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Abstract—The Ring Learning with Errors (RLWE) problem
has become one of the most widely used cryptographic assump-
tions for the construction of modern cryptographic primitives.
Most of these solutions make use of power-of-two cyclotomic rings
mainly due to its simplicity and efficiency. This work explores
the possibility of substituting them for multiquadratic rings
and shows that the latter can bring about important efficiency
improvements in reducing the cost of the underlying polynomial
operations. We introduce a generalized version of the fast Walsh-
Hadamard Transform which enables faster degree-n polynomial
multiplications by reducing the required elemental products by
a factor of O(logn). Finally, we showcase how these rings find
immediate application in the implementation of OLE (Oblivious
Linear Function Evaluation) primitives, which are one of the
main building blocks used inside Secure Multiparty Computation
(MPC) protocols.

I. INTRODUCTION

The Ring Learning with Errors problem (RLWE) has be-
come a very promising tool for the development and improve-
ment of new cryptographic primitives, notably those belonging
to the field of homomorphic encryption.

Most of the efficiency improvements that RLWE has in-
troduced are based on the algebraic structure of the used cy-
clotomic rings R = Z[z]/®,,(z). With the adequate choice of
modulus ¢ for Ry, = Zy[2]/ P, (), the cyclotomic polynomial
splits into ¢(m) linear factors, and this enables the use of
the CRT (Chinese Remainder Theorem) to efficiently add and
multiply the corresponding elements belonging to R, [1].

Additionally, this property has also been considered for
the plaintext ring, as a tool to batch several integers in one
encryption (as many as n = ¢(m) values when the modular
function fully splits into linear factors), which contributes to
a reduction in the cipher expansion.

From a practical perspective, some of the most recent
libraries dealing with lattice-based cryptography, such as HE-
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lib [2], [3], PALISADE,' Lattigo,> SEAL? and NFLIlib [4],
take advantage of this fact to optimize the polynomial op-
erations. The first one uses the double-CRT representation,
that is, a first CRT splitting the cyclotomic polynomial into
linear factors, and a second CRT factoring the coefficients
of the polynomials depending on the prime-decomposition
of the modulus ¢. The three latter libraries are specialized
for power-of-two cyclotomic rings Z,[z]/(1 + 2™), so they
consider a CRT representation for the coefficients together
with an efficient NTT/INTT (Number Theoretic Transform)
representation.

In the case that all the involved operations are polynomial
multiplications and additions, working in this transformed
domain enables polynomial operations with a cost of O(n) el-
emental operations between coefficients. However, the current
state-of-the-art homomorphic schemes, such as BGV [5], [6]
and FV [7], apply a rounding operation over the polynomial
coefficients which is not compatible with the double-CRT (or
CRT and NTT) representation.

This means that this rounding has to be applied in the
coefficient-wise representation, with the corresponding over-
head for swapping between representations.

A. Rounding over the RNS (Residue Number System) repre-
sentation

Bajard et al. [8] have studied how to perform a rounding
operation without leaving the CRT representation (also called
RNS, Residue Number System).

They implement their method using the NFLIib library for
the FV cryptosystem and show that for practical parameters,
staying in the CRT domain outperforms the results of the usual
approach of moving between domains. It is also shown how
the asymptotic complexity of decryption is improved by a
O(logn) factor when staying in the CRT domain.

However, this asymptotic improvement is not preserved
for multiplication primitives, as the effect of the NTT/INTT
computations is the same for both implementations.

In any case, even when there is no asymptotic improvement
for all the primitives, the RNS representation proposed by
Bajard et al. [8] enables to fit all the used values into the size
of a machine word, which in practice helps in considerably
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improving the performance when comparing with an imple-
mentation requiring the use of multi-precision arithmetic.

In a recent work, Halevi er al. [9] propose further optimiza-
tions beyond the results of Bajard ef al. [8], and implement
them in the PALISADE library. They achieve a simplification
in the procedure and also avoid the additional noise that
their method introduces inside the ciphertexts. For a detailed
comparison between the methods from [9] and [8] we refer
the reader to [10], where CPU and GPU implementation run
times are provided for both. Hybrid approaches of [8] and [9]
are used in SEAL and Lattigo.

B. Motivation and contributions of our work

A careful examination of the previous results reveals that
if we were able to either (a) efficiently compute the rounding
operation without reversing the NTT/INTT (or, more generally,
the CRT over the cyclotomic polynomial in the double-CRT
representation) or (b) speed-up the run times involved in its
calculation, then the efficiency of the current RLWE-based
schemes could be considerably improved (as almost all the
operations in these schemes need to call this NTT/INTT basic
block).

This work focuses on improving the cost of the underlying
polynomial operations for cryptographic primitives based on
RLWE. We show how the well-known asymptotic cost of
O(nlogn) for cyclotomic rings with polynomials of n co-
efficients can be improved by a factor of logn in terms of el-
emental multiplications. To this aim, we propose to work over
a multivariate ring which exhibits a convolution property re-
lating the coefficient-wise representation with the transformed
domain by means of an «-generalized variant of the Walsh-
Hadamard transform (over finite rings instead of the usual real
numbers). This transform can be very efficiently computed
with FFT (Fast Fourier Transform) algorithms (specifically,
with a variant of the Fast Walsh-Hadamard transform) whose
computational cost is only O(nlogn) additions, hence being
much more amenable for a practical implementation. Finally,
we discuss how a basic building block in Secure Multiparty
Computation (MPC) as OLE (Oblivious Linear function Eval-
uation) can benefit from these improvements, hence speeding
up the computation of some machine learning applications, as
for example the secure evaluation of the convolution layers
inside convolutional neural networks.

II. RING LEARNING WITH ERRORS

We first introduce the notation used in this work. Poly-
nomials are denoted with regular lowercase letters, omitting
the polynomial variable (i.e., a instead of a(x)) when there
is no ambiguity. We follow a recursive definition of mul-
tivariate modular rings: Ry[z1] = Z4[z1]/fi1(z1) denotes
the polynomial ring in the variable z; modulo fi(z;) with
coefficients belonging to Z,. Analogously, Ry[zri,z2] =
(Rqlz1])[z2]/(f2(x2)) is the bivariate polynomial ring with
coefficients belonging to Z, reduced modulo univariate f;(x;)
and fo(z2). In general, Ry[z1,...,x] (resp. R[z1,...,z])
represents the multivariate polynomial ring with coefficients

in Z, (resp. Z) and the ! modular functions f;(z;) with
1 < ¢ < I. The polynomial a can also be denoted by a column
vector @ whose components are the corresponding polynomial
coefficients. Finally, ||a|| refers to the infinity norm of a, the
Hadamard product of two vectors is a o b, and [{] denotes the
set {1,2,...,1}.

A. Multiquadratic Rings

Let us define the multiquadratic version of RLWE, where
all the modular functions have the form f;(z;) = d; + 22, as

Definition II.1 (multivariate polynomial RLWE with quadratic
modular functions [11]). Given a multivariate polynomial ring
RY (21, ... 1] with fj(x;) = dj + 23 for j =1,...,1 where
Il = logyn (with n a power of two) and an error distri-
bution x[x1,...,21] € RJ[x1,..., 2] that generates small-
norm random multivariate polynomials in R;/ [1,... 2], the
multivariate polynomial RLWE relies upon the computational
indistinguishability between samples (a;,b; = a; - s+ ¢e;) and
(@i, u;), where a; < Rylz1, ..., 2], u; < R(\J/[xl, ..., xy] are
chosen uniformly at random from the rings Ry[x1, ..., x| and
R;/ [€1,...,21]; and s,e; + x[x1,...,x;] are drawn from the
error distribution.

The security reduction from [12, Theorem 6.2] applies to
this particular version of the RLWE problem (over a multi-
quadratic number field) whenever all d; are distinct primes
satisfying —d; = 1 mod 4. It is also required that the error
distribution x satisfies the condition > 2 described in [13,
Invulnerability condition].*

For more details on the use of this type of rings and the
security of multivariate instantiations of RLWE we refer the
reader to [11].

B. Ring Expansion Factor

An important measure that we use for performance compar-
ison in Section V is the ring expansion factor. This parameter
relates to the underlying noise growth in an RLWE sample
after several homomorphic operations.

Definition II.2 (Ring Expansion Factor). The expansion factor
Or of a ring R is defined as:

dr = max 7“(1 il
ave R ||al] - [[b]]
Lemma 1 (Ring Expansion Upper Bound for Power-of-two
Cyclomic Rings [14]). For a ring R = Z[x]/(1 + z™) with n
a power of two, the ring expansion factor d g is upper bounded
by n.

Lemma 2 (Ring Expansion Upper Bound for Multiquadratic
Rings [11]). For a ring R as the one introduced in Defini-
tion 1.1, the ring expansion factor r is upper bounded by

nD, where D = [];c(1og, n Idil.

“Being r = o/+/27 the parameter of the Gaussian error distribution
defined in the embedding domain.



We can easily see from Lemmas 1 and 2 that multiquadratic
rings suffer a higher expansion than power-of-two cyclotomics
by a factor of D.

III. FASTER POLYNOMIAL ARITHMETIC OVER
MULTIQUADRATIC RINGS

This section focuses on improving the cost of the underlying
polynomial operations for cryptographic primitives based on
RLWE, especially polynomial products (convolutions).

A. Walsh-Hadamard Transform

The Hadamard transform over real numbers is usually
1 H;
H,=— ¢
V2 ( H,

defined by means of the recursion
H; ,
, 1
) (n
where i € NT and Hy = 1.
It can be seen that the matrix H; with ¢ > 1 is equivalent to
the Kronecker product of ¢ DFT (Discrete Fourier Transform)

matrices of size 2 (H; equals the DFT matrix of size 2); that
is, it can be seen as a 2 X 2 X - -- X 2-DFT transform, defined
—_———

over ¢ dimensions of lengtﬁ lémgbach.

Analogously to the DFT, the Walsh Hadamard Transform
(WHT) of size n possesses a particular fast algorithm called
FWHT (Fast Walsh Hadamard Transform) which can be
very efficiently computed with no products and with a cost
of O(nlogn) additions and subtractions [15]. Hence, when
working over rings satisfying a convolution property with the
Hadamard transform, it is possible to efficiently compute the
multiplication of elements from these rings with a cost of O(n)
elemental multiplications.

Security reasons prevent us from directly working over rings
satisfying this convolution property with the Walsh Hadamard
transform (that is, multivariate rings whose modular functions
are f(z;) = x2 — 1), as they can be easily factored into
(x; — 1)(z; + 1) over Z. Therefore, we resort to the type
of multivariate rings presented in Definition II.1 and apply an
(-generalized) variant of the WHT.

B. «-generalized convolutions

An a-generalized convolution® corresponds to the ring oper-
ation defined over polynomials belonging to Z,[z]/(1 — az™).
Figure 1 shows the realization of an a-generalized convolution
between vectors of length N (with [ = 0,...,N — 1), by
means of a cyclic convolution combined with an element-wise
pre/post-processing applied before/after [16], [17].

As the cyclic convolution can be efficiently computed by
means of standard fast algorithms, this means that an a-
generalized convolution can be implemented with only a light
overhead (O(n) scalar products).

5The cyclic convolution is a particular case for a = 1.
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Fig. 1. Block diagram for the a-generalized convolution.

C. «-generalized Walsh Hadamard transform

We are mainly interested in modular functions with the form
22 +d;. We can rewrite 1 —az™ as —a((—a)~! + 2™). Hence
for 2 +d; we have d; = (fozi)_l = fozi_l. For this particular
type of polynomial rings we can define the following direct
and inverse transforms:

1 0
W1:H1<0 0[1_1/2 )7

>H17

where the square-roots ai% and ai_Tl have to exist in R, for
all ¢ (see Definition II.1). Equivalently, if ¢ is an odd prime,
we can make use of the Legendre symbol (%) to check
when the multivariate ring factors into linear terms. For this
we need that (Z42°99) = 1 for a prime ¢ and for all i. We
1 1
1 -1
the normalizing factor %

Now we can extend this definition to multivariate rings
with modular functions of the form z? + d;: we consider
the Kronecker product of the matrices W, and W' as
W;=@Q;c Wi and Wt = Qe W', arriving at the
following expression:

and

_ 1 0
1_ o-1
W, =2 < 0 al/?

also redefine H; = ( ) without taking into account

W,;=H;

and

o 1 0

JE(i]

) Hi7

where the normalizing factors are again left out of H ;.

Consequently, if we define the vector & = (avy, ..., al)T,
when working over the multivariate ring Ry[x1,...,z;] with
fi(z;) = dj + xF for j =1,...,1 we can use the transforms
W, and Wz_l analogously to the use of negacyclic NTTs
in the univariate RLWE [17]. Both W; and Wz_l transforms
can be efficiently computed in O(n) (where n = 2!) elemental
multiplications thanks to the FWHT. This enables the compu-
tation of the H; matrix multiplications with only O(nlogn)
additions and subtractions and no products, which brings a net
improvement with respect to the analogous and wide-spread
radix implementation of the NTT.



IV. IMPLEMENTATION OF THE FAST WALSH-HADAMARD
TRANSFORM (FWHT)

Algorithm 1 shows a pseudocode implementation of the
(cyclic) FWHT (Fast Walsh-Hadamard Transform) implemen-
tation [15], computing the Hadamard transform of a length-n
vector a. It can be easily seen that this algorithm requires a
total of nlog, n additions (specifically, %52" additions and
"10# subtractions), instead of the n? additions/subtractions
required when directly applying the matrix multiplication.

Algorithm 1 Fast Walsh-Hadamard Transform (H;a with ¢ > 1)

1: procedure FASTWALSH-HADAMARDTRANSFORM(a,)
2: Input:

3: a such that length(a) =n = 2" and i > 1

4: Algorithm for FWHT(a) (computing H ;a):

5: depth = 1;

6: for j = O until log,n — 1 do

7: scale = 2 x depth;

8: for & = 0 until % do

9: for | = scale * k until scale x k + depth — 1 do
10: ac = all;

11: all] = a[l] + a[l + depth];
12: a[l + depth] = ac — a[l + depth];
13: depth = 2 * depth;

14: Output:

15: a<+ H;a

Finally, the a-generalized version of the direct (inverse)
FWHT can be defined by adding a right (left) product by a
diagonal matrix, so that the total cost for the c-generalized
FWHT on a length-n vector is n elemental multiplications and
n log, n additions.

A. Implementation and evaluation

Polynomial multiplications are the main bottleneck of
lattice cryptography, as they are the most time-consuming
basic blocks of any cryptographic algorithm, from encryp-
tion/decryption to relinearization and bootstrapping. The re-
placement of the traditional NTTs by FWHTS by transitioning
from cryptographic constructions built on univariate RLWE to
the proposed multiquadratic version [11] can bring a consid-
erable improvement in terms of computational efficiency. To
showcase the achieved gains, we implemented Algorithm 1 in
C++ and compared it with one of the currently most efficient
radix-2 implementations of the NTT [18]; this is the algo-
rithm featured in the NFLIib, one of the fastest lattice-based
cryptographic libraries available for homomorphic encryption.
NFL also off-loads the complexity of the bit-reversal operation
to the INTT, in order to speed up the NTT, and makes
use of SSE and AVX2 optimizations to further enhance the
obtained performance. Figure 2 shows the comparison of the
obtained run times for a wide range of practical values of n
(vector size or polynomial degree), when using our FWHT
implementations, including an SSE/AVX?2 vectorized version.
It can be seen that we obtain a reduction to about 45-50%
of the time of the NTT (38-43% of the INTT) in the non-
vectorized implementation of the FWHT with respect to the

fast NTT of NFLIib, while the vectorized one further reduces
this figure to 22-24% (19-22% of the INTT).
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Fig. 2. Runtimes of the proposed FWHT compared to the NTT/INTT [18].

V. APPLICATION: OBLIVIOUS LINEAR FUNCTION
EVALUATION

Multiquadratic rings find an immediate application on cryp-
tographic primitives which make an extensive use of direct and
inverse transforms for polynomial operations. One example
is the case of the Oblivious Linear Evaluation (OLE) primi-
tive which, when instantiated based on RLWE [14], requires
many FFT transform calls to efficiently perform encryptions,
decryptions, and also when switching ciphertexts’ moduli due
to division and rounding.

OLE is not only very useful as a building block for
MPC [19], [20], but also for more specific machine learning
applications: for example, OLE enables the secure computa-
tion of the convolution layers of a neural network [14].

In this section, we use the RLWE-based OLE protocol
from [14], and study how multiquadratic rings would behave
in comparison with the power-of-two cyclotomic counterpart.

A. OLE functionality

OLE can be seen as a particular case of the more general
OPE (Oblivious Polynomial Evaluation) primitive [21], in
which a polynomial p(z) is obliviously computed. The range
of possible scenarios covers, among others, function evalua-
tion by means of their polynomial approximation, secure set
intersection [22], and the generation of correlated randomness
in the offline phase of SPDZ-type protocols [23].

In contrast, OLE securely computes affine transforma-
tions [24], [20] f(x) = ax + b, hence simplifying OPE to
the case of linear functions. Even so, it is known that OPE
can be securely computed for a polynomial p(x) of degree d
with only O(d) calls to OLE, by decomposing p(x) into d
consecutive linear functions [24], [25].

In particular, an OLE protocol 7y can be seen as the solution
of a two-party computation (2PC) problem on which 7; must
implement the ideal functionality f(x) = ax + b and also
preserve the input privacy [26] of the two involved parties.

Definition V.1 (2-party OLE computation problem). Let P =
{Pr, Ps} be a set of 2 parties composed by the receiver Pr and



TABLE I
OLE PROTOCOL 7 ¢ (SEE DEFINITION V.1) BASED ON AHE
Public input: the ideal functionality f to be computed is an
affine function
Private inputs: x for Pk and {a,b} for Ps
Output of Pr: f(z) =ax+b
Party Pr instantiates the additively homomorphic
scheme EfinHom
Setup sk = EtinHom-SecKeyGen()\)
pk = ELintom.PubKeyGen(sk) which is made pub-
lic
Input Pr encrypts its input x and provides it to Ps
P C = EL;nHom.Enc(pK .CE)
Ps computes the encrypted output ¢’ for the ideal
. functionality f
Evaluation ¢ = Evintom.Enc(pk, b)
d = ELinHom.Add(ELinHom.LinMuHZ(a, C), Cb)
The party Pr executes the decryption
QUIPUL 1 £(2) = Evinhiom.Dec(sk, ')

the sender Ps, where Pr holds input x and Ps holds inputs
a and b. Let f(x) = ax + b be an dffine function over the
parties’ inputs. Let A be a static semi-honest adversary that
can corrupt either Pr or Ps. Then, the secure two-party OLE
computation problem consists in providing Pr with ax+b, yet
when

o A= Ps, A must learn nothing about receiver’s input .

o A = Pr, A must learn nothing more about a and b than
what can be deduced from the input x and output ax +b
it controls.

Although the previous two-party computation problem con-
siders a scenario dealing with passive corruptions, it can be
upgraded to withstand active adversaries by roughly doubling
the number of semi-honest OLE calls [14], [19].

B. OLE based on Additively Homomorphic Encryption (AHE)

A natural approach to implement the OLE functionality (see
Definition V.1) is to make use of an additive homomorphic
cryptosystem (e.g., Paillier [27]):

Definition V.2. Ler E = (SecKeyGen, PubKeyGen, Enc, Dec)
be an asymmetric encryption scheme, whose security
is parameterized by M\. When considering additively
homomorphic  encryption, we can extend E with
Add and LinMult procedures, having EpinHom =
{E.SecKeyGen, E.PubKeyGen, E.Enc, E.Dec, Add, LinMult},
where

e Let ¢, and c, be two ciphertexts encrypting, respectively,
x and y. Add homomorphically adds them:
ELinHom~DeC(ELinHom~Add(Cma Cy)) =x+y.

o Let c; be a ciphertext encrypting x, and y be a plaintext.
LinMult homomorphically multiplies a ciphertext and a
plaintext:

ELinHom.Dec(ELinHom.LinMult(y, CT)) =T-y.

This standard AHE-based approach is described in Table 1.

C. Batch OLE based on Lattices

The use of RLWE to instantiate the EjjHom Scheme in
Definition V.2 brings about some important improvements
with respect to other schemes such as Paillier [27]:

e ElinHom can encrypt a batch of elements (batch OLE,
BOLE) [14], [20] by packing them into slots. Thus, one
execution of the Protocol from Table I can directly cal-
culate f(xz) =aox +b with a,b,x € Zy; i.e., a batch
of n OLEs in parallel for each encryption sent by Pg.

e The homomorphic procedures Add and LinMult are more
efficient, as homomorphic addition and multiplication
correspond to polynomial addition and multiplication.

Following the structure of typical B/FV schemes [6], [7],
fresh ciphertexts are composed of two polynomial elements
belonging to Zg[x]/(z" + 1). Let (co,c1) € R2 be an
encryption of x; a,b e R, be two polynomials encoding
into slots, respectively, the vectors a,b and let (dg,d;) be
an encryption of zero generated by Ps. Then, by doing

(ch, ) = (dco + b+ dy mod g, dicy + dy mod q),

Ps obtains (¢, ¢j) which encrypts a polynomial & encoding
into slots the result f(x).

D. Circuit Privacy and Correctness

RLWE-based cryptosystems do not provide circuit privacy
by default. This means that, when decrypting, the receiver Pr
can obtain an error polynomial e € R, which leaks some
information of both @ and b. This issue is usually solved
by adding a flooding noise with a variance which is high
enough to hide this information. However, sampling this noise
is usually very inefficient.

Recently, an alternative method avoiding the use of flooding
noise while still guaranteeing circuit privacy is proposed
in [14]. /It basically applies a division and rounding step
([Z—gj, [Z—;J) mod qo (where ¢ is equal to ggqg) which is able
to remove the sender’s inputs leakage.

We make use of this last variant (see Algorithms 1,3 and 4
from [14] for more details) to compare the behaviour of multi-
quadratic rings with respect to the power-of-two cyclotomics.

To this aim, we need to redefine the bounds for circuit
privacy and correctness presented in [14]:

Lemma 3 (OLE Circuit Privacy [14]). For a B-bounded error
distribution X, plaintext modulo p, ciphertext modulo q = qoqg
defined on multiquadratic rings with log, n independent vari-
ables, and security parameter \, the homomorphic evaluation
of [14, algorithm 4] can be done with 2~*-circuit privacy if
parameters satisfy the following bound:
(5RB2 + B+ (SRPB
n " <
40

Lemma 4 (OLE Correctness [14]). For a B-bounded distribu-
tion x, plaintext modulo p, ciphertext modulo q = qoq( defined
on multiquadratic rings with log, n independent variables. The
OLE protocol implemented by means of [14, Algortihms 4 and
5] achieves the OLE functionality (Definition V.1) if g is cho-
sen according to Lemma 3 and qo > 20 gppB+2p+(qo mod p).

2 274




TABLE 11
EXAMPLE PARAMETER SET FOR A TOTAL OF 32768 - [ OLES WITH A
PLAINTEXT’S MODULUS p OF 120 BITS (2 LIMBS) AND 0 = 3.2, A = 80.

Parameter Par. set 1 Par. set 2 Par. set 3
{n, #batches, B} {32768,1,32- D} {32768, 1,32} {16384, 21, 32}
q 720 bits (12 limbs) 420 bits (7 limbs) 420 bits (7 limbs)
bit security > 128 > 256 ~ 128
TABLE IIT

COMPUTATIONAL COST AND CIPHER EXPANSION
Asymptotic mult. cost Cipher Exp. (limbs)

O(l - (Limbs + ExtraLimbs) - n) ~ Limbs 4 ExtraLimbs
O(l - Limbs - nlogn) Limbs

Parameters
Par. Set 1
Par. Sets 2 & 3

E. Performance Comparison

Taking into account the runtimes provided in Section IV,
we can see from Fig. 2 that the n-length FWHT transform
is around 5 times (resp. 2 times) faster than the conventional
negacyclic NTT with length n (resp. with length n/2). Mul-
tiquadratic rings cause an increase on the number of limbs
because dr and B are D times higher than the ones considered
with power-of-two cyclotomics (see Lemmas 3 and 4).

Table II compares three concrete OLE instantiations,’
where Par. set 1 corresponds to multiquadratic rings and the
two last ones to the use of the conventional Z[z]/(z™ + 1)
ring. We can see that for n = {2'% 25}, and considering
limbs of 60 bits, a cyclotomic ring requires 7 limbs. However,
when considering multiquadratic rings we need additional
5logy, D =~ 337 bits, where each different d; comes from

{3,7,11, 13, —17,19, 23, —29, 31, —37, —41, 43, 47, —53, 59}

If we assume a fast enough network, the estimated runtimes
for the Par. set 1 in Table II are roughly at least 2 times (resp.
2.5 times) faster than the ones obtained with Par. set 3 (resp.
Par. set 2).

Table III shows the existing asymptotic tradeoffs when
working with multiquadratics. Although both Limbs and
ExtraLimbs also grow with n, for practical parameters they
are smaller than the logn factor.

VI. CONCLUSIONS

This work studies the use of multiquadratic rings in the Ring
Learning with Errors (RLWE) problem. We show that by sub-
stituting the conventional power-of-two cyclotomic polynomial
rings by multiquadratics, the multiplicative cost of the involved
polynomial operations is decreased by a logarithmic factor. To
this aim, we introduce a generalization of the Walsh-Hadamard
Transform over finite rings which can be computed with a cost
of O(n) multiplications and O(nlogn) additions for a signal
of length n. Finally, we also show the advantages that these
rings can introduce when implementing a basic building block
in Secure Multiparty Computation (MPC) as the case of the
OLE (Oblivious Linear Function Evaluation) protocol.
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