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ABSTRACT
Multimedia contents are inherently sensitive signals that must be

protected when processed in untrusted environments. The field of

Secure Signal Processing addresses this challenge by developing

methods which enable operating with sensitive signals in a privacy-

consciousway. Recently, we introduced a hard lattice problem called

m-RLWE (multivariate Ring Learning with Errors) which gives sup-

port to efficient encrypted processing of multidimensional signals.

Afterwards, Bootland et al. presented an attack tom-RLWE that

reduces the security of the underlying scheme from a lattice with

dimension

∏
ini to max{ni }i . Our work introduces a new pre-/post-

coding block that addresses this attack and achieves the efficient

results of our initial approach while basing its security directly on

RLWEwith dimension

∏
ini , hence preserving the security and effi-

ciency originally claimed. Additionally, thiswork provides a detailed

comparison between a conventional use of RLWE,m-RLWE and our

new pre-/post-coding procedure, which we denote “packed”-RLWE.

Finally, we discuss a set of encrypted signal processing applications

which clearly benefit from the proposed framework, either alone or

in a combination of baseline RLWE,m-RLWE and “packed”-RLWE.
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1 INTRODUCTION
Signal processing has become ubiquitous in our daily lives; en-

compassing communication and entertainment technologies, from

speech and audio processing to image and video analysis, with a

strong impact on emerging applications such as smart grids, au-

tonomous driving and analysis of medical signals, among others.

Manyof these applications dealwith very sensitive signals,whose

information cannot be leaked to non-authorized users. This is the

contextwhere Secure Signal Processing (SSP) [21]wasborn, as amar-

riage between applied cryptography and signal processing aiming

at solutions that can protect the content of the involved signals in an

efficientway. Since then, numerous applicationshave beenproposed,

many of them based on the use of homomorphic encryption, and

specifically, the additively homomorphic Paillier cryptosytem [27],

covering the encrypted realization of linear transforms and typical

signal processing primitives [8, 37].

However, approaches based on Paillier present two serious limita-

tions: (a) high overhead and cipher expansion, even when mitigated

bypacking andunpacking techniques [7, 35]; and (b) they require the

involvement of the client (secret key holder) engaging in interactive

protocols with the outsourced party [36].

Due to this lack of flexibility, lattice cryptosystems (which present

aringhomomorphism)arebeingprogressivelyadoptedbyresearchers

in the field [2, 3, 16, 19, 34]. In particular, cryptosystems based on

RLWE (Ring Learning with Errors) present a clear advantage when

dealing with signals, as its underlying polynomial structure allows

for very efficient filtering and convolution operations [33]; hence,

most of the applications involving correlations and filtering can

benefit from recent RLWE-based schemes, which keep constantly

evolving [11, 12, 14].

Nevertheless, applications working with images or higher dimen-

sional signals aremuchmoredemanding.Oneexample ismultimedia

forensics, which deals with high volumes of signals with an inherent

multidimensional structure [23]. For this scenario, several solutions

have been proposed to adapt the structure of RLWE cryptosystems

for efficiently dealing with this multi-dimensionality [29, 30, 32].

These works propose a generalization of RLWE called multivariate

RLWE (m-RLWE), and their results show improved efficiency/space

tradeoffs. Actually, the authors of [32] show the flexibility of these

structures and their advantages in several conventional signal pro-

cessing operations, such as block-processing and multidimensional

convolutions/transforms. These schemes have been used in even

more complex applications inside the field of multimedia forensics,

namely camera attribution in the encrypted domain [28].

Recently, Bootland et al. [9] introduced an attack that reduces the
security of schemes based onm-RLWE. This attack has important

consequences on the validity of the results presented in [29, 30, 32]

and a careful analysis is needed to correctly reevaluate the security

of these schemes.

https://doi.org/10.1145/3335203.3335730
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This work carries out this analysis and recalculates the correct

security estimates form-RLWE applications in light of this new at-

tack. Additionally, we introduce a novel pre-/post-coding paradigm

for RLWE cryptosystems, which we denote “packed”-RLWE, that

preserves all the security properties of previous works based on

m-RLWE, but now basing their security directly on RLWE, which

is not affected by Bootland’s attack.

We also provide an extensive comparison between a conventional

use of an RLWE cryptosystem (baseline RLWE), anm-RLWE cryp-

tosystem and an RLWE cryptosystem equipped with our proposed

pre-/post-coding. For the sake of clarity and space, we focus on ap-

plications based on multidimensional filtering, but all the solutions

previously presented form-RLWEcan be adapted to our newpacked-

RLWE. Finally, we analyze the optimal combination of the three ap-

proaches, baseline RLWE,m-RLWE and packed-RLWE, depending

on the efficiency/space trade-offs required by the target application.

1.1 Main Contributions
This work features the following contributions:

• We revisit the security analysis of previousm-RLWE cryp-

tosystems in light of the recent attack introduced in [9].

• We survey the best existing algorithms to homomorphically

evaluate multidimensional convolutions with an RLWE cryp-

tosystem (denoted as baseline RLWE), noting that some of the

best solutions in one dimension (as the use of FFT algorithms)

result in a much worse performance in a multidimensional

setting, due to the increase of the circuit depth.

• We propose a new pre-/post-coding paradigm over RLWE

cryptosystems (wedenote it packed-RLWE), that directly “em-

ulates” multidimensional convolutions over the encrypted

signals, and comprises very efficient element-wise products

and FFT operations on the plaintext ring.

• We show how previous solutions based onm-RLWE can be

adapted to our packed-RLWE version, hence getting all the

advantages of these structures while still preserving the high

security of a lattice with dimension equal to the full length

of the involved signals.

• We provide an extensive comparison between a baseline

RLWE, anm-RLWE based solution (with non-“coprime”mod-

ular functions, which is a “worst-case” for security) and our

packed-RLWE proposal. Our results show thatm-RLWE and

packed-RLWEstill outperformthoseresultsofbaselineRLWE.

• Webriefly discuss how the three approaches can be combined

to fit the specific requirements of a real application, optimiz-

ing the space/efficiency trade-offs. Additionally, we describe

several practical applications which can greatly benefit from

the use of these tools.

1.2 Notation and Structure
Vectors and matrices are represented by boldface lowercase and up-

percase letters, respectively. Polynomials are denoted with regular

lowercase letters and the polynomial variable is ignored whenever

there is no ambiguity (e.g., a instead of a(z)). For the sake of clarity,
we indicate the variable(s) of polynomial rings:Rq [z]=Zq [z]/( f (z))
denotes the polynomial ring in the variable z modulo f (z) with co-
efficients belonging to Zq . In general, Rq [z1,...,zl ] (resp. R[z1,...,zl ])

represents the corresponding multivariate polynomial ring with

coefficients in Zq (resp. Z) and the l modular functions fi (zi ) with
1≤ i ≤ l . We also represent polynomials as column vectors of their

coefficientsa. Finallya◦b is theHadamard product between vectors,

and a⊛b (resp. a∗b) is the circular (resp. linear) convolution.
The rest of the paper is organized as follows: in Section 2, we

briefly revisit the used RLWE-based cryptosystems, their security

and the use of NTT/INTT transforms. Section 3 includes a descrip-

tion of the different approaches for both baseline and multivariate

RLWE solutions.We introduce themain contribution of this work in

Section 4, comprising our new pre-/post-coding blocks for packed-

RLWE. Section 5 includes an extensive comparison between the

different proposed approaches in terms of security, efficiency and

cipher expansion. Finally, we discuss a set of example encrypted

applications that greatly benefit from our solutions in Section 6.

2 PRELIMINARIES
In this section, we revisit the RLWE problem and RLWE-based cryp-

tosystems, together with their multivariate RLWE counterparts. We

also summarize the recent attack [9] tomultivariate RLWEanddetail

its effects on the choice of security parameters. Finally, we briefly

revisit the use of Number Theoretic Transforms (NTTs).

2.1 Multivariate RLWE problem
Firstly, we include an informal definition of the multivariate RLWE

problem as is stated in [32]. We focus on the most widespread case

where the modular functions are cyclotomic polynomials of power-

of-two order, i.e., fi (zi )=z
ni
i +1 with ni a power-of-two. Addition-

ally, this general definition allowsus to also cover theRLWEproblem

as a particular case when the number of dimensions is one (i.e. l =1).

Definition 1 (multivariate RLWEproblem [29, 31, 32]). Given
a polynomial ring Rq [z1,...,zl ]=Zq [z1,...,zl ]/(z

n1

1
+1,...,z

nl
l +1) and

an error distribution χ[z1,...,zl ]∈Rq[z1,...,zl ] that generates small-
norm random polynomials in Rq[z1,...,zl ],m-RLWE relies upon the
computational indistinguishability between samples (ai ,bi =ais+ei )
and (ai ,ui ), where ai ,ui ←Rq [z1,...,zl ] are chosen uniformly at ran-
dom, whereas s,ei← χ [z1,...,zl ] are drawn from the error distribution.

Remark. For cyclotomic modular functions {ϕm1
(z1),...,ϕml (zl )}

where gcd (m1,...,ml ) = 1,m-RLWE is isomorphic to RLWE with

modular function ϕ∏imi (z) [22]. Unfortunately, this is not the case
for the version stated in Definition 1, and the security ofm-RLWE

is highly dependent on the form of the different modular functions

(see Section 2.3).

2.2 An (m−)RLWE based Cryptosystem
We instantiate univariate and multivariate versions of the FV cryp-

tosystem [18] as examples for our proposed schemes (see Sections 3

and 4) and our performance comparisons (see Section 5), but the

results are generalizable to other cryptosystems such as BGV and

CKKS [10, 14]. Due to space constraints, we do not include here a

description of all the cryptosystem primitives (we refer to [18] for

a detailed description). Instead, we summarize the cryptosystems’

properties relevant to our analysis.

The plaintext elements belong to the ringRt [z1,...,zl ], and cipher-
texts are composed of (at least) two polynomial elements belonging



to Rq[z1, ...,zl ]. The security of the scheme relies on the indistin-

guishability assumption of them-RLWE problem (see Definition 1),

which reduces to RLWEwhen l =1.

2.2.1 Cipher expansion. InFV,wecanuse the followingnoisebound
(Theorem 1 in [18]) when evaluating an arithmetic circuit of multi-

plicative depth L

4δLR (δR+1.25)
L+1 ·tL−1<

⌊ q
B

⌋
, (1)

where δR =
∏

i ni is the ring expansion ratio, q is the modulo of

the ciphertext ring Rq , t is the modulo of the plaintext ring Rt , and

| |χ | |<B, that is, χ is a B-bounded distribution of variance σ 2
.

2.2.2 RLWE in secure signal processing. The use of an RLWE-based

cryptosystem brings about two main advantages in secure signal

processing: (a) its security is highly dependent on the length of the

involved polynomials, which directly impacts the cipher expansion

if the input data cannot be fully packed; practical signals are usu-

ally long sequences, such that they can be encrypted in only one

encryption; this helps in increasing the security of the underlying

RLWE-based cryptosystemwithout significantly increasing its ex-

pansion; (b) homomorphic properties of the cryptosystem translate

into addition andmultiplication of plaintext polynomials, which rep-

resent signal addition and convolution (filtering), the basic blocks

required in any signal processing application.

2.3 Security ofmultivariate RLWE
The original formulation ofmultivariate RLWE [29, 32] assumes that

them-RLWE problem (Definition 1) in dimension n=
∏l

i=1ni is as
hard as the RLWE problem in dimension n. However, in [9] Boot-

land et al. introduce an attack onm-RLWE; this attack exploits the

fact that some of the modular functions enable repeated “low-norm”

roots in the multivariate ring. As a result, when common roots exist,

this attack is able to factor them-RLWE samples into RLWE samples

of smaller dimension, hence reducing the security of thesem-RLWE

samples to that of solving a set of independent RLWE samples of the

maximum individual degree max{ni }i .
This attack is specially relevant form-RLWE samples (ai ,bi =

ais+tei ) chosen as in Definition 1, where all the modular functions

introduce common roots.
1

Next, we exemplify the attack on the bivariate RLWE problem,

but it can be recursively applied when attacking higher-dimensional

(l >2) cases.

2.3.1 An attack to multivariate RLWE. Following Definition 1, con-
sider a bivariate RLWE (2-RLWE) sample (a,b = as +e ) ∈ R2q[x ,y]

and Rq [x ,y]=Zq [x ,y]/(x
nx +1,yny +1) withnx ≥ny and k= nx

ny ∈Z

without loss of generality.

Nowwe define the map

Θ̃ :Zq [x ,y]/(x
nx +1,yny +1)→

(
Zq [x]/(x

nx +1)
)ny

a(x ,y)→
(
a(x ,xk ),a(x ,x3k ),...,a(x ,x (2ny−1)k )

)
.

Themap Θ̃ is a ring homomorphism, and ifq is odd it is also invert-
ible (see [9]). This allows to transform the pair (a,b) ∈Rq[x ,y] into

1
As an example, consider the functions f (x )=xn+1 and д (y )=y2n+1. It is easy to

verify that the square of the roots of д (y ) are also roots of f (x ).

(Θ̃(a),Θ̃(b)) ∈R
ny
q [x]. If we denote each of the different components

in Θ̃ by Θ̃i , for i=1,...,ny , we have(
Θ̃i (a),Θ̃i (b)= Θ̃i (a)Θ̃i (s )+Θ̃i (e )

)
∈R2q [x],i=1,...ny . (2)

That is, ny different RLWE samples of dimension nx , whose noise
has a variance ny times higher than the original 2-RLWE sample (as

the result of adding ny independent noise samples).

The attack then tries to break each of the obtainedny RLWE sam-

ples. Once this is done, if the map is invertible, the original secret

key can be reconstructed with the different ny smaller keys.

This attack can be generalized to anm-RLWE sample (Defini-

tion 1) with l dimensions, by recursively applying “versions” of this

map a total of l−1 times. We assume, without loss of generality, that

n1 ≤n2 ≤ ...≤nl ); the attack then converts a sample fromm-RLWE

into
n
nl

RLWE samples with cyclotomic degree nl and a variance
n
nl

times higher.

2.4 Number Theoretic Transforms
Discrete FourierTransforms (DFTs) arewidelyused in signal process-

ing due to their frequency physical interpretation and the circular

convolution theoremwhich enables efficient convolutions bymeans

of FFT algorithms (e.g., radix-2 or radix-4). However, DFTs are de-

fined on the complex field, while RLWE-based cryptosystems are

naturally defined in finite rings. A direct use of DFTs requires round-

ing the complex roots of unity, which introduces quantization errors.

Number Theoretic Transforms (NTTs) solve this problem, pre-

serving the properties of a Fourier transform on a finite ring and

working entirely with integer arithmetic, but they do not always

exist. Consider a ring Zp where p=
∏k

i=1p
li
i , an NTT of size N can

be defined if the following properties hold [26]:

• ThereexistsanN -throotofunityα inZp satisfyinggcd(α ,p)=
gcd(N ,p)=1.
• N divides gcd(p1−1,...,pk −1).

The expressions for the forward and inverse transforms are

x̃[k]=
N−1∑
l=0

x[l]α lk mod p, k=0,...,N −1

x[l]= N−1
N−1∑
k=0

x̃[k]α−lk mod p, l =0,...,N −1

Analogously, we can see NTT/INTT transforms as matrix multipli-

cations

x̃ =Wx , and x =W −1x̃ , (3)

where

x̃ = (x̃[0],...,x̃[N −1])T , x = (x[0],...,x[N −1])T ,

and

W =

*.....
,

1 1 1 ... 1

1 α α2 ... αN−1

...
...

...
. . .

...

1 αN−1 α2(N−1) ... α (N−1) (N−1)

+/////
-

.

As NTTs present a circular convolution property, they can also

benefit from fast computation by means of FFT algorithms [20].



3 ANANALYSIS OF PREVIOUS SCHEMES
In this section, we survey the available algorithms to homomorphi-

cally evaluate a multidimensional convolution operation with both

an RLWE and anm-RLWE based cryptosystem. We give approxi-

mations for computational cost, cipher expansion and security with

relative expressions between the different algorithms (we refer the

reader to Appendices A and B for more details on the derivation of

these expressions).

3.1 Our Setup
We set the following parameters to enable a fair comparison:

• The used FV cryptosystem (see Section 2) is based on either

RLWEorm-RLWE (seeDefinition 1) with power-of-twomod-

ular functions (fi (zi ) = z
ni
i +1). The noise distribution of a

fresh ciphertext has variance σ 2
and its noise coefficients are

upper-bounded by B.

• We use RLWE with n = nl andm-RLWE with n =
∏l

i=1ni .
Hence, the ring expansion ratio δR = nl for RLWE, and

δR =
∏l

i=1ni form-RLWE.

• The computational cost is measured in terms of polynomial

coefficient multiplications, without explicitly taking the cost

of each coefficient multiplication into account. In Section 5

we introduce this additional factor to have a fair comparison

between the analyzed schemes.

• The elemental ring operations are polynomialmultiplications

and additions in R[z] (RLWE) or R[z1,...,zl ] (m-RLWE). By

means of FFT algorithms, the computational cost of polyno-

mial products is nl log nl for RLWE and n1...nl log(n1...nl )
form-RLWE.

• Bit security ismeasuredrelative toBitSecurity(σ 2,n),which
represents the bit security of anRLWE instancewith error dis-

tribution of varianceσ 2
and polynomial degreen. In Section 5

we give concrete bit security estimations for the different

solutions.

We work with l-dimensional signals and filters whose length per

dimension is, respectively, Ni and Fi ≤Ni for i=1,...,l , and consider
two main scenarios: (a) a linear (non-cyclic) convolutionwhere

we reserve enough space inside the ciphertexts to store the result (i.e.

ni =Ni +Fi −1), and (b) a cyclic convolution, enabled by means

of the pre-/post-processing from [33] on top of the homomorphic

negacyclic ring operation (i.e. ni =Ni ).

In the next sections, we introduce two RLWE-based approaches

for performing amultivariate convolution, and the naturalm-RLWE

approach, and compare them in terms of computation cost, cipher-

text noise and relative bit security, before presenting our proposed

scheme.

3.2 Multidimensional
convolutions in baseline RLWE

Convolution, correlation and filtering can all be expressed as a lin-

ear convolution between two l-dimensional signals y[u1,...,ul ] =
x[u1, ... ,ul ] ∗h[u1, ... ,ul ] (where ui ∈ N). With a polynomial rep-

resentation, this reduces to a polynomial product y (z1, ... ,zl ) =
x (z1,...,zl ) ·h(z1,...,zl ).

As discussed in [29], implementing a multidimensional convolu-

tionwithanRLWE-basedcryptosystemcanbeachievedby internally

encoding only one of the dimensions (ul or zl in this case), and exter-
nally evaluating thewhole convolution on the remaining l−1 dimen-

sions. This means that the two l-dimensional signals are represented

with (l−1)-dimensional elements x ′[u1,...,ul−1] andh
′
[u1,...,ul−1],

where each element belongs to Rq[zl ]. The resulting operation is

y′[u1,...,ul−1]=x
′
[u1,...,ul−1]∗h

′
[u1,...,ul−1] with x =0 (resp.h=0)

for elements outside of the interval 0≤ui <Ni (resp. 0≤ui <Fi ).
This external convolution operation can be realized by leveraging

the circular convolution property of DFT transforms and using FFT

algorithms. However, the implementation of the FFT introduces a

multiplicative depth equal to log(
∏l−1

i=1Ni ), where Ni is the number

of samples in dimension i; the complexity of RLWE-based cryptosys-

tems strongly depends on the number of levels, due to the increase in

the size of the ciphertext coefficients (q depends exponentially on the
number of levels in Eq. (1)); hence, as noted in [17], it turns out that

more basic approaches with a multiplicative depth of one perform

better, even if they feature a higher (quadratic) computational cost in

termsof coefficientmultiplications.Hence,we ruleout the "fast" algo-

rithms andwedetail the twomain direct approaches in the following,

to enable a fair comparison of computational complexitywith fixedq.

3.2.1 NTT matrix Convolution. Let P be the total number of ele-

ments in the convolution signal (P =
∏l−1

i=1Ni for the cyclic convolu-

tion scenario, and P =
∏l−1

i=1 (Ni+Fi−1) for the linear one). The NTT
can be implemented by using its matrix formulation, Eq. (3). This

results in a total of P2 multiplications between ciphertexts and clear-

text scalar values (and roughly P2 ciphertext additions). As these
operations can be much faster than the P ciphertext multiplications

corresponding to the Hadamard product in the NTT domain, we do

not take into account the runtime corresponding to the NTT/INTTs

matrix computations, but we do consider its effects in the noise of

the ciphertext. Table 1(a) shows the computational cost, ciphertext’s

noise and bit security for this method, particularized for the two

scenarios presented in Section 3.1 (linear and cyclic convolution).

3.2.2 Direct Convolution. The second approach is to directly realize
the convolution equation in polynomial form, which has a compu-

tational cost of roughly the product of the lengths of the involved

signals in the convolution.While this solution has a higher computa-

tional cost than the previous one, it can be seen that the NTTmatrix

product incurs in ahigher noise than thepolynomial version; further-

more, for the casewhere the length of thefilter signal ismuch smaller

than that of the signal (i.e.

∏
i Fi ≪

∏
iNi ), the direct convolution

approach can be muchmore efficient than the NTTmatrix convo-

lution, due to a smaller cipher expansion (caused by a much more

reduced noise increase). Table 1(b) summarizes the computational

cost, ciphertext’s noise and bit security for this method.

3.3 Multivariate RLWE
RLWE-based cryptosystems lack support for seamlessly encrypting

a multidimensional signal in one ciphertext, whereasm-RLWE en-

ables a more compact representation achieving one encryption per

signal. By considering the polynomial representation of the signals

y (z1,...,zl )=x (z1,...,zl ) ·h(z1,...,zl ),m-RLWEcanhomomorphically

evaluate the multidimensional convolution operation with only one



Table 1: Figures for (a) baseline RLWEwithNTTmatrix Convolution (t ≈nl ), (b) baseline RLWEwithDirect Convolution (t ≈nl ),
(c) multivariate RLWE (t ≈max{n1,...,nl }) and (d) our packed RLWE (t ≈

∏l
i=1ni )

(a) baseline RLWEwith NTTmatrix Convolution

Computational Cost

Cost
linear

=L · O (nl
∏l−1
i=1 (Ni +Fi −1)lognl ) coeff. mult.+L · O (nl

(∏l−1
i=1 (Ni +Fi −1)

)
2

) coeff. add.

Cost
cyclic

=L · O (nl
∏l−1
i=1Ni lognl ) coeff. mult.+L · O (nl

(∏l−1
i=1Ni

)
2

) coeff. add.

Ciphertext’s noise (upper bound on
∆
2B )

(linear) ∆
2B ≈2

(∏l−1
i=1Ni (Ni +Fi −1)

)L
tL
(
Nl +Fl −1

)
2L+1

(cyclic) ∆
2B ≈2

(∏l−1
i=1N

2

i

)L
tL
(
Nl
)
2L+1

Bit Security

(linear) BitSecurity(σ 2,Nl +Fl −1)
(cyclic) BitSecurity(σ 2,Nl )

(b) baseline RLWEwith Direct Convolution

Computational Cost

Cost
linear

=L · O (nl
∏l−1
i=1 (Ni Fi )lognl ) coeff. mult.

Cost
cyclic

=L · O (nl
∏l−1
i=1 (Ni Fi )lognl ) coeff. mult.

Ciphertext’s noise (upper bound on
∆
2B )

(linear) ∆
2B ≈2

(∏l−1
i=1Fi

)L
tL
(
Nl +Fl −1

)
2L+1

(cyclic) ∆
2B ≈2

(∏l−1
i=1Fi

)L
tL
(
Nl
)
2L+1

Bit Security

(linear) BitSecurity(σ 2,Nl +Fl −1)
(cyclic) BitSecurity(σ 2,Nl )

(c) multivariate RLWE

Computational Cost

Cost
linear

=L · O (
∏l
i=1 (Ni +Fi −1)log(

∏l
i=1Ni +Fi −1)) coeff. mult.

Cost
cyclic

=L · O ((
∏l
i=1Ni )log(

∏l
i=1Ni )) coeff. mult.

Ciphertext’s noise (upper bound on
∆
2B )

(linear) ∆
2B ≈2t

L
(∏l

i=1 (Ni +Fi −1)
)
2L+1

(cylic) ∆
2B ≈2t

L
(∏l

i=1Ni
)
2L+1

Bit Security

(linear) BitSecurity(σ 2
∏l−1
i=1 (Ni +Fi −1),Nl +Fl −1)

(cylic) BitSecurity(σ 2
∏l−1
i=1Ni ,Nl )

(d) packed RLWE

Computational Cost

Cost
linear

=L · O (
∏l
i=1 (Ni +Fi −1)log(

∏l
i=1Ni +Fi −1)) coeff. mult.

Cost
cyclic

=L · O ((
∏l
i=1Ni )log(

∏l
i=1Ni )) coeff. mult.

Ciphertext’s noise (upper bound on
∆
2B )

(linear) ∆
2B ≈2t

L
(∏l

i=1 (Ni +Fi −1)
)
2L+1

(cylic) ∆
2B ≈2t

L
(∏l

i=1Ni
)
2L+1

Bit Security

(linear) BitSecurity(σ 2,
∏l
i=1 (Ni +Fi −1)

(cylic) BitSecurity(σ 2,
∏l
i=1Ni )

ciphertext multiplication [29, 32], which can be realized leveraging

efficient FFT algorithms with no penalty on the required ciphertext

size, which is a clear advantage with respect to baseline RLWE. Nev-

ertheless, due to the recent attack presented in [9], the security of

m-RLWE cannot be based on the product dimension of the multi-

dimensional polynomial (n =
∏l

i=1ni ), but instead on the highest

degree of the univariate rings (that is, max{ni }). Table 1(c) summa-

rizes the computational cost, ciphertext’s noise and bit security for

them-RLWEmultidimensional convolution.

3.4 Comparison between RLWE andm-RLWE
In light of the results shown in Tables 1(a), 1(b), and 1(c), it is clear

thatm-RLWE is much more efficient than RLWEwhen implement-

ing multidimensional convolutions, but the increase in ciphertext

size is not paired with an analogous increase in the bit security of

m-RLWE, in general. Actually, depending on the chosen modular

functions,m-RLWE can be isomorphic to RLWEwhen the modular

functions {ϕm1
(z1),...,ϕml (zl )} satisfy gcd(m1,...,ml ) = 1 (see Sec-

tion 2.1). Hence, it is possible to preserve some of the advantages

ofm-RLWEwhile still keeping the security reduction to a lattice of

dimension equal to the product of the degrees of each univariate ring,

by resorting to "uneven" non-power-of-two (coprime) univariate

modular functions.

As an example, Cheon and Kim [13] initially proposed usingm-

RLWEwith modulo power-of-two cyclotomic polynomials, and up-

dated their application to use “coprime” cyclotomic polynomials [15]

after the publication of Bootland et al. attack [9].
In the next section we focus on the “worst-case” scenario, where

the security ofm-RLWE reduces to only the highest of the univari-

ate degrees. Even after this reduction on security, we show that

m-RLWE can outperform the use of a simpler RLWE instance, due

to two key advantages: (1) working with power-of-two univariate

modular functions 1+zn which enable faster algorithms for product

and reduction computations, and (2) more flexibility on the choice

of the encrypted “lengths”.

However, we want to remark that the results presented here can

be analogously applied to more general RLWE instances with other

cyclotomic polynomial modular functions.

4 PROPOSED SCHEME
This section describes the main contribution of this work. We intro-

duce a new pre-/post-coding blockwhich, when applied before/after

RLWE-based encryption/decryption, transforms the polynomial

multiplication (1D negacyclic convolution) of RLWE samples with

power-of-two modular function (l = 1 in Definition 1) into an l-
dimensional cyclic convolution operation. This enables the efficient

realization of multivariate convolutions under the RLWE problem

without a loss in security; i.e., the bit security is that of the whole

lattice dimension n=
∏l

i=1ni . Therefore, we can encrypt the whole
multidimensional signal in just one RLWE encryption with a secu-

rity based on RLWE and not affected by Bootland’s attack, while

preserving all the properties ofm-RLWE claimed in [29, 32].

We start by defining multivariate NTT/INTTs, as one of the main

building blocks of our proposed scheme, and then we present our

proposed framework for pre-/post-coding.

4.1 Multivariate Number Theoretic Transforms
Consider a length-N NTT transform over Zp , as defined in equa-

tions (3) by a matrix multiplication withW (andW −1
for the INTT).

If x represents a "flattened" vector
2
with the samples of an l-

dimensional signal x , we can define an l-dimensional NTT/INTT as

the Kronecker product of the NTTmatrices for the l dimensions as

2
A“flattened”x vector is a reshapeof themultdimensional signalx into a columnvector.



follows:

x̃ =*.
,

l⊗
i=1

W (zi )+/
-︸         ︷︷         ︸

V (l )

x , x =*.
,

l⊗
i=1

(W (zi ) )
−1+/

-︸               ︷︷               ︸
(V (l ) )

−1

x̃ , (4)

where eachW (zi )
(resp. (W (zi ) )

−1
) is theNTT (resp. INTT) of length

Ni for the i-th dimension (zi ) of x . Equivalently in signal represen-
tation, the i-th NTTmatrix is applied to x[u1,...,ui ,...,ul ] as a vector
of Ni (l −1)-dimensional samples indexed by ui = 0,...,Ni −1, for

each i = 1,...,l . Hence, the matricesV (l )
(resp. (V (l ) )

−1
) represent

the l-dimensional NTT (resp. l-dimensional INTT). Additionally, the

conditions in Section 2.4 must be satisfied, so for each matrixW (zi )

there must exist an Ni -th root of unity in Zp .
The l-dimensional NTT/INTT satisfies a multivariate circular

convolution property that we exploit in our proposed scheme

V (l )y= (V (l )x )◦ (V (l )h), (5)

where y,x ,h are the "flattened" vectors corresponding to the sig-

nals y[u1, ... ,ul ],x[u1, ... ,ul ],h[u1, ... ,ul ], and y[u1, ... ,ul ] is the
l-dimensionalcircularconvolutionbetweenx[u1,...,ul ]andh[u1,...,ul ].

Analogously to their univariate counterparts, multidimensional

NTT/INTTs can be efficiently implemented with FFT algorithms.

4.2 “Packed”-RLWE
and its underlyingMultivariate Structure

Oncewehave introducedthe formulation formultivariateNTTs/INTTs

applied to flattened vectors, we can present the pre-/post-processing

adapted from [25, 33] which allows to transform the negacyclic

convolutions of the rings from Definition 1 into cyclic convolutions.

Consider two length-N signals x[j] and h[j], with polynomial

representations x (z),h(z)

x (z)=
N−1∑
i=0

x[i]zi and h(z)=
N−1∑
i=0

h[i]zi .

Wewant tocalculate theircircularconvolutiony (z)=x (z)h(z) mod

1−zN , but the ring operation enabled as a homomorphic product is

a polynomial product modulo 1+zN (negacyclic convolutions).

Assume that there exists a 2N -th root of unity β in Zp (that is,

β = (−1)
1

N mod p), the pre-/post-processing [25, 33] consists of the
following steps (we term it Murakami pre-/post-processing):

• The input signals are pre-processed with component-wise

products

x ′[j]=x[j](1)
−j
N (−1)

j
N , j=0,...,N −1,

h′[j]=h[j](1)
−j
N (−1)

j
N , j=0,...,N −1.

• Then,y′(z) can be calculated with a negacyclic convolution
asy′(z)=x ′(z)h′(z) mod 1+zN .

• The output signal is post-processed with component-wise

products

y[j]=y′[j]1
j
N (−1)

−j
N .

Equipped with the Murakami pre-/post-processing, we can em-

ulate the operation from a ring with a circular convolution property.

The last step is to find a way of transforming the unidimensional

circular convolution into a multidimensional one. To this aim, we

combine both a unidimensional NTT/INTT (see Section 2.4) and a

multidimensional NTT/INTT.

Lety be the flattened l-dimensional circular convolution of x and

h. By the convolution property of the NTTs, we have(
W −1x ′

)
⊛
(
W −1h′

)
=W −1 (x ′◦h′),

where x ′=V (l )x andh′=V (l )h. If we make use of the convolution

property of the l-dimensionalNTT, Eq (5)withN =
∏l

i=1Ni , wehave

(W −1V (l )x )⊛ (W −1V (l )h)= W −1
(
(V (l )x )◦ (V (l )h)

)
= W −1V (l ) (y).

This represents a chain of matrix transformations that relates the

unidimensional circular and l-dimensional circular convolutions.
3

Hence, the resulting structure of our proposed pre-/post-coding,

detailed in Figure 1 is as follows:

• A pre-coding is applied to the input signals

x ′′=ϒW −1V (l )x and h′′=ϒW −1V (l )h.

• y′′(z) is calculated as x ′′(z)h′′(z) mod 1+zN .

• A post-coding is applied toy′′(z)

y= (V (l ) )
−1
W ϒ−1y′′.

The matrices ϒ and ϒ−1 are diagonal matrices containing the

elements of the Murakami pre-/post-processing (1)
−j
N (−1)

j
N and

(1)
j
N (−1)

−j
N for j=0,...,N −1.

Table1(d) includesasummarywith thecomputational cost, cipher-

text’s noise and bit security for the execution of a multidimensional

convolution with the proposed method. This table includes the cost

of the actual convolutionwithout the pre-/post-coding,whichwould

be executed at the client-side in a homomorphic processing scenario,

and is evaluated as part of the encryption/decryption in Section 5.

In any case, this pre-/post-coding only comprises element-wise mul-

tiplications and a chain of two FFT computations on the plaintext

ring, so the computational cost of both encryption and decryption

with the FV cryptosystem is higher than this processing chain.

5 SECURITY
ANDPERFORMANCE EVALUATION

This section includes a comparison of RLWE,m-RLWE and the pro-

posed packed-RLWE in terms of security, computational cost and ci-

pherexpansion.Westart bydescribing theprocedure followed toana-

lyze thesecurityof thedifferent schemes.Afterwards,weanalyzeand

compare the expressions reported in Tables 1(a), 1(b), 1(c) and 1(d),

and we highlight the tradeoffs for each scenario. Finally, we include

execution runtimes for the case of image and 3D-signal filtering.

5.1 Evaluation for Encrypted
Processing ofMultidimensional Signals

In [29, 32] we compared several encrypted multidimensional opera-

tions implemented with an RLWE or anm-RLWE based scheme. We

3
While we focus on NTT transforms, similar results could be considered with chains of

CRTmatrices (see [22]). This would enable the encoding of different multidimensional

signals in any instance of RLWEwith a general cyclotomic modular function.
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Figure 1: Block diagram of the proposed scheme for “packed”-RLWE

concluded that them-RLWE implementation enabled amuch higher

security with faster runtimes.

However, after the attack presented in [9], we know that the se-

curity estimations withm-RLWE are no longer valid. Nevertheless,

the packed-RLWE solution we have introduced in this work can

preserve all the claimed security and efficiency results in [29, 32].

In this work, instead of using a slack variable as in [29, 32], we fol-

low a different approach, and we compare baseline RLWE,m-RLWE

(see Section 3) and our packed-RLWE solution (see Section 4) by

fixing theminimum level of security in terms of the lattice dimension

for baseline RLWE. This dimension is kept constant for each univari-

ate ring ofm-RLWE and packed-RLWE, even though the security

obtained with the two latter will be higher, and hence, the compar-

ison on efficiency represents a worst-case scenario form-RLWE

and an unfavorable case for our packed-RLWE.We show that even

in this pessimistic scenario, bothm-RLWE and packed-RLWE can

outperform baseline RLWE both in terms of efficiency and security.

For simplicity, wemake the following set of assumptions (we refer

the reader to Appendices A and B for further details):

A1 We work with “hyper-cubic” l-dimensional signals with the

same length N in each dimension (length-F in case of filters)

and we assume ni to be equal to the value required to store
the result of the linear or cyclic convolution.

A2 We define F =C ·N whereC is a constant satisfying 0<C ≤ 1,
so that we can express the results in terms of N to compare

the behavior of both linear and cyclic convolutions under the

same formulation.

A3 For estimating the cost of each coefficient multiplication in

Zq , we assume the use of Schönhage-Strassen algorithmwith

a cost of O (w (logw ) (loglogw )), withw =O (log
2
q). For the

asymptotic analysis, we simplify the cost to O (log
2
q).

5.1.1 Comparison of Computational Cost and Cipher Expansion. A
summary with the computational cost and ciphertexts’ noise for

each of the analyzed approaches, particularized for assumptions

A1-A3, is included in Tables 2(a), 2(b) and 2(c). We refer the reader to

Appendices A and B for the detailed derivation of the approximate

costs and noise bounds. We first compare the asymptotic cost ratios

for increasing N between the four approaches, and then move on to

a more precise analysis of the effect of each parameter for a given N .

Asymptotic computational cost ratios. By neglecting the effect of
some logarithmic factors in the computational cost, we can provide

some approximate asymptotic comparisons between the different

schemes, in order to highlight the most significant effects. In partic-

ular, we consider N≫F , so we approximate N +F−1≈ (1+C )N and

neglect the effect of (1+C ) and its powers with respect to powers

of N . This allows us to cover both linear and cyclic convolutions

with the same computational cost expressions (we refer the reader

to Appendices A and B for more details on the simplifications).

If we neglect the effect of additions and consider only products as

the operation driving the complexity, we obtain the following ratios

Costrd
Costrn

≈N l ,
Costmr
Costrn

≈l ,
Costpr

Costrn
≈l ,

Costpr

Costmr
≈
3

2

,

where the costs {Costrn , Costrd , Costmr , Costpr } correspond, re-

spectively, to {Baseline RLWE (NTTmatrix comp.), Baseline RLWE

(Dir. Conv.),m-RLWE, and packed-RLWE}.

We can see that Costrn is approximately l times lower than

Costmr and Costpr , but it has also a lower bit security, which grows

with l for packed RLWE.

If we factor in additions by assuming a cost of O (log
2
q) for each

coefficient addition (linear in the size of the coefficients), the asymp-

totic ratios become

Costrd
Cost

∗
rn
≈ log

2
N ,

Costmr
Cost

∗
rn
≈
l log

2
N

N l−1
,

Costpr

Cost
∗
rn
≈
l log

2
N

N l−1
,

where Cost
∗
rn represents the cost of the NTT/INTTmatrix compu-

tation in baseline RLWE. Consequently, we see thatm-RLWE and

packed-RLWE are not only more secure, but also asymptotically

more efficient than baseline RLWE for a wide set of scenarios.

Precise computational cost. While the previous asymptotic anal-

ysis is useful to extract the relative behavior of the schemes for very

largeN , it neglects the effects of some parameters. Now,we calculate

the exact costs of the different methods by using the Schönhage-

Strassen algorithm for coefficient multiplication, considering log
2
q

for the cost of coefficient additions and without removing any non-

significant factors.

We choose two filtering scenarios with 2- and 3-dimensional

signals. In all figures we represent the cost (in terms of N ) of a con-

volution between a “hyper-cubic” 2D or 3D signal with length N
per dimension and a filter with length F = {0.01N ,0.1N ,N } per di-
mension.

4
Figure 2 (resp. Figure 3) represents the cost for a linear

4
The cost plotted in Figures 2, 3, 4 and 5 considers ni ≈ N or ni ≈ N + F −1, but in
practice eachni will be rounded up to a power of two (see Definition 1), so performance

will show a step-wise behavior for growing N instead of the smooth figures we show.



Table 2: Cost and noise bounds for (a) baseline RLWEwith NTTmatrix Convolution (t ≈nl , Ni =N ,Fi =C ·N ), (b) baseline RLWE
with Direct Convolution (t ≈nl , Ni =N ,Fi =C ·N ), (c)m-RLWE (t ≈max{n1,...,nl }) and packed-RLWE (t ≈

∏l
i=1ni , Ni =N ,Fi =C ·N )

(a) baseline RLWEwith NTTmatrix Convolution

Computational Cost

Cost
linear

=L · O ((1+C )lN l
log((1+C )N ))+L · O (((1+C )N )2l−1 ) coeff. add.

Cost
cyclic

=L · O (N l
logN )+L · O (N 2l−1 ) coeff. add.

Ciphertext’s noise (upper bound on
∆
2B )

(linear) ∆
2B ≈2(1+C )L (l+2)+1tLN 2L (l+1)+1

(cyclic) ∆
2B ≈2t

LN 2L (l+1)+1

(b) baseline RLWEwith Direct Convolution

Computational Cost

Cost
linear

=L · O ((1+C )C l−1N 2l−1
log((1+C )N ))

Cost
cyclic

=L · O (C l−1N 2l−1
logN )

Ciphertext’s noise (upper bound on
∆
2B )

(linear) ∆
2B ≈2C

Ll (1+C )2L+1tLN L (l+2)+1

(cyclic) ∆
2B ≈2C

Ll tLN L (l+2)+1

(c) m-RLWE and packed-RLWE

Computational Cost

Cost
linear

=L · O (l (1+C )lN l
log((1+C )N ))

Cost
cyclic

=L · O (lN l
logN )

Ciphertext’s noise (upper bound on
∆
2B )

(linear) ∆
2B ≈2(1+C )2Ll+l tLN 2Ll+l

(cylic) ∆
2B ≈2t

LN 2Ll+l

(resp. cyclic) convolution of 2D images, while Figure 4 (resp. Fig-

ure 5) represents the cost for a linear (resp. cyclic) convolution of

3D signals. All of them plot the relative cost of RLWE with NTT

matrix and direct convolution,m-RLWE, and packed-RLWE, as a

function of the per-bit elementary operation cost for growing signal

size; the ciphertext sizeq is taken as theminimum value that enables

the operation with no decryption errors for a constant noise power;

therefore, security is also increased together withN (see Section 5.2).

Hence,weare accounting for the rawgrowth in complexityproduced

by a change in the signal dimensions.

We can see that changes in the relative filter sizeC have a higher

impact when the dimensionality of the signals increases, and in par-

ticular, the expansion in baseline RLWEwith direct convolution is

strongly influenced by smallC values, which explains why it can be

better when working with very small filters. In this case, if baseline

RLWE gives enough security, it can be the best option, because both

m-RLWE/packed-RLWEwould require to further increase each of

the ni to store the results. In general, there is a minimum value ofC
for which packed-RLWE andm-RLWE start outperforming baseline

RLWE, and this value decreases when increasing the dimensional-

ity, showing that packed-RLWE andm-RLWE perform better with

high-dimensional signals and/or with filters of moderate or big size.

It is worth noting that none of the approaches is universally better

than theothers, andacombinationofall of themmayproduce thebest

efficiency/security trade-offs.As anexample, if theusedfilter has one

particularly small dimension, it could beworth to encode this dimen-

sion as external to the encryption scheme. Conversely, if the security

of the largest dimension is enough, the structure ofm-RLWEcould be

preferable, as it can bemore easily parallelizable than packed-RLWE

and also avoids the pre-/post-coding stage at the client. Nevertheless,

packed-RLWE is shown to outperform baseline RLWE andm-RLWE

both in efficiency and security in a wide range of parameterizations.

5.2 Security evaluation
Tables 1(a), 1(b), 1(c) and 1(d) express the security of the schemes

relative to BitSecurity(σ 2,n) (see Sections 3 and 4). This function
grows when increasing σ 2

or n (it is much more sensitive to n).
In order to give concrete values for BitSecurity(σ 2,n), wemake

use of the LWEsecurity estimator developed byAlbrecht et al. [4, 5],5

by calling the function estimate_lwe(n,α ,q, secret_ distribution=
“normal”,reduction_cost_model=BKZ.sieve), where σ =

αq
√
2π

. The

results for the analyzed cases are shown in Tables 3 and 4, which

5
Available online at https://bitbucket.org/malb/lwe-estimator.

are discussed in the next subsection in the context of the achieved

security-efficiency tradeoffs.

5.3 Implementation and execution times
Wehave implemented themethods fromSections 3 and 4making use

of the RNS variant of the FV cryptosystem [6], in order to have con-

crete runtimes, instantiating the complexity measures introduced

in the previous section. Execution runtimes were measured on an

Intel Xeon E5-2667v3 at 3.2 GHz using one core (no parallelization).

We remark that we have not included results using the Paillier

cryptosystem [27] in our performance comparison, but its runtimes

and bit security can be easily extrapolated from [29, 32] and [1] re-

spectively. In any case, Paillier cannot address theoperationswith en-

crypted signals and filters, and even with clear-text filters it is much

slower than any RLWE-based scheme for this type of operations.

Tables 3 and 4 report runtimes for, respectively, encrypted 2D-
image linear filtering and encrypted 3D-signal cyclic filtering for
the same signal length per dimension. We have used ni =Ni+Fi−1
and ni =Ni (lattice dimensions equal to the signal dimensions) to

show the maximum achievable efficiency for each scheme. In both

scenarios, packed-RLWE provides similar runtimes to multivari-

ate RLWE and faster runtimes than both baseline RLWE solutions,

while also having a much higher bit security. Actually, with pre-

vious approaches we can only guarantee a very reduced security

for the chosen polynomial degree, which is clearly below the cur-

rent recommended bit security estimations (≥ 128 and ≥ 256 for

quantum-resistance), and means that their computational complex-

ity for the same acceptable security level as packed-RLWE would

be substantially worse.

6 ADISCUSSION:MULTIDIMENSIONAL
STRUCTURES ANDTHEIRAPPLICATIONS

This work introduces a new pre-/post-coding block which enables

significant efficiency advantageswith respect to regularRLWEwhen

processing multidimensional signals, bringing the benefits ofm-

RLWE while avoiding the recent attack by Bootland et al. [9] by
basing the security only on that of RLWE.

While we focus on multidimensional filtering and correlation

scenarios with encrypted signals, the proposed multivariate struc-

tures can be leveraged in a much wider set of applications. These

range from block-processing (where we could apply homomorphic

transforms between different block structures), better encrypted

packing,multi-scale approaches such as pyramids andwavelet trans-

forms, and even block-DCTs. These solutions could also be combined
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Figure 2: Computational cost of encrypted image linear filtering for different relative filter sizesC= {0.01,0.1,1}
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Figure 3: Computational cost of encrypted image cyclic filtering for different relative filter sizesC= {0.01,0.1,1}

with conventional signal processing approaches such as overlap-

save and overlap-add algorithms (see [28]) and used to enhance

encrypted matrix operations [15]. Hence, multivariate structures

can produce notable efficiency improvements in many applications,

when combining the solutions proposed in this work to optimize the

security-efficiency trade-offs.

The use of packed-RLWE could also provide clear improvements

in more complex applications such as forensic analysis and, in par-

ticular, camera attribution in the encrypted domain, where we can

already find some works such as [23, 24, 28]. The last two make

use of the BGN (Boneh-Goh-Nissim) cryptosystem to implement

an homomorphic correlation operation between images. By the use

of our proposed method, their runtimes could be greatly improved

with no impact (or with an increase) on security.

7 CONCLUSIONS
Wehave proposed a novel framework for secure outsourced process-

ing of encrypted multidimensional signals. As a fundamental block

in our framework, we present a new pre-/post-coding block which

enables multivariate structures directly on RLWE-based cryptosys-

tems without compromising the security of the RLWE problem.We

havealso reevaluated the securityofprevious solutionsbasedonmul-

tivariate RLWEby taking into account a recent attackwhich exploits

theuseofmodular functionsby introducingrepeatedroots in thering.

We have included an extensive comparison in terms of security and

performance between the different approaches, showing the advan-

tages of our schemewith respect to the previous solutions in terms of

both faster runtimes and higher security; and also analyzing the pos-

sibility of adapting a combination of different methods to the needs

of the specific scenario. Consequently, thiswork opens up a broad set

of encrypted processing applications which deal with multidimen-

sional signals and shows the viability of somewhat homomorphic en-

cryption for the privacy-preserving processing of this type of signals.

A CIPHER EXPANSIONANALYSIS
In order to calculate the bounds on q (see Section 2) depending on
the chosen scheme, we rely on Lemma 3 from [18], which relates

noise growth in the FV cryptosystem after each addition and multi-

plication. We include here a slightly modified version of the lemma:

Lemma 1 (Lemma 3 from [18]). Let cti for i=1,2 be two ciphertexts
with [cti (s )]q = ∆ ·mi +vi where ∆ = ⌊

q
t ⌋, and | |vi | | < E < ∆

2
. Set

ctadd =FV.SH.Add(ct1,ct2) and ctmult =FV.SH.Mul(ct1,ct2,rlk) then

[ctadd (s )]q =∆ ·[m1+m2]t +vadd ,

[ctmul (s )]q =∆ ·[m1 ·m2]t +vmul ,

with | |vadd | |<2E+t and | |vmul | |<EtδR (δR+1.25)+ERelin .



10
2

10
3

10
4

10
5

N

10
5

10
10

10
15

10
20

10
25

10
30

C
o
s
t

baseline RLWE (NTT matrix) (add. + mult.)

baseline RLWE (NTT matrix) (mult.)

baseline RLWE (Dir. Conv.) (add. + mult.)

m-RLWE

packed-RLWE (add. + mult.)

(a) C =0.01

10
2

10
3

10
4

10
5

N

10
5

10
10

10
15

10
20

10
25

10
30

C
o
s
t

baseline RLWE (NTT matrix) (add. + mult.)

baseline RLWE (NTT matrix) (mult.)

baseline RLWE (Dir. Conv.) (add. + mult.)

m-RLWE

packed-RLWE (add. + mult.)

(b) C =0.1

10
2

10
3

10
4

10
5

N

10
5

10
10

10
15

10
20

10
25

10
30

C
o
s
t

baseline RLWE (NTT matrix) (add. + mult.)

baseline RLWE (NTT matrix) (mult.)

baseline RLWE (Dir. Conv.) (add. + mult.)

m-RLWE

packed-RLWE (add. + mult.)

(c) C =1

Figure 4: Computational cost of encrypted 3D-signal linear filtering for different relative filter sizesC= {0.01,0.1,1}
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Figure 5: Computational cost of encrypted 3D-signal cyclic filtering for different relative filter sizesC= {0.01,0.1,1}

Taking into account Lemma 1 and the approximation for the noise

in a fresh ciphertext, E=2δRB (see [18]), the noise after L levels of
multiplication is approximately 2Bδ2L+1R tL . This expression can be
directly used to estimate the size of q (hence the cipher expansion)
for both the multivariate and “packed” RLWE schemes.

However, when working with baseline RLWE for a multidimen-

sional convolution, the effect of additions cannot be neglected, as

their number is of the order of (or even higher than) δR , so we ex-
plicitly take them into account in the size of q. After one addition,
| |vadd | | < 2E + t = 2δRB + t , where we neglect t because in our

scheme δRB dominates the right hand term. Murakami pre-/post-

processing (see [25, 33]) needs a t higher than the lattice dimension,

so we choose a slightly higher t , that is t ≈max{Ni+Fi−1} for all
schemes but for packed-RLWE, for which t ≈

∏
(Ni+Fi−1).

The effect of these additions into the size of the noise is equivalent

to a multiplicative factorAadd , yielding a noise ofA
L
add ·2Bδ

2L+1
R tL

after Lmultiplication levels.

The expressions forAadd for baseline RLWE are

• NTTmatrix Convolution:

A
(l inear )
add =

l−1∏
i=1

Ni (Ni+Fi−1), A
(cyclic )
add =

l−1∏
i=1

N 2

i

• Direct Convolution:

A
(l inear )
add =

l−1∏
i=1

Fi , A
(cyclic )
add =

l−1∏
i=1

Fi

If we now assume Ni =N and Fi =CNi with 0<C ≤ 1, we have
the following noise size approximations after a linear convolution

in each scheme

• baseline RLWE (NTTmatrix Convolution):

∆

2

≈2B (1+C )L(l−1)N 2L(l−1)δ2L+1R tL

≈2B (1+C )Ll+L+1N 2Ll+1tL .

• baseline RLWE (Direct Convolution):

∆

2

≈2BCL(l−1)N L(l−1)δ2L+1R tL

≈2BCL(l−1) (1+C )2L+1N L(l+1)+1tL .

• multivariate and “packed” RLWE:

∆

2

≈2Bδ2L+1R tL ≈2B (1+C )2Ll+lN 2Ll+l tL .

We know that 0 < 1+C ≤ 2 ≪ N and its exponent is not higher

than the exponent of N , so in the following we will ignore powers

of (1+C ). This allows us to use the same expression for both linear



Table 3: Runtimes and security for encrypted 2D Linear
Filtering (L=1, σ =8, B=6σ , 2 limbs for q, F =11)

N ×N 118×118 246×246

baseline RLWE (NTTmatrix Convolution)

n 128 256

Enc. (image + filter) size (bits) 4.09 ·106 16.32 ·106

Bit security ≈31 ≈33

Encryption time (ms) 2.4 5.8

Decryption time (ms) 1.4 3.7

Convolution time (ms) 43.3 142.4

Baseline RLWE (Direct Convolution

n 128 256

Enc. (image + filter) size (bits) 4.09 ·106 16.32 ·106

Bit security ≈31 ≈33

Encryption time (ms) 2.4 5.8

Decryption time (ms) 1.4 3.7

Convolution time (ms) 272.5 812.6

Multivariate RLWE

n (effectiven) 16384 (128) 65536 (256)

Enc. (image + filter) size (bits) 8.13 ·106 32.51 ·106

Bit security ≈32 ≈33

Encryption time (ms) 1.6 8.6

Decryption time (ms) 1.3 7.8

Convolution time (ms) 28.2 127.5

Packed RLWE

n 16384 65536

Enc. (image + filter) size (bits) 8.13 ·106 32.51 ·106

Bit security > 128 > 128

Encryption time (ms) 3.1 12.6

Decryption time (ms) 2.8 11.8

Convolution time (ms) 28.2 127.5

and cyclic convolutions (see Table 5) in the asymptotic cost ratio

analysis in Section 5.1.1.

B COMPUTATIONALCOSTANALYSIS
An integer multiplication in Zq using a Schönhage-Strassen algo-

rithm has a cost of O (log
2
q · (log

2
log

2
q) · (log

2
log

2
log

2
q)). We can

compare the computational cost of all the schemes by considering

the number of coefficient multiplications and the cost of each coef-

ficient multiplication. For simplicity, we only keep the log
2
q term

in the cost of the Schönhage-Strassen algorithm

• baseline RLWE (NTTmatrix Convolution, t ≈N ):

Costrn ≈ LN l
log

2
N︸      ︷︷      ︸

Num. Coeff. Mult

·(2Ll+L+1)log
2
N︸                ︷︷                ︸

≈log
2
q

• baseline RLWE (Direct Convolution, t ≈N ):

Costrd ≈

Num. Coeff. Mult︷           ︸︸           ︷
LN 2l−1

log
2
N ·

≈log
2
q︷                      ︸︸                      ︷

((L(l+1)+L+1)log
2
N

+(L(l−1))log
2
C︸            ︷︷            ︸

≤0

)

• multivariate RLWE (t ≈N ):

Costmr ≈ LlN l
log

2
N︸       ︷︷       ︸

Num. Coeff. Mult

·(2Ll+l+L)log
2
N︸               ︷︷               ︸

≈log
2
q

Table 4: Runtimes and security for encrypted 3D Cyclic
Filtering (L=1, σ =8, B=6σ , 2 limbs for q, F =5)

N ×N ×N 16×16×16 32×32×32

baseline RLWE (NTTmatrix Convolution)

n 16 32

Enc. (image + filter) size (bits) 1.12 ·106 8.32 ·106

Bit security < 30 < 30

Encryption time (ms) 2.9 5.6

Decryption time (ms) 0.3 2.6

Convolution time (ms) 6.0 58.1

Baseline RLWE (Direct Convolution

n 16 32

Enc. (image + filter) size (bits) 1.12 ·106 8.32 ·106

Bit security < 30 < 30

Encryption time (ms) 2.9 5.6

Decryption time (ms) 0.3 2.6

Convolution time (ms) 150.1 1452.8

Multivariate RLWE

n (effectiven) 4096 (16) 32768 (32)

Enc. (image + filter) size (bits) 2.03 ·106 16.25 ·106

Bit security < 30 < 30

Encryption time (ms) 0.6 3.7

Decryption time (ms) 0.4 3.0

Convolution time (ms) 6.4 53.3

Packed RLWE

n 4096 32768

Enc. (image + filter) size (bits) 2.03 ·106 16.25 ·106

Bit security > 128 > 128

Encryption time (ms) 0.8 6.0

Decryption time (ms) 0.7 5.4

Convolution time (ms) 6.4 53.3

Table 5: Ciphertext noise bounds for all schemes
(Ni =N ,Fi =C ·N , ignoring (1+C ) factor)

Ciphertext noise (upper bound on
∆
2
)

(baseline RLWE, NTTmatrix), (linear,cyclic) ∆
2
≈2BN 2Ll+1tL

(baseline RLWE, Dir. Conv.), (linear,cyclic) ∆
2
≈2BCL (l−1)N L (l+1)+1tL

(m-/packed RLWE),(linear,cyclic) ∆
2
≈2BN 2Ll+l tL

• “packed” RLWE (t ≈N l
):

Costpr ≈ LlN l
log

2
N︸       ︷︷       ︸

Num. Coeff. Mult

·(3Ll+l )log
2
N︸           ︷︷           ︸

≈log
2
q

By ignoring the effect of the logarithmic terms and considering that F
is not a very small filter, this gives the following approximate ratios:

Costrd
Costrn

≈N l ,
Costmr
Costrn

≈l ,
Costpr

Costrn
≈l ,

Costpr

Costmr
≈
3

2

Hence, we can see that the baseline RLWE algorithm still gives

a reduction factor in cost linear in the number of dimensions with

respect tom-RLWE and packed-RLWE. However, it must be noted

that the bit security of bothm-RLWE and, especially, packed-RLWE

is higher than baseline RLWE; in fact, this security also increases

with l (see Tables 1(a), 1(b), 1(c) and 1(d)).

B.1 Some additional considerations
There are some considerations on the effect of the performed ap-

proximations in the computed costs Costrn to Costpr . Costrd can

be much smaller than the obtained approximation when the filter



is very small (i.e.,C very close to zero). As we discuss in Section 5,

for a small enough filter, the factor log
2
q can become so small that

it compensates the higher number of coefficient multiplications of

baseline RLWE compared to the other methods.

The main difference between Costmr and Costpr relies on the

need of a higher t with packed-RLWE. This imposes more costly

coefficient multiplications due to the higher ciphertext noise. Ad-

ditionally, the obtained cost measures do not take into account the

pre-/post-coding stage introduced by packed-RLWE before/after en-

cryption/decryption,which is not needed inm-RLWE, but this step is

negligible when compared to the encryption/decryption complexity.

The cost of the baseline RLWE scheme (Costrn ) can be much

higher when coefficient addition is not fast enough, as the previous

expressions do not take into account the cost of ciphertext additions

required for the NTT/INTTmatrix computations. Hence, we intro-

duce now this factor. The number of ciphertext additions required in

baseline RLWE (with NTTmatrix computation) is roughly 3 times

N 2(l−1)
per level (2 NTTs of l − 1 dimensions and 1 INTT of l − 1

dimensions). It has an order higher than the maximum exponent in

Costmr and Costpr ; depending on the cost of ciphertext addition,

this dependency can make the baseline algorithm slower thanm-

RLWE and packed-RLWE. In fact, assuming that the cost of addition

per coefficient is roughly O (log
2
q), we can see that the asymptotic

cost of multivariate and “packed” RLWE is smaller, even for a higher

security level than that of baseline RLWE.We have

Cost
∗
rn ≈ L(1+C )2l−1N 2l−1︸                 ︷︷                 ︸

Num. Coeff. Adds.

·(Ll+L+1)log
2
N︸              ︷︷              ︸

≈log
2
q

≈ LN 2l−1 · (Ll+L+1)log
2
N ,

where Cost
∗
rn represents the cost that the ciphertext additions in

the NTT/INTT transforms incur on for baseline RLWEwith NTT

matrix computation, that adds up to the previous Costrn to obtain

the total cost.

Again, taking the most significant factors into account, and con-

sidering that F is not a very small filter, we obtain the following

approximate ratios

Costrd
Cost

∗
rn
≈ log

2
N ,

Costmr
Cost

∗
rn
≈
l log

2
N

N l−1
,

Costpr

Cost
∗
rn
≈
l log

2
N

N l−1
.
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