is clear. The diversity order of this

centralized detector grows almost linearly with the number of antennas, whereas
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Figure 2.6: Comparison of the different detectors. (a) Daher-Adve diversity order
d. (b) Minimum operational SNR.

that of the ED is approximately proportional to v/L. As for the SC detector, it is
difficult to find analytical bounds for its diversity order in terms of L. By comparison
with ED, it is seen in Fig. 2.6(a) that it increases at a rate no larger than /L. Tt is
conjectured that the diversity order of the OR detector is logarithmic in L, similarly
to the OR-based detector analyzed in Daher and Adve (2010). It must be noted
that the detectors studied in Daher and Adve (2010) are based on a different model
from the one adopted in this chapter. Their model is adequate for radar systems,

but no so for spectrum sensing applications.

2.7 Conclusions

In this chapter we have presented a family of multiantenna detectors designed under
different approximations, establishing a connection with diversity combining tech-
niques for multiantenna receivers in communications. Moreover, the proposed detec-
tors exploit a priori information about the modulation and channelization schemes
employed by the primary network, summarized as the spectral shape of primary

transmissions.

In order to analyze the detection performance in fading environments we pro-



40 Chapter 2. Calibrated Multiantenna Detection

Detector Test Asympt. Daher-Adve
diversity diversity
— O\ i
SC / OR Too = ﬁ mMax|<m<r, yHCy,, L O (\/ﬁlog(ng))
GED Toen = 70z YL, TH Cr; L 0 (VKLD)
EGC Trce = ﬁ Zﬁ:l Zé:1 |ngYn‘ L -
MRC Tune = 72 Amax (Y CY) L O (VKLb,)

Table 2.1: Summary of the proposed multiantenna detectors under known noise
statistics in independent Rayleigh fading. I Conjecture.

pose here two different diversity analyses. The first is based on the notion of diversity
taken from communications, hence asymptotic in the SNR, whereas the second was
borrowed from the radar literature and defines detection diversity as the slope of the
probability of detection (Pp) versus the SNR curve at Pp = 1/2. In terms of the
asymptotic definition of diversity order, all the proposed detectors extract full detec-
tion diversity from the receiver antennas in independent Rayleigh fading. However,
using the second definition we see how the more sophisticated detectors outperform
simpler approaches such as the selection combining detector. A summary with the

proposed detectors and their diversity orders is included in Table 2.1.

While some preliminary work on the topic of multiantenna detection was pre-
sented in Lépez-Valcarce et al. (2009), the main content of this chapter is a joint work
with the Signal Processing for Communications Research Group (SPCOM, Technical
Univ. of Catalonia UPC) under the national research project SPROACTIVE (refer-
ence TEC2007-68094-C02-01/TCM) and COMONSENS (CONSOLIDER-INGENIO
2010 CSD2008-00010). This work currently constitutes a joint journal paper sub-
mitted to the IEEE Transactions on Wireless Communications (Vazquez-Vilar et al.,
2011b). The theoretical results exposed in Section 2.5.2 (Daher-Adve diversity order
analysis) have been obtained in collaboration with the Philips Research Depertment
(Eindhoven, The Netherlands) and have resulted in a joint conference publication
(Vazquez-Vilar et al., 2011a).
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Appendix 2.A Statistical Analysis for large data records

Let t;; = yZH Cyjejeif denote the phase-aligned spectrally weighted crosscorrelation
between antennas i and j, where 6;; = arg{h;} — arg{h;}. For large K, we can
invoke the central limit theorem and assume that t;; is Gaussian distributed. Under
this approximation, and using the fact that for zero-mean complex circular Gaussian

vectors @1, X2, U1, Wy, and constant matrices A, B, it holds that

E[(z{ Azy)(u Bus)] =
tr (AE[zoz?]) tr (BE[uguf')) + tr (AE[z2ul’| BE[uszi!]) (2.74)

(see e.g. Porat and Friedlander (1986)), then one finds that

Bltij] = K(lhi|hjlb2 + o*1(i = j)), (2.75)
Var{tij} = K Uhi‘2‘hj’264 + 02(’hi’2 + ‘hj’Z)l_)g + (74(_)2] s (2.76)
Bt] — B2 {ti;} = K [|hif*[h;[*ba + 0 2lhil |jlbs + 02Bo) UG = 5)]  (2.77)

and

Eltijtk)] — Blti;|Elth] = K [[hal|hj] ] 7] ba
+ 0% (IRl LG = k) + [l |y |L(G = 1)) b3 + 0"ball (i = K)L(j = 1)].  (2.78)

From (2.76)-(2.77), it follows that for ¢ # j the real and imaginary parts of ¢;; are
uncorrelated (E[f{t;;}S{t;;}] — E[R{t;;;]E[S{t;;}] = 0), with variances given by

_ 1 _ _

var{R{t;;}} = K ||hil*|h;|?bs + 3 ((|h? + |Rj[*)o®bs + otbo) |, (2.79)
K _ _

var{S{t;;}} = ) [(1hil® + |hj]*)o?bs + o*bs] . (2.80)

2.A.1 Generalized Energy Detector

The GED statistic can be written as 17t up to an irrelevant scaling factor, where
t = [ty - try ). For large K, t is normally distributed; from (2.75)-(2.76), its



42 Chapter 2. Calibrated Multiantenna Detection

mean and covariance are

Eft] = K (bog + 0°1), (2.81)
cov{t, t} = K (bsgg + 0*boI + 20°b3 diag{g}), (2.82)
where g = [|h1|? |h2|?> --- |hr|?]T is the vector of channel gains. Thus, Tggp is

asymptotically Gaussian. Using (2.81)-(2.82), its the mean and variance are found
to be

b
Hoeo(¢) = ElTeen] = (7 +1, (2:83)
a?}ED (C) = Va'r{TGED} K2 (C2l_14 + 2Cl_)3 + LZ)Q) . (2.84)

Therefore, for a given threshold ~¢gp the probabilities of false alarm and detection

are respectively given by (2.25)-(2.26).

2.A.2 Selection Combining Detector

The statistic of the SC detector is Tgc = K+72 maxj<j<r, tij. For a given threshold

Ysc, and L antennas, the false alarm probability is

P(L) =1 —Pr{ti < Ko’ysc, 1 <i < L | Ho} (2.85)
L
=1—J[Pr{ta < Ko’ysc | Ho} (2.86)
i=1
=1-[1-Pua(1), (2.87)

where we have used the fact that under Hg the t;; are independent, and Pgs (1) de-
notes the false alarm probability of a single-antenna detector with the same threshold

~sc under the Gaussian approximation, which is found from (2.25):

_ Ysc — 1
Pea(1) = @Q (@/K) , (2.88)

from which (2.31) follows. On the other hand, the probability of detection is

PSY(L)=1-Pr{t; < Ko*yso, L <i < L|Hy} (2.89)
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Since the random variables t;; are not independent under #;, (2.89) does not factor
out as in (2.86) in general (except if all but one of the channel coefficients are
zero, in which case the covariance matrix (2.82) becomes diagonal). Thus, the
computation of (2.89) involves the integration of a multivariate Gaussian with mean
and covariance given by (2.81)-(2.82). This can be done numerically using, e.g.,

Matlab’s mvncdf Gaussian integration package.

2.A.3 Equal Gain Combining detector

The statistic of the EGC detector can be rewritten as
1 L L
Teae = —— tiil. 2.
BGC = T3 ;;’ il (2.90)

Note that |t;| = ti, 1 < i < L, which is asymptotically Gaussian distributed for
large K under both hypotheses. On the other hand, for i # j, ¢;; is asymptotically

complex-valued Gaussian with independent real and imaginary parts.

Distribution of Tgcc under Hg

If h; = hj = 0, then the real and imaginary parts of ¢;;, ¢ # j, have both zero mean

and the same variance. Therefore |t;;| is Rayleigh distributed with

2

o -
Ellti;| | Ho] = - VKb, (2.91)
var{|t;j| | Ho} = Ko (1 - %) bs, (2.92)

for i # j. Note from (2.78) that if (i,j) # (k,l) then t¢;; and tj; are uncorrelated
(and hence independent for large K) under Hy, and therefore the different terms
|ti;| in (2.90) become independent as well. Thus Ty is the sum of L Gaussian- and
L(L —1)/2 (since |t;j| = |tji|) Rayleigh-distributed, independent random variables.
There is no simple closed-form expression for the resulting distribution, so we pro-

pose to use a Gaussian approximation to this end, based on the asymptotic mean
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and variance given by

2
E[Thec] :KLU2 ZKU +Z Z 1\/77K52 (2.93)

=1 i=1 j=1,j7#1¢
L—1 [nby
_1q mhy 2.94
=\ (2.94)
L

var{Tpeo} = KLUQ Zvar{|tmm\}+z Z var{2|tmi} (2.95)

m=11=1,i>m

L

KLU2 ZKU4b2+Z Z 4K o*( )b (2.96)

m=11i=1,i>m

G e D o

from which (2.35) follows.

Distribution of Tgxcc under H;

For ¢ # j, t;; asymptotically follows a complex normal distribution centered on the

real axis; its real and imaginary parts are uncorrelated and have different variances

tig] = [R{tiH 1+ 22, (2.98)

where z;; = 3{t;;}/R{t;;}. Note that z;; is the ratio of two uncorrelated Gaus-

in general. We can write

sian random variables, and there is no closed-form expression for its distribution.
However, from Hayya et al. (1975), if the coefficient of variation of the denominator
(defined as the ratio of its standard deviation to its mean value) is less than 0.39,
there exists a transformation g(-) such that the distribution of g(z;;) can be accu-
rately approximated by a standard Gaussian N'(0,1). In our case, the coefficient of

variation is

(R )] 1yl Pa 4§ (Bl 4 [y 2)0%s + o 'bs)
B K [l o2 -

Bij = (2.99)
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Provided that h; # 0, h;j # 0, then (2.99) goes to zero as K — oo. Thus, for large

enough K, the random variable

E[R{ti;}zi; — B[S{ti;}] (2.100)
\/var{ére{t,-j}}zgj +var{S{t;;}}

VK [l bazis (2.101)
\/||h 12[h2b422 + L ((1hal? + |hj]2)02b3 + 01bs) (1 + 22)

9(zij) =

is approximately zero-mean Gaussian with unit variance (Hayya et al., 1975). Since

the transformation g(z) in (2.101) is one-to-one, it follows that

Pr{z}; > e} = 2Q(g(\/e)), (2.102)

which approaches zero exponentially fast as K — oco. Therefore, for K large enough,
it is reasonable to approximate |t;;| ~ |R{t;;}| in (2.98). Moreover, with §;; as
n (2.99), one has Pr{R{t;;} < 0} = Q(ﬁigl), which also goes to zero exponentially
with K.

In view of all these, if |hy,| > 0 for m = 1,..., L, then for sufficiently large K
the terms |t;;], i # j, behave as correlated real-valued Gaussian random variables.

Thus Tgec becomes approximately Gaussian, with expected value

L (y-y Ib)3,
ElThce] ® 27— ;;E[&e{tij}] =T oabtl (2.103)
and variance
var(Toce} = gepoays Z;l Rt R{t}) — ER{t ER{Y)  (2.104)
s
- Mia) Zkl R{(Elti; 1] — Elto|ElL))
+ (Eltith] — Eltz B}, (2.105)

where we have used the fact that ty; = ¢j;. Using (2.78), one readily finds that

h h|? b
var{Tice} & 7 (("(7'2'1) 7z +2” ” L3 +b ) (2.106)

Using (2.103) and (2.106), one obtains (2.36).



46 Chapter 2. Calibrated Multiantenna Detection

2.A.4 Maximal Ratio Combining detector

The statistical analysis of the MRC detector amounts to finding the distribution of
the largest eigenvalue of the random matrix Y”CY under each hypothesis. For
a general covariance matrix C, this remains an open problem. We consider here a
special case of practical interest: strictly bandlimited primary signals using a fraction
B of the total channel bandwidth, and with flat psd within their passband.

Using the asymptotic diagonalization (2.5) of the covariance matrix C,

Amax (YA CY) & Apax (YIWAWEY) (2.107)
= Amax(YZAY) (2.108)

where Y = WY . The ideal bandpass assumption implies that A has BK non-zero
diagonal entries, which are all equal to 1/B (since tr C = K). Therefore

1 o
Amax(YHCY) = EAmax(Yg Y5) (2.109)

where Y is a BK x L matrix comprising the rows of Y corresponding to the non-
zero diagonal elements of A. Note that Yg Y5 is a complex Wishart matrix (Tulino
and Verdu, 2004), and thus under H the random variable

1 (AmaX(YHCY) B M)

o=
v 02K

(2.110)

asymptotically (in K and L) follows a Tracy-Widom distribution (Karoui, 2005),

with scale and bias terms given respectively by

= (/BK —1+VL)? (2.111)

v = (\/BK—1+\7L)< (2.112)

1 1 1/3
VBK =1 /L >
On the other hand, under H;, Yg Y5 follows a spiked population model (Baik

and Silverstein, 2006), i.e. only one of the eigenvalues of the true covariance matrix

E[Yg Y] is different from 1. If we denote by &; the largest eigenvalue of the true
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covariance matrix, given by

51 = Amax (E[YZCY]) /(oK) (2.113)
= 1+62H3’2’%, (2.114)

we have that for 6; > 1+ \/L/K the distribution of Tyrc = )\maX(YHCY)/(UQK)
is given by (Baik and Silverstein, 2006; Taherpour et al., 2010)

Lo
Thrc ~N <51 + I((Tl—l)’ 5%/K> s (2.115)

asymptotically in both K and L, and (2.39) follows. Even though these results
are asymptotic in both K and L, they are remarkably accurate even for reasonably

moderate values of these parameters.

Appendix 2.B  Asymptotic analysis of g (1 + ¢)

From the definition of the incomplete Gamma function (2.59) and using that gz (x) =
I'(Lz, L + 1) we have

1 1+e LL

gr(l+e) = 1“(L)/0 = (telft)Lat, (2.116)

where te! =t for t > 0 is a quasi-concave function (Boyd and Vandenberghe, 2004).

Taking derivatives we have that

%(tel_t) =el™t —tel 7t (2.117)

For t > 0, (2.117) equals 0 if and only if ¢ = 1. Hence, the maximum value of the

function te!~? is given by

mtaxtel_t =l =1. (2.118)

Note that in general te!™* < 1 for all t > 0, t # 1. Therefore, as L — oo,

the function (telft)L tends to concentrate around its maximum. In fact, from the
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definition of the incomplete Gamma function it follows

lim L (te' )" =T(L)5(t — 1) (2.119)

L—oo el
where 6(x) denotes the Dirac delta function, and we used that I'(co, ) = 1.

As a result, for any constant € we have that

lim gr(1—¢€) =0, (2.120)
L—o0

lim gz (1+¢€) = 1. (2.121)
L—oo
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3.1 Introduction

In the previous chapter we introduced a family of multiantenna detectors that exploit

certain spectral features of the primary signal. These detectors require knowledge of

49



50 Chapter 3. Multiantenna Detection under Unknown Noise Statistics

the noise variance, so that the threshold to which the detection test is compared can
be computed for a given desired probability of false alarm. However, if the actual
value of the noise variance is different from the nominal value, a critical SNR level,
denoted as “SNR wall”, appears (Tandra and Sahai, 2008). Primary signals below
this critical value become undetectable, even if the observation time goes to infinity.

This serious drawback motivates the search for detectors robust to noise uncertainty.

Exploiting the spectral shape of the primary signal or the availability of multi-
ple antennas constitutes a promising approach to overcome this problem. The basic
idea is to exploit the fact that the primary signal presents either temporal or spatial
correlation which differs from that of the noise process. For example, if the noise
process is assumed uncorrelated across antennas spatial correlation will only appear
if primary signals are present; on the other hand, if the primary signal has certain
temporal correlation, it can be used to differenciate it from that of the white noise
process. Hence detectors can be designed based on spatial and/or temporal cor-
relation estimates, rather than on the received signal power. Several authors have
explored this strategy in order to enhance detection performance in cognitive radio
systems (see e.g. Taherpour et al. (2010); Wang et al. (2010); Zeng et al. (2008);
Alamgir et al. (2008); Lim et al. (2008); Zhang et al. (2010a)).

In this chapter we extend several of these detectors to a more sophisticated
scenario with important practical implications. In particular, under the Gaussian
hypothesis, we derive the generalized likelihood ratio test (GLRT) for the detection
of primary signals with arbitrary spatial rank when the (unknown) spatial noise is
uncorrelated across the different antennas. In a second step, we derive the GLRT
for the detection of spatially rank-1 primary signals with temporal correlation when

the noise covariance matrix is assumed to have arbitrary spatial structure.

The first case models practical scenarios with spatial rank of the received sig-
nals larger than one. This is the case, for example, if multiple independent users
(e.g. from adjacent cells) simultaneously access the same frequency channel. Alter-
natively, many state-of-the-art communication standards consider the simultaneous
transmission of different data streams through multiple antennas to achieve multi-
plexing gain and/or the use of space-time codes to enhance spatial diversity. For
these systems, the signal received at the multiantenna sensor will exhibit a spa-
tial rank equal to the number of independent streams or the spatial size of the
code, respectively. Examples range from broadcasting standards, such as the Euro-
pean DVB-T2 (ETSI, 2009) which considers 2-antenna space-time Alamouti codes,
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to point-to-multipoint standards, such as IEEE 802.11n (IEEE Computer Society,
2009), IEEE 802.16 (IEEE Computer Society and the IEEE Microwave Theory and
Techniques Society, 2009) or LTE (3GPP, 2009), which support up to four transmit

antennas.

On the other hand, a noise covariance matrix with arbitrary spatial structure
can occur in scenarios in which the spectrum sensor experiences strong co-channel
interference, originating either in the secondary network it belongs to, or in a dif-
ferent one. In this case, the secondary contributions can be modeled as temporally
white noise with arbitrary and unknown spatial covariance. Note that if no struc-
ture is imposed to the spatial covariance of the noise process, we must resort to
additional information in order to detect the primary signal. To this end we will
assume that the temporal correlation matrix of the primary signal is available to the
spectral monitor as a priori information. As we have seen in the previous chapter,
this is a reasonable assumption provided that the channelization and modulation

parameters of the primary system are fixed and public.

3.2 Problem formulation

We present here a general model of a multiantenna spectrum monitoring system of
primary signals with spatial rank that can be larger than one. This model will be

particularized when required.

3.2.1 System model

The sensor has L antennas with their respective RF chains. The same primary
channel is selected at all antennas, downconverted to baseband, and asynchronously
sampled. Primary transmission is comprised of P independent streams which may
present certain temporal correlation. The noise is assumed to have spatial rank

equal to the number of antennas L and is assumed to be temporally white.

The spectrum monitor acquires K samples from the [th antenna arranged in a

K x 1 vector y;, which can be written as
y1 = Sh; + Ngj, (3.1)

where the K x P matrix S = [s; S - - - sp] is comprised of P primary signal streams,
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h; denotes the P x 1 channel vector from the primary system to the lth receiver
antenna, N = [nj ny - - - ny| represents the K x L noise matrix, and the L x 1 vector

g; will conform the noise correlation among the different antennas.

Note that the model above assumes that the channel from the primary trans-
mitter to the spectrum monitor is frequency flat in the RF channel bandwidth, and
that it remains constant for the duration of the sensing time. Because of the reasons
presented in the Section 1.3.1 we restrict our analysis to both signal and noise fol-
lowing a zero mean Gaussian distribution. Without loss of generality, and since any
existing spatial correlation can be absorbed into the vectors h; and g; we assume
that the signal streams sj,ss,...,sp (respectively noise streams nj, ng,...,ny) are
mutually independent. Additionally we assume that the primary streams present
a certain temporal correlation (equal for all of them) while the noise is temporally
white. Then we have that

cC ifp=gq,
E[spsq1={ o itnzg (32)

; I if p=gq,
E[npnq1={ o e (33)

Again we will assume that the detector has certain information on the spectral shape
of the primary signal, which translates into the a priori knowledge of the temporal
correlation C, wich is assumed to be normalized so that tr{C} = K. Note that given
this model, any noise contribution with spatial rank equal or larger than L can be
represented, from the receiver point of view, by just L independent streams. Hence,
it suffices by considering L noise streams. Moreover, in this chapter we will assume
that the L x L noise conforming matrix defined as G = [g] g2 - - - g1| is non singular,
so that the received noise is spatially full-rank. This ammounts to requiring that the
noise spatial covariance matrix, defined as £? = GG, is non singular. Note that
this applies to any system of practical interest since the thermal noise contribution is
independent accross antennas. Moreover, if this were not the case we could trivially

detect the presence of primary users by monitoring the noise-free dimensions!.

! Being one possibility to check the rank of the empirical spatial covariance matrix of the received
signal. In absence of primary users it will feature a rank smaller than L (given the noise covariance
singularity assumption). On the other hand, when a primary signal is present, unless this signal is
aligned with the noise subspace, the perceived spatial rank of the received signal will increase.
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The received signal can be compactly written in matrix form as
Y = SH + NG, (3.4)

where we have defined the K x L received signal matrix Y = [y; y2---yz], and the
P x L channel matrix H = [h; hy---hy].

3.2.2 Hypothesis testing problem

If we define y = vec(Y), we have that under the Gaussianity assumption, y ~
CN(0,R) with

R= ()T I+ (HH) @ C. (3.5)
Then, we may write the hypothesis testing problem for primary user detection as

Hi:y ~CN(0,Ry),

(3.6)
Ho:y ~CN(0,Ryp),
where
R = ()T @Iy + HIA) © Cy, (3.7)
Ro = ()T o I. (3.8)

Generalized likelihood ratio test

As there are unknown parameters under both hypotheses, the Neyman-Pearson de-
tector is not implementable. A sensible approach is to use the Generalized Likelihood
Ratio Test (GLRT) since it results in simple detectors with good performance (Mar-
dia et al., 1979). In the GLRT, the unknown parameters are substituted by their
Maximum Likelihood (ML) estimates under each hypothesis:

- maxg, S(Y[Ry) %
maxr, [(Y |Ro) 1,

(3.9)
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where v is a suitable threshold and the parametrized probability density function of

the data is given by

exp{—yR 'y}

Ty IR) = 7K det R

(3.10)

Here it is understood that the maximization operations in (3.9) are with respect
to the structure of Ry and Ry in (3.7) and (3.8) respectively. Thus, the unknown
parameters are 32 under Ho and {H, 3?} under #;.

3.3 Detection of rank-P signals in spatially uncorrelated

noise

In this section we consider the case of white primary signals, i.e. C = Ix. Note that
under this assumption both noise and signal are temporally iid, and the likelihood

is given by the product of the individual pdfs, i.e.,

_ 1 RR-!
where
R = ¥? + HYH, (3.12)
N 1
R=_—-Y"Y 1
= (3.13)

are, respectively, the actual and the sample spatial covariance matrices.

It is clear that, due to the fact that both signal and noise are assumed tempo-

rally white, the detectors can only exploit the structure of the spatial statistics.

3.3.1 Spatially uncorrelated iid noise process

If the L analog frontends are perfectly calibrated and the noise is assumed uncor-
related across antennas, we can model the spatial covariance matrix of the noise

process as a scaled version of the identity matrix

3% = o’ (3.14)
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In order to derive the GLRT under this model, we need the maximum likelihood
(ML) estimates of the unknown parameters {o?, H} under ; and the ML estimate
of 0 under Hy. The ML estimate of the noise variance under H, is straightforward
to obtain and is given by

52 = %tr <R> (3.15)

In order to obtain the ML estimates under H;, we consider two cases depending on
the rank P.

Lemma 3.1. If P > L — 1, the ML estimates of H and o2, given by H and 52,
satisfy HH + 621 = R.

Proof. For P > L — 1, R = HH" + 5?1 has no additional structure besides being
positive definite Hermitian. In that case, the log-likelihood is maximized for R = R,
as shown in Magnus and Neudecker (1999). O

Thus, for P > L — 1, the GLRT has been derived in Mauchly (1940) and it is
the well-known Sphericity test

%trace (f{)

log7 = KLlog | ——=
det'/" (R)

(3.16)

Let R = Vdiag (01, ...,05) VI be an eigenvalue decomposition (EVD) of the
sample covariance matrix, with §; > d9 > --- > 0;. Note that the argument of
the logarithm in (3.16) is the ratio of the arithmetic and geometric means of the

eigenvalues d1,0s,...,0r.

When P < L — 1, the low-rank structure of the primary signal can be further
exploited to improve the detection. In that case, to obtain the ML estimates under
Hy, let HTH = UP?U¥ be an eigenvalue decomposition (EVD) of HH, with

U2 = diag(y1, 3, ...,¢$,0,0,...,0), (3.17)
with ¢F > 93 > -+ > 2.

Lemma 3.2. For P < L — 1, the ML estimates of 02, U and ¥? under H, are
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respectively given by

1
A2 _
TP > bk, (3.18)
k=P+1
U=V, 3.19)
pP=¢;—6% i=1,...,P. (3.20)

Proof. This result was first proved in Anderson (1963). In Appendix 3.A we include

an alternative and, in our opinion, simpler proof based on Majorization Theory. [

Taking into account (3.15) and Lemma 3.2, the log-GLRT for P < L — 1 is

given, after some straightforward manipulations, by

1 L 1L
T 2i10i =P 2i=p+10i
_z2im b = | K (L-P)log | —-F 2 =t

L 6 / L 5 /( - )
(Hi:l 1> [Tiipi16i

Note that the bracketed terms in (3.21) are functions of the ratio of the arithmetic

and geometric means of all eigenvalues, and the L — P smallest eigenvalues of R,

logT = KLlog

(3.21)

respectively. The first term is the statistic of the sphericity test (3.16), whereas the
second term can be seen as a test for the sphericity of the noise subspace, or as
a reference for sphericity due to finite sample size effects (since as K — oo, then
R — R and thus §; — o2 for i = P+1, ..., L, so that the second term in (3.21) goes
to zero). Thus, the log-GLRT may be seen as a sphericity ratio (quotient between

the sphericity statistics of the sample covariance matrix and its noise subspace).

Remark 3.1. The statistic in (3.21) generalizes the results in Besson et al. (2006);
Taherpour et al. (2010); Wang et al. (2010) obtained for the special case of P = 1.

3.3.2 Spatially uncorrelated non-iid noise process

When the analog frontends are perfectly calibrated it is possible to assume the
same noise variance at each of the antennas. In practice, however, tolerances in the
components of the different RF chains will result in deviations of the noise level
from antenna to antenna. In this section we derive the GLRT for the more involved

model of non-iid noises.

In this case, the only constraint on X2 is being diagonal with positive entries.



3.8 Detection of rank-P signals in spatially uncorrelated noise 57

The ML estimate of £2 under H, was derived in Leshem and Van der Veen (2001a,b)
) . N N LA
3 = diag ([R]M, . [R]LL) =D. (3.22)

Similarly to the case of iid noises, we study first the effect of the signal rank P on

the ML estimate of the covariance matrix under ;.

Lemma 3.3. If P > L — /L, the ML estimates of H and X% under H, satisfy
H7H+ 3" = R.

Proof. The proof can be found in Leshem and Van der Veen (2001a); Ramirez et al.
(2010). Tt hinges on the fact that if P > L — v/L, then HH? + 32 has no further

structure beyond being positive definite Hermitian. O

Using (3.22) and Lemma 3.3, and after some algebra, one finds that for P >
L — /L, the GLRT is given by the Hadamard ratio of the sample covariance ma-
trix (Wilks, 1935; Leshem and Van der Veen, 2001a,b):

TVE = L) <R> 3.23
[T [Rlii 329

On the other hand, if P < L —+/L, the low-rank structure of the signal covari-
ance matrix can be further exploited. In order to simplify the derivation of the ML
estimates under Hy, let Ry = 7'RX ™! (the whitened sample covariance matrix)
and Hy; = HX !, We can rewrite the log-likelihood as

log f (Y |Hx,X?) = —LK logm — K log det (HgHx, + 1)
— Klogdet (2) — Ktr [Rz (HEHS + I)‘l} . (3.24)
Let HgHg = G®2G* be the EVD of HgHg. The ML estimates of G and ®2 are
given next.

Lemma 3.4. Let
S ) I
RE - deg (’717 e 77L) Q (325)

be the EVD of Rg, with v1 > --+ > ~1. The ML estimates of G and 2 =
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diag (¢1,...,¢r) (which are functions of £%) are

G =Q, (3.26)

) 1, i=1,...P
gr=g Mo T (3.27)
0, i=P+1,...,L

Proof. Once R and H have been prewhitened, the problem reduces to the iid case

and, therefore, the proof follows the same lines as those in Lemma 3.2. [

Finally, replacing the ML estimate of HZHy into (3.24) we obtain

L
log f (Y|%2) = —K <+L log 7 + P + log det (R) + > - 1og%-]> . (3.28)
i=P+1

To the best of our knowledge, the maximization of (3.28) with respect to X2
does not admit a closed-form solution if P < L — /L. We present two different
approaches: an alternating optimization scheme and a closed-form GLRT detector

obtained in the limit of asymptotically small SNR.

Alternating optimization
The ML estimation problem in (3.24) can be written as
migimize tr (RER5'S™") — logdet (£72) + logdet R, (3.29)
> 1)
subject to Ry =11 + HgHg,
=2, >0

While this optimization problem is non-convex, it is possible to partition the free
variables in two different sets to obtain an alternating optimization scheme. Then,
we will alternatively perform the minimization over each set of parameters while the
remaining ones are held fixed. Since at each step the value of the cost function can
only decrease, the method is guaranteed to converge to a (local) minimum (Bezdek
and Hathaway, 2003).

From (3.29), we note that the individual minimization with respect to 3 (con-
sidering Hy, fixed) and with respect to Hy, (considering X fixed) can be easily writ-

ten as convex problems individually, and, therefore, they can be efficiently solved.
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Algorithm 1: Iterative estimation of Hy, and X via alternating optimization.

Input: Starting point gy and R.
Output: ML estimates of Hy, and X.
Initialize: n =10

repeat

Compute 2(_711) = diag(ay(y))

Obtain RE ™ = 3 /RS and its EVD

Compute H(SH) from (3.30) (fixed E(:ll))
Solve (3.32) to obtain Qnt1) (fixed H(E?H))
Updaten=n+1

until Convergence

Minimization with respect to Hy. For fixed 3, the optimal Hs, minimizing

(3.29) is given (up to a right multiplication by a unitary matrix) by Lemma 3.4:

Hy = [q1 - qp] (diag(11,...,vp) — Ip)"/?, (3.30)

where [q; -+ qp] are the first P columns of the matrix Q featuring in the EV
decomposition (3.25) of Ry = S 'RY!, and 71,...,7vp are the corresponding

eigenvalues.
Minimization with respect to X. For fixed Hy, the minimization problem
in (3.29) reduces to
minjmize tr (RE'R5'S™") — logdet (77) (3.31)

subject to [X],, > 0.

1,0

T
Defining the vector o = [[2_1}171, e [Z_l]LJ;} , the trace term in (3.31) can be
reorganized to obtain an equivalent minimization problem given by
L
C e . T/ ST -1 _ 2
minimize o (R" ®Ry)a ;log a; (3.32)
1=

subject to a; > 0.

Note that, given the trace term in (3.31), the matrix RTQREI must be positive
semidefinite since the trace of the product of two positive (semi)definite matrices

is nonnegative. Hence, the problem (3.32) is convex with respect to the parameter
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vector a and, therefore, it can be efficiently solved using any convex optimization

solver.

The proposed alternating minimization algorithm is summarized in Alg. 1.
Once the estimates of Hyx and 3 under H; are available, together with 3 under
Ho (given by (3.22)), they can be substituted into the GLRT in order to obtain
the desired test statistic. Although the alternating minimization approach does
not guarantee that the global maximizer of the log-likelihood is found, we will show
through numerical experiments how the proposed iterative scheme outperforms other

detectors that can be applied under the model considered in this section.

Low SNR approximation of the GLRT

The usefulness of the detector given in Alg. 1 in practical settings may be hindered
by its complexity. In this context, simpler closed-form detectors become of practical
interest. Now, we derive a closed-form expression for the GLRT in the low SNR
regime, of particular interest in CR applications. As the SNR goes to zero, the co-
variance matrix will become close to diagonal, and thus it is possible to approximate
the ML estimate of 2 as 33 ~ D defined in (3.22). Substituting this back into
(3.28), we obtain the final compressed log-likelihood:

L
log f(Y) = —LKlogm — KP — K log det (R) K Y B —logB), (3.33)
i=P+1
where (; is the i-th largest eigenvalue of the sample spatial coherence matrix C =
D~1/2RD~1/2. Then, the asymptotic log-GLRT is
P
log T~ K [8; —log 8;] — KP. (3.34)
i=1

Alternatively, (3.34) can be rewritten as

P

logT ~ —~KP — Klog [ [ Bie ™ = n, (3.35)
i=1 Ha

and, thus, the test statistic is seen to be given by the product of the P largest eigen-
values of C, each equalized by an exponential term. Note that fe™? is maximum

at 8 = 1. Hence, the statistic Hi 1 Bie P measures, in some sense, how far the
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vector of the P largest eigenvalues [3; --- fp| is from the vector of all ones. Note
that (3.34) yields a closed-form test, in contrast with the iterative scheme presented

in the previous section.

Remark 3.2. When P = 1, the test statistic depends only on 51 = Apax(C) >
tr{C}/K = 1. Since the function ze~* is monotonous for z > 1 it follows than an
equivalent test statistic is given by
Ay HLo,
Amax(C) 2 17, (3.36)

Ho

which recovers the detector proposed in Lépez-Valcarce et al. (2010) for P = 1.

3.3.3 Numerical results and discussion

In this section we evaluate the performance of the proposed algorithms under dif-
ferent scenarios, by means of Monte Carlo simulations. Unless otherwise specified,
the noise level at each antenna is fixed for each experiment, and for each Monte
Carlo realization the entries of the channel matrix H are independently drawn from
a Gaussian distribution (thus obtaining a Rayleigh fading scenario) and scaled so

that the SNR is constant during the experiment:

tr(HTH)

SNR (dB) =101

(3.37)

We evaluate two detectors derived under the iid noise assumption: the pro-
posed GLRT statistic in (3.21) denoted here by #id-GLRT, and the sphericity test or
GLRT for non-structured primary signals (Mauchly, 1940) (denoted as Sphericity).
In addition, three detectors derived for uncalibrated receivers (X2 diagonal with
positive entries) are also evaluated: the proposed alternating optimization scheme
from Algorithm 1 denoted here as alterntng-GLRT?, the asymptotic closed-form de-
tector in (3.34) (asympt-GLRT), the Hadamard ratio test (Wilks, 1935) or GLRT
for unstructured primary signals (3.23) (Hadamard). Additionally, we also include

two heuristic detectors for comparison: the detector based on statistical covariances

2@Given the observed convergence properties, the iterations are stopped when the cost im-
provement between iterations is less than 107> with a maximum of 100 allowed iterations. As
starting point we use an estimate given by the scaled low SNR asymptotic solution oy =

L/~ P) [D)i).... D)%)
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Figure 3.1: Misdetection probability versus P assuming (a) iid noise and (b) non-iid
noise.

(Zeng and Liang, 2009b, Alg. 1) (Covariance) given by

Ha

2 T Cow> (338)
Ho

S Y | Ry

Y[Rl

where 7¢y, is a suitable chosen threshold, and that of Eqn. (32) in Lim et al. (2008)
given by

Pl 16
TLim = log H i Z o 50 NLim (3.39)
=1 =1

where §; > --- > 1, are the eigenvalues of the sample covariance matrix R and NLim
denotes the threshold.

Detection performance for rank-P primary signals

First we compare the performance of the different schemes in terms of the spatial
rank of the signal. Figure 3.1 shows the misdetection probability for fixed Prgq =
0.01 in a scenario with L. = 6 antennas for primary signals with rank P =1, ...,
5, for iid and non-iid noises. The iid scenario assumes SNR = —6 dB, K = 128

and noise level at all the antennas fixed to 0dB while the non-iid scenario considers

S
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SNR = —4 dB, K = 64 and noise power at each antenna fixed to 0,—1,1,0,—1 and
0 dB respectively. Note that in both scenarios, as P increases the covariance matrix
becomes less structured. This effect translates into the performance degradation for

all the detectors under study with increasing P.

From Figs. 3.1 (a) and (b) we can see that for both iid and non-iid noises
the corresponding GLRT detectors consistently provide the best performance for all
values of P. While the GLRTs for P = 1 present poor performance if the actual
rank of the signal is larger than one, the Sphericity and Hadamard ratio tests (which
do not assume any structure on the primary signal) degrade for strong structure, i.e.
small P. It is interesting to note, however, that as the rank of the signal grows (for
P > 4) the Sphericity and Hadamard ratio tests offer similar performance to that
of the rank-based detectors at a lower computational cost. Regarding the heuristic
detectors, the covariance based detector (Zeng and Liang, 2009b) presents virtually
the same performance as the Hadamard ratio test and it was not included in the
plot for clarity. On the other hand, the poor performance of the detector of (Lim
et al., 2008) for all values of P is likely rooted in the heuristic estimation of the noise

variance.

Finally, it is interesting to note that for P > 1, the advantage of the itera-
tive scheme alterntng-GLRT over the asymptotic GLRT decreases. This can be
explained from the fact that, as the total SNR is divided among a growing number
of dimensions, the effective SNR per dimension decreases and one gets closer to the

asymptotic regime for which asympt-GLRT was derived.

Noise mismatch effect on detection performance

We now investigate the effect of a noise level mismatch at the different antennas on
the different detectors. In order to focus on this effect we fix P = 1. Figure 3.2
shows the corresponding receiver operating characteristic (ROC) curves in a sce-
nario with iid noises and with non-iid noises. In Fig. 3.2(a) we can see that for
an scenario with iid noises (noise powers at each antenna equal to 0 dB) the idid-
GLRT test, corresponding to the GLRT under this model, yields the best detection
performance, whereas the detectors designed for disparate noise variances suffer a
noticeable penalty. From the detectors designed for uncalibrated receivers, it is seen
that the GLRT based schemes, both asymptotic and iterative, behave similarly and
outperform the Hadamard ratio detector. The heuristic detector based on statisti-

cal covariances (Zeng and Liang, 2009b) presents almost the same performance as
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Figure 3.2: ROC curves (SNR= -8 dB, P =1, L =4, K = 128) (a) without noise
power mismatch and (b) with noise power mismatch.

the Hadamard ratio test, while the detector of (Lim et al., 2008) suffers a penalty
compared to the GLRT for the same model. Fig. 3.2(b) shows the ROC curves for
a similar scenario, but with different noise variances across the antennas, now given
by 0, —1, 1.5 and —0.5 dB. Note that the performance of the detectors designed for
uncalibrated receivers has not changed with respect to that in Fig. 3.2(a), whereas

that of the detectors based on the iid noise assumption is severely degraded.

Asymptotic GLRT performance for finite SNR values

Although the asymptotic GLRT detector (asympt-GLRT) given by (3.34) is appeal-
ing due to its computational simplicity, it is not clear how much can be gained
when the iterative scheme (alterntng-GLRT) is used in order to implement the ex-
act GLRT. Fig. 3.3 shows the missed detection probability of the detectors versus
the SNR in a scenario similar to that of the previous subsection (P = 1, L = 4,
K = 128, different noise levels at each of the antennas fixed to 0, —1, 1.5 and —0.5
dB respectively). The probability of false alarm is fixed to Ppa = 0.01 and 0.1. In
Fig. 3.3 it is seen that, as expected, for very low SNR values the asymptotic detector
presents the same performance as the alternating minimization scheme. However, as

the SNR increases, the GLRT outperforms the detector derived for asymptotically
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Hadamard
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Figure 3.3: Misdetection probability versus SNR for different detectors. Same sce-
nario as in Fig. 3.2(b), with Ppa = 0.01 and 0.1.

low SNR, as it could be expected. Note, however, that the performance loss of the
asymptotic detector is rather small, and therefore it offers a good tradeoff between

performance and complexity.

3.4 Detection of rank-1 signals in spatially correlated

noise

In the previous section we assumed the noise process uncorrelated across antennas.
While this accurately models the thermal noise effects, other contributions such as
cochannel interference will present spatial correlation. In this section no assumptions

are made about X2 other than to have full rank.

Under the Gaussianity assumption, if we do not impose any constraint on the
the spatial covariance of the noise process, we must resort to additional information
(other than spatial) in order to detect the primary signal. To this end, in this
section, we assume that the primary signal presents certain temporal correlation
which translates into C # Ix. The matrix C is assumed to be available to the
spectral monitor as a priori information. In this section we will restrict our study

to primary signals of rank one, thus, H = h with h an L x 1 vector and S = s is



66 Chapter 3. Multiantenna Detection under Unknown Noise Statistics

K x 1. Then we have that the received signal reduces to

Y =sh” + NG. (3.40)

In the following we will find useful to define the maximum achievable SNR as
p=h"5"%h = ||hyl3, (3.41)

where the prewhitened channel is given by
hy =X 'h. (3.42)

Note that p = h7372h is the maximum SNR that can be obtained at the output
of a linear combiner (beamformer), i.e. if we let x = Yv = shfv + NGv with v
the L x 1 beamformer, then the SNR of x is given by

E[vhsfshfv] vihhfy

= = A4
¢ EVvIGHINANGv] vHx?y '’ (3.43)

which attains its maximum value ¢ = h7X~2h for v = X~ 2h.

As in the previous section h and ¥£? = GH G are modeled as deterministic and
unknown. However, as a preliminary step before the derivation of the GLRT for this

problem, we study the optimal detector assuming a priori knowledge of h and X2

3.4.1 Genie-aided detectors

If h and X2 are assumed known the optimal detector is given by the Neyman-Pearson

test. Let us consider the whitened received signal, defined as
ye=(ET"ely, (3.44)

as the new input to the detector. It is easy to see that in this case the system model
corresponds to the one considered in Chapter 2 when o2 = 1. Hence, following

similar steps the optimal NP test can be found to be

-1
Tvr = y8 [(hsh$)T ® C] Ik + (hsghE)' ® C] " ys (3.45)

where we have defined the whitened channel as hyy = 37 'h. Using the definition of

the Kronecker product and the Matrix Inversion Lemma, we have that the inverse
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Ik + (hshf)T ® C]7! can be rewritten as®
[Irk + (hshi))" ® C] 7' = Ik — (hehi)" @ C(p), (3.46)
where we defined
C(p) = CY?(1x + pC)~1CY/2. (3.47)

Note that C(0) = C, whereas C(p) ~ 1/plx for p — oo. Applying this result to
(3.45) we obtain

!

Twr =y [(hshi)T @ C] [Irx — (hsh)T ® C(p)] y= (3.48)
= y§ [(hsh§)” ® C — (hshfhshil)" © (CC(p))] y= (3.49)
=y% [(hzhi)” © C — (hehg)" © (0CC(p))] y= (3.50)
= y& [(hsh$)” @ (C(Ix — pC(p)))] y= (3.51)
= y3 [(heh$)" ® (C(Ik +pC) )] y= (3.52)

where in (3.50) we have used that hfhs; = hf 3 7%h = p and in (3.52) we made use
of the identity Ix — pC(p) = (Ix + pC)~ L.

We now apply the property
tr(ATBACD) = vec(B)? (A ® C) vec(D) (3.53)
in (3.52) to obtain, after some straighforward manipulations,

Twr = hZYIZC(Ik + pC) 'Y shs (3.54)
=hI22YHC(1x + pC)1YZ2h (3.55)

where we have defined Yy = vec(ys) = YX L.

Note that v = ¥ 72h corresponds to the optimum beamformer, which maxi-
mizes the SNR at its output x = Yv. Then the NP test can be written as

T = xFC(Ix + pC)~x (3.56)
~xEWA(Ig + pA) ' Wik, (3.57)

where have made use of the asymptotic EVD of the covariance matrix C ~ WAWH

3Intermediate steps can be found in Appendix 3.B.
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first introduced in (2.5). By examining (3.57) the structure of the NP test becomes
clear. First, the received signal is fed through the optimal spatial beamformer
x = Yv. This signal is then transformed into the frequency domain by applying the
FFT transform W and fed through the optimal Wiener filter

w 1/2
F(e™) = (%) , (3.58)

before the energy of the resulting signal is compared against a threshold. That is,
the optimal NP detector relies in two key components. The first is the optimum
beamformer v which maximizes the received SNR by discarding the noise-only spa-
tial dimensions. In second place we have an optimum Wiener filter which acts as
a matched filter in the temporal domain. At this point it is instructive to consider

the following asymptotic cases, in which the structure of this filter simplifies:

e In the high SNR regime, p — oo, i.e., F(e’*) — p~/2 and the detector amounts
to comparing the energy at the output of the optimum beamformer ||x||? =

x"x with a given threshold.

e In the low SNR regime, p — 0, so that C(Ix + pC)~! — C, and the test

reduces to comparing x” Cx against a threshold.

However, neither h nor 2 can be assumed known and need to be estimated.
The ML estimation of these parameters under both Hypothesis conducts to the
GLRT detector.

3.4.2 GLRT detector

We now proceed to the derivation of the GLRT based on (3.40), as presented in
(3.9).

ML parameter estimation under H

Under Hy the signal covariance is given by Rg = (22)T ® I where 2 is unstruc-

tured.

Lemma 3.5. Under Hy, the ML estimate of the (unstructured) noise covariance

matriz 1s given by
~ 2 \ 1 g
¥ =R= EY Y. (3.59)
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Proof. Under Hg the log-likelihood reduces to
log f(Y | ) = —LK log 7 — K log det(S?) — K tr (RE‘Q) . (3.60)

which is maximized for $? = R (Magnus and Neudecker, 1999). O

ML parameter estimation under H;
Under Hi, the log-likelihood is given by

log f(y|R1) = —LK logm — logdet(Ry) — y? Ry, (3.61)
with

R = (EHT @Ik + (hh)T ® C. (3.62)

Note that (3.61) offers little information about the ML estimates of £? and
h. However, from the structure of Ry in (3.62) it is apparent that spatial and
temporal correlations are separable in terms of the Kronecker product. Using this
fact, we derive next a simpler expression for (3.61) which will allow us to reduce the

optimization problem in ¥? and h to a scalar optimization problem.

First, the inverse of R can be written as

Ry = [ @Ik + (") o C] ™ (3.63)
= (=Y @Ik] [k +(Z s wC] ™ () olk]  (3.64)
=)' eI — (2202 2)T @ C(p) (3.65)

where in the last step we used (3.46). Now applying the property (3.53) some
straightforward algebra yields

yIR 'y = tr{Z2YHY - =2hh 2 2YHC(p) Y. (3.66)

On the other hand, using a generalization of Sylvester’s determinant identity*

4det(A + UVH) = det(A) det(I + VFATIU).
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to Kronecker products, we can rewrite the determinant term in (3.61) as

log det(R1) = logdet ((£?)” ® Ix + (hh")" ® C) (3.67)
= Klogdet(X?) + log det(Ix + pC). (3.68)

Substituting (3.68) and (3.66) into the log-likelihood (3.61) yields

log f(y |hg,X) = —LKlogm — K log det £? — log det(I + pC)
—tr {E=72Y7Y} + tr {hshZ='YC(p)YE"'} . (3.69)

Defining a new parameter space

In order to maximize (3.69) we will find useful to replace the parameter space
{hy, 2_2} by a more convenient form. First, using the following identity: Ix —
pC(p) = (I + pC)~!, we may reorganize the terms in (3.69) to obtain

log f(y | p,hs, £72) = —LK logm — K log det(X?) — log det(Ix 4 pC)
—tr{(I, —hghf) = 'Y Y®~'}
—tr {hshZ2'Y# (Ix + pC)tY= "1}, (3.70)

where we have introduced the unit-norm vector hy = hs/|hs||2.

This step is important in what follows because it divides the spatial contribution
of the prewhitened received signal YX ! in two different terms: one orthogonal and

one collinear to the prewhitened channel hy, respectively.
We now define the two quasi-orthogonal contributions to the inverse of the
spatial covariance matrix of the noise 72 = W + W) as
W, ="' (I, -hshf) ="' =U, A, UY, (3.71)
WH = 2_1}_12}_152_1 = (5||uHu|I|{, (3.72)
where U A LUE denotes the economy-size eigendecomposition of the matrix W |

(of rank L —1), and the economy-size eigendecomposition of the rank-1 matrix W,

is given by 5Hu||u|1|q . Then we have the following result:

Lemma 3.6. The log-likelihood (3.70) can be rewritten in terms of a new parameter
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space given by {h,p, Uy, Ay, u, 0|} as

log f(y|p,h, 6, u,AL,Uy) =
— LK logm + Klogdet A + Klogd) + K log |leuH|2 —logdet(Ix + pC)
—tr{U_ A UYYTY} — te {6 uuf Y (Ix + pC) 'Y}, (3.73)

with h = h/|/h..

Proof. We have that U} is a L x (L — 1) semiunitary matrix. Its nullspace is given

by the direction h since

W, h=3""(I, - hghfl) =~'h (3.74)
hh# h
= (2 ?2_y2 — %2 3.75
( oo ) T (3.75)
1 hf¥2h
= > ?h-Y?h—— | = 3.76
Tl ( hHEZh) (3.76)

As a result [U h] defines a unitary matrix and the full eigenvalue decomposition of
W is given by W = [UJ_B]AJ_[UJ_E]H7 where we defined

ALilAJ‘ o]' (3.77)

Now, the determinant of £ 72 can be rewritten as

det X772 = det(W_ + W) (3.78)
— det ([UL A [UL B + wdjuf) (3.79)
— det (AL + (UL b)Tuysul/[UL E]) (3.80)
= det(AL) + dyuf'[UL h] adj(AL) [UL b7y (3.81)
= 5yuf/[UL ] [er det(A | )e]] [U, h]7y, (3.82)
= §) uf’h det(AL) h'y, (3.83)
=6 [h"uy? det(A ), (3.84)

where in (3.81) we have used that (see e.g. (Lancaster and Tismenetsky, 1985, p.
65)) det(X +yzT) = det(X)+2T adj(X )y where adj(-) denotes the adjugate matrix,
and in (3.82) we have used that det(A ) = 0 and that the adjugate matrix of a
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diagonal matrix with the i-th diagonal entry equal to zero, is the zero matrix except

for the (i,i)-th component.

Substituting (3.71), (3.72), (3.84) in the likelihood expression given in (3.70)

we obtain the desired result. O

That is, in order to maximize (3.70) with respect to {p,hs, X7}, we ex-
pressed the log-likelihood in terms of an alternative set of parameters, namely
{h,p, U, A, u),d}. Note that the number of degrees of freedom of the two sets
of parameters is the same. The first set of parameters presents L? degrees of free-
dom in the Hermitian matrix 372, 2L — 1 in the unitary vector hy; and 1 in the
effective SNR p, that is, a total of L? + 2L degrees of freedom. On the other hand,
[U. h] defines an unitary matrix with L? — L degrees of freedom, {u,d;} define
a complex vector with 2L degrees of freedom, and A and p present L — 1 and 1
degrees of freedom respectively, adding up to a total of L? + 2L degrees of freedom.
Additionally, it is possible to establish a biunivocal mapping between the two sets
of parameters. Given X2, hy, the matrices W and W) can be computed using
(3.71)-(3.72), and viceversa, given W |, W), we may compute ¥ 2 hy as

N W, 4 W, —— (3.85)
HEUH |2
Hence, the maximization can be carried out over the new set of parameters given
by {h,p, U, A}, u, 6}

Compressing the log-likelihood

We must now maximize the log-likelihood with respect to the unknown parameters.

Let us define to this end the “orthogonal component” of the observations as
(YAY), = (I, — hh?)YHY (I, — hh)). (3.86)

We recall from (3.76) that W h = 0, which in turn implies that U h = 0. It then
follows that UfYHYUL = Uf (YY), U,. Consider now an economy-size EVD
of the rank-(L — 1) matrix (Y7Y),:

(YEY), = Uy, Ay, UL . (3.87)



3.4 Detection of rank-1 signals in spatially correlated noise 73

Observe that (Y#Y), h = 0, and therefore Uy h = 0. Since both U, Uy, are

L x (L —1) matrices with orthonormal columns, and both of them are orthogonal to

the same vector h, it follows that U, Uy span the same subspace. Hence, there

must exist an (L — 1) x (L — 1) unitary matrix Ug such that
U, = Uy, Uq. (3.88)

Using the definition of Ug in (3.88), the log-likelihood function can be written as

log f(y | p, vy, 6, A, Uq) =
— LK logm + Klogdet A + Klogd + K log |171HuH|2 —logdet(Ix + pC)
— tr{UQALUQAYL} — 5||uﬁ]YH(IK + pC)_lYU||. (389)

The only term depending on Ugq is —tr{UqgA UqgAy}. For the diagonal el-
ements of Ay | sorted in non-increasing order and the diagonal elements of A
sorted in non-decreasing order (to be checked later) the term — tr{UqgA  UqAvy}
is maximized with respect to Uq for (Fraikin et al., 2008)

Ug=1I,_1. (3.90)

Now, the maximization of (3.89) with respect to ¢ and A | is straightforward and
yields

o) = K(uff Y (Ix + pC) " "Yuy) ™", (3.91)

A = KA. (3.92)

Note that indeed since the diagonal elements of Ay are sorted in non-increasing

order, the diagonal elements of A | are sorted in non-decreasing order. Hence the

assumption in obtaining (3.90) was right. Substituting (3.90), (3.91) and (3.92) into
(3.89), we obtain the compressed log-likelihood function

log f(y|p,h,uy) = —LKlogm + LK log K — LK + K log |h"u|* — log det(Ix + pC) @
~ Klog [ufYH(IK + pC)*lYu”} ~ Klogdet(Ay.). (3.93)

In order to proceed now, the following result will be useful.

Lemma 3.7. Let A be an L x L invertible matriz, and let G be an unitary matriz
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partitioned as G = [g1 G 1] where g1 is L x 1 and G is L x (L —1). Then it holds
that

det(GTAG ) = gl A71g, det(A). (3.94)
Proof. The proof can be found in Appendix 3.C. O

Observe that, since Ug 1 Uy, =11, one has

Ay, =UY, (YY), Uy, (3.95)
= UL (YEY)Uy,, (3.96)

where the second step follows from the fact that Uy h = 0. Since the matrix
[h Uy ] is unitary, we can apply the result from Lemma 3.7 to obtain

det(Ay 1) = (W (YHY) " h) det(YHY). (3.97)

Therefore, the log-likelihood (3.93) reads as

log f(y | p,h,uy) =
—LKlogm+ LK log K — LK + K log |f1HuH\2 —log det(Ix + pC)

— Klog [uf Y™ (Ix + pC)_lYu”} — Klog [h"(Y"Y) 'h] — Klogdet(Y7Y).

(3.98)
Maximizing (3.98) with respect to h and u amounts to minimizing
W (YHY) T hul"YH (Ix + pC) 'Yy,
L . (3.99)
|hHu|| |2
To this end, we can apply the following result:
Lemma 3.8. Let Ay and As be two L x L Hermitian matrices, and let
HA TA
T (g, ug) = L0 2ot (3.100)
|uy usl?

The minimum of J is given by the smallest eigenvalue of the matriz Ay As (which
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is also the smallest eigenvalue of Aa A1), and it is attained, when

uj/c1 = eigenvector of A Ay associated to its smallest eigenvalue, (3.101)

us/co = eigenvector of Ay As associated to its smallest eigenvalue, (3.102)
with ¢1 and co two arbitmrg@nplez scalars.

Proof. The proof can be found in Appendix 3.D. O

Therefore, the optimum value of (3.99) is given by
X = Amin (Y (Ix +pC) 1Y) (YHY) ™), (3.103)

whereas the ML estimates of h and u||, up to a complex scaling factor, are respec-

tively given by

h = eigenvector of (Y7 (Ix + pC) 1Y) (YHY) ™! associated to Amin,  (3.104)
| = eigenvector of (YEY) Y (YH(Ig + pC)~1Y) associated to Amin,  (3.105)

where with some abuse of notation we used A, to denote the smallest eigenvalue
of the corresponding matrix. Consider now the singular value decomposition (SVD)

of the data matrix
Y = UySy V4 (3.106)

where Uy is K x L with orthonormal columns; Sy is L x L diagonal, with the
singular values of Y; and Vy is L x L unitary. Then, it is easily seen that y can be

written as

X = Amin (U¥(Ix + pC)'Uy) . (3.107)

With this, the compressed log-likelihood under H1 can be finally written as

0= —LK(1+log %) ~ Klogdet YAY

A (YH(Ig + pC)72Y) (YHY) )

+ K max (log ~min , 3.108
3 (log det'/ K (I + pC) ) ( )

which must be maximized only over the scalar parameter p.
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GLRT detector
From Lemma 3.5 the compressed log-likelihood under the hypothesis 0 is given by
to = maxlog f(y | Ro) (3.109)
by
=—LK(1+log %) — Klogdet (YAY). (3.110)
Therefore, the GLRT statistic (3.9) is found to be

MR (U Ik + pC)~1UY)
p det(Ix + pC) ’

(3.111)

whose computation involves a maximization with respect to a scalar parameter only.
It is interesting to note that the dependence of the GLRT statistic T' with the data
is via Uy only. Hence this is a sufficient statistic for this problem, and the GLRT

discards the spatial information contained in {Sy, Vy}.

To the best of our knowledge, ther is no closed-form solution to the maximiza-

tion of

LAk (UH(Ik + pC)~'Uy)
N det(Ix + pC) ’

t(p) p>0, (3.112)

in the general case. We conjecture that t(p) is a quasi convex function on p, and
therefore its maximization can be efficiently carried out by numerical means (Boyd
and Vandenberghe, 2004).

In the next subsections we focus on two particular cases of practical significance
for which the maximization with respect to p (and therefore the GLRT statistic)
can be obtained in closed form. First, we consider the case of bandpass signals with
constant psd within the passband. Then we will study the case of arbitrary spectra
in the low SNR regime, i.e. when the SNR goes to 0. @

GLRT for ideally flat bandpass signals

Using the asymptotic EVD of the covariance matrix C ~ WAW? that we intro-
duced in (2.5), we have that, for large K the GLRT statistic is given by
ALK (UEW (I + pA)"WHUYy)

T — min
e det(Ixc + pA)

(3.113)
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We say that a signal is ideally flat passband if its psd takes only two values,
either 0 or a certain constant. This translates into the diagonal of the matrix A which
presents BK mnonzero values, with B denoting the occupied bandwidth fraction.
Moreover, due to the normalization of C, namely trC = K, we have that the
nonzero elements of A are equal to 1/B. Using these properties of the matrix A, it

is easy to see that, for ideally flat bandpass signals, the test can be written as

-1 H H
TYE _ | os Auin(Oy Wk — 554 WH Uy) (3.114)
fat = (1+p/B)P '
-1
. P H H B
= I — ————=Amax A 1 B A1
[mpm < T p/B/\ (UyWAW UY)) (14 p/B) ] (3.115)
-1
. P B
_ 1-—5 max 1 B , 11
pmin (1= ) 1018 R

where with some abuse of notation we defined Apax = )\maX(U$CUy). By taking
the derivative of the function to minimize, it is straightforward to find that the

minimum in p > 0 is obtained at

Oa if 0< >\max S 17
P* - 1/)\5‘17)()\;;7 if 1 < )\max S 1/B, (3117)
00, if Amax > 1/B.

However, it is easily shown that A\pnax < 1/B. To see this, write A = %J 2 where J

is a diagonal matrix with ones in the positions where A has nonzero values. Then

1 [IWHUyx|?
Mmax (U CUy) = — max —— 21 3.118
( Y Y) B x40 ||X||2 ( )

But it is clear that [JWH Uyx|? < [WHUyx|? = xTU{WWHUyx = xx =
Ix||>. Hence Amax < 1/B.

Therefore the test results in

B
TYE _ % (% — Amax) ( }_BB) for 1 < Apax <1/B,

flat (3.119)

Amax

1 elsewhere, @

which in the region 1 < Apax < 1/B can be shown to be non-decreasing in Apax.

Hence, an equivalent asymptotic GLRT detector for flat bandpass signals is given
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/- H [
T = Anax(UyCUy) = 4. (3.120)

0

Note that this is a closed form detector that can be implemented without much

complexity, and it is thus adequate for practical systems.

Asymptotic GLRT in the low SNR regime

We study now the bahvior of the GLRT statistic 7" from (3.111) when the SNR
is small. This low SNR regime is of interest in cognitive radio scenarios, in which
spectrum sensors must provide reliable decisions regarding the presence of primary

transmissions which may be very weak, due to signal fading and shadowing.

Using the definition of #(p) in (3.112) we have that the GLRT statistic can be

written as

T = I})lggct(p). (3.121)

Consider now the following first-order Taylor approximations around p = 0:

(Ix + pC) ™' = I — pC + o(p), (3.122)
det(Ix + pC) =1+ ptr{C} + o(p), (3.123)

where the “little-0” notation indicates a function that goes to zero faster than p as
p—0,ie. f(p) €o(p) if lim,o 1) — (. Now note that

e
Amin (U (I + pC)Uy) = Ain (UZ (I — pC)Uy + o(p)) (3.124)
(UL — pOVUY) T o) (3.125)
=1 — pAnax(UYCUy) + 0(p), (3.126)

where the second step follows from the fact that, if A(p) ¢ o(p), then

1
lim — [Amin (A(p) + 0(p)) — Amin(A(p))]
p—0 p
H H H
— min | lim A@X L XX i XA a0y
x£0 [p—0  pxfx p—0  pxHx x£0 |p—=0  pxHx

= 0. (3.128)
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Therefore one has

log t(p) = —K log (1 — pAmax(UYCUy) + 0(p)) — log (1 + ptr{C} + o(p))

(3.129)
tr{C}

= Kp [ Amax(UECUy) — IR

+ o(p), (3.130)
where we have made use of the fact that log(1 4+ ap) = ap + o(p). Consider the
hypothetical scenario in which the parameter p were known. In that case, the GLRT
statistic is directly ¢(p). In low SNR, (3.130) shows that this GLRT is equivalent to
the test

tr{C} % ’}///,
K

Amax(UCUy) — (3.131)
which does not make use of the value of p. That is, for sufficiently low SNR,

knowledge of p becomes irrelevant, and the GLRT can be rephrased as

! H T !
T = Anax(UyCUy) 2 v/, (3.132)
Ho
whether p is known or unknown. Note that this is the same test as (3.120), which

was derived for a specific signal spectrum with general SNR.

Remark 3.3. The fact that the test 7" is the GLRT for these two cases of particular
interest suggest that it is likely to offer good performance in other scenarios as well.

Indeed, in Section 3.4.4 numerical results will be presented that confirm this point.

3.4.3 Asymptotic performance analysis

In this section we derive the analytical performance of the proposed detector in
the asymptotic regime when K — co. In the Section 3.4.4 numerical results will be
presented, showing that this asymptotic distribution approximates well the empirical

data even for moderate values of K.

Asymptotic distribution in the weak signal regime

While the GLRT approach to signal detection is not necessarily optimal, it usually
offers good detection performance (Mardia et al., 1979). Moreover, the asymptotic

distribution of the GLRT statistic under both hypothesis in the weak signal regime

&
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is known under certain regularity conditions (Kay, 1998). If we denote by 6 the set
of ynknown parameters under the hypothesis #; which are fixed to 6 = 6 under H,,
and by ¢ the set of ynknown parameters free under both hypotheses, the asymptotic
distribution of the GLRT statistic 7" is given by

2 d
2logT ~{ @ Ho, (3.133)
XG(A)  under Hy,

where X?g denotes a central chi-squared distribution with ) degrees of freedom,
Xg()\) denotes a non-central chi-squared distribution with ) degrees of freedom and
non-centrality parameter \. @

Theorem 3.1. The asymptotic (as K — oo) distribution of the GLRT test statistic
T given in (3.111), under Ho and under Hi as 8 — 6y, is given by (3.133), with

parameters

Q=2L-1, (3.134)
A=0. (3.135)

Proof. The value of @ is given by (Kay, 1998) the cardinality of the set of (unknown)
parameters fixed under Hg, given by 6. In our problem this set corresponds to the
real elements of the vector h fixed to h = 0 under Hy. However, since this vector
features in the likelihood function as hh# we may fix one of its components to be
real without loss of generality. Hence, we obtain a total number of Q = 2L — 1 free
real degrees of freedom. In the following, for definiteness, we will assume that the

last component is the one fixed to be real.

Now, the value of \ is given by (Kay, 1998)

A= (01— 00)" |[F (80, 6)lo0 — [F(60, O)lo.o[F (B0, &) 5[F (00, )os] (61 — o),
(3.136)

where 67 is the true value of the parameter vector 6, 6y corresponds to the fixed value
of the parameter vector  under the hypothesis Hg, F(0',¢') denotes the Fisher’s
Information Matrix of the estimation problem evaluated at (¢', ¢’) and [-]o/ 3 denotes
the submatrix corresponding to rows and the columns relative to the parameters o’

and (3’ respectively.
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We may rearrange the L? real components of £ 72 in a L x L matrix K as

=

{[272]1']'} fOI‘j > 1,
K]ij = 1= fori=j, (3.137)
{[272]1']‘} for j < i.

&2

Then, we may define the spaces for nuisance and non-nuisance parameters, respec-

tively, as
¢ = {vec(K)}, (3.138)
9i{al,...,aL,bl,...,bL,l}, (3139)
with a = [al, e, aL]T = %{hg} and b = [bl, e ,bL]T = %{hz} @
Using this set of parameters, tedious but straightforward algebra yields
0?log f
Fyo9. =E|— = .14
0:,0, { 96,00, ] 0, (3.140)
0?log f
Fy .. =E|— =0 3.141
927¢g |: 80@8¢] :| Y ( )
and from (3.136) finally we obtain A = 0. O

Remark 3.4. Theorem 3.1 applies under the assumptions that (i) the data record
K is long enough, and (ii) the value of the set of parameters 6 under H; is close to
fp. Under the model considered here, the asymptotic result under H; is too crude @
in order to offer an useful approximation, since for A = 0 the distributions under
both Hy and H;1 are equal. However, as we will see in Section 3.4.4 by means of
simulations Theorem 3.1 models accurately the statistic under Hg and can be used

to approximate the distribution under H; as we will see next.

Asymptotic analysis under H;

We present now a result concerning the asymptotic value of the statistic T"as K — oo
regardless of the value of #, which will then be used to approximate the distribution
of the statistic under Hj.

Theorem 3.2. Consider the GLRT statistic T from (3.111). Then one has

lim E ||T —T(po)|*| =0, (3.142)

K—oo
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where py = hX"2h the true value of the SNR, and

K
- . tr{Ix + poC}/K
Tleo) = ((det(IK + POC))l/K> . A8

Proof. The proof is included in Appendix 3.E. O

Remark 3.5. The asymptotic behavior of T' given by T(po) in (3.143) corresponds to
the K-th power of the sphericity ratio of the temporal covariance matrix Ix + poC,
i.e., a metric which measures how far is the received signal from temporally white

noise.

Note that, by virtue of the asymptotic approximation (2.5) of the covariance

R 1/K

matrix of a wide-sense stationary process, the limit of (T'(pg))*/** is seen to be

o 1T S, (0] O
lim (T(p)) % = 27w [1 1 P0Sss ()]

Ko exp {2 7 Jog 1+ poSis(e)] o}

(3.144)

where Sgs(e/) is the psd of the signal {si}. The right hand-hand side of (3.144) is
the inverse of the spectral flatness measure (SFM) associated to the power spectrum
1+ poSss(e”) (Gray and Markel, 1974). Its minimum value is 1 for pg = 0 (no
signal) and it increases monotonically with py towards its asymptotic value, given
by the inverse of the SFM associated to Sss(e) (Dugre et al., 1980). It follows
that the primary signal maximizing T'(p) for a given p > 0 concentrates its energy
in a single frequency point, since in this case the spectral flatness measure (SFM) is

minimum. This is not surprising, since this peaky signals are easier to detect in the

presence of noise. @

From (3.133) we have that under H;, the asymptotic mean of the statistic is
given by E[2logT] = @ + A. On the other hand, using the result in Theorem 3.2 it

is easy to see that

lim E[2logT] = lim 2logT(p) (3.145)
K—o0 K—oo
tr{lx + poC}/K
(det(Ix 4 poC))V/E

= lim 2Klog (3.146)
K—oo

Combining these two results, we have that for sufficiently large K, A >> ) and we
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B 1o GLRT Ho (p = 0) B Simulation (p — 0.05)
Analytical [ Simulation (p = 0.1)
I Simulation (p = 0.2)
—— Analytical (Aspn)
0.1r
\
3 \ 3
2, a
0.05¢ |
0 ! ‘ |||I||.||||||||I|.. -
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Figure 3.4: Distribution of the statistic —2logT for L = 4 and K = 128. (a) Under
Ho (b) Under H,;.

may approximate A &~ 2log T'(p). This fact suggests the use of

Asph = 21log T(p) (3.147)
tI‘{IK + poC}/K

=2Klog
(det(Ix + poC))"/ "

(3.148)

as centrality parameter of the distribution under H;. In Section 3.4.4 it will be
shown that this approximation offers a surprisingly accurate characterization of the

distribution of the statistic for the SNR range of interest.

3.4.4 Numerical results and discussion

In this section we numerically study the performance of the proposed detectors via
Montecarlo simulations and test the accuracy of the analytical approximations. In
each experiment we fix the empirical SNR p = h¥72h, while the actual chan-
nel h and the noise spatial covariance matrix X2 are randomly generated at each

Montecarlo realization®.

First, Fig. 3.4 compares the asymptotic analytical distributions with the simu-

At each realization ¥? = GG with G an L x L matrix with independent circular Gaussian
entries. The vector channel h presents independent circular Gaussian components scaled to obtain
a fixed value of p = h X ~2h.
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lation results of the exact GLRT T given in (3.111) optimized® over p and denoted
here as iterative GLRT. The setup considered here is L = 4, K = 128, for the detec-
tion of a flat bandpass signal occupying half of the band. The covariance matrix is
normalized as tr{C} = K. We observe an excelent agreement between the empirical

results and the asymptotic distributions even for moderate values of K.

In the next subsections, we compare the exact GLRT T, iterative GLRT, with
the closed form GLRT 7" from (3.120), denoted here asymptotic GLRT, which has
been shown to coincide with the GLRT for vanishing SNR or for rectangular psd of

the primary signal.

It is interesting to note that most of the proposed detectors in the literature
cannot deal with the strong interference model considered in this section, since the
full-rank spatial covariance matrix of the noise always masks the presence of the
primary signal when the temporal correlation structure of the latter is ignored. In
order to compare the proposed detectors against a suitable benchmark, and inspired
by the GED derived in Chapter 2, we consider a generalized energy detector which
assumes the noise level, i.e., the trace of 32, to be available to the spectral monitor.

Then, the detector compares

_tr{YACY}

Trp = {32 (3.149)

against a threshold. Since any primary signal will increase the energy observed by

the system, the expected Trp under H; will also be increased.

Detection performance in low SNR.

In Fig. 3.5 we show the empirical performance of the proposed detectors versus the
analytical curves for a scenario with L = 4, K = 512, p = 0.2 (natural units) and
two different primary psd. One corresponds to a DVB-T television signal” (ETSI,
1997) with bandwidth B = 7.61 MHz quantized to 9-bit precision. This channel
was downshifted to baseband and asynchronously sampled at f; = 16 MHz, thus in
this case the occupied bandwidth fraction is 48%. A second curve shows the same
scenario with a QAM primary signal shaped as a square root of a raised cosine filter

with rolloff factor equal to 1 and sampled at twice the baud rate, thus occupying

SImplemented using a gradient descent algorithm, initialized at p = 1, initial stepsize u = 100,
decreased to p = p/4 when the descent direction changes sign and stop condition |0x(p)/dp| < le—5
(with a maximum number of iterations equal to 100).

"8K mode, 64-QAM, guard interval 1/4, inner code rate 2/3.
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Vd '
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Figure 3.5: ROC curve showing the detection performance for OFDM and square
root raised cosine signals when p = 0.15, L = 2 and K = 512.

the whole Nyquist bandwidth.

As can be seen from Fig. 3.5, in these harsh SNR conditions, the energy detector
offers a poor detection performance compared to the proposed schemes. Moreover,
since we are in the low SNR regime, both the iterative and the asymptotic GLRT
detectors show virtually the same performance, for both rectangular and squared
root raised cosine primary signals. It is interesting to note the good match between

the empirical results and the analytical curves, even for this moderate value of K.

Fig. 3.5 also shows the effect of primary signal shaping. As it could be expected
from the analytical results in the results in (3.133) and Theorem 3.2, the proposed
detectors work noticeably better for less spectrally flat primary signals. The reason
is that for fixed p, the DVB-T signal presents a smaller spectral flatness measure

than the squared root raised cosine primary signals.

Detection performance versus SNR.

We now study turn to study the loss incurred by the closed-form asymptotic GLRT
detector 7" from (3.120) with respect to the exact GLRT T given in (3.111) as the
SNR increases. To this end, Fig. 3.6 shows the probability of detection achieved®
by the two detectors versus the average per antenna SNR = 10log;q(p/L) for fixed

Pra = 0.05 and the two primary signal types presented in the previous section.

8Each point was computed using 10° Montecarlo iterations
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Figure 3.6: Pp performance versus SNR for fixed Prgy = 0.05, L =4 and K = 128.

The remaining system parameters are L = 4 and K = 128. First, we note that
the asymptotic analytical results match reasonably well the empirical results for the
SNR range of interest. In second place, it can be seen that for the DVB-T signal
both the asymptotic GLRT detector and the exact iterative scheme offer the same
performance, since the asymptotic GLRT coincides with the GLRT for rectangular
spectra. However, with other kinds of power spectra (such as the squared root raised
cosine), the asymptotic GLRT presents a performance penalty which increases with
the SNR. This penalty, nevertheless, is not large, which makes the asymptotic GLRT

detector a good candidate in settings in which computational complexity is an issue.

3.5 Conclusions

In this chapter we have studied the problem of multiantenna detection of primary
signals in the presence of noise with unknown statistics. We derived the GLRT

detectors under different assumptions on the noise spatial covariance matrix.

First, we considered the problem of detecting vector-valued rank- P signals when
the noise is assumed uncorrelated across the antennas. These detectors are robust
to a mismatch in noise levels across the antennas and exploit the rank-P structure of
the primary signals, including as particular cases several previous schemes derived
either for P = 1 or for large P. Then, we considered the case of noise with arbitrary

spatial structure. In this case a certain temporal structure is required for the primary



3.5 Conclusions 87

signal in order to make it distinguishable from the noise, and indeed the detection
performance of the GLRT has been shown to be closely related to the sphericity
ratio of the temporal covariance matrix Ix + pgC. The different GLRTs for the
problem of multiantenna detection under unknown noise statistics are summarized

in Table 3.1, with special enphasis on the cases treated in this chapter.

The content of this chapter is mainly based in two journal articles derived
from the preliminary work presented at the 2nd International Workshop on Cog-
nitive Information Processing (CIP 2010) (Lépez-Valcarce et al., 2010). The the-
oretical results exposed in Section 3.3 (rank-P signal detection in presence of un-
correlated noises) have been obtained in collaboration with the Advanced Signal
Processing Group (GTAS, University of Cantabria) under the national research
project COMONSENS (CONSOLIDER-INGENIO 2010 CSD2008-00010), and con-
stitutes a joint journal paper submitted to IEEE-TSP (Ramirez et al., 2011). The
derivation and performance of the GLR detector under correlated noise (Section
3.4) constitute a joint work with the Signal Processing for Communications Re-
search Group (SPCOM, Technical Univ. of Catalonia UPC) under the national
research project SPROACTIVE (reference TEC2007-68094-C02-01/TCM) and CO-
MONSENS in preparation to be submitted to IEEE-TSP as a joint paper (Sala
et al., 2011).
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Noise structure Signal structure
Temporally Spatially Temporally Spatially
White Uncorrelated iid White Unstructured
Sphericity Ratio Test
1 ltrace(lfl)
_ L

TRE = Qa7 (R)

White Uncorrelated iid White Rank-P

T Noise subspace sphericity test

1 1 Zf: Ai L—P s ZiL:P 1N
log TRL = log [(I_LLL1 )\il)l/L:| - L log [( LZ'L:;l )\i)1+/(L7P)
with \; the ordered eigenvalues of R.
White Uncorrelated non-iid White Unstructured
Hadamard Ratio Test

det(R)
ITis, [Rli
White Uncorrelated non-iid White Rank-P
I No closed-form solution. Alternating optimization scheme in Section 3.3.2.
Asymptotic low SNR GLRT:

log T# ~ —P— log Hf;l BiePi
with 5; the ordered eigenvalues of the sample spatial coherence matrix C.

White Unstructured C Rank-1
T No closed-form solution:

Tk —

e AL (U Ik +pC)—1U
TK = maxp mm( Y( K+p )1/1( Y)
(det(Ix+7C))

Asymptotic low SNR GLRT (exact for square psd):
T" = Amax (U CUYy).

Table 3.1: Summary of the GLRT for multiantenna detection under unknown noise
statistics. 1 Proposed.
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Appendix 3.A Proof of Lemma 3.2

Since the EVD of R is R = U(®2 + ¢2I)U¥, the log-likelihood is given by

log f (Y| H,0%) = ~LK log 7K log det (¥2 + ¢°I) - Ktr [UFRU (92 + 0°1) ']

(3.150)
which, letting A = U# RU, can be rewritten as follows:
P
log f (Y|H,0%) = ~LKlogm — K> log (¢7 + 0*) = K(L — P)logo”
i=1
P L
[Alii K
—KY ot = Y Al (3.151)
i=1 vi o 7 2P
Now (3.151) is maximized with respect to ¥? and o2 for
1 L
52 .
o = m ‘ Z [A]zﬂ, (3152)
i=P+1
V2 =[A)i;— 6% i=1,...,P. (3.153)

Now, substituting (3.152) and (3.153) in (3.151), it becomes
P
log f (Y|H,0%) = —LK (logm + 1) = K > log[Al;;
i=1

L
~ K(L— P)log (Lip 3 [A]i,l) (3.154)

i=P+1

which has to be maximized subject to A = UH RU and UAU = 1I;. It is easy
to check that (3.154) is a Schur-convex (Jorswieck and Boche, 2007) function of
[Al;;, i = 1,...,L. Consequently, (3.154) is upper bounded by the i-th largest
eigenvalue of A (Jorswieck and Boche, 2007), since the vector of eigenvalues ma-
jorizes any vector comprised by the diagonal entries of a given matrix. This upper
bound is attained by choosing U= V, so that A is diagonal. From this result, the

proof follows.
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Appendix 3.B Detailed computation of (I 5+ (hshi)’®
C)!

Let us define g = h§; and let C'/2 be a Hermitian square root of C, i.e. C =

Cl/2¢cl/2, ¢H/2 = CY/2. Making use of the matrix inversion lemma we have that

Ik +gg? @ C)™!

= (I + (g ® CV/2)(g" ® C1/2))~! (3.155)
=Ix — (g® CYH)(Ix + (8" © CV?) (g CY?) (g ® C/?)  (3.156)
=Ix — (g® CYH)(Ix + [lg)*C)*(g" ® C'/?) (3.157)

Substituting back g = h% and noting that ||g||*> = h"372h = p we obtain

(Ing + (hehi)T © €)' = Ik — (hshi)T ® (CY2(Ix + pC)"1CY2).  (3.158)

Appendix 3.C Proof of Lemma 3.7

Assume that we have a square invertible matrix A and an unitary matrix G. We
partition the unitary matrix G as G = [g1 G 1], where g; represents the first column
and G | the remaining ones. The inverse of GH AG can be written as a function of

its determinant and adjugate matrix as

H -1 _ adj(G" AG)
(GTAG) " = det(GTAG)’ (3.159)
that can be rewritten as
_ dj(GHAG)
Hg)lq =20 25 1
G'(A)G det(A) (3.160)

Let now e; = [L 0 --- 0]. Now we multiply both sides of the eq. (3.160) by ef’ on
the left and e; on the right to obtain

el adj(G" AG)e;

Hi AV g, =

(3.161)
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where we have made use that Ge; = g;. Note that

ell adj(GT AG)e; = [adj(GT AG)| 1 (3.162)
= det(GAG)). (3.163)

Plugging (3.163) into (3.161) we obtain the desired result:

det(GTAG ) = g’ (A) " 1g1 det(A). (3.164)

Appendix 3.D Proof of Lemma 3.8

The function we want to minimize takes the form

. u{IAlulugAguz
J(ul, UQ) =

, 3.165
ulTus]? (3.165)

where w1 and us represent any two vectors and Ay and As are two given hermitian

matrices. Then we can formally state the problem as

{uj,u5} =arg min J(u1,us) (3.166)

{u1,u2}

Note that J (w1, u2) is invariant to scalings in w1, ug. Then, the minimization (3.166)

is equivalent to

arg{min ul Ajuiull Aguy,  subject to [ufuy|? = 2, (3.167)
ul,u2

where c? is a positive constant. In order to solve (3.167) we construct the Lagrangian
L= u{{AlulquQUQ — X(|U{I’U,2|2 — 62), (3168)

where y denotes the Lagrange multiplier associated to the constraint. Now, from

V£ =0 and V, iz L = 0 we obtain, respectively:

ulquguz CAjug = Xuglul U9, (3.169)

u{IAlul - Asun = XquuQ Sug. (3.170)
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Note the symmetry between (3.169) and (3.170). By solving for the Lagrange mul-

tiplier from these two equations we have that

_ u{IAlulugAqu’ (3‘171)

ufluy?

that is, the Lagrange multiplier coincides with the quantity we are minimizing. We
substitute now the value of ug from (3.170) and x from (3.171) into (3.169) to obtain
the simplified equality

A2A1’LL1 = Xui, (3.172)
and, by symmetry of the problem, it is easy to see that

A1A2’U,2 = XUs. (3173)

Hence the minimum of J (w1, us) is achieved at

J(ul, u5) = Amin(A1A42) = Amin(A241) (3.174)
u) = eigenvector of Ay A; associated to its smallest eigenvalue,  (3.175)

us = eigenvector of A; Ay associated to its smallest eigenvalue.  (3.176)

Appendix 3.E Proof of Theorem 3.2

First, note that the GLRT test statistic (3.111), can be rewritten as

Al (YY)~ (Y D(p)Y))

T = e = det(Ix + pC) ! (3.177)
with D(p) = (I + pC)~ 1.
From the signal model (3.40) we have that
%E[YH DY] = %E[th Dsh’’] + %E[GH NADNG] (3.178)
= h% tr{B[ss”|D}hf + GH % tr{E[NN|D}G (3.179)
_ €D}y, + Ritiesiyerery (3.180)

K K
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Now, noting that Y#DY /K is a consistent estimator of its mean as K — oo, the

following asymptotic equivalence can be established

H
YHAY e t(CA) g tr(A)

2 181
e e e , (3.181)

var . . . .
where we use the symbol — to denote stochastic convergence in variance, i.e.

var

ag ~Sbx <= lim E{|ax —bx|*} =0, (3.182)
K—oo

so that in the matrix case — applies componentwise.

Applying this result to the GLRT test statistic (3.177), in the limit we obtain

A ([r(C)R + (1) 2! [t(CD(p))hh + tx(D(p))=2))
T — max )
P det(Ix + pC)

(3.183)

where D(p) = (Ix + pC)~ L. @
The minimum eigenvalue featuring in the numerator of the right-hand side of

(3.183) is computed next. For a given eigenvalue ¢ with associated eigenvector g the

following equality holds
(tr(C)hh” + K22) ™" (tr(CD(p))hh" + tr(D(p))X?) g = dg. (3.184)

Now, multiplying both sides of this equation by 372 (tr(C)hhH + K 22) on the left

we obtain
str(CD(p))X*h + tr(D(p))g = 6 (str(C)E*h + Kg) , (3.185)

with s = hfg an scalar. Note that both sides of (3.185) present the same structure,
namely they are the sum of a contribution parallel to 3 ~2h with a contribution
parallel to the eigen vector g. Then it is easy to see that for p > 0 one eigenvector
corresponds to g = g1 = X~ 2h/||X"2h||,. Moreover, every other eigenvector g = g |
must fulfill s = hf'g, = 0. If not, s # 0 and the first term of the sum would
result in a contribution parallel to g, i.e., it would be not orthogonal to g;. Then,

the eigenvalues associated to the eigenvectors g, are equal and given by §; =
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tr(D(p))/K. On the other hand, the eigenvalue associated to g; is given by

_ tr{(Ix + poC)(Ix + pC)~'}
B tr{Ix + poC} ’

(3.186)

with pg = hX2h the true value of the effective SNR. Since C is positive definite
and p > 0 it follows that d; is decreasing with pg, i.e. for pg > 0, 41 is upper bounded
by

5 < ik +0C)(Ix +pC) '}
1= tr{Ix +0C}

=6, (3.187)

Hence, Apin = 01 is the smallest eigenvalue in (3.184) with g; its associated eigen-
vector. Substituting (3.186) into (3.183) we obtain

1 tr{Ix + poC} K
lim T = . 1
Koeo o 5 det(Ix + pC) (tr{(IK ¥ p0C)(Ix + pC) 1} (3.188)

We will now show that the p maximizing the asymptotic GLRT is the true parameter
p = po. Using the eigendecomposition of C = UgAcUc we may isolate all the
terms in (3.188) depending in p as

C(p) =logdet(Ix + pAc) + Klogtr{(Ix + poAc)(Ix + pAc) '} (3.189)

Now, if we denote by Aq,..., Ax the elements of the diagonal matrix Ag, we have

that the first and second derivatives of ((p) with respect to p are given by

3 1+ poi T Ai(1+ pohs)
e 3.190
=1 (2 1+PA) ; (1+pAi)? (3.190)
—2
o i PICSIETEN S
K 2 K i
Ai 1 +’00)\ 1 +p0)\z (1 +,0())\Z)A
—2 1, (3.191
<; (14 pX;)? ) (; 1+ pA; ; (1+ pA;)3 ( )
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respectively. Evaluating these derivatives at p = py we obtain:

ag(p) =0, (3.192)
Pl p=po
2
9*¢(p) = ( A )2 1 (&
= P - = P EE— 3.193
T

T x'1

=X X7y (3.194)
where we have defined

. A1 AK }T

= T . 3.195

* [1 Foon 1+ porx (3:195)

From (3.192) we have that the first derivative equals zero at p = pp, while
from (3.194), using Cauchy-Schwarz inequality, follows that 92¢(p)/(9p)? > 0 when
evaluated at p = pg. Hence p = ppy is a minimum of ((p). Finally, substituting the

optimum value p = pg into (3.188) we obtain the desired result.
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4.1 Introduction

Cognitive Radios must monitor a wide frequency band comprising a large number
of channels (say N.,). In principle, different strategies are possible. For example,
the spectrum monitor may select one channel at a time, downconvert it to baseband
and perform spectral sensing on this single channel. To this end, we may use any of
the multiantenna schemes presented in the previous chapters which enable spectral
sensing in a single primary channel. On the other hand, it is desirable to process
the whole bandwidth of interest simultaneously in order to increment the agility and
detection performance of the system. However, the requirements on dynamic range
and linearity for the analog stage, as well as on the sampling rate and resolution of
the analog to digital converter (ADC) determine the maximum bandwidth that can

be simultaneously processed.

In order to avoid this drawbacks and make wideband processing practical we
may divide the band of interest into subbands comprising M < N, primary channels
and process them sequentially. Hence, by suitably choosing M we obtain a trade-off
between detection performance and complexity of the analog stage. However, in
some cases, the large bandwidth involved makes Nyquist-rate wideband monitoring
impractical, due to power consumption and digital processing constraints. In this
scenarios an analog to information (A2I) converter could be used in place of the

classical ADC in order to obtain a sub-Nyquist sampling rate.

In this chapter we will assume that the primary network employs FDMA with
known channelization and we will restrict our analysis to single antenna secondary
systems. Under these assumptions we consider the problem of detecting primary
users when the analog to digital converter acquires a subband comprising M < Ny,
primary channels. This wideband approach provides more information about the
background noise level, a parameter that must be estimated in practice. We will
first consider a spectral monitor employing a conventional ADC without any further
assumptions on the primary network activity on the band. Under this model we
will derive the GLRT for the detection of a given channel of the band in cases of
practical interest. As a second step, we will further elaborate the model to consider
an A2l and certain a priori information on the primary activity of the band. Under
this model we will show a connection between a Bayesian approach to primary user

detection and compressed sensing (CS) theory.
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4.2 Problem formulation

The primary network uses Frequency Division Multiple Access (FDMA), with fixed
channelization known to the spectrum monitor. Several primary channels are sensed
simultaneously, by selecting a wide band containing M of such channels, downcon-
verting it to baseband and sampling the resulting analog signal through an Analog-

to-Digital or through an Analog-to-Information converter.

The baseband analog signal at the receiver after wideband filtering is given by

r(t) = omsm(t) + on(t), (4.1)

where n(t) is a zero mean, circular complex Gaussian noise with unit variance,
assumed to be frequency flat in the captured bandwidth; o2 is the background noise
power; sp,(t) is the (noiseless) primary signal in channel m, normalized to have unit
variance (E[|s,,(t)|?] = 1); and o2, is the power of the primary signal in the mth

channel.

Following the motivation exposed in the previous chapters, the primary trans-
missions {s;,(-)} will be assumed Gaussian distributed. Note that this assumption
applies specially to this wideband set-up, since the secondary synchronization loop
cannot be simultaneously locked to the parameters of multiple primary networks.
Hence, possibly existing signal structure, such as pilots or cyclostationary features,
degrades strongly due to synchronization errors. Hence, the signals {s,,(-)} will
be modeled as wide-sense stationary, zero mean circular Gaussian processes. Since
{sm(+)} correspond to different primary transmissions, they are assumed statistically

independent.

4.2.1 Wideband acquisition

We restrict our study to linear ADC and A2l converters, that is, converters that
can be represented in matrix form from an oversampled version of the analog signal
7(t). For compactness we define so(t) = n(t) and o7 = o2. The finite discrete
representation of (4.1) at Nyquist rate using the obvious vector notation can be

written as

M
y= Z OmSm, (42)
m=0
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where y and s,, with m = 0,..., M are now N x 1 circular Gaussian vectors,
with zero mean and covariance matrix C,, = E[s,;,sZ]. Due to the normalization
and stationarity of the original processes {s,(-)}, Cy, is Toeplitz with ones on the

diagonal; whereas Cy = I, since the noise is assumed white.

If we define the K x N compression matrix ®, with K < N, we can write the

signal available to the digital spectrum monitor as

M
y=®y= Z TmSm (4'3)

m=0

with s, = ®s,,.

4.2.2 Signal model

If the channels from the primary transmitters to the monitor are frequency flat!,
then the C,, are known, and they summarize the knowledge about the primary
network (channelization and spectral shape of transmissions) available to the spec-
trum monitor. Since s;, s; with 1 <4 # j < M correspond to different primary
transmissions, they are regarded as statistically independent, and also independent
of the background noise syp. Hence, under this model the observation y is zero-mean

circular Gaussian with covariance
M ~

R(o) =E[yy"] =) _0/C; (4.4)
i=0

where C; = ®C;®. Note that in (4.4) we have made explicit the dependence of

R with the vector of unknown parameters

o=[o2 o - o3 ]" (4.5)

Under the Gaussian model, second-order statistics capture all relevant informa-
tion about the problem. In order to ensure identifiability of the parameter vector o
from (4.4), it is assumed that the {C,,}M_, are linearly independent. (As it turns
out, this condition amounts to requiring that the psds of the signals {s,,(t) %:0, de-

noted by {S,,(e*)}M_,  be linearly independent). Were this not the case, it would

m=0>

I The effect of unknown frequency selective channels on the proposed detectors will be considered
later using a realistic channel model by mean of simulations.
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be impossible to distinguish among primary users with linearly dependent emission
masks. This assumption is clearly valid in FDMA scenarios, which are the focus of

the current chapter?.

4.2.3 Hypothesis testing problem

The problem is to determine the subset of idle channels in {1, ..., M}. This could
be cast as an Hypothesis Testing Problem with 2™ different hypotheses; however,
multiple hypothesis testing in the presence of unknown parameters is a difficult
problem (Kay, 1998), so we consider instead successive detection of the M channels,

one by one. For the m-th channel, the problem becomes:

Hy': o

H: o

2 =0 (primary is absent in channel m), (4.6)
2>0 (primary is present in channel m). (4.7)
This is a composite problem, since the probability density function (pdf) f of the
observations under the two hypotheses depends on the vector of unknown parameters
o. We consider the Generalized Likelihood Ratio Test (GLRT)

) o

. f(¥ oMo ,
Ta =L = s 4.8
b f(¥y|omL) ?—L<71”“ 7 (4.8)

with 7/ a threshold, and owmr,; the ML estimate of o under 7—[;”

Conditioned on o, the observations are Gaussian distributed:

exp { 3R (0)y }

f§le)= K det R(o)

(4.9)

Note that oyp1 is the maximizer of (4.9) w.r.t. o subject to 02, > 0 for 0 <
m < M, whereas é'mr is obtained by fixing 02, = 0 and maximizing (4.9) w.r.t.
the remaining parameters in o under the same constraint. Consequently, one has
f(¥|omr1) > f(¥]6mLp), so that the test statistic in (4.8) satisfies 0 < Tgrrr < 1.

2Linear independence of emission masks may not hold if, for example, different primary users
share the same bandwidth using Code Division Multiple Access.
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4.3 Wideband spectrum sensing at Nyquist rate

In the first place we will assume that a conventional ADC is used and the input
signal to the spectral monitor is acquired at Nyquist rate, i.e., ® = I, ¥y =y and

C;,=C,; fori=0,1,...,M. Therefore, and for clarity of exposition, we will drop

the * superscript in the rest of this section.

The GLRT under this scenario will allow us to study the signal features which
can be exploited for detection purposes. Interestingly, the noise level estimation
process will depend not only on the guard bands between channels, but also on the

4

signal level found at channels perceived as “weak”.

4.3.1 GLRT detection

We proceed now with the derivation of the GLRT. To this end we first need to obtain
the ML estimate of o under both hypotheses.

Note from (4.9) that the unknown parameter vector o appears in the pdf
through the covariance matrix R(o) only. Therefore the problem reduces to the
estimation of a covariance matrix with structure given by (4.4) with o2, > 0 for
m = 0,...,M, and thus it fits in the framework addressed in Burg et al. (1982).
Here we follow a slightly different approach to derive the conditions on the uncon-
strained ML estimate, which will lead to a simplified closed-form estimator which is

asymptotically efficient for certain cases of practical interest.

Unconstrained ML estimation
ML estimation amounts to minimizing the negative of the log-likelihood function
L(y;o) = IndetR(o) + y R (o)y. (4.10)

The partial derivatives of L(y;o) w.r.t. o? are

OL(y;o)
2

~ 5 =~ u{R7(0)C;} +y"R7(0)C:R (0)y. (4.11)

Neglecting the positivity constraints O'JZ- > 0, the unconstrained ML estimate of o
satisfies OL/0c? = 0 for 0 < i < M. In view of (4.11), the natural approach to

solving these equations seems to be the diagonalization of the matrices involved. To
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this end we will make use of the asymptotic diagonalization of Toeplitz matrices
introduced in (2.5).

As K — oo, the following approximation holds:
C, ~ WA,,WH, m=0,1,..., M, (4.12)

where W denotes the K x K orthonormal IDFT matrix, A,, = diag(A;,), and
Am = AT AT AT i

k

A =g (), 0<k<K -1 (4.13)

Substituting (4.12) into (4.4), it follows that, as K — oo,

M
R~ WA(@)WY,  with  A(g) =) oA (4.14)
i=0
Note that A(o) = diag{[ do(o) d1(0) -+ dx_1(o) |} contains uniformly spaced
samples of the psd of the observations, given by
M .
o)=Y o2\, 0<k<K-L (4.15)

With this asymptotic diagonalization of y, we can substitute (4.14) back into (4.11)

to obtain
IL(y; o) -1
T‘? ~ —tr {A (O')AZ}
+vEA T o)A A o)V, (4.16)
where
v=WHy = [vgv; - vg_1]T (4.17)

is the DFT of the observations.

Then, equating (4.16) to zero, we find that as K — oo the unconstrained ML

estimate oy, will satisfy

K-1 z) K-1 |2/\ () .
0<i< M. (4.18)
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While in general it is not possible to obtain 7y, in closed form? from the

conditions (4.18), it is possible to obtain approximate closed form solutions as we

will see next.

Unconstrained Least Squares estimation

The left-hand side of (4.18) can be rewritten as

K-1,(6) K-1¢ (i
AL Oy
= 4.19
k Z 62 (4.19)
M K—14(5) ()
AN
2 k "k
-3y (T AR )
j=0 k=0 k
Substituting (4.20) into (4.18), one obtains, in matrix form,
LA A~2(6vr)Léws = LY A (6 p, (4.21)

where the K x (M + 1) matrix L and the K x 1 vector p (the periodogram) are

respectively defined as

L =12 X\ A ], (4.22)
= [ |wl® |ul? lr—1]? 1" (4.23)
= [p m pr—1 7. (4.24)

Note that the periodogram p is an asymptotically unbiased estimate of the psd

of the observations (Stoica and Moses, 2005), and therefore p, = limg_, o E[p] =

Lo, with o the vector of true parameters. Thus, asymptotically, the expected value

of p lies in the subspace spanned by the columns of L. The linear independence

assumption on the psds {S;(e/*), 0 <4 < M} implies that L has full column rank,

so that L'L = I;4;. Then it holds that

LL'p, =LL'Lo = Lo = p,,

(4.25)

3These nonlinear equations can be solved numerically by efficient fixed-point iterative algo-
rithms (Burg et al., 1982; Lépez-Valcarce and Vazquez-Vilar, 2009).
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which suggests the approximation p ~ LLTp. Substituting this in (4.21),

A —9/ A -1 —9/ A
ot ~ [LYA 2 (6\v)L] LY A2 (6wr)LLp

The LS subscript refers to the fact that this estimate is the solution to the uncon-
strained Least Squares problem ming ||Lé — pH% The rows of LT can be interpreted
as matched filters that combine the power in the different frequency bins (the entries
of p) in order to estimate the variances in each channel. The LS estimate is asymp-
totically unbiased, with covariance given by cov(é1s) = LT cov(p)(LH). Since the
asymptotic covariance of p is given by limg .o, A%(a) (Stoica and Moses, 2005),
one finds that

lim cov(érs) = lim LTA%(o) (LY. (4.27)

K—oo K—oo
Cramér-Rao Lower Bound

Under the Gaussian model and assuming ® = Ix, the elements of the Fisher infor-
mation matrix (FIM) F(o) are given by (see e.g. Kay (1993)):

[F(0)):; = tr {Rl(a)aR(a)Rl(a’)aR(a) } . (4.28)

2 2
Oo; Oo ;

The Cramér-Rao Lower Bound (CRLB) for any unbiased estimator of o is then
given by var(6?) > [F~(o)];. In our case, OR(o)/dc? = C;. Then, using the
asymptotic approximations (4.12) and (4.14),

[F(o))i; =~ { Ho)AiAT (o)A} (4.29)
K—14(),()
AN
=y ECk (4.30)
k=0 5]{:(0-)
Thus, the asymptotic FIM is given by
lim F(o)= lim LYA7?(o)L. (4.31)
K—o0 K—o0

Comparing (the inverse of) (4.31) with (4.27), it is seen that in general the
LS estimate (4.26) does not necessarily achieve the CRLB. In Section 4.3.2 a par-

ticular setting will be discussed for which it can be shown that the LS estimate is
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asymptotically efficient, i.e. it achieves the CRLB as K — oo.

Quasi-GLRT detection

Let 6; = | [7%]- a%] 6]2\4j ]7 denote an estimate (ML, LS, or other) of o
under HY", j € {0,1}. Using these estimates in the detection test, we obtain an

approximation to the GLRT. Using the asymptotic diagonalization (4.14), we can

write
-1 M
det R(6j) ~ det A(6;) = [Z 2 ] : (4.32)
k=0 Li=0
K-1
VIR Yo,y ~vIA Yo )v=S — L& (4.33)

= oM 20

The resulting “Quasi-GLRT” (QGLRT) can be written as

& K—1 M 52\ K—-1 o
log log 1011] Z [ _ ' ]
A~ 7 ~ M A 1
k=0 Zz 0 120)‘ ) 0 L= o 121)‘ ) > im0 Uzzo)‘l(c)
(4.34)
=logT (4.35)

This detector can be implemented once & ; are available, either by numerical means
(ML) or in closed form (LS). However, it is difficult in general to evaluate the
performance of this detector or to obtain some intuition about its operation. In
the next section we focus on a particular scenario whose structure will allow further
simplification of (4.34).

4.3.2 Orthogonal Frequency-flat Signals in White Noise

For FDMA-based primary networks, the signals in different channels are orthogonal,
i.e. their psds have disjoint supports. In addition, the psd of a multicarrier signal is
approximately constant within its support. In this section, the QGLRT (4.34) will

be particularized to this setting.

Definition 4.1. A signal is frequency-flat bandpass if its psd takes only two levels:

zero or a given constant value.

Definition 4.2. Two signals s,(f), s,(cj) are non-partially overlapping if either their psds
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have disjoint supports, or the support of one of them contains that of the other.

For this class of signals, it turns out that the LS estimate (4.26) is asymptoti-
cally efficient:

Theorem 4.1. If the signals sg) and s,(gj) are frequency-flat bandpass and non-partially
overlapping for any 0 < i,5 < M, then the asymptotic covariance matriz (4.27) of
the unconstrained LS estimate equals the inverse of the asymptotic FIM (4.31).

Proof. See Appendix 4.A. O

In the following we will assume that sg) i=1,...,M, are frequency-flat band-

(0)

pass with disjoint frequency supports. Since s;’ (white noise) is frequency-flat
bandpass covering the whole bandwidth, it follows that s,(;), s,(j ) are non-partially
overlapping for any 0 < 4,5 < M. This is a special case of the broader family of
non-partially overlapping frequency-flat bandpass signals, and will be denoted here
as orthogonal frequency-flat signals in white noise. For this class of signals, Theorem

4.1 motivates the use of LS estimates in the QGLRT.

QGLRT with unconstrained LS estimates

Let W; denote the set of frequency bins within the support of S;(e/*), i = 1,...,
M, and let the set of “noise-only” frequency bins (comprising all guard bands in the
captured bandwidth) be

Wo={k:kec{0,1,...,K —1}and k ¢ UM, W;}. (4.36)

We also define the fractional bandwidths w; = |W;|/K, 0 < i < M, such that
0 < w; <1 and Zf\i ow; = 1. Since the signals are normalized to unit variance, it
follows that

1, =0,
L =M =4 L kew,i=1,....M, (4.37)
0, otherwise.

The pseudoinverse of L is given in this case by

B keWpi=0,
[LT]k _ ;(7:%’ ke W07 i 7& 07
' % kEW,i#0,

0, kEWj,]#Z,]#O,

(4.38)
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as can be seen by checking that L'L = I. Let us denote the averaged periodogram

over W; by
1

Kwi

¢ = Sk 0<i<M (4.39)

The unconstrained LS estimate of o under H7* is just Lip, and is given by

5 ) = 07
oy =4 © ' (4.40)
w;i(¢i — qo), @ #0.

On the other hand, the unconstrained LS estimate under H{' is such that the sub-

band corresponding to channel m is consolidated into the “noise-only” set:
qom; i = 07
wz(gz - QOm)a { # 07Z 7& m,
where
Gom = (W0q0 + Wimgm)/(Wo + W) (4.42)

If the estimates (4.40)-(4.41) are used in the QGLRT, then some straightforward
algebra shows that (4.34) reduces to

1

1 WO Wm \ wy+wm
—log T = (wo + wp,) log (90° dm") ™0 . (4.43)
K qom

The argument of the log in (4.43) is the weighted geometric to arithmetic mean ratio
of gy and ¢,,, with respective weights wg, w;,,. This ratio, which is a function of
gm/qo alone, is always less than or equal to one, with equality iff g9 = ¢p,. It is
monotonically increasing for ¢,,/qo < 1, and decreasing for g,,/qo > 1. Thus, the
QGLRT with unconstrained LS estimates decides that channel m is idle if ¢,,/qo €
[a, B], for some o < 1 < 8 depending on the threshold, and busy otherwise. This is
against intuition, since ¢,, < qq is always a reasonable indicator of an idle channel.
Note that if g, < qo, then the unconstrained LS estimate of o2, under H is
621 = wm(qm — qo) < 0, which is against prior knowledge. This motivates the use
of constrained estimators in the QGLRT.
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QGLRT with constrained LS estimates

The constrained LS estimate of o for orthogonal frequency-flat signals in white noise

is given next.

Theorem 4.2. Let L be given by (4.37). The minimizer of ||Lé — p||3 subject to
&3 >0,0<i<M (ie. the constrained LS estimate under HY"), takes the following

form:
woqo +Zleu1 wiq

) wot+2 ey, Wi J=0
91 =9 0, Jel, (4.44)
w;(g; — 63)), otherwise,

where Uy ={j : ¢; < &%p J # 0}.

Analogously, the minimizer of |Lé — pl|3 subject to 6, = 0, 62 > 0, i # m

(i.e. the constrained LS estimate under H{'), is given by:

ono-‘-Zleuo wiq;

) wo+2;eu0 wy J=0
w;(g; — 63y), otherwise,
where Uy = {m} U {j : q; < 63y, j # 0}.
Proof. See Appendix 4.B. O

Note that (4.44)-(4.45) are implicit expressions, since they depend on the sets
U1, Uy whose definitions are in terms of 6—31 and 530 respectively. Nevertheless, these
estimates and sets can be easily obtained using the Algorithm 2. It is straightforward
to verify that this algorithm outputs sets U, Uy and estimates {6]2-1}, {&?0} satisfy-
ing (4.44) and (4.45) respectively. This scheme successively includes the “weakest”
channel (i.e., the channel with smallest averaged periodogram over the correspond-
ing frequency support) into the computation of the noise variance estimate, until
this estimate falls below the estimated power levels of the remaining channels. Note
that the only difference of the estimation algorithm under the two hypotheses comes
from the initialization of the sets U; and Uy, with the latter always including the

m-th channel.

In order to obtain the QGLRT based on the constrained LS estimates above, we

distinguish two cases, depending on the strength with which channel m is perceived
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Algorithm 2: Constrained LS estimate under H* for k = 0, 1.

Input: Measured energies g;.
Output: Constrained LS estimates &Jzk and Uy.

Initialize:

| {m} for k=0,
SetZ/lk—{ 0 for k = 1.
repeat

Set 6%, = 0 for all j € Uy.
Obtain the unconstrained estimates &]Z-k for j & Uy:
~9 on0+Zzeuk wiq;

UOk - w0+zl6b{k wy
o3 = wji(q; —05,),  J & U U{0}
if obtained estimate is not feasible then
Let j. = argminjeg, o0y 195}
update Uy, < U U {jx}

until obtained estimate is feasible

relative to the noise level. Note that by construction, m € Uy, whereas m may or

may not belong to U .

Case 1

m € Uj, so that channel m is perceived as “weak” under H[". Then we have the

following.

Proposition 4.1. If m € Uy, then Uy = Uy, so that the constrained LS estimates

under H{* and H{' are the same.
Proof. See Appendix 4.C. O

Therefore, if m € U, then from (4.34) we have logT = 0, i.e. the QGLRT

declares channel m as idle.

Case 2

m ¢ Ui, so that channel m is perceived as “not weak” under H}*. Then one has:

Proposition 4.2. If m ¢ Uy, then Uy C Up.
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Proof. See Appendix 4.D. O

Hence, if m ¢ U, then Uy = U; U S for some set S with SNy = (. For
j ¢ Up U {0}, it turns out that w;63; + &12-1 = w6, + 63-0, and thus these indices do
not contribute to the QGLRT (4.34), which after some algebra is found to yield

42 \WO+D ey, Wi wj
1 0, Jeuy —J . .
—logTzlog( o ) wHJGSqJ ,
K (‘700)

where w = wg + >, w;. Note that if S = {m}, then this ratio becomes a

(4.46)

monotonically decreasing function of ¢,,/63; > 1. Hence, if Uy = U; U {m}, the
QGLRT can be written as

5 = 7 (Test 1). (4.47)

Remark 4.1. Test 1 compares the power measured in channel m to a threshold 76(2)1
proportional to the estimated noise power. Note that the noise power is estimated
using not only the guard bands (corresponding to W), but also those channels
perceived as weak (i.e. each channel j for which the constrained LS power estimate

yields a zero value so that j € U).

If § # {m}, then the sets of weak channels estimated under Hy* and H}* are
different and it is not possible to reduce (4.46) to a simple ratio of averaged powers.
A possible approach is to disregard the influence of the weak channels with indexes
j € S, obtaining (4.47). Another possibility is to take these channels into account

in order to obtained a new estimate of the noise power

o . w040 + D icu jpm Wids

Oo2 = ) (448)
wo + 3 ety jm Wi
and then use (4.48) in the following test:
Hm
?;n 21 v (Test 2), (4.49)
T02 My

which reduces to (4.47) if S = {m}.
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4.3.3 Statistical analysis

The detectors from Section 4.3.2 are based on the random variables ¢;, 0 <7 < M.
Note that v = WHy is Gaussian with a diagonal (asymptotic) covariance matrix
A(o). For orthogonal frequency-flat signals in white noise, the diagonal of A(o)
is piecewise constant, and in particular, its elements are constant over the bins
corresponding to the i-th channel (this also applies to the set of “noise-only” bins).
Hence, ¢; is the sum of square magnitudes of zero-mean Gaussian random variables,
asymptotically uncorrelated and with the same variance. Thus, for large K, g;
becomes chi-squared distributed with Kw; degrees of freedom; in turn, as K — oo,
this distribution converges to a Gaussian distribution: ¢; ~ N(u;, a?). Moreover,
gi, qj are asymptotically uncorrelated for i # j, since the two sets of bins used for

their computation are disjoint. In terms of the SNR in channel ¢, defined as
.2 2
pi = 0 [(wiog), (4.50)

the mean and variance of g; are given by

2 .
M - 07
o= % ' (4.51)
o5 (1 + pi), >0,
0'4 .
o2 =) Ko =0 (4.52)
ﬁ(l+pi)2> Z>0>

as can be readily found from the definition of ¢; in (4.39).

Single-channel detection with guard bands

As a first step, we analyze the case M = 1, for which all of the proposed detectors
boil down to the same test. This test can be expressed as z = q1 —yqo 2%3 0, where

~v > 1 is a threshold and the statistic z follows a Gaussian distribution:

4 1 2 2
sz(ag(l+p1—’y), % [(ZT)JFZUOD (4.53)

Since o2 > 0, the probabilities of false alarm and detection can be respectively
written as Ppa = Pr{(z/03) > 0|p1 = 0} and Pp = Pr{(z/0?) > 0| p1 > 0}. These
probabilities do not depend on the noise power 03, as expected. In order to set the

threshold -, two approaches are possible:
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Threshold for fixed Ppa. In view of (4.53), it is readily found that, for
PFA < 053

iy () (1 )
’Y(PFA) = Q1 (Pen)]? s (454)
N (T

where Q(-) is the complementary Gaussian cumulative distribution function, and
Q7 1() denotes its inverse. The resulting probability of detection for an SNR p; is
then given by

Po = Q| /Fug—2en) = (Lt p1) . (4.55)
VP Bea) + 2 (1 p)?

Threshold for fixed Pp. In the context of cognitive radio systems, a false
alarm results in a missed opportunity of using an idle channel, and therefore Ppy is
related to the throughput efficiency of the secondary system. However, this parame-
ter is irrelevant to the primary network. On the other hand, a missed detection may
result in the secondary user accessing a channel in use, thus producing interference
to the primary system. Regulatory bodies are likely to require a minimum detec-
tion performance to avoid collisions with primary (licensed) users (FCC, 2008), i.e.
Pp > P} at some target SNR pj. The threshold v is then determined for P5 > 0.5

as

)1—¢1—(1—K:UO)(1—K21)

Y(Pp; p7) = (1 + p7 — : (4.56)
Kwg
with k = [Q~1(P%)]?. This yields
Pripr) —1

0
VPP o)+
Multichannel detection

Single-channel spectrum sensing, as described in the previous subsection, exploits
the presence of upper and lower guard bands to estimate the noise power. In prac-

tice, these guard bands will likely appear distorted, due to the transition bands of
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the analog filter used for channel extraction. This may preclude the use of those
frequency components for noise variance estimation. When M > 1 channels are
simultaneously captured, the guard bands between adjacent channels remain undis-

torted, and therefore this problem is alleviated.

Without loss of generality, let m = M, so that the channel under scrutiny is the
M-th one. In order to simplify the presentation, we restrict our analysis to the case
in which all channels have the same bandwidth?: w; = wy = --- = wy;. Whereas
finding analytical expressions for the performance of the QGLRT detector (4.46)
seems intractable, an analysis of the simplified tests (4.47) and (4.49) is included in
the Appendix 4.E.

The resulting distribution of the statistics (4.47) and (4.49) in the multichannel
setting does not present a simple expression as when considering a single chan-
nel. Nevertheless, the probability of detection and probability of false alarm of the
proposed Tests 1 and 2, can be written as the integral of a multivariate Gaussian
distribution over the positive orthant. Therefore, for Tests 1 and 2 Ppa and Pp can

be found for a given scenario without resorting to Monte Carlo simulations.

While no a priori assumptions have been made about the occupancy of the
band in the derivation of these detectors, as it turns out, in a multichannel scenario
their performance depends on the a priori probability of any given channel being in
use by the primary network. This probability, or activity factor, will be denoted by
a in what follows. In the next section we will see that in practical implementations
of the proposed schemes it is possible to deal with unknown values of the activity

factor a by considering worst case scenarios.

4.3.4 Numerical results and discussion

We evaluate now the performance of the proposed detectors (QGLRT (4.46), Test
1 (4.47) and Test 2 (4.49)), both theoretically and via Monte Carlo simulations. For
the primary system we consider a terrestrial digital TV broadcast network using
8K-mode DVB-T modulation®. The channel spacing is 8 MHz with a 7.61 MHz
signal bandwidth, which is one of the options considered in the DVB-T standard
(ETSI, 1997) resulting in wy = --- = wy = 0.95125/M, wy = 0.04875. A band

“The analysis can be readily modified in order to account for channels with different bandwidths,
although the notation becomes somewhat cumbersome.

5For Monte Carlo simulation, the modulation parameters of the DVB-T signals were: 64-QAM,
guard interval 1/4, inner code rate 2/3.
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Figure 4.1: False alarm and missed detection performance in a setting with M = 4
channels. (a) Test 1 (analytical). (b) Test 2 (analytical). (c) QGLRT (empirical).

comprising M of such DVB-T channels is downconverted to baseband and sampled
at Nyquist rate, i.e. 8M MHz.

Influence of channel occupancy

In the first experiment we consider a setting with M = 4 channels and K = 2048
samples. The SNR of the channel to detect is set to —5 dB. The detectors were
analyzed for activity factors of a = 0.1, 0.5 and 0.9. In the simulations, the SNRs
of the active channels (other than that under scrutiny) were generated following a

log-normal distribution with mean 0 dB and dB-spread equal to 1 dB.

In order to investigate the issue of threshold selection, we plot in Fig. 4.1 the
misdetection and false alarm probabilities of the three schemes, as a function of the
detection threshold. For Tests 1 and 2, the analytical method of Appendix 4.E was
used, whereas for the QGLRT (4.46), Pp and Ppa were obtained empirically. It is
seen that, in the region of interest (small probability of misdetection), and for fixed
thresholds, the detection performance of the three tests improves as a decreases.
This is reasonable, since lower primary activity results in more channels perceived
as weak and this can be exploited in order to improve the noise variance estimates.
Hence, in order to satisfy Pp > P} for a given target P§ when the activity factor is

unknown, the threshold must be set assuming the worst case a = 1.

Once the threshold has been fixed in order to satisfy the detection requirements,
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Figure 4.2: Complementary ROC curves in a setting with M = 8 channels, for
activity factor (a) a = 0.1 and (b) a = 0.9.

the behavior of Ppa in terms of a is different for the three schemes. Whereas the
false alarm rate of the QGLRT worsens as a decreases, for Test 1 Ppa is almost
insensitive to variations in a. Interestingly, for Test 2 a region exists for which both
Pp and Ppa improve with decreasing a. Thus, by setting the threshold for a given
target Pp > P assuming a = 1, performance guarantees in terms of Ppa (missed

opportunities for transmission) can be given for Tests 1 and 2.

Next we consider a setting with M = 8 channels, with the remaining parameters
kept at the same values as in the previous experiment. Fig. 4.2 shows the comple-
mentary Receiver Operating Characteristics (ROC) curves for the three detectors
and different activity factors. As expected, the QGLRT-based detector outperforms
the other two suboptimal schemes. Tests 1 and 2 perform similarly for high ac-
tivity factors, although Test 2 presents an advantage as a decreases. Note that in
the extreme case of @ = 1 there are no idle channels, and thus S = () in the con-
text of Sec. 4.3.2, which in turn implies that the three tests become approximately

equivalent for a — 1.

In Fig. 4.2 a good agreement is observed between analytical and empirical
results for Tests 1 and 2, with just a slight mismatch for high activity settings
(e = 0.9) which can be explained as follows. In the derivation of the analytical

expressions in Appendix 4.E it was assumed that busy channels do not affect the
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Figure 4.3: Detector performance with frequency selective channels.

distribution of the statistics for these detectors. This assumption is more likely to

be violated as the percentage of busy channels (i.e. the activity factor a) increases.

Impact of frequency selectivity

Simulations were carried out in order to gauge the effect of unknown multipath
propagation conditions in the performance of the proposed detectors. The multipath
channels were generated according to the WINNER, Phase 1T Model (Hentil4 et al.,
2007) with Profile C1 (Suburban). The central frequency is 800 MHz, and it is
assumed that each of the signals at the M = 8 different channels arrives from a
different transmitter. The locations of the transmitters and of the spectrum monitor

were randomly selected on a square of dimension 15 x 15 km.

Figure 4.3 shows the ROC curves of the three detectors under frequency-flat
and frequency-selective channels, for a setting with K = 2048, SNR = —5 dB and
a = 0.5. As can be seen, performance remains essentially unaltered under multipath
conditions. This can be explained by the structure of the proposed detectors: the
linear combinations of different frequency bins effectively averages out the effects of

frequency-selective channels.
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Figure 4.4: Analytical performance of Test 2 as a function of the number of channels
M. The sample size is given by K = 128M2. (a) Probability of misdetection. (b)
Probability of false alarm.

Influence of the number of channels

Consider a setting in which the operating band consists of N, channels of B Hz
each, which the spectrum monitor must scan in a total time of T's. To this end, the
band is subdivided into subbands of M < N, channels each, which are sequentially
analyzed. The observation time for each of the M B Hz-wide subbands is thus
MT /Ny, s. Hence, sampling at the Nyquist rate fs = MB Hz, the number of
samples available for processing each subband of M channels is K = M?(BT/Ny,).
Thus, at the expense of a linear increase of fs in terms of M, a quadratic increase
of K is obtained, so that a favorable trade-off between detection performance and

ADC cost/resolution can be achieved.

Assuming BT /N = 128, Fig. 4.4(a) shows the analytical probability of misde-
tection of Test 2 versus SNR for different values of M. For each M, the thresholds
are computed in order to achieve Pp = 0.9 at a target SNR = —5 dB assuming
full occupancy (worst case). With this design, having more channels in the subband
is seen to improve detection performance for SNRs at and above the target value,
for all values of a, thus offering additional interference guarantees to the primary

system.
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Fig. 4.4(b) shows the corresponding false alarm rate in terms of M. It is
seen that Ppa decreases exponentially with the number of channels included in the
subband. A reduction in Pga increases the opportunities of accessing the spectrum

and therefore the global throughput of the secondary system.

4.4 Compressed spectrum sensing

In the previous section we have seen that the detection performance in a wideband
setting heavily depends on the activity factor a, which was assumed unknown. We
now consider a more elaborated model that includes general A2l converters and cer-
tain a priori knowledge on the primary activity summarized in the activity factor a.
Note that this parameter could be established without much difficulty from empir-
ical measurements in the bands of interest, or estimated online from the observed

activity in the band. We recall the signal model from (4.3),

M
m=0
where ® denotes a K x N compression matrix. Then we can define the set of active
channels as
A={m|o >0,0<m<M}. (4.59)

It is assumed that the noise is always present, and thus 0 € A always. For the signal
channels, we model the sparsity of the system with each event m € A following
an independent Bernoulli distribution: Pr{m € A} = a for m = 1,..., M, with a
assumed known to the receiver. a gives an indication of the average occupancy of
the frequency band and can be estimated beforehand; in a CR context, it is expected
that @ < 1. Additionally no assumption is made on o2, given that channel m is

active.

4.4.1 Estimation from compressed meassurements

In order to implement the GLRT (4.8) we need to obtain the ML estimate of the

vector o. However, as mentioned in the previous section there exist no closed-form
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solution (Burg et al., 1982) for the ML estimation of the structured covariance matrix

M
R(o) =Y 07C.. (4.60)
=0

Instead we will follow a Bayesian approach to the estimation of the parameter vector
o which will result in an efficient estimator in the low SNR regime that asymptoti-

cally achieves the Cramér-Rao lower bound.

MAP estimation

To explicitly introduce sparsity in our derivation we formulate the joint estimation
problem of finding the sparsity pattern A together with the power vector o. Using

Bayes’ rule we can state the Maximum A Posteriori (MAP) estimation of {o, A} as

{6, A} :argrjax f(A oly) (4.61)
=arg max f1A o) f(a|A)f(A) (4.62)
=argmax f(y|A,o(A))f(A). (4.63)

ag(A),A

where in the last step we made use of the fact that the a priori distribution f(o|.A)
is modeled as non-informative for those active components of o with the sparsity
pattern imposed by A (denoted here as o(A)). That is, o(,A) has zeros at the
positions specified by {0,..., M} — A, but no prior is assumed for the remaining

components.

Substituting (4.9) and the binomial distribution
F(A) = dA(1 - a)MA (4.64)

into (4.63), and disregarding constant additive terms, we obtain the following equiv-

alent minimization problem:

{6, A} =arg min {log det(R(a(A))) + 7 R (o (A))y — | Al log . i } . (4.65)
oA a

Remark 4.2. Tt is interesting to note that the weighting factor associated to |A|
depends only on a, that is, the probability that a channel is active. When a = 1/2,

the cardinality term disappears and the optimization procedure reduces to an ML
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optimization with respect to f(y|o). On the other hand, when a given band presents
a low (or high) occupancy rate, thus a — 0 (a — 1), the weight of |A| tends to —oo
(4+00). In this case, as intuition suggests, the optimal estimate A becomes the empty

(or full) set of channels, independently of the values of f(y|o(A)).

The expression (4.65) is a mixed discrete/continuous maximization problem,
i.e., A can only take one out of 2" values, whereas for fixed A the maximization
is performed over the continuous parameter vector o (A). Therefore this optimiza-
tion problem, as it is, is NP-hard and needs to be simplified in order to conduct
to practical spectrum reconstruction algorithms. An approximate MAP estimator
that performs close to the constrained CRLB was proposed in Vazquez-Vilar et al.
(2010a). However, this approach requires a complex iterative implementation that

hinders its practical application.

Here we will follow a slightly different approach, which will make clear the con-
nection between the proposed Bayesian framework and classical compressed sensing
theory. As we will see next, a series of simplifications of (4.65) conduct to a psd
estimator equivalent to Basis Pursuit (BP) denoising (Tropp, 2006) of the one-shot
compressed covariance estimate yy. To this end, we resort first to the Taylor
expansion of log det(R(o)) and R~ (o) around the true vector of power levels o,

which will then be particularized for the low SNR regime.

Low SNR approximation

To simplify notation, let us define R, = R(o,) = Zi]\io(az*)Zéi, where o, is the

vector of true power levels. Then for ¢ — o, we have that

M
log det(R (o)) ~ logdet(R,) + > _ (a7, — (o5,)*) tr{R; ' Cp,}

Substituting (4.66) and (4.67) into (4.65), disregarding the terms not depending
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on o we obtain the approximation

M M M
1 O R
0 ~arg min {5 Z Z o; tr{ 'CR;'C;) — Z o2 tr{R1C, R lyy}
i i=0 j=0 m=0
M M
- Z Z 0?0]2 tr{R,;'C;R;'C,;K?} + 2 Z o2 tr{R;'C,,K?}
=0 j=0 m=0

a
—llo? o n = a}, (4.68)

where we defined K> = R (R, — y57), oM = [07---02,]7 so that ||o} |y = | A
and used that R, = S"M_ (0% )2C,,,.

m=0

For vanishing SNR at each of the channels 02, << o for m = 1,..., M, we
have that asymptotically R, — (0%)?1. Substituting the low SNR approxunation
R, ~ (07)?I and rearranging terms we have that the optimization problem (4.68) is

equivalent to

&%argmm +70H‘7{\4H07

3

(4.69)

where we defined the regularization weight 7o = In((1 — a)/a) and made use of the
definition of the Matrix Frobenius Norm ||A|? = tr (AAY). Note that the only
dependence of (4.69) on the (unknown) actual power vector o, is through (o3)? and

the matrix K. If we neglect the term depending on K, (4.69) reduces to

M 2
1 ~
6 ~argmin —— |[§57 =) " 0?Ci|| +10 o], (4.70)
o 2(00) i—0 9
M 2
= argmin |[77" = > " 07Ci|| +15 o], (4.71)
7 i=0 2

where we have defined ), = 2(o8)%7o.

Remark 4.3. There exists a strong resemblance between the equation (4.71) and the
classical compressed sensing theory. Compressed sensing theory studies the problem
of estimating a sparse vector from a set of mixed measurements, yielding to a norm-
0 regularization similar to (4.71). While this minimization problem is NP-hard,

several efficient alternatives have been proposed by relaxing it to obtain a convex
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formulation. One example is the Dantzig Selector (DS) first presented in Candes and
Tao (2007), which under certain assumptions can be shown to be equivalent (James
et al., 2009) to the closely related BP denoising (Tropp, 2006). If we particularize

BP denoising in our case we obtain

M 2
6 ~argmin |§37 - > " o?Ci| +m ||lol]], - (4.72)
g =0 2

Note that the problem is now convex and can be efficiently solved using any of the
existing convex optimization packages. However, while for the pseudo norm £y the
weighting factor 7, can be computed from the actual noise power and from the a
priori probability of occupancy (which in principle could be estimated), the regular-
ization factor ~; corresponding to the ¢1-norm needs to be determined numerically
for different system parameters. Then, if «; is suitably chosen, basis pursuit de-
noising performance will be close to the optimal MAP estimator in the low SNR

regime.

Bayesian matching pursuit

While the use of the convex formulation in (4.72) may be interesting in some cases,
it requires to solve a convex optimization problem at each spectral monitoring itera-
tion. This may not be practical in certain devices which present stringent complexity
and power limitations. Here we propose an approximate solution of (4.71) based on

a low complexity iterative greedy algorithm.

First note that the optimization (4.71) can be rewritten as

gy =) olC;
€A

{0, ft} Azarg min

2
+ 0l Al. (4.73)
o(A),A )

Then we have that:

Proposition 4.3. For fized A = {I(1),...,l(JA])}, so that [6(A)]m = 0 for m ¢ A,

the unconstrained solution to the optimization problem (4.73) is given by

[6:(A)iy = (0] (4.74)
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with
6 =B 'b, (4.75)
where
[Balij = tr él(i)él(j)} ; (4.76)
[bali = 37Cy)¥ (4.77)
fori,j=1,... |A|
Proof. See Appendix 4.F. O

Corollary 4.1. Given the true sparsity pattern A, the LS estimator given in (4.75)-
(4.77) is asymptotically efficient in the limit as oy — [(03)? 0 --- 0T, i.e. for low
SNR on all channels.

Proof. See Appendix 4.G. O

This asymptotic efficiency guarantees that, given that the true sparsity pattern
is found, the LS estimator will present a good performance in the low SNR regime.
Moreover, in the limit the mean squared error of the LS estimator will achieve the
CRLB.

Substituting (4.75) back in (4.73) and disregarding the terms not depending on
A, we have that the best estimate A is given by

~

A ~arg min p(A), (4.78)
A

where p(A) = )| A] — bIB'b 4.

In principle the solution of (4.78) needs to be found by performing an exhaus-
tive search over A. Note that this implies to evaluate (4.76)-(4.77) for each of the 2
possible combinations. Instead we propose a Bayesian matching pursuit (Schniter
et al., 2008) algorithm that iteratively estimates the set of active channels, as de-
scribed in the Algorithm 3.

This suboptimal greedy solution finds the right set of active channels with high
probability, as shown later by means of numerical simulations, offering a performance

close to the more complex convex optimization methods. The idea is to construct
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Algorithm 3: Bayesian matching pursuit.

Input: Measured signal y.
Output: Estimated set of active channels A.
Initialize: Set Ay = {0}
for n =1 to M.« do

m* =argmax pu(A,_, U {m})

m¢An_1

A, = Ap_1 U {m*}

A =arg max 1(Ay)
Anp

the active set estimate A sequentially: starting with the “only noise” set A= {0}, at
each step a new active channel is added to A in order to maximize the corresponding
metric M(A) This procedure is repeated M.« times where M. < M determines
the maximum number of active channels which could be possible declared as active
by the algorithm. The parameter My, is then related to the number of iterations,
and hence to the complexity, of the algorithm. If no complexity constraints exist
we may fix Mpax = M, which allows the system to declare all channels as busy.
On the other hand, if we now that the band is sparsely occupied, Mpax can be
chosen from the activity factor a so that Pr{|A| < Myax} is above a certain value.
The final estimate A is given by the partial solution A, with maximum-a-posteriori

log-likelihodd function.

4.4.2 Quasi-GLRT detection

Once the estimates {6’,/1} have been computed under both hypotheses, either by
using convex optimization methods or by using the proposed greedy iterative algo-
rithm, the detection can be performed based on the GLRT scheme in (4.8).

If we denote by &, 61, the corresponding estimates under the hypothesis H,

respectively Hi, we define the following Quasi-GLRT statistic
f <3
Tes = 7755 2 Veso (4.79)
/ i

with 7. a threshold and f(y|o) given as in (4.9).



126 Chapter 4. Wideband Spectrum Sensing

10’ 10’
Q Q
S0 S 10
— —
—— Greedy (compressed) Greedy (compressed)
- - - Covex opt. (compressed) - - -Covex opt. (compressed)
+++- Test 2 (Nyquist) +- Test 2 (Nyquist)
10" 2 1 0 10° -2 ) 0
10 10 10 10 10 10
Pra Pry

(a) (b)

Figure 4.5: Complementary ROC curves in a setting with M = 16 channels, K/N =
128/2048, for an activity factor (a) a = 0.1 and (b) a = 0.3.

4.4.3 Numerical results and discussion

In the following we analyze the performance of two detection schemes based on Tig:

e Greedy detector based on the iteration given in Algorithm 3 and the efficient

estimator of Proposition 4.3.

e Convex optimization based detector. The sparsity pattern is computed by
solving (4.72) with 71 = 9. Once the sparsity pattern has been found the
actual estimate is taken as the feasible minimizer of (4.72) for ;3 = 0. This
last step is required to reduce the distortion introduced by the regularization

term in the optimization procedure.

To evaluate this detection schemes we consider terrestrial digital TV broadcast
networks using 8K-mode DVB-T modulation with parameters as in Section 4.3.4.
As compression matrix ® we consider a random pinning matrix corresponding to K

randomly selected rows of the N x IV identity matrix.



4.4 Compressed spectrum sensing 127

PSD [dB]

Actual spectrum
- - -Reconstruction (K=512)

L

600 620 640 660 680 700 720
f [MHz]

Figure 4.6: Example of reconstruction of a mixed analog/digital broadcasting tele-
vision band.

Detection performance

Figure 4.5 shows the complementary ROC curves of this two detection schemes for
a scenario with M = 16 channels, N = 1024 and K = 128 compressed samples,
i.e. compression ratio equal to 8. The channel under scrutiny presents an SNR of
3 dB when active, while the other channels’ SNR, when active, follows a lognormal
distribution of mean 0 dB and standard deviation of 1 dB. In Fig. 4.5 we can see
that the proposed greedy iteration shows a similar performance to the more complex

convex optimization scheme for both activity factors ¢ = 0.1 and a = 0.3.

It is interesting to note that the compressed sampling schemes present a penalty
with respect to a detector (Test 2 from (4.49)) using K = 128 samples at Nyquist
rate. This is due to the fact that the compression process mixes different frequency
channels increasing the apparent noise level. However, in some cases, sampling at
Nyquist rate may be infeasible and detectors based on CS present practical impor-

tance.

Spectrum reconstruction

We now show the spectrum reconstruction capabilities of the proposed Greedy esti-
mation method in a real environment. To this end we captured part of the Spanish
TV broadcast band (112 MHz bandwidth, comprising 14 channels with PAL/DVB-
T signals just before the analog switch off). The a priori covariance matrices were
generated using the channelization information of the PAL/DVB-T broadcast net-
work, while the occupancy probability was considered ¢ = 0.3. The compression
procedure has been simulated in Matlab using a 512 x 2048 random pinning matrix.

No knowledge is fed to the reconstruction algorithm about the particular modula-
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tion (PAL or DVB-T) encountered at a given channel. Fig. 4.6 shows the psd of the
band (obtained using a large number of uncompressed samples) together with the
reconstruction obtained by the proposed method using just K = 512 samples. Even
this reduced number of samples allows the estimation of 29 power levels needed for
the reconstruction (14 DVB-T + 14 PAL + noise level).

4.5 Conclusions

The wideband approach to spectrum sensing provides a means to trade off detection
performance and ADC complexity. In practice, primary networks using FDMA
exhibit guard bands between adjacent channels which can be used to estimate the
noise power to build detectors robust to noise level uncertainty. In addition, the
frequency bins of those channels perceived as weak can be used for this task as well.
These ideas are exploited by three novel detectors derived starting from a GLRT
approach. In this way, the noise uncertainty problem that plagues the popular

Energy Detector is largely alleviated.

Assuming a more general A2I converter and that the activity factor of the band
can be obtained beforehand, we established a connection between the MAP approach
to parameter estimation and classical compressed sensing theory. Moreover, based
on the MAP formulation we derive a simpler Greedy iterative algorithm performing
close to the convex optimization methods usually employed to solve the compressed

sensing formulation.

A key part of the primary user detection schemes derived in this chapter is
the estimation of the unknown parameters, namely noise and signal levels. Some
preliminary work along this lines was presented in Lopez-Valcarce and Vazquez-
Vilar (2009); Vazquez-Vilar et al. (2010a). The first part of this chapter, wideband
primary user detection at Nyquist rate, is based on the journal article submitted to
IEEE-TSP (Vazquez-Vilar and Lépez-Valcarce, 2011).
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Appendix 4.A Proof of Theorem 4.1

For finite K, consider the matrix
A(o) = [LTA7%(o)L] - [LTA2(o)(LN)1]. (4.80)

We will prove that, under the conditions of the Theorem, A (o) = I. Then, taking
the limit as K — oo on both sides of (4.80), the desired result will be obtained, in
view of (4.27) and (4.31). To this end, consider the singular-value decomposition
L = UDV#, where U is K x (M +1) with orthogonal columns, D is (M +1) x (M +1)
diagonal with the nonzero singular values, and V is (M +1) x (M + 1) unitary. The
pseudoinverse is thus LT = VD~1U¥# . Then

A(o) = VDU A %(o)UUYA2(0)UD V. (4.81)

As seen from (4.81), a sufficient condition for A(o) = I is that UU and A(o)

commute. This we will show now.

Note that the columns of U constitute an orthonormal basis of R{L}, the
subspace spanned by the columns of L. Without loss of generality (since channel
indexing is arbitrary), assume that the columns of L are sorted such that if the
set of indices of nonzero entries of column j contains that of column ¢, then i < j.
Additionally, we assume that the rows of L are arranged such that these sets of
indices of nonzero entries contain only contiguous indices (frequency bins). This is
also without loss of generality, since one can always apply a permutation to the rows

of L to achieve this.

An orthogonal basis for R{L} can also be obtained by applying the Gram-
Schmidt orthogonalization procedure to the columns of L. It is straightforward to
show that this results in a basis U = [ @g @y --- 1y | such that (i) any nonzero
entries of a given vector @; are constant and in contiguous positions, and (ii) for any
u;, u; with ¢ # j, the two sets of indices of their nonzero entries are disjoint. These
properties imply that UU¥ is a block diagonal matrix, with each block on the

diagonal having all of its elements equal:

aO]-KO 1%0
uuf = = Uu?, (4.82)

T
O‘M]‘KM]'KM
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where «; are scalars, K; is the number of nonzero entries in 0;, and the last equality
in (4.82) stems from the fact that both UU and UU* are projection matrices
onto R{L}.

On the other hand, since the diagonal of A(e) is a linear combination of the

columns of L, see (4.14), one has that

Bolk,

A(o) = , (4.83)

Bulk,,

for some scalars ;. Given the structure of UU and A(6), it is readily seen that

they do commute.

Appendix 4.B Proof of Theorem 4.2

We shall prove (4.44), as the proof for (4.45) is analogous. The cost f(6) = ||Lo —

p|3 is convex, and its gradient is given by

1 1 1 1 woqo + -+ WrgMm
1 wfl 0 0 0
1 _
ZVi@)=|1 0 w’ 0 |6- @ (4.84)
| 1 0 0 w;/ll i qM ]

In addition, we have the linear inequality constraints g;(6) = —632 <0,0<5< M,
whose gradient is Vg;(6) = —e;, where e; is the j-th unit vector. A sufficient
condition for &1 = [62, --- 63,,]7 to be the global optimum is that there exist

scalars p1; > 0, 0 < j < M, such that

M
Vi@ +) nVei(61) = 0, (4.85)
7=0
pigi(G1) = 0, 0<j<M, (4.86)

which for this case amounts to saying that [V £(61)]; = 0if 63 > 0and [V f(61)]; > 0

if 62 = 0. Now we show that the vector 61 given by (4.44) satisfies these conditions.
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Note that 63, > 0, and that Uy = {j : &?1 = 0}. In view of (4.84),

M M
1 . . .
?[Vf(m)]o =641 + 20221 — woqo — ;wi% (4.87)
M
= —wo(qo — 681) + > 671 — wigi — 651)] (4.88)
=1
= —wo(go — 601) — »_ wi(gi — 6y) (4.89)
€Uy
M M
= —(woqo + Y wigs) + (wo + Y wi)dg, =0, (4.90)
€U €U,

where the second line follows from wq+- - - +wps = 1; the third, from the definitions
of U, and &]21, and the last step, from the definition of 681. On the other hand, for

1 < j < M, using again the definitions of ; and 6]21,

1 . . 1.
g[vf(al)]j = Gp +w; 6% — g (4.91)
52, —q; >0, jeU
S (4.92)
07 J ¢ ulv

as was to be shown.

Appendix 4.C Proof of Proposition 4.1

If the constrained LS estimate under H7* results in 62, = 0 (i.e. m € Uy), then it
is clear that imposing c}fno = 0 and then minimizing the LS cost under the same
constraints for the remaining variables will yield the same result. But this is exactly

the constrained LS estimate under H{'.

Appendix 4.D Proof of Proposition 4.2

Let ty = {I(1),1(2),--- ,1(s)} such that g 1) < q2) < -+ < qs)- The proof is by
induction, and is based on the constructive algorithm given in Algorithm 2. Note
that:

o q <63 for all | € U (by definition of U );
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e 53, < qo (since 63, is a convex combination of gy and {q;, [ € U1 });

e 63, < g (since m ¢ Uy).

The last two facts imply that &gl < qom = (Woqo + Wingm)/ (W + wyy,).

Now consider g;(1). In the process of constructing Uy given in Algorithm 2, the
first iteration results in &80 = @om- The unconstrained estimate with respect to the
remaining variables is not feasible, since q; < qop, for [ € U;. Therefore, index (1)
is picked so that I(1) € Up.

Suppose now that [(1),..., (i) € Uy for i < s. This means that the (i 4+ 1)-th

iteration of the procedure from Algorithm 2 results in

.9 woqo + Wmqm + 2221 wi()di(t)

wo + Wy, + Zt:l wy(t)
Note that, since [(i + 1) € U, it holds that
‘ woqo + Zizl wi(e)qi(t)
1(i+1 i
(+D Wo + Y41 Wiy
+ >0
~ Wodo > =1 Wiy die) < an (4.94)

wo + D7y Wiy

But (4.94) implies that g4y is smaller than the right-hand side of (4.93). Hence,
index [(i + 1) is picked so that [(i + 1) € Up. By induction, it follows that Uy C Up.

Appendix 4.E Analysis of the detectors Test 1 and 2

Test 1 from (4.47) This test is given by z; 235}; 0, with 21 = qu — v63, v > 1,
and 63, a linear combination of gy and {g;, j € U1}, as in (4.44). Denote by I; the
event of having ¢ of the channels 1,...,M — 1 not in use by the primary network, so
that Pr{l;} = (Mt_l)aM_l_t(l — a)t. In addition, denote by U, the event |U;| = n.
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Then we can write

M-1
Pr{z >0} = > Pr{l;}Pr{z > 0|}

~
[e=]

M-—1
Pr{L,} Y Pr{z >0,U,|;}
n=0
t
~ Y Pr{L}) Pr{z >0,U,| L}, (4.95)

t= n=0

Il
IMT

T

[e=]

where in the last step we have neglected the probability of a busy channel j #£ M
being included in the set U] by the constrained LS estimate. This amounts to assum-
ing that busy channels have sufficiently high SNRs. Without this approximation,
Pr{z > 0} would depend on the SNRs of the (busy) channels other than channel
M, which is clearly undesirable. The accuracy of this assumption will be validated

by the simulation results.

Let us define the vectors

0 An+1
Xp=| ¢ | =641, X, = : — 65114 . (4.96)

—n

qn qt

Now, when computing (4.95), we can assume that the ¢ idle channels are channels 1

through ¢ (due to the equal bandwidth assumption), so that
Pr{z; >0} ~

M—-1 t

t
S Pr{n}) < > Pr{z >0, x, <0,%x, , >0|I}. (4.97)
t=0 n=0 n

Note that x,, < 0, xj_,, > 0 imply that ¢, = {1,--- ,n}, so that

n
) >0 Wi
= == 4.98
001 Z?:O w; ( )

Now one has that

Pr{z; >0,x,<0,x;_, >0|;} =
Pr{[z1 — xr (X;_n)T]T/ag > 0|1}, (4.99)

n



134 Chapter 4. Wideband Spectrum Sensing

which is the integral of a (¢t + 1)-variate Gaussian distribution over the positive
orthant. The mean of this distribution is g1 = [ (1—vy+pas) 0] ]7, and the covariance

matrix is found blockwise from the following, where w, = wq + nwa;:

cov(zi, z1) = (;?,1 (W + Z)i) ; (4.100)
cov(xp,Xp) = (ﬁ (wlMI - 71)1111,11£> , (4.101)
cov(X)_,, X)) = ‘;?1 (wlMI + wlnlt_nlf_n> , (4.102)
cov(z1,%,_,) = (;ﬁ;nlt_n, (4.103)
cov(z1,z,) = 0, cov(x,,x;_,) = 0. (4.104)

Thus, Pr{z; > 0} is independent of 02 and can be computed numerically using
any multivariate Gaussian integration package, such as Matlab’s mvncdf. Note that
Ppa = Pr{z; > 0| pps = 0}, whereas Pp = Pr{z; > 0| pps > 0}.

M
Test 2 from (4.49) This test is given by 29 EZ}W 0, with 2o = qur — v6%,,
0

v > 1, and 63, a linear combination of go and {q;j, j € Up, 7 # m}, as in (4.48).
Denote by U, the event [Uy| = n. Then, similarly to (4.95),

M-1 t
Pri{z; >0} ~ > Pr{l;} Y Pr{zn>00U,|L} (4.105)
t=0 n=0

-1

t
=Y Pr{L}> ( ) Pr{z > 0,%, < 0,%,_, > 0|}, (4.106)
n=0

t
n
t=

where now
@ Gn+1
X, = | 1 | =651, Xy, = : — 6401 (4.107)
dn qt
In this case, X, < 0, X,_,, > 0 imply that Uy = {1, ,n, M}, and thus 63, =
(wargmr + Y wiq)/(war + Yo wi). The probability in (4.106) can be written
again as the integral of a (¢ 4+ 1)-variate Gaussian distribution over the positive

orthant:

Pr{z >0,%,<0,%, , >0|L;} =
Pr{[zs — %L (x}_,)T]) /o2 > 0| L;}. (4.108)

n
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The mean of this distribution is in this case

T
Mo = [ (1 — v+ pM) WM PM 1T —WMPM 1T , (4109)

Wpt1 ~ 1 Wpy1 -7

whereas the covariance matrix can be found from

cov(za, 22) = ? ((1—;]’;}\/1)2 + Z;i) , (4.110)
cov(Rn, &n) = CI’? |:wl]\41+ (wM((l ;’11‘14)2 - _ u_}jﬂ) 1n13,{’] , (4.111)
B
cov(X}_,, X} ) = ? |:U11]\/[I " (wM((l ;;2;1\14)2 —1) i w;l) 1t_n1?n} , (4.112)
;
cov (22, %n) = ? (W - ul) 1n, (4.113)
cov(%n, X,_,) = CI’?“’M(“ Zif‘f)z —Uy 47 (4.114)
cov(z,%,_ ) = ?Wlt_"' (4.115)

Therefore, for Tests 1 and 2 Prpa and Pp can be found for a given scenario

without resorting to Monte Carlo simulation.

Appendix 4.F Proof of Proposition 4.3

For fixed A = {l(1),...,I(]A])}, by definition, the components m ¢ A are given by

[o(A)]m = 0. The remaining components can be arranged a vector 6 so that
[0]; = [o(A)li)- (4.116)

Then, the optimization problem (4.73) with respect to 8 reduces to a least squares
minimization problem. If we make use of the Frobenious Norm definition ||G||? =
tr (GGH) we have that the error

ea(0) = |lyy" = > oiC

leA

(4.117)

2
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becomes:

e(0) =tr {(yyH)Z} -2 Z o2 tr {yHCmy} + Z Z olo? tr {élém} .
meA leAmeA
(4.118)

Using the definitions in the Proposition 4.3 the Least Squares Estimate of the pa-

rameter vector 6 can be compactly written as

0 =argmin €4(0) (4.119)
0
—argmin 87 B 40 — 207b 4 (4.120)
0
=B 'ba. (4.121)

Appendix 4.G Proof of Corollary 4.1

For fixed A = {l(1),...,l(JA])}, so that [o], = 0 for m ¢ A and
[U}l(i) = [9]1, for i = 1, ey ’.A’, (4.122)

we say that an unbiased estimator 6 of the non-zero components of o is efficient at

the true parameter vector 0, (see e.g. Scharf (1991)) if and only if
F(0.)(0 - 0,) = 5(0..5), (4.123)

where F'(0,) denotes the Fisher’s information matrix of the estimation problem
evaluated at 6, and s(0,y) stands for the gradient of the log-likelihood function of

the estimation problem evaluated at 6, for an input vector y.

Given {A, 8}, the observation ¥y is zero mean circular Gaussian with covariance
R(o) as in (4.4). The elements of the Fisher information matrix (FIM) F(0), of
size |A| x |A|, are given by (see e.g. Kay (1998)):

[F(O)]U = tr {Ril(d)cl(i)ﬁil(d)él(j)} , (4.124)

where we used that in our model OR/(c)/002, = C,,. On the other hand we have
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that
[5(6,5))i = 55— log f(¥]o) (4.125)
916 ) )
-4 {R—l(a>8Rg") } +tr {R—l(a)aRg")R—l(a)yyH} (4.126)
aal(i) 8al(i)
— tr {f{_l(a)él(i)} + TR () Cy R (o). (4.127)

Then the terms in (4.123) can be reorganized as follows

F(6,)0 = s(0,.y) + F(6,)0, (4.128)
=3"R(0.)Ci (R (0,)¥ (4.129)
= f(6.), (4.130)

where in (4.129) we made use of the problem structure, that allows us to write
[F(6.)6.); = tr {R™!(0)Cyy R~ (0)R(o) } (4.131)

— tr {R*l(a)él(i)} . (4.132)

Note that for the right sparsity pattern A, the LS estimator given in Proposition
4.3 must fulfill

B0 = by, (4.133)

which resembles the efficiency condition given in (4.129). In fact, in the asymptotic
low SNR regime R™!(a,) — I /(0%)? and

F(6,) — (02)4 As (4.134)
f(6.) — (02)4]3“4’ (4.135)

which gives us the desired result.
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5.1 Introduction

The overlay! hierarchical DSA in which secondary users are allowed to opportunis-

tically access the spectrum on the basis of no-interference to the primary (licensed)

users presents stringent detection requirements. Hence, powerful detectors, as those

'In the context of Cognitive Radio overlay /underlay paradigms present different meanings de-
pending on the field. For example, in the Information Theory community underlay transmission usu-
ally denotes a transmission causing minimum interference to licensed users while overlay paradigms
have the capability of overhearing and/or enhancing primary transmissions. Here we use the term
overlay to refer to schemes which avoid to interfere to the primary user, while underlay schemes are
allowed to transmit simultaneously to the licensed user once fixed an interference margin.
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studied in the previous chapters become a key aspect of CR systems employing this

paradigm.

However, in certain cases primary users may be willing to tolerate certain level
of interference when their QoS is not affected and/or when they receive a certain
compensation (monetary or of other nature) for this interference. In this case the
secondary system may act in an underlay basis, i.e., secondary users transmit simul-
taneously with the primary system provided that they meet certain requirements on
the maximum interference seen by the primary user, denoted here as interference
cap (ICAP). In this scenario the detection of primary signals looses importance with
respect to interference management tasks, which may become non trivial depending

on the network configuration.

Various spectrum underlay and overlay architectures have been proposed and
investigated in recent years (see Kim et al. (2008); Le and Hossain (2008); Xing et al.
(2007); Fattahi et al. (2007); Etkin et al. (2007); Menon et al. (2008) and references
therein). The existing literature in underlay and overlay based secondary networks,
however, impose the burden of interference management mainly on the secondary
system. In particular, it is assumed that there is a maximum interference level that
the primary system is willing to tolerate, and the secondary powers/activity are to
be adjusted within this constraint. As opposed to this is the the concept of dynamic

spectrum leasing (DSL), first presented in Jayaweera and Li (2009).

A DSL scheme is characterized by the active role of the primary user, which
may interact with the secondary system in order to define the allowed interference
cap. This scheme allows the system to adapt to changing environmental conditions
which may lead to a better spectral utilization. In this chapter we will first in-
vestigate theoretically the performance improvement that can be expected from a
DSL based paradigm with respect to passive spectrum sharing schemes which do
not allow dynamic primary-secondary network interaction. The proposed analysis
results into a Stackelberg game formulation of the interactions between primary and
secondary systems. Once the performance advantage of DSL is demonstrated we
will present a game theoretical framework in order to model and analyze practical
DSL schemes. We will show certain conditions which guarantee the non-cooperative
game to converge and study the behavior of the proposed scheme under dynamic

environments.
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5.2 System model

We assume that there is one primary wireless communication system that owns the
license rights to the spectrum band of interest. The users in this primary system,
however, may not be using its spectrum completely all the time, or may be able to
tolerate a certain amount of additional co-channel interference without compromis-
ing required QoS constraints, leading to an inefficient utilization of radio spectrum.
For simplicity of exposition, we focus on a particular channel in the primary system
that is allocated to a single primary user (for example, as in FDMA). We assume
K secondary transmitters are interested in accessing this spectrum band of interest
to the maximum possible extent. The primary user is denoted as user 0, and the
secondary users are labeled as users 1 through K. While it is possible to extend this
framework to more complex scenarios, for ease of exposition we focus here on the

case that we have only one primary and one secondary receiver of interest.

The channel gain between the k-th transmitter (either primary or secondary)
and the common secondary receiver is denoted by hg, and that between the k-
th transmitter and the primary receiver is denoted by hy, for & = 0,1,..., K.
Throughout the analysis in this chapter we assume fading to be quasi-static, so that
the coeflicients stay fixed for a certain duration of time after which they change
to a new set of values. It should be mentioned that quasi-static fading model is
frequently used in modeling many wireless communications environments (Molisch,
2005). Our model can also be complemented with a channel estimation and tracking
algorithm to cope with slowly time-varying situations and as we will show later, the
performance of the proposed DSL scheme is fairly robust against such time-varying

fading.

Signal model

A discrete-time representation of the received signals at the primary and secondary

receivers can be written as

K
rpln] = hposo[n] + Y hykln]dk[n] + opny(n]; (5.1)
roll] = heoSoll] + > hakll]skll] + oansl[l] (5.2)

k=1
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where n and [ represent the discrete sampling times at primary and secondary re-
ceivers respectively, Bpk and hgy, are the effective channels from k-th transmitter to
the primary and secondary receivers respectively. If s;(t) denotes the signal trans-
mitted by the k-th user, then si[n] denotes a synchronously sampled and $i[n] an
asynchronously sampled version of si(t). Finally ny[n] nd ng[n] are iid Gaussian
processes normalized to have variance 1 so that 012, and o2 represent the noise power

levels at the primary and secondary receivers, respectively.

We denote the transmit power of the k-th user as pp = E[|si[n]|?] = E[|3x[n]|?]
for k = 0,1,..., K. Note that this assumes that any deviations on the received
power due to front-end and bandwidth differences are absorbed into the effective
channel coefficients. Then it is straightforward to see that the actual interference

power generated by the secondary system at the primary user is given by
K
Io =) |hyk|pi (5:3)
k=1

Interference cap

The primary user is assumed to adapt its interference cap (IC), denoted by Qo,
which is the maximum total interference the primary user is willing to tolerate from
secondary transmissions at any given time. By adjusting this interference cap Qo,
the primary user can control the total transmit power the secondary users impose on
its licensed channel. The motivation for the primary user can be, for instance, the
monetary reward obtained by allowing secondary users to access its licensed spec-
trum. In essence, then, the interference cap determines how much secondary user
activity the primary user is ready to allow, and thus its reward should be an increas-
ing function of the interference cap. However, we impose the realistic constraint that
the primary user should always maintain a target signal-to-interference-plus-noise
ratio (SINR) to ensure its required transmission QoS. Moreover, an unnecessarily
large interference cap by the primary user could hinder the performance of both sec-
ondary system and other primary transmitters (though, for simplicity, not included

in the current model) due to resulting high interference.
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Decoding strategy

If the secondary system is equipped with conventional matched-filter receivers at
any given time ¢, the primary user’s SINR g and k-th secondary user SINR ~; can

be respectively defined as

. ‘EpOPPO
= 2 5.4
o Iy + U% ’ ( )
. ‘Esilzpi
. 5.5
YL+ o2’ (5:5)

where the total interference seen by the secondary receiver in detecting the k-th

secondary signal is

K

Iii Z |}~15k’2pk- (56)

k=0 ki

Then the maximum achievable rate per channel use, assuming secondary inter-

ference is treated as noise at the primary system, is given by

R, < Wylog (1+ ) (5.7)
|fbpo|2po
Wp0g< +1—0+012; (5.8)

where W), represents the bandwidth employed by primary transmissions and the
transmitted power pg is determined by the required quality of service (QoS) and the

interference cap selected.

We impose here the realistic constraint that the primary user should always
maintain a target signal-to-interference-plus-noise ratio (SINR) to ensure its required
transmission QoS. To that end, we introduce the primary user’s target SINR is

defined in terms of its assumed worst-case secondary interference:

N \ilp0|2p0

0 oo (5.9)

Note that, since Q¢ is the maximum possible interference from secondary users the
primary user is willing to tolerate, 4y represents the least acceptable transmission

quality of the primary user.
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Multiuser decoding. While Matched filter (MF) decoding is a popular de-
coding structure due to its simplicity and performs reasonably well in systems with
weak cross-channels, in an interference limited regime it is clearly suboptimal and
it is outperformed by joint decoding of multiple users. When evaluating the best
theoretical performance a DSL scheme can achieve we may assume an optimal joint
maximum likelihood multiuser decoder (ML MUD) of Verdu (1998) at the secondary
user. Note that such decoder will give a fundamental limit against which practical

schemes based on matched filtering can be compared.

5.3 Performance gain of DSL based schemes

First we study the maximum performance gain we can expect from a DSL scheme
allowing a limited interaction between primary and secondary users. As opposed to
previous works we employ here performance metrics based on the multiuser sum-rate
attainable by the secondary system. We choose this performance metric because it
is a fundamental limit against which practical schemes can be compared, while it is

independent of particular DSL implementations.

While in principle the primary signal could be decoded at the secondary re-
ceiver, cognitive radio systems are expected to work in harsh SNR conditions. In
this regime primary signals cannot be reliably decoded at secondary receivers due to
SNR considerations and/or synchronization issues. Therefore we will treat primary
transmission purely as noise. Under these assumptions the maximum achievable
sum rate at the secondary receiver with total bandwidth W treating primary trans-

missions as noise is, see e.g. (Cover and Thomas, 2006, Sec. 15.3.6),

K 7 2

h

Ry < Wylog [ 1+ k=t skl pe (5.10)
|hsol?po + o2

for each of the allowed secondary power assignments py with k£ = 1,..., K, which
are determined by the maximum interference allowed at the primary user Iy < Qg

and secondary user individual power constraints p < p.

The rate region in (5.10) obtained with this decoding scheme is similar to the
one obtained in a Gaussian Multiple Access Channel, with the peculiarity that on
top of having individual power constraints secondary users have a weighted global
power constraint. The individual rates achieved by each secondary user will depend

on the particular coding/decoding strategy used.
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Figure 5.1: Secondary system 2-user rate region for different values of Q.

From the constraint Iy < Qg and given the definition of Iy, we have that the
term Zszl |ﬁsk\2pk in (5.10) is upper bounded by a monotonically increasing affine
function of Qy. Then it is apparent from (5.10) that while the upper bound on the
secondary sum-rate is monotonically increasing with )y the growth rate decreases
with Qo due to the logarithmic relation with Zszl \iLskak. Figure 5.1 shows an
example of the rate region obtained in a two user secondary system where the channel
from user 1 to primary is much weaker than the one from user 2 for different values
of Q9. While in general the region is increasing with Q)¢ the effect of the individual
power constraints of the secondary nodes translates into the partial saturation of

the achievable rate region.

5.3.1 Performance metric

Although performance evaluation of cognitive radio systems is important in com-
paring and ranking different paradigms, it has received only a limited attention in
the existing literature (Zhao et al., 2009). Even for the relatively simple model con-
sidered here, there exist several possible evaluation metrics: maximum achievable
sum-rates at primary and secondary systems R, and R, respectively, power dissi-
pated by a given user py, interference generated at the primary user Iy, probability
of undesirable primary interference conditions Pr{ly > @}, fairness among users,
and spectral efficiency, among others. Therefore, an adequate utility function must

first be defined in order to compare DSL based paradigms with other schemes.
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While in our model a natural performance metric for the secondary system
should be an increasing function of the attained sum rate Rg, the primary user’s
utility needs further considerations. Since the primary user suffers from a (permit-
ted) interference Iy from the secondary system, in order to maintain its QoS the
primary user transmitted power pg is increased with respect to an exclusive use of
the frequency band (Iy = 0). We denote this increment in the transmitted power
by Apg. Hence the primary user needs an incentive to allow secondary users to use
its managed spectrum. We assume here that the secondary system compensates the
primary user with a payment (monetary or of other nature) related to the generated
interference Iy. As a result, the utility functions for primary and secondary systems

can be written as:

UP = UP(I()v ApO)? (511)
Us = us(Rs, Ip) (5.12)

where primary utility Uy, (-) is growing with Iy and decreasing with Apy, while sec-
ondary utility Us(-) increases with R;. We additionally assume that when the in-
terference constraint is violated, that is, when Iy > @Qq, the penalization imposed
by the primary system to the secondary system implies U, = oo, U; = —oo. This
penalty discourages the secondary system from violating the allowed interference

cap.

5.3.2 Performance analysis

For a given interference cap Q)¢ the secondary utility U, is maximized for the sec-

ondary power vector p = [pipa - --px]? provided that

p*(Qo) =arg max{us(Rs(p, o), lo(P))} (5.13)
subject to  Ip(p) < Qo, P<P

where we defined p = [p1p2 - ~15K]T and the operator < when applied to vectors
denotes element by element comparison. Here we have explicitly shown the depen-

dence of R on (Qg. We define the corresponding primary and secondary utilities as
Uy (Qo) = Up(p*(Qo), Qo) and UZF(Qo) = Us(p*(Qo), Qo), respectively.

If the primary user fixes a priori the interference cap Qo in a time varying

environment its expected utility is given by E[U;(Qo)], where the expectation is
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taken with respect to the channel realizations. On the other hand, in a DSL scheme
we allow the primary system to dynamically adjust the allowed interference cap Q.

We can now compute the maximum achievable utility for both types of schemes:

Schemes with fixed Qg: If the primary user chooses the value of Qo that
maximizes the expected utility and uses it for all channel realizations, its utility is

given by

O = max{E[U; (Qo)]}- (5.14)

DSL schemes: On the other hand, in a DSL-based system, the primary will
choose the interference cap )y to maximize its own utility for each channel real-
ization. The best expected primary utility achievable in this dynamic environment

0, = Elmax{U;(Qo)}. (5.15)

It is easy to see from (5.14) and (5.15) that USSI > U;ixed, where, for strictly mono-
tonic U, (-), USSI = Uf"ed if and only if the optimal (g is constant for all channel
realizations. In the next section we will use a simple example to show that indeed

the gain obtained by a DSL scheme can be significant.

Remark 5.1. In deriving (5.15) we implicitly formulated the interaction between the
primary and secondary systems as a Stackelberg game (Fugenberg and Tirole, 1991),
in which the primary user acts as Stackelberg leader and the secondary system acts
as follower. While this is a natural model for cognitive radio systems in which
the primary can always act unilaterally while secondary users have to adapt their
actions to the imposed constraint (Simeone et al., 2008), practical implementations
that achieve this behavior are a topic of further research. However, later in this
chapter, we will propose a simple theoretical framework based on non-cooperative

game theory that conducts to practical DSL schemes.
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5.3.3 Example

For illustration purposes, in this section we assume that the utilities associated with

primary and secondary users are respectively

Up = Iy — ppApo, (5.16)
U, = unRs — I (5.17)

with the additional restriction that Iy < (Qy9. That is, the primary system obtains
a reward proportional to the suffered interference Iy and charged to the secondary
system. Without loss of generality we assume here the payoff per unit of interference
equal to 1. The primary user has a cost associated with the extra power Apg required
to maintain its desired QoS, priced at the rate of up. The reward for the secondary
system is proportional to the achievable sum rate R, priced at the rate of ug. Note
that whereas these utilities keep the spirit of (5.11) and (5.12), they are also simple

enough to obtain analytical results.

Assuming equality in (5.10) we may rewrite (5.17) as

K |;Lsk‘2 "
k=1 Jiyy 2P

Us = prWslog | 1+ z
02 + |hso|?po

K
= bk (5.18)
k=1

where we have defined pj, = |Bpk|2pk > 0.

In order to maximize U, with respect to py, we first note that for fixed > szl Pr =
Iy, Us is growing with respect to a convex combination of the (positive) ratios
\hsi |2/ (To|hpk)?). Hence, for a fixed Iy, U is maximized when all the allowed sec-
ondary interference Ij is allocated to the secondary transmitters with the largest
ratios |hsx|?/|hpk|? up to their individual power constraints. Formally, if we define

the indexes of the sorted effective channels as {i1,1i9,...,ix} such that

|h8i1’2 > |h8i2‘2 >0 ‘h’SiK|2

o 2 o 2 T (5.19)
|hpi1 | |hpi2 | |hPiK |
the optimal power assignment is given by
’il’pik|2pik) 5]{3 < -[07
Py, =4 To—0p—1, Op—1 < Iy <0y, (5.20)

0, elsewhere,
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where we defined 5, = Zle |\ i, |2Bi, Then we may define the instantaneous channel

ratio ) as

Z \hsk\ ~*
k=1 |n, w2 Pk

T (5.21)

Note that when the secondary individual power constraints are not active Iy <
|\hpiy |2Piy , hence 7 reduces to the largest channel ratio pair: 1 = maxk{|ﬁsk]2/|ﬁpk]2}.

Otherwise 7 is a convex combination of the strongest channel ratio pairs.

Remark: While the simple utility (5.17) leads to an opportunistic access
scheme that does not take into account fairness among secondary users, in the general
setting U; could take a more complex form in order to guarantee fairness. However

this analysis lies out of the scope of the present work.
Using (5.21) and substituting (5.20) in (5.18), we have that

nlo
Us = prWslog (1 + ~> — Iy. (5.22)
’ ’ o2 + |hso|?po

Equating the derivative of (5.22) with respect to Iy to zero, we obtain the global
Us; maximizer. Taking into account the additional constraint Iy < @Qg, one obtains

that the optimal I is given by

1§(Qo) = min (Qo, Waptr + (o2 + [0 |*po) /n) - (5.23)

From (5.9) we have that po = J(Qo + Jf,)/\ilpo|2. Then it follows

U;(Qo) = IS - MpApo and (5.24)

nlg x

UX(Qo) = purWslog (1 +— | -1 (5.25)
’ o2+ |hsol?po

It is interesting to note that both primary and secondary utilities depend only on

the channel of the secondary user with the smallest channel ratio |h,y|?/|hst|?. This

comes from the fact that the secondary system’s sumrate is maximized when all the

allowed interference at the primary user is allocated to this single secondary user.

The maximal primary utility is achieved by a DSL system maximizing U (Qo)-
Given the restriction Iy < Qo and since Uy, is growing with I and decreasing with

Qo it can be shown that U, (Qo) is maximized when I§ = @)o. Hence the optimal
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Figure 5.2: Primary/secondary users average performance in a time varying envi-
ronment. (a) Primary user performance. (b) Secondary user performance.

instantaneous Qg is given by

hsol? —
Q* nWsir — \lﬁp?)||2 700-;% - Ug (5 26)
v n+ ool 5 '
o2 10

Note that, as can be seen from (5.26) above, the optimal strategy for the primary
user is heavily dependent on the scenario and thus cannot be fixed a priori. In
order to compute the expected gain in a dynamic environment for a DSL based
scheme over a paradigm with fixed @), given by Ugd — U;;ixed, we further need to
define a channel model and compute the average of (5.24) with respect to all channel
realizations. Although, in general, the expected gain cannot be computed in a closed

form, it can easily be evaluated numerically for any given set of parameters.

5.3.4 Numerical results

Here we show the performance gain that can be expected when the simple utilities
in (5.16)-(5.17) are used. We assume that channels from secondary transmitters h,y
and hgy, are Rayleigh distributed with E[|hyx|?] = E[|hgk|?] = Lfork = 1,..., K while
the primary transmitter and primary and secondary receivers are assumed stationary
so that |}~zp0\2 = \7150|2 = 1. The remaining system parameters are K = 3, p, = 100,
Qo = 10, and Ug = 02 = 1. We employ normalized bandwidth W, = W, =1, target
SINR 4y = 1 and resource prizes initially set to up = 0.1 and pur = 2.

Figure 5.2 shows the comparison between a DSL based scheme and a scheme in
which the allowed interference cap @ is fixed for the given set of system parameters.
In Fig. 5.2(a) we can see that even if a fixed system were to use the optimal Qg ~ 2.5,

the primary utility attainable by a DSL based scheme is about 25% larger than the



5.4 General formulation for practical DSL schemes 151

one of the fixed scheme. On the other hand, if we look at the secondary utility
obtained by a DSL based scheme compared to a scheme with fixed Qq, as shown in
Fig. 5.2(b), we can see that while fixed schemes perform better than DSL for a small
range of () values, for the optimal operating point of the fixed scheme (Qg ~ 2.5)
DSL performs slightly better than the fixed scheme. That is, in this setting both
primary and secondary users can benefit from the use of a DSL scheme. Moreover
in a DSL based scheme the allowed interference at the primary is computed on
line, and thus it does not need to be fixed a priori. Hence, DSL schemes can be
robust against inaccurate knowledge of the system parameters that may degrade
both primary and secondary performance at the expense of the extra complexity
required for dynamically setting the value of Q9. Note from Fig. 5.2 that a small
change in the )y value for the fixed scheme can significantly degrade the global

system performance.

However, as we pointed out above the advantage of DSL based schemes vanishes
if the optimal primary user action (g is independent from the channel realization.
If we assume high reward for the secondary system sum rate, that is ur = 100, the
best responses for both primary and secondary users turn out to be Iy = Qg = Qo,
not depending on the channel realization. In this case DSL and fixed schemes with

Qo = Qo turn out to be equivalent achieving U, ~ 8.99 and Us ~ 235.

5.4 General formulation for practical DSL schemes

In the previous section we derived the expected performance gain that can be ob-
tained from a DSL based scheme. However in the resulting Stackelberg formulation
we assumed that both primary and secondary systems have perfect knowledge of all
system parameters, and thus they can optimize their performance by maximizing

their own utilities. Hence this scheme cannot be directly implemented in practice.

Next, we develop a general formulation which, we will see, leads to practical
DSL schemes. To this end we will make use of non cooperative game theory to
model the interactions among primary and secondary systems. We establish the
conditions under which the proposed game-theoretic formulation has a unique Nash
equilibrium to which both primary and secondary best-response adaptations would
converge and the performance of the system will be found to be the performance at

this Nash equilibrium.

Naturally, any DSL system requires each system to know a certain amount
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of information about the other system. However, it may arguably be desirable
to minimize the awareness the primary system needs to have on the secondary
operation. In this section, we show that indeed successful dynamic spectrum leasing
can be achieved still relegating most of the interference management burden to the
secondary system, with the primary system just broadcasting two parameter values
periodically, namely, its tolerable interference cap and the total interference it is
currently experiencing from the secondary transmissions. These are quantities that
are readily available at the primary users (or can be easily estimated). Additionally
we will assume in the following matched filter decoding in the secondary receiver,

which is more adequate for practical implementations.

5.4.1 Non-cooperative Game Model

Primary and secondary users interact with each other by adjusting their interference
cap and transmit power levels, respectively, in order to maximize their own utility.
Hence, game theory provides a natural framework to model and analyze this DSL
network. At a given time we may formulate the above system as in the following

non-cooperative game (IC, Ag, ux(+)):

1. Players: K ={0,1,---, K}, where we assume that the 0-th user is the primary

user and k =1,2,---, K represents the k-th secondary user.

2. Action space: P = Ay x A;--- x Ak, where Ay = Q = [0,Qp] represents
the primary user’s action set and Ay = Pr = [0,pg), for &k = 1,2,... K,
represents the k-th secondary user’s action set. Note that Qg and Py, represent,
respectively, the maximum possible interference cap of the primary user and
the maximum transmission power of the k-th secondary user (as determined by
the system and regulatory considerations). We denote the action vector of all
users by a = [Qo, p1,- - , P’ , where Qo € Q and p;, € Py. It is customary to
denote the action vector excluding the k-th user, for K =0,1,..., K, by a_g.

3. Utility function: We denote by ug (Qo,a_g) the primary user’s utility func-
tion, and by ug, (pg,a—g), for k =1,2,..., K, the k-th secondary user’s utility

function.

One of the main features of the dynamic spectrum leasing approach is the

consideration of the coupling of primary system with the secondary-user system in
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terms of mutual interference. The primary user can then define its utility function

as:

ug (Qo,a—0) = (Qo — (Qo — In(ao))) Qo (5.27)
= ug (Qo, o) - (5.28)

Note that (5.28) assumes that the utility of the primary user is proportional to both
demand and its interference cap level Q. The demand is taken to be decreasing
when the extra interference margin Qg — Iy increases. This discourages the primary
user to swamp all other transmissions (both primary and secondary), by setting too
large an interference cap which would lead to higher transmission power. It is also

worth noting that this ug is continuous in a and concave in Q).

The (selfish) objective of each secondary user is to maximize a given utility
function that depends on its own SINR (for example, throughput) without violating
the primary user interference cap. Any utility function in a reasonable communica-
tion system is of course a monotonically increasing function of the received SINR
vk Observe from the expression of vy in (5.4) that as long as the secondary user
interference I is below the interference cap Qg set by the primary user, the required
QoS of the primary user will be guaranteed. To ensure this the utilities of secondary
users must be fast decaying functions of Iy — ()9 when this difference is positive.
Motivated by these arguments we propose the following form for the secondary user

utility function:

ug (pr,a—x) = (Qo — Aslo) g () (5.29)
. (Q A ‘i’/sk|2pk
=(Qo—Aslo)g To+o? (5.30)

where g(+) is a suitable, non-negative reward function, and A, is a positive weighting
coefficient. Note that in (5.29) the coefficient As essentially controls how strictly
secondary users need to adhere to the primary user’s interference cap. The proposed
utility function (5.29) leaves the performance metrics of the secondary system to be
arbitrary by allowing for any reasonable reward function g(-) that will satisfy the
conditions to be set forth in the next section. Without loss of generality, we may
assume that the reward function g () satisfies g(0) = 0 and ¢’(0) > 0, since when
the received SINR of a user vanishes no useful communication is possible for that

user.
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5.4.2 Nash equilibrium

In the following we investigate equilibrium strategies on the proposed DSL game
G = (K, A, ug). The most commonly used equilibrium concept in non-cooperative

game theory is the Nash equilibrium:

Definition 5.1. A strategy vector a = (ag,a, - ,ax) is a Nash equilibrium of the
primary-secondary user dynamic spectrum leasing game G = (K, Ay, uy) if, for every
ke K, u (ak, a—) > ug (a;,a_y) for all aj, € Ag.

In essence, at a Nash equilibrium no user has an incentive to unilaterally change
its own strategy when all other users keep their strategies fixed. Hence, the Nash
equilibrium can be viewed as a stable outcome where a game might end up when
non-cooperative users adjust their strategies according to their self-interests. In fact,
the best response correspondence of a user gives the best reaction strategy a rational
user would choose in order to maximize its own utility, in response to the actions
chosen by other users. That is, the user k’s best response r; : A_p —> Aj is the

set

ri (a_g) = {ak € Ag :ug (ag,a—g) > ug (a%, a,k) for all a}, € .Ak} . (5.31)

If we define the total interference from all secondary users to the primary user,
excluding that from the k-th user signal as Iy _j = Ip — ]ﬁkapk, where Iy _j, is now

independent of p; we have the following result.

Theorem 5.1. A Nash equilibrium ezists in game G = (K, Ak, ux) if

1. 9(0) = 07 g/(O) > O and hmvﬁoo g(V) > —00

2. %,;;gz)<2forallw>0

3. 0< X <72 fork=1,2,.... K
Proof. See Appendix 5.A. O

Clearly, the above DSL game model is general enough to allow for various sec-
ondary reward functions g(-) that may satisfy above conditions. We have seen that

choosing the most suitable secondary user performance metric and the associated
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reward function in a cognitive radio network can itself be a non-trivial task. For

illustrative purposes, we consider in the following two specific reward functions:

oV () = Wi log(1 + ), (5.32)

gl(f) (i) = Ry Cssc (Pe(k))

. (5.33)

where W}, and Ry are the bandwidth and data rate of user k, respectively, Pe(7vx)
is the probability of bit error with received SINR of v and Cpsc(P:) is the capacity
of a binary symmetric channel with cross-over probability P. which can be written
in terms of the binary entropy function H(P,) = —P. logy P. — (1 — P.)logy(1 — P.)
as Cpsc(P.) =1— H(F,).

The reward function g(l)(-) is a measure of user k’s capacity in the presence of
all other users, while ¢(?)(-) is a measure of its throughput per unit power. Both these
reward functions can be justified in a wide variety of contexts. For example, the
reward function g(M(-) can be justified in a dynamic spectrum leasing application in
which the secondary users are mainly concerned with getting access to the spectrum
and their power consumption is not a major concern. On the other hand, g(*)(-)
is suitable when secondary users are interested in achieving best throughput per
unit energy spent. For concreteness, we will assume that P.(v;) = %exp(—’yk) (i.e.
BPSK modulation with a matched-filter receiver).

5.4.3 Best response adaptations and implementation issues

Primary user. Since the best response by a player in a game is a strategy that
maximizes its own utility given all other players actions, the best response of the
primary user in the above DSL game is obtained by setting u,(Qo) = 0. The unique
interior solution is given by

Qo+ 1y

Qblo) = 2 (5:34)

Note that, since up(Qp) is monotonic increasing for Qo < @, if the maximum
interference cap is such that Qo < Qg the best response of the primary user would

be to set the interference cap to Qo = Qo. Hence, the primary user’s best response
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is given by

1o (@—0) = 1o (Io) (5.35)
= min {Qo, Q5(1o) } - (5.36)

We observe that in order to determine its best response for a chosen action vector
a_q by the secondary users, the only quantity that the primary user needs to know
is the total secondary interference at the primary receiver Iy. Indeed, this total

interference can be estimated at the primary receiver without much difficulty.

Secondary user. On the other hand, the best response of the k-th secondary
user to the transmit powers of the other secondary users as well as interference cap

set by the primary user is given by the solution to u} (px) = 0 that we denote here
Pr(a—r).

Since uy, is quasi-concave in py, if pj(a_;) > pp where py is the k-th user’s
maximum possible transmit power, its best response is to set its transmit power to

pr = pr. Hence, we have the best response of k-th secondary user, fork =1,2,..., K:
Tk (a_k) = min {ﬁk,pZ(a_k)} . (5.37)

It can be shown that pj(a_x) = p;(Qo, lo,—k, Ix), that is, the best response of
the k-th secondary user is a function of the primary interference cap @), the residual
interference Iy _j, from all other secondary users to the primary user, and the total
interference from all secondary and primary users to the k-th user’s received signal
at the secondary receiver I. The secondary system can of course estimate the latter

quantity.

To obtain the knowledge of Qg and Iy _, we assume that the primary system
periodically broadcasts Qg and Iy. Note that this is the only interaction that the pri-
mary system will need to keep with the secondary system. Since these two quantities
are readily available to the primary system, we believe that the periodic broadcast
of these quantities, informing the secondary system what it needs to know in order
to avoid severe conflicts with primary transmissions, is a reasonable expectation for
a future cognitive radio system that expects to harvest spectrum leasing gains. Ob-
serve that by knowing Iy, each secondary user can compute the residual interference
I =1Ip— ’BOk\QPk given that it can estimate the channel state information |fL0k|2
to the primary. If reverse link signals are available in the same band this may be

feasible. Otherwise the secondary receiver does not necessarily need the CSI of its



5.4 General formulation for practical DSL schemes 157

link with the primary receiver, as it will be shown in the numerical results section,
since the approximation Iy _j =~ Ip performs well in practice, especially when the

number of secondary users K is sufficiently large.

5.4.4 Performance Analysis

In the following we consider a dynamic spectrum leasing cognitive radio system
that fits into the proposed game-theoretic framework. Our goal is to investigate the
behavior of the primary and secondary systems at the equilibrium. It is to be noted
that the Nash equilibrium can reasonably be expected to be the natural outcome of
the system when it reaches steady-state. Thus, the performance of the system is to

be considered as its performance at the Nash equilibrium.

To illustrate the characteristics of the Nash equilibrium in this primary-secondary
user dynamic spectrum leasing game, we first consider a simplified scenario with
identical secondary users. This scenario allows to analytically determine the Nash
equilibrium state and its general behavior. We analyze next a more general scenario

with non-identical secondary users and fading channels by means of simulations.

Stationary system with identical secondary users

When all secondary user’s present the same channel to the secondary receiver it is
possible to characterize the best response correspondences of primary and secondary
users to graphically visualize the Nash equilibrium. If |hg|? = |hs|? and |l~1pk|2 =
]ﬁp\Z for all k. By symmetry, in this case all secondary users must have the same
power py = p* at the Nash equilibrium (equivalently, the same SINR ~; = +*). Thus
the Nash equilibrium is characterized by the intersection (Qf,p*) of the following

two curves:
Qo = rolp) = W 5.38)
p = (solution to equation 1g,(p) = 0) = rs (Qo) (5.39)
where
voup) = Kp+ Iy + 07 g(m(p)) Qo (5.40)

hal2 0 (1) Adlhy|?
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Figure 5.3: Primary user utility ug for a fixed secondary interference Iy in a single-
user secondary system.

Combining (5.38) and (5.39), the Nash power p* of the secondary users is given by

the solution to the equation

1 I+ 02 g(n(p)) Qo
KI(1- = — — = 0. 541
( ms) T o @) 2P (5.41)

Figure 5.3 shows the primary utility function for fixed secondary network ac-
tions in a single secondary user system, that is K = 1, assuming that Q = Qunax = 10,
=12, Wi=1 A=15%=1hy=ho=ho=hg=1ando?=02=1.

On the other hand, for the setup described, secondary utility and best response
depends on the considered reward function g(v). First Figs. 5.4(a) and 5.4(b)
assume the secondary reward function g(v) = ¢ (y) = log(14+). In Fig. 5.4(a) we
can see the concavity of the secondary utility function for fixed primary response,
and thus the existence of a best response. The primary and secondary best response
curves Qo = ro(p1) and p1 = r1(Qp) for the setup described are presented in Fig.
5.4(b). Notice that the intersection of these two best response curves specifies the
Nash equilibrium for this system: (Q*,p}) = (6.505,3.010).

Similarly, Figs. 5.5(a) and (b) show the secondary user utility for a fixed pri-
mary interference cap and the best response functions, respectively, when the sec-
ondary utility function is chosen to be g(y) = ¢ (v) = le with Ry =1

and all other parameters as in the previous scenario. From 5.5(a) we observe that
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Figure 5.4: System behavior for identical secondary users when g(v) = ¢/ (7). (a)
Secondary utility. (b) Best-response functions.

the secondary utility function is still concave in secondary power. The best re-
sponse curves in Fig. 5.5(b) are characterized by (5.39) and (5.38) where, now,
g(7) = g® (). Figure 5.5(b) shows that the Nash equilibrium in this system is
(Q*,p}) = (6.325,2.650). Note that this NE shows that due to the penalty for in-
creasing transmit power in the secondary system, the secondary user now settles for
a slightly lower transmit power level compared to the earlier situation in which it
was not concerned with power expenditure. As a result, the primary user is also
better off by slightly lowering its interference cap so that it keeps the demand high.
With this in mind, and for ease of explanation we will restrict our discussion to the
secondary utility g(v) = g™ (). Extension to g(v) = ¢g® () is straightforward and

it is left to the curious reader.

It is of interest to investigate the equilibrium behavior of this dynamic spectrum
leasing system as a function of the secondary system size K. In Fig. 5.6 we show
the allowed interference cap Qo and the actual secondary interference Iy at the
system equilibrium for a system such that Q = 10, p, = 10, Wi, = 1, 749 = 1,
ﬁpk = ﬁsk =1 for all k, and 02 = 012, = 1. From Fig. 5.6 we can observe how the
total interference Iy increases with increasing K, and how, in turn, the primary user
also increases its interference cap to maximize its utility. It is also of interest to
note that the safety margin Qg — Iy is large for smaller number of users, and seems
to monotonically decrease with increasing K. This, we believe, is essentially due
to the fact that the number of degrees of freedom in a multiuser system is being
proportional to the number of users. When the number of secondary users K is large,

the interference generated by the secondary system Iy is close to the interference cap



160 Chapter 5. Dynamic Spectrum Leasing

0.17 10 i i i
-~ -p1 =71(Qo) vs. Qo
T gl Qo = ro(p1) vs. p1
005’ -~ \‘x\ 5:
s\\ 's‘ = 6
> gl
: 0 > i <]
S Qo =10 ‘.\ IS
Q0 = . . 4 B
-0.05. _ . N & S
""" Qo="7 S ‘,\‘ ol [
-==Qo= \\ \\ /////
-0.1 : : -~ —— o=
0 2 4 6 8 10 0 2 4 6 8 10
Pk Qo, Qo = ro(p1)

(a) (b)

Figure 5.5: System behavior for identical secondary users when g(v) = ¢®® (7). (a)
Secondary utility. (b) Best-response functions.

Qo, yet, as desired, is always below it. Figure 5.6 shows the game outcomes when
exact channel state information for the primary system is available at each secondary
user (via estimation) so the exact Iy _, is used in its best response adaption, as well
as when this channel state information to the primary is not available, so that the
secondary user employs the approximation Iy _ ~ Iy. As we may observe from Fig.
5.6, the system that does not rely on the knowledge of channel state information
demonstrates the same performance trends at the equilibrium. In particular, still
the DSL game converges to a Nash equilibrium that does not violate the primary
interference cap. It seems that the only effect of not having the exact Iy _j, is that
the safety margin Qg — Iy at the equilibrium is slightly larger. This is essentially due
to the fact that each secondary user believes an exaggerated residual interference

Iy, i, making it to decrease its power.

Figure 5.7 shows the primary and secondary utilities at the Nash equilibrium
of the system considered in Fig. 5.6 as a function of the secondary system size. In
Fig. 5.7 we show the utilities achieved when exact channel state information for the
primary system is available at each secondary user (via estimation) so the exact
Iy _j is used in its best response adaptation, as well as when this channel state
information to the primary is not available, so that the secondary user employs
the approximation Iy _, =~ Ip. In particular, as seen by Fig. 5.7(a) the primary
utility ug at the Nash equilibrium typically increases with the number of secondary
users K. However, the rate of increase decreases with increasing K. Thus, from a
design point of view we may argue that the primary user might prefer the system

to operate at a point where its rate of utility increase is above a certain threshold



5.4 General formulation for practical DSL schemes 161

10
8t
o O
g
$
=
o 4+ [I x
1
/ x
ol Qo
x x QO (fOI‘ 107_1‘7 ~ Io)
- _[O
x I() (fOI' IO,*/C ~ Io)
0 i i T i
0 5 10 15 20

K

Figure 5.6: Game outcome assuming identical secondary users for a quasi-static
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Figure 5.7: System performance of the DSL game in quasi-static environments as-
suming identical secondary users. (a) Primary user utility. (b) Secondary user
reward function.

value. However, the primary system cannot impose this explicitly on the secondary
system and indeed it is not a requirement. The only requirement is that Iy < Q.
However, as we see next from Fig. 5.7(a) the secondary system has the incentive
to keep K not too high. It is also observed from Fig. 5.7(a) that the equilibrium
utility of the primary user is decreased when exact channel state information is not

available at the secondary users.

Figure 5.7(b) shows both the sum-rate Y1, gx(7;) as well as the per-user rate
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% Zszl gr(7;) achieved by the secondary system, with and without exact channel
state information. As was the case with primary utility, the secondary utilities are
also reduced slightly in the absence of channel state information. However, as we
observe from Fig. 5.7(b), this performance degradation seems to be small when
the secondary system size is sufficiently large. Note that, from a system point of
view the secondary system would prefer to maximize the sum-rate. As we see from
Fig. 5.7(b), the sum-rate monotonically increases with K both with and without
CSI. Thus, at a first glance, allowing more secondary users to operate simultaneously
seems to be the preferred solution. However, Fig. 5.7(b) also shows that the per-
user rate is monotonically decreasing in K, leading to decreasing incremental gains
in sum-rate as additional secondary users are added to the system. Depending on
the application and the QoS requirement of the secondary system, each secondary
user will have a minimum required rate (in bits per transmission) below which
the transmissions would be useless. Thus we note that this QoS requirement will
determine the maximum number of secondary users K the secondary system would
want to support at any given time. For example, if the minimum per-user rate
required is 0.1 bps, the optimal K would be K* = 4, assuming exact CSI. If, on the
other hand, the rate threshold was reduced to 0.025 bps, the secondary system may

allow up to K = 18 secondary users to simultaneously operate.

DSL network under quasi-static fading channels
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Figure 5.8: Game outcome in the presence for a quasi-static scenario versus the
number of secondary users K.
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Figure 5.9: System performance of the DSL game in quasi-static environments. (a)
Primary user utility. (b) Secondary user reward function.

In the presence of wireless channel fading, the Nash equilibrium power pro-
file of the dynamic spectrum leasing system will depend on the observed channel
state realization. In particular, it is expected that in this case the Nash equilibrium
transmit powers of individual secondary users will be different for each user. In Fig.
5.8 we have shown the game outcome at the Nash equilibrium in the presence of
channel fading as a function of the number of secondary users K, both with and
without CSI (when there is no channel state information, again, we use the approx-
imation Iy _j ~ Ip). Figures 5.9(a) and 5.9(b) show the corresponding primary and
secondary user utilities achieved at the Nash equilibrium in the presence of channel
fading. In obtaining Fig. 5.8 and Fig. 5.9 we have assumed all channel gains in the
system to be Rayleigh distributed with all channel coefficients normalized so that
E{h?} = 1. The remaining parameters are assumed Q = 10, p; = 10, W) = 1,
Wozl,andagzaf,:
consider, without any loss in generality, the transmit powers p; to be equal to the

1 as in the previous section. This essentially allows us to

average received power (averaged over fading). Note that, due to interference aver-
aging in the presence of fading, in this case the secondary system is able to achieve

better sum- and per-user rates compared to those with non-fading channels.

Note that, when the reward function f = f(), the reward for a secondary user
is the capacity (in bps) it can achieve assuming all other transmissions (both primary
and secondary) are purely noise. In the presence of channel fading, this capacity
is a random quantity determined by the fading coefficients of all users. As we saw
earlier with identical users, the per-user reward is typically a decreasing function of

the increasing secondary system size. The interpretation is simple: Essentially, all
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secondary users in the system must share the allowed interference level set by the
primary system. As we mentioned earlier, a secondary user may require a minimum

capacity to ensure at least an acceptable QoS for its applications.

DSL network under time-varying environmental conditions

In the above discussion, we have assumed the quasi-static fading in which fading
realizations stay fixed for a period of duration and then change to new values. This
facilitated the Nash equilibrium analysis without having to deal with time-varying
channel coefficients. While quasi-static assumption may be justified in certain chan-
nel environments, sometimes it is likely that the channel coefficients may slowly vary
in time. It is easy to see that for the best-response adaptations to converge to a
Nash equilibrium, the rate of adaptations need to be faster than the time-variations
of the channel. One may expect that in the presence of channel variations, the con-
vergence may be slowed, or even not occur. However, as we will demonstrate in this
section, the proposed DSL-game has the desired property of being tolerant towards
slow time-variations of the channel state. Moreover, the Nash equilibrium of the
proposed DSL-game is robust against small channel estimation errors. This is also
a desired property since in practice the channel coefficients need to be estimated,

and these estimations are almost always not perfect.

In this section we investigate the behavior of the proposed DSL-game based
dynamic spectrum sharing networks. We first study the effect of both channel
variation rate € and CSI updating interval L on the network performance and how
they affect the probability of the secondary system meeting the target interference
cap (Jo. Secondly we compare a quasi-static scenario where the system has enough
time to converge to its Nash equilibrium with a more realistic time-varying scenario

for a different number of secondary users K.

Channel Model. Channel coefficients are assumed Rayleigh distributed and

independent across users, that is,
h.i[n] ~CN (0,07 ), (5.42)

where with some abuse of notation we use a dot in the subscript to denote either
primary (p) or secondary (s) systems. We assume that channel coefficients present
temporal correlations. Under the slow varying channel assumption we model tempo-

ral correlation as a first order Gauss-Markov process (Maybeck, 1979) at sampling
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rate:
hn] = V1 —€ehgn — 1] + ew.[n], (5.43)

where the driving noise w.;, follows an iid CN (0, 0}2”6), and ¢, defined here as channel
variation rate, is a parameter related to the normalized Doppler spread. First order
Markovian assumption for fading correlations has been shown to be accurate both

experimentally and analytically (Wang and Chang, 1996).

Additionally we assume that the channel state information (CSI) update at
the system is not instantaneous, and the system obtains CSI periodically every L

samples. Then system decisions are taken as a function of the last CSI estimate
ho[n) = hi[Ln/LJ], (5.44)

where |-] stands for the operand integer part of the argument.

For each set of parameters the results are averaged over 1000 Montecarlo rep-
etitions. We divide each realization into a transient period (100 best-response iter-
ations), where the system evolves to its stationary regime and the period in which

the results are averaged (500 best-response iterations). Unless specified otherwise,

simulation parameters were set to 79 = 1, 012) = 02 =1, O'I% = J]% = 1 for
pk _ sk
k=0,...,K. The maximum allowed interference cap was fixed to Qg = 10 while

the maximum transmission power of each of the secondary transmitters was set to
P, =10for k=1,..., K. The weighting coefficient was set to A\; = 1. As we will see
below we can compensate for both channel variations and channel state information

inaccuracies by changing the value of the parameter As.
Effect of channel variation rate

Here we fix the size of the secondary system (K = 10) and the channel estima-
tion period (L = 10), and we study the effect of the channel variation rate e. To
this end we vary its value from a static channel € = 0 to a (moderately fast) varying

channel e = 0.2.

Fig. 5.10(a) shows the averaged game outcome for different values of the channel
variation rate e. This figure must be seen in conjunction with Fig. 5.10(b) that shows
the probability of the secondary system outcome not meeting the allowed interference
cap Qg set by primary user. We compare here two values of the weighting coefficient

As-



166 Chapter 5. Dynamic Spectrum Leasing

n 0.5; ~
_-°© ——Pr{ly > Qo) N =1)
10 ’/e 04} - % —PT‘{][] > Q[)} (Ag = 125)
)
, —o—o—o—g—8—o0—0—o = e
z o--9 S o
3 O-O0- A .
Q E e
= PR ; <
g - = el
7 ——Qo (\s=1) q
-e-I) (\s=1)
6] __x__-x—"x'— —=—Qo (As:1<25)
i -%-Iy (A, =1.25)
5 1 1 I i
0 0.05 0.1 0.15 0.2 0.15 0.2

Figure 5.10: Outcome averaged over the fading for two different values of the weight-
ing coefficient As versus a growing channel variation rate e. (a) Game outcome. (b)
Probability of undesired operation.

In Fig. 5.10(a) we can see that for both A; = 1 and A\; = 1.25 an increase in
the rate of variation does not affect the average interference cap @)y at the system
equilibrium. However the actual interference Iy at the primary receiver increases
on average with e. Fig. 5.10(b) shows that the probability of undesired operation
defined as Pr{Iy > Qo} turns to be non-zero even for moderate values of e. Moreover,
above a given variation rate Iy exceeds the allowed interference cap on average, as
seen from Fig. 5.10(a). Note that by adjusting the weighting coefficient \; we can
control the safety margin of the system. In Fig. 5.10(b) we can see that by increasing
As we shift the probability of undesired operation curve to the right, allowing the
system to work satisfactorily even at higher channel variation rates. This increased
tolerance to time-variations, however, comes at a price. In our case, it is the smaller
equilibrium interference cap chosen by the primary user, which in turn leads to

reduced both primary utility and secondary system sum-reward.
Effect of channel estimation period

We set the channel variation rate ¢ = 0.1 for the same secondary system size
(K = 10). We vary the channel estimation period L from 1 (each best-response
iteration carried out with perfect CSI) to L = 25, that is, one estimate every 25

best-response round-robin iterations.

In Fig. 5.11 we can see that the effect of the channel estimation period L
resembles the channel variation rate effect. For longer channel estimation periods

the actual interference at the primary increases although the allowed interference
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Figure 5.11: Outcome averaged over the fading for two different values of the weight-
ing coefficient As versus a varying channel estimation period L. (a) Game outcome.
(b) Probability of undesired operation.

cap remains constant even in the presence of outdated channel information. In
Fig. 5.11(b) we can see that by increasing the weighting coefficient \s the probability

of undesired operation curve gets shifted allowing a larger operating range.
Effect of the number of users

Here we compare the effect of the secondary system size in a quasi-static sce-
nario, corresponding to € = 0, where the system converges to its Nash equilibrium
and the channel is known perfectly, with a time-varying situation corresponding to
a channel variation rate of ¢ = 0.1 and channel estimation period of L = 10 best

response adaptations.

Figure 5.12 shows the game outcome versus the secondary system size. We see
that in a quasi-static scenario the actual interference Iy at the primary meets the
allowed interference cap (g even for a moderate number of secondary users. For
a growing number of secondary users the safety margin Q9 — Iy decreases. On a
time-varying scenario with outdated CSI the safety margin Qg — Iy is reduced due
to incomplete adaptation to the actual environment that prevents the convergence
of the network to its desired Nash equilibrium, as we have seen in the previous
results. This effect becomes more pronounced for a growing number of secondary

users because of the required longer convergence time of a larger network.

In Figures 5.13(a) and (b) we show the utility and the reward function of the
primary and secondary systems, respectively. In the case of time-varying channels

the primary utility is larger than for stationary channels, as seen from Fig. 5.13(a).
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Figure 5.12: Game outcomes averaged over fading for a quasi-static scenario and for
time-varying scenario for a varying number of secondary users K.
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Figure 5.13: System performance averaged over fading for a quasi-static scenario and
for time-varying scenario. (a) Primary user utility. (¢) Secondary reward function.

This effect comes from the fact that the actual interference seen at the primary is
larger than for stationary channels. On the other hand, Fig. 5.13(b) shows that the
reward function for the secondary users remains almost unaltered for time-varying
channels, even when the interference at primary has been increased. This is an
undesirable effect since an increase in transmitted power by secondary users does
not translate into a larger reward for the secondary system. The reason is that the
increased transmitted power hinder both primary and other secondary users due to

the suboptimality of matched filter decoding.
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5.5 Conclusions

A formal analysis of Cognitive Radio paradigms which allow different level of aware-
ness between primary and secondary networks shows the potential gain of the inter-

action between the two heterogeneous systems.

Specifically, in this chapter we have studied the expected utility improvement
of a primary system which dynamically adjust the level of allowed interference. The
proposed analysis results into a Stackelberg game formulation of the interactions
between primary and secondary systems, which is not implementable in practice.
Instead, we propose a general game theoretical framework which results in a family
of practical (though suboptimal) DSL communication schemes. The stability and
performance of this system has been analyzed under different scenarios showing a

good behavior in realistic environments.

The results presented in this chapter are the result of the collaboration between
the Signal Processing in Communications Group (GPSC, University of Vigo) and
the Communications and Information Sciences Lab (CISL, University of New Mex-
ico). This collaboration conducted to three publications in the topic of DSL based
schemes. First, Vazquez-Vilar et al. (2010b), published in the IEEE-TWC, studies
the potential gain of a family of DSL schemes and covers Section 5.3. On the other
hand, the content in Section 5.4 is mainly based on Jayaweera et al. (2010), published
in IEEE-TVT and was extended to time varying environments in El-Howayek et al.
(2010), presented at the 1st International Workshop on Cognitive Radio Interfaces
and Signal Processing (CRISP 2010).
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Appendix 5.A Proof of Theorem 5.1

Note that the primary user action set is of the form of Ay = Q = [0, Qo], where
Qo is the maximum interference cap that is determined by the required minimum
QoS and the maximum possible transmit power of primary user. Clearly Ag is both
compact and convex. Similarly, for all £k = 1,--- |, K, the secondary user strategy
sets are of the form of Ay = P, = [0,pr]. Again, it is easy to observe that all
secondary user action sets are convex and compact (being closed and bounded real
intervals). Further, both ug(a) and ug(a) are continuous in the action vector a, and
ug is concave in (Qg. For the existence of a Nash equilibrium we need to additionally

ensure the quasi-concavity of ug’s in pg for pp >0, for k=1,--- , K.

Let us define

L Tok !ﬁpk!20§< g(%))
ok (k) = 0o + O ’Yk+g,(7k) : (5.45)

Then, it can be seen that uj has a local maximum that is indeed a global maximum
if ¢rp(ve) = )\% has only one solution for pp € Py. Clearly, ¢r(vr) = /\% has a
solution if ¢ (0) < /\% < limy, 00 @1 (7)), and, moreover, this solution is indeed a
global maximum if in addition ¢} (y;) > 0 for 4 > 0. It can be easily verified that
@5 (k) > 0 will be true if the reward function is such that 909" () 9 for all

(9'(vk))?
vt > 0. Note that, this is trivially true for any reward function that is concave in 4

since in that case ¢’ (v) < 0. Note also that ¢ (0) = I(é?_o’“ and lim-, 00 @1 (%) = 00

if lim,, o0 I0w) g, Hence, if reward function g(-yx) and the coefficient A4 satisfy

9 (k)
the following conditions, uy indeed has a local maximum that is a global maximum:

1. g(0) = 0, g'(0) > 0 and lim,, oo S > —oc0

9, W<2f®rall%>o

Q
3.0< A < 72
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This thesis is framed within the field of cognitive radio, a smarter communica-
tions paradigm in which radios may learn and adapt to the environment. While this
novel scheme promises a better strectrum utilization by allowing dynamic access in
certain licensed bands, there exists a series of challenges which need to be addressed

before the technology is mature enough for its deployment.

In the first chapters of this thesis we presented different detection schemes
explointing the available information about the primary network. In particular, in
Chapters 2 and 3 we presented different multi-antenna detection schemes exploiting
the spatial structure of the received signal together with the available information
about its spectral shape. In Chapter 4 we addressed the issue of acquisition and
detection of wideband signals, both when the sampling is performed at Nyquist rate
and when the acquisition is done through novel analog to information converters.
Wideband processing is shown to provide additional information that can be used

to increase the detection performance.

As a whole, this thesis provides a set of tools that, depending on the known
parameters on the primary network and the architecture of the detection system,
allows the system designer to construct efficient detectors. For each of the proposed
detection schemes we developed a rigurous performance analysis, either analytically
when mathematically tractable, or through extensive Monte-Carlo simulations oth-

erwise.

The second part of the thesis focuses on the study of a general architecture

171
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for interference management in cognitive radio networks. In this sense, Chapter 5
discusses the advantages of allowing some interaction between the primary system
and secondary system, concluding that this advantage can be significant in dynamic
environments. Given the current rising trend in the use of mobile devices, the
analysis of systems in dynamic environments will have a big impact in the design of

the next generation communication standards.

6.1 Future work

The work developed within the framework of this thesis opens multiple lines of

research. Here I will present some of the most interesting yet unanswered questions.

e In Chapter 2 we proposed a low SNR diversity analysis for different detection
schemes which assume known noise variance at the receiver. Extending this
analysis to more sophisticated detectors, for example the ones presented in

Chapter 3, is an open problem.

In fact, this question can be reformulated in a broader scope. Assume that we
have a given family of detectors, parametrized by the set of unknown system
parameters. If their performance depends on a subset of these parameters,
which may suffer from fading, the detection performance is a random variable
which needs to be averaged over the parameter realizations. How is this average

performance affected by the presence of additional unknown parameters?

e The detection schemes derived in Chapter 3 allow the detection of rank-P
signals in spatially uncorrelated noise, and the detection of rank-1 signals in
presence of noise with spatial correlation. However, the approach used to
derive the latter cannot be directly applied to solve the most general problem
of detection of spatially rank-P signals in spatially correlated noise. This

detector would have important impications in certain practical scenarios.

e All of the detectors considered in Chapter 3 assume knowledge of the signal
rank P. While this may be reasonable in some contexts, for example if the
space-time coding scheme used by primary transmitters is known, there are
scenarios in which P is unknown, for example if it is related to the number of
primary users simultaneously transmitting. Future research should consider

estimation of P Chiani and Win (2010) and primary signal detection jointly.

=
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e In Chapter 4 we investigated primary signal detection in a wideband setting.
This conducted to the estimation of parameters which may present certain
sparsity patterns. Exploiting this sparsity has been shown to be fundamental
to increase detection peformance in the proposed scenario. An interesting ex-
tension would be to derive a general performance analysis of the gain obtained

by exploiting sparsity information in general detection / estimation problems.

e Chapter 5 presents a novel framework which allows certain interaction between
primary and secondary networks assuming single-carrier systems. This frame-
work can in principle be extended to the case of multi-carrier multi-antenna
systems, which offer multiple degrees of freedom which can be used in the

optimization procedure.

e Also in the context of cognitive radio other, somehow more philosophical,
questions arise. The scholar community recently proposed a wide set of detec-
tion schemes that can be applied to cognitive radio networks. However, much

less attention has been offered to the integration of these detectors in the CR

receiver. @

In this sense it is clear that in a system with limited resources, say, for instance,
number of available dimensions, a trade-off exists between the sensing perfor-
mance and the spetral efficiency of the network. If several of the available
dimensions are used for spectral sensing, there are only a few left for trans-
mission and a small efficiency is achieved. On the other hand, if few resources
are allocated to the sensing procedure, the system may not be able to detect
transmission opportunities and thus suffers again a reduced spectral efficiency.
Somewhere between these two extremes a trade-off exits which maximizes the

spectral efficiency obtained.

In this thesis we presented a set of multiantenna detectors, and different anal-
yses which allow us to quantify their detection performance. This, together
with novel results on finite length bounds (Tauste et al., 2011), can be used as

an starting point to formalize the existing trade-off.

6.2 Concluding remarks

While in this thesis we ;ocused on the context of CR, several of the fundamental
results obtained can be applied in other fields. For example, the GLRT detectors
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presented in Chapter 3 may have practical importance in radio astronomy or in tar-
get detection in the field of radar. The bargain scheme presented in Chapter 5 could
be applied with minor changes, for instance, to femtocell interference management

in cellular networks.

The work presented in this thesis has led to several articles published in interna-
tional journals such as IEEE Transactions on Signal Processing, IEEE Transactions
on Vehicular Technology, or the IEEE Transactions on Wireless Communications,
while other articles are still in review process. Additionally, some preliminary results
have been presented in some of the events with major impact in the field of signal
processing, such as IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP) conference, as well as in specific workshops in the field of Cog-
nitive Radio, such as the ICST Conference on Cognitive Radio Oriented Wireless
Networks (CrownCOM) or the IEEE International Workshop on Signal Processing
Advances for Wireless Communications (SPAWC).

Some of the results this thesis were produced in collaboration with different re-
search groups worldwide. Specifically, the results exposed in Section 3.3 have been
obtained in collaboration with the Advanced Signal Processing Group (GTAS, Uni-
versity of Cantabria) and the theoretical results in Section 3.4 constitute a joint
work with the Signal Processing for Communications Research Group (SPCOM,
Technical Univ. of Catalonia UPC). The analysis of a new interference manage-
ment paradigm presented in Chapter 5 has been developed in collaboration with the
Communications and Information Sciences Lab (CISL, University of New Mexico).
Additionally, a collaboration with Philips Research (Netherlands) has led to a joint

conference paper on the topic of detection diversity in cognitive radio systems.
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