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ABSTRACT
Developments in the field of genomic studies have resulted in the
current high availability of genomic data which, in turn, raises
significant privacy concerns. As DNA information is unique and
correlated among family members, it cannot be regarded just as a
matter of individual privacy concern. Due to the need for privacy-
enhancing methods to protect these sensitive pieces of information,
cryptographic solutions are deployed and enabled scientists to work
on encrypted genomic data. In this paper, we develop an attribute-
based privacy-preserving susceptibility testing method in which
genomic data of patients is outsourced to an untrustworthy plat-
form. We determine the challenges for the computations required
to process the outsourced data and access control simultaneously
within patient-doctor interactions. We obtain a non-interactive
scheme regarding the contribution of the patient which improves
the safety of the user data. Moreover, we exceed the computa-
tion performance of the susceptibility testing over the encrypted
genomic data while we manage attributes and embedded access
policies. Also, we guarantee to protect the privacy of individuals in
our proposed scheme.
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1 INTRODUCTION
Although research on genomic data improves medical diagnoses
and predicts disease risk, information leakage through data pro-
cess and storage may compromise patients’ privacy. Emerging new
companies, which offer to run genomic tests such as ancestry or pa-
ternity test, causes a sharp decrease in the cost of DNA sequencing
and raises the availability of the privacy-sensitive genomic informa-
tion. Because genomic data carries information about individuals’
unique identities and their relatives, they are vulnerable to being
abused.

Local memories such as mobile devices or computers may not
have sufficient space to store all these massive amounts of informa-
tion. Furthermore, if people are not cautious about their security
and their devices are hacked or stolen, their abandoned privacy can-
not be regained. Also, in case of emergency, the patient’s medical
reports should be accessible, hence storing genomic data in various
medical centers is not desired. All in all, both due to practical and
safety reasons, it is advantageous to store the privacy-sensitive
genomic information of individuals in a centralized server.

While the same server, which has sufficient memory and power,
is responsible for carrying out the genomic tests, the patient wishes
to control the way of utilizing her personal information by employ-
ees of various health centers. Therefore, adequate architectures
should be designed to store and examine the genomic data of the
patients and monitor the ways of accessing the patients’ medical
records. However, the challenging problem arises when the pro-
tection of the patients’ privacy in the execution of analysis on
their genomic data simultaneously deals with the management of
accesses over these data.

Example : In an exemplary setting, there are family doctors and
pharmacist at Saint Mary Hospital, a cardiovascular specialist and
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lab researchers at Cleveland Clinic, a brain specialist and nurses
at American Hospital, insurance company staff at John Hopkins
Institute. These people have their own attribute sets describing
their role, specialty, and region. The family doctor is suspicious
about some damage in the brain of the patient and wants to run
some analyses on her genomic data. The patient sends her biologi-
cal sample to a trusted authority and defines an access structure
(denoted by predicates) over some set of attributes. The trusted
authority sequences the patient’s biological sample and encrypts
their locations within this access structure. The trusted party stores
this encrypted DNA with the embedded policy of the patient’s
choice which suitably describes who can decrypt and obtain the
test result regarding job description, specifically, and location. For
example, the patient defines her policy to accept "all" attributes of
{Job U , Specialty Y , Medical Unit I } set. The trusted party issues a
secret key for the attributes and distributes them among the other
users of the protocol. Upon the patient’s request, the server runs
the test, and the ultimate result associated with this patient’s policy
can be decrypted by the parties whose attributes satisfy this access
structure. If the genomic data of this patient is encrypted and stored
with associated policy {U := Doctor AND Y := Brain AND I :=
American}, then a brain specialist doctor in American Hospital (Dr.
Jill Parsons) whose attributes satisfy this patient’s policy, (i.e., Dr.
Jill Parsons has this access policy’s corresponding decryption key),
can decrypt and recover the final result of the test. Cardiovascular
specialist, nurses, lab researchers, and insurance company staff
cannot decrypt and access the reported result. Fig. 1 illustrates the
mapping between the parties and their attributes.
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doctor
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Amrican Hospital
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Figure 1: Relation between participants and attributes.

Unfortunately, the existing genomic privacy-preserving methods
in the literature are mainly able to perform only one of the following
tasks at a time: 1) process the information for storage or running
analyses over the encrypted data with a unique medical unit such
as [3, 10, 11]; or 2) protect medical records and regulate the access
controls by deploying cryptographic methods [1, 13]. Since the
defined policies are not dynamic, subsequent refined calculations
cannot be supervised automatically by the system.

We develop a privacy-preserving genomic susceptibility testing
method by leveraging an attribute-based homomorphic cryptosys-
tem based on mathematical hardness problems over lattices. Our
work relies on a genomic privacy-preserving scheme for suscepti-
bility testing developed by Namazi et al. [10] concerning only one
medical unit for medical tests. We enhance this scheme to manage
accesses of more than one medical unit through attributes and pred-
icates embedded in the cryptosystem while working on genomic
data of a patient. Our goal is to calculate the genetic susceptibility
test function for a given disease by outsourcing the computation
to a processing unit, which should not have access to the patient’s
sensitive data or the confidential parameters of the analysis. In
comparison with the existing methods which also confidentially
execute susceptibility test, our proposed scheme has the following
contributions:

• The proposed scheme can homomorphically run the whole
function with both patient data and susceptibility parame-
ters encrypted over the same set of predicates and simultane-
ously control the accesses of various parties to the genomic
information of the patients.
• The proposed scheme is non-interactive by keeping the pa-
tient out of the protocol after defining the access policies
to her data which increases the safety of the user data. The
patient does not require to be online after releasing her bio-
logical sample for sequencing.
• The proposed scheme leads to releasing the data only to a
set of authorized medical units whose attributes satisfy the
defined predicate.
• Dynamic access control is obtained to eliminate re-initializing
the protocol from the scratch while new members include
to the system.
• Although adding the attributes and predicates increases the
cost of the interactions, the proposed scheme is practical
and highly efficient in comparison to the non-automatic
protocols.

1.1 Organization
The rest of the paper is organized as follows: the related works are
surveyed in Section 2; the building blocks and the core cryptosystem
are presented in Section 3. We present our proposed scheme in
Section 4 and discuss its implementation in Section 5. After a brief
discussion about different aspects of our proposal in Section 6, final
remarks are given in Section 7.

2 RELATEDWORK
Pirretti et al. [13] investigated the use of cryptographic primitives
to control the accesses to genomic data. Their proposal applies to
distributed systems and social networks; it is built over bilinear as-
sumptions, and securely manages information access in distributed
systems. The scheme solely provides access control where it does
not allow to perform operations over encrypted data.

In a similar work, Akinyele et al. [1] implement a self-protecting
technique for medical records on mobile devices using an attribute-
based encryption scheme, in which, as opposed to our method, the
server operates on unencrypted genomic data.
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Table 1: Used notations.

General Notation
Calligraphic P Set of participants in the protocols
Upper vector ®a Attribute and predicate vectors
Boldface capital C Matrices
a · b Elementwise multiplication
XE ®h,k

Encrypted X under predicate ®h and key k

Susceptibility Testing Notation

ΓP Set of positions of real SNPs of patient P
γ P Set of positions of potential SNPs of patient P
SNPP,i i-th SNP for patient P. SNPP,i equals 0 when it belongs to γ P ,

and 1 when the patient presents a variant (it belongs to ΓP )
Ωx Set of positions of SNPs which are related to disease x .
prx ,ib Probability of developing disease x conditioned on the value of

the i-th SNP, with b ∈ 0, 1
cx ,i Contribution (likelihood) of the i-th SNP to the susceptibility

to disease x
SP,x Predicted susceptibility of patient P to disease x

In a protocol proposed by Naveed et al. [11], a patient outsources
her genomic data in an encrypted format with attached policy pa-
rameters. The medical units request a new key to calculate the
required test function from a central authority. Based on the pa-
tient’s policy, the latter decides on granting a secret key for the
needed test function. In contrast, in our scheme, the user once de-
fines an authorized set of policies. After obtaining the decryption
key corresponding to the attributes, the policy is automatically
applied, and there is no need for a central authority or any online
interaction with the patient, hence our method is more practical.

Ayday et al. proposed several methods [3] to run a test to quantify
the susceptibility of a patient for a particular disease. They applied a
secret sharing method and proxy re-encryption to assist the parties
which partially encrypt and decrypt the final results using the Pail-
lier [12] encryption scheme. Later on, another privacy-preserving
method was proposed in [10] which calculates the susceptibility
testing based on a homomorphic encryption scheme over lattices.
In this scheme, the trusted party gets the biological sample from a
patient, generates the public parameters and keys, and distributes
them among the parties. It also sequences the DNA sample of the
patient, builds a data structure and sends the encrypted form of
the corresponding information to the server. Medical unit marks
the required locations for the test, and the patients look up inside
the data structure to confirm whether their DNA carries these val-
ues. The server homomorphically runs the test by leveraging a
key-switching technique to modify the encrypted data under the
patient’s key to be decryptable by the medical center’s key to enable
the homomorphic operations. The final result is released encrypted
to the corresponding medical center which decrypts the test and
informs the patient accordingly. Our proposal extends this archi-
tecture to efficiently control multiple medical units’ accesses to
the patient’s genomic data while outsources and operates over this
information.

3 BUILDING BLOCKS
In this section, we briefly describe the necessary background and
assumptions for constructing our method of attribute-based ge-
nomic privacy-preserving testing. A summary of the notations is
given in Table 1.

3.1 Genomic Background
Among several types of DNA variants in the human genome, "single
nucleotide polymorphisms" (SNPs) are the most common ones. In a
single DNA block which is denoted by nucleotide, each SNP repre-
sents a difference. Normally, through someone’s DNA, on average,
SNP occurs in every 300 nucleotides, i.e., there are approximately
50 million SNPs in the human genome as of now1. SNPs play the
role of biological markers to assist the scientists to locate the genes
associated with a particular disease. Usually, in each SNP position,
there are two nucleotides (alleles), major and minor allele. Inherited
alleles/variants from each parent can be identical (homozygous) or
different (heterozygous). Reference human genome which is a digital
sequence of nucleotides represents the human genetic makeup and
helps to identify the human genetic variants. A genetic variant can
take two different alleles: one from the reference genome and one
from the alternative version occurring in the human population. At
the content of a given SNP position, an individual can take at least
one alternative allele or not have a variant. Following the proposal
in [3] to measure susceptibility via "weighted averaging" [8], we
refer to the set of these SNPs which take at least one alternative alle-
les for a patient P as "real SNPs" and the remaining ones where the
approved SNPs do not exist for the considered patient as "potential
SNPs". The i-th SNP for patient P is represented as SNPP,i , where
SNPP,i = 1 implies a real SNP (i.e., a variant), and SNPP,i = 0 a
potential SNP (i.e., non-variant). ΓP denotes the set of positions
for real SNPs of patient P (at which SNPP,i = 1), and γ P the set
of positions of potential SNPs, at which SNPP,i = 0.

1https://ghr.nlm.nih.gov/primer/genomicresearch/snp

https://ghr.nlm.nih.gov/primer/genomicresearch/snp
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3.2 Cryptographic Primitives
We describe the core cryptographic schemes and their hardness
assumptions to construct an attribute-based privacy-preserving
genomic susceptibility testing method as follows:

3.2.1 Learning With Errors (LWE) Problem [14]. For a security
parameter λ, let n = n(λ) be an integer dimension, q = q(λ) > 2 be
an integer, and χ = χ (λ) be an error distribution over Z. For the
secret s ← Znq , the LWE distribution An,q,χ over Zn+1q is sampled
by a ∈ Znq uniformly at random, choosing e ← χ , and outputting
(a,b = s · a + e mod q). Form independent samples (ai ,bi ) ∈ Zn+1q
uniformly, the decision problem of LWE implies distinguishing
between the As ,q,χ distribution and the uniform distribution over
Zn+1q .

3.2.2 Attribute-Based Homomorphic Encryption Scheme (aBHE)
[5]. Informally, in a ciphertext policy attribute-based encryption
scheme, an encryptor Alice describes a policy (predicates) while
encrypting her data, and a trusted party issues a decryption key for
the attributes and distributes them among parties. A decryptor Bob
can decrypt this ciphertext if his attributes satisfy Alice’s defined
policy.

Clear et al. introduced a homomorphic attribute-based encryp-
tion scheme which evaluates bounded depth circuits [5]. It is con-
structed based on the Learning with Errors (LWE) assumption and
only restricts the number of inputs to the evaluation circuit. This
scheme combines the levelled attribute-based homomorphic en-
cryption (lAB) of Gentry et al. [7] with the algorithms of {lABSetUp,
lABKeyGen, lABEnc, lABDec, lABEval} and the multi-key homo-
morphic encryption (mKH) consisting of {mKHSetUp, mKHKey
Gen, mKHEnc, mKHDec, mKHEval} scheme of Clear et al. [6].
The aBHE scheme contains five algorithms: {aBHSetup, aBHKey-
Gen, aBHEnc, aBHDec, aBHEval}, with respect to a message space
M = {0, 1}w , wherew can be arbitrarily large input to the circuit
C , but bounded by N , an attribute space ®A, a class of access policies
®H ⊆ ®A→ {0, 1}, and a class of circuits C ⊆ M∗ → M. The param-
eter K ∈ [D] (where i ∈ [x] � {1, . . . , x}) specifies the maximum
number of keys that can be passed to the decryption algorithm.
The access structure is collaborative model, i.e, if the evaluation is
performed over the ciphertexts which are encrypted by different
users, a decryptor whose all his d attributes satisfy the predicate
can still decrypt on his own. We describe the definitions of the
aBHE as follows :

aBHSetUp(1λ, 1N ) : The set up algorithm receives security pa-
rameter λ and maximum number of decryption keys N as input,
then :

• Chooses an integerw .
• Uses a polynomial д(., .) to give the number of inputs to the
decryption circuit for N keys and security parameter λ. Let
L = д(λ,N ) :
• Calls lABSetup(1λ, 1L) → (PPlAB ,mpk,msk).
• Outputs PP := (PPlAB , λ,N ,w) and (mpk,msk). The public
parameters PP are inputs of the entire algorithms of this
scheme.

aBHEnc(mpk, ®h, µ) : Inputs of the encryption algorithm are mas-
ter public key of the lAB scheme mpk , a binary message space

µ = (µ1, ..., µw ) ∈ {0, 1}w , and a policy ®h ∈ ®H. Ciphertexts are
associated with a set of policies ®hi ∈ ®H. Each encryptor performs
the following operations :
• Calls key generation algorithm of multi-key homomoprhic
encryption mKHKeyGen(1λ, 1L) → (sk,pk,vk).
• Calls lABEnc(mpk, ®h, sk) → ψ .
• Calls mKHEnc(pk,mui ) → ci , for i ∈ [w].
• The ciphertext CT = (type := 0, enc := (ψ ,vk, (c1, ..., cw ))).
Type can be 0 or 1 which refers to a fresh ciphertext or result
of an evaluated ciphertext, respectively.

aBHKeyGen(msk, ®a) : On the inputs of the master secret key
msk , and attributes ®a ∈ ®A, the algorithm generates a secret key for
vector ®a :
• Calls lABKeyGen(msk, ®a) → sk ®a and issues it to the user.

aBHEval(mpk,C,CT1, ...,CTl ) : On the inputs of a circuit C ∈ C
and l ∈ [N ], for fresh (Type= 0) ciphertexts, the evaluator performs
the following operations if ®H(®ai ) = 1 for i ∈ [d] :
• Parses fresh ciphertex CTi as (type := 0, enc := (ψi ,vki ,
(c
(i)
1 , ..., c

(i)
w )) for every i ∈ [l]. The predicate hi is associated

withψi .
• The evaluator calls mKHEval(C, (c(1)1 ,vk1), . . . , (c

(1)
w ,vk1)

, . . . , (c
(l )
1 ,vkl ), . . . , (c

(l )
w ,vkl )) → c ′.

• Encrypts c ′ under predicate ®hi by calling lABEnc(®hi , c ′) →
ψc ′ .
• Using decryption circuit of mKH, D<λ,N > , calls
lABEval(D<λ,N >,ψc ′,ψ1, . . . ,ψl ) → ψ .
• Returns the evaluated ciphertext CT ′ = (type := 1, enc :=
ψ ).

aBHDec(sk ®ai ,CT ) : Decryption is possible when the attribute
set ®ai is authorized in the access structure ®H, i.e., ®ai ∈ ®A for i ∈ [d].
To decrypt a ciphertext CT = (type, enc) with the secret key of the
attributes sk ®ai , and for the associated predicates ®h ∈ ®H, a decryptor
performs :
• For a fresh ciphertext (type= 0), enc is (ψ ,vk, (c1, . . . , cw )).
The decryptor calls lABDec(sk ®ai ,ψ ) → sk . if sk =⊥ aborts.
Otherwise :
• Calls mKHDec(sk, c j ) for every j ∈ [w], and outputs µ :=
(µ1, . . . , µw ) ∈ {0, 1}w .
• For an evaluated ciphertext (type= 1), enc is parsed as ψ .
The decryptor calls lABDec(sk ®ai ,ψ ) → x ′. If x ′ =⊥ aborts.
Otherwise the plaintext is µ := x ′ = {0, 1}w .

Semantic security of this aBHE [5] is the same as lAB [7] semantic
security with extra access of the adversary to aBHEval algorithm.

3.2.3 Homomorphic Operations. In this section, we briefly de-
scribe how the homomorphic operations perform over the en-
crypted data. The evaluation function of Section 3.2.2 contains
two parts, first it calls the evaluation function of the multi-key
homomorphic encryption scheme and later on it evaluates using
the decryption circuit of the levelled homomorphic attribute-based
encryption scheme. A ciphertext C is aM ×M matrix over Zq that
encrypts µ under the M-dimensional vector v as a secret key if
C ·v = µ ·v + e ∈ ZNq , where e is small noise vector. Let C1 and C2
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be the encryptions of µ1 and µ2 respectively, then homomorphic
addition is defined as follows [7] :

C+ := C1 + C2
C+ · v = (µ1 + µ2) · v + (e1 + e2)

And homomorphis multiplication according to [7] is described
as as follows :

C× := C1 · C2
C× · v = C1 · (µ2 · v + e2)

= µ2 · (µ1 ·v + e1) ·C1 · e2
= µ1 ·µ2 ·v+µ2 ·e1+C1 ·e2
= µ1 · µ2 · v + ”small".

Clear et al. [6] extended these operations to perform over the
ciphertexts which are encrypted by multiple parties under different
keys. Therefore, suppose C1 and C2 be the encryptions of µ1 and
µ2 under the secret keys of v1 and v2 respectively. Clear et al.
proposed a transformation for C1 and C2, which both input to the
same circuit and produce C′, where C ∈ C be the circuit. This
2M × 2M ciphertext matrix C′ encrypts µ ′ = C(µ1 + µ2) under the
concatenations of v1 and v2 as the secret key. The details of this
transormation is out of the scope of this paper and we refer the
readers to the original paper [6] for further information.

4 PROPOSED SCHEME
We develop an efficient solution to operate on outsourced genomic
data of individuals while the data owners can control the accesses
to different parts of their sequenced genome. Below, we explain
the interactions of the involved parties and the threat model of our
protocol.

4.1 Protocol Setting
Throughout the paper, we use the same notation for the involved
parties as the prior work of Ayday et al. [3] : a patient P who
owns the genomic data; a trusted certified institute CI ; a storage
and processing unit SPU, and different individuals with their
specialization from different regions inside medical units which
for simplicity we denote them by MU1, . . . ,MUn , where n is
the maximum number of involved medical unit in the protocol.
We allow each medical units to have attributes describing its job,
specialty, and location. The patient is the one who (1) defines the
policies restricting the accesses of the medical units to the result
of the information according to their attributes, and (2) enforces
releasing the data to only the parties whose attributes meet these
policies.

4.2 Threat Model
All the parties are assumed to be semi-honest, i.e., they follow the
protocols and they are not allowed to modify their inputs to obtain
unauthorized information. However, there might be curious parties
inside the medical units or SPU who are willing to obtain more
information from the transactions they can observe. The CI is a
trusted party that sequences, encrypts, generates, and distributes
keys between the parties. The security of our proposed scheme
is based on one-wayness and semantic security of the underlying
attribute-based homomorphic encryption schemes [5]. We assume
that the parties do not collude or share their secret key of various
attributes with each other.

4.3 Protocol Overview
Patient P sends her biological sample to the certified institute CI
for sequencing. She describes the medical units that she intends to
consult after the test is accomplished (for further research, remedies,
or specialized treatment). For this purpose, she decides and embeds
the access structure, AS, which is a boolean formula referring to
the attributes of the users who can access different parts of her
genomic data. The CI sequences the patient’s DNA runs the setup
and key generation algorithms for the aBHE to generate public
parameters PP , the master secret and public key (msk,mpk) and
distributes PP andmpk among the participants. The CI usesmsk
to generate decryption keys for the attributes sk ®a according to the
defined access structure AS. Furthermore, the CI encrypts each
SNP position with the master public keympk with an embedded
predicate and sends them to the SPU. The medical unit sends the
parameters of the test encrypted under the master public keympk
within the same access structure to the SPU. The SPU chooses
the particular locations of the encrypted SNPs which are relevant to
the required test and performs the test illustrated in (1) by attribute-
based homomorphic evaluation of the test function for this access
structure. Those medical units whose attributes satisfy the defined
policy and owns the decryption key of the attributes can decrypt
and obtain the test result.

We choose the weighted average method to calculate the sus-
ceptibility test by generalizing the observations made in [2, 3]. The
susceptibility to disease x using weighted averaging is as follows :

SP ,x =

∑
i ∈Ωx c

x ,i {prx ,i0 [1 − SNP
P ,i ] + prx ,i1 SNPP ,i }∑

i ∈Ωx c
x ,i . (1)

4.4 Protocol
We illustrate our proposed scheme in Fig. 2, and describe the inter-
action between the parties as follows :

Set up and key generation :
Step s1 : SetUp : The CI runs aBHSetup to get (PP,mpk,msk).

PP is part of the input in the following algorithms.
Step s2 : KeyGen(msk, ®a) → k : The CI runs aBHKeyGen to

obtain sk ®a , and outputs k := sk ®a .
Sequencing and generation of input encryption :
Step e1 : The patient P decides on the predicates. She sends her

access structure AS which defines the relations over the attributes
(we refer to the example 1 in the Section 1). Moreover, P sends her
biological sample for sequencing to the CI.

Step e2 : The CI sequences the sample and encrypts each bit
of SNP positions with the master public keympk and embeds the
predicates over the set of attributes for the relevant tests. Also, the
CI sends these encrypted positions and SNPs to the SPU.

Encrypted susceptibility test :
Step t1 : TheMU sends the required test parameters of these

SNPs for disease x encrypted under master public key mpk and
the same predicate as the patient’s authorized to the SPU equals
to {prx ,iE ®h,mpk

, cx ,iE ®h,mpk
}i ∈Ωx , along with required locations corre-

sponding to this test.
Step t2 : The SPU runs the susceptibility test in (1) on patient

P’s encrypted SNPs andMU’s encrypted susceptibility parameters
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Figure 2: Proposed attribute-based genomic privacy-preserving scheme.

for x for the same set of predicates using the relevant SNPs for this
particular test by running the aBHEval algorithm which leverages
the operations defined in Section 3.2.3, and obtains the encrypted
value of SP ,xE ®h,mpk

for the specified set of predicates.

Step t3 : The SPU releases the encrypted result toMUi .
Step t4 : MU j , where j belongs to the set of authorized at-

tributes in the aBHE scheme, decrypts using its own sk ®a to obtain
the clear-text test result SP ,x of patient P for disease x .

5 EVALUATION
The evaluation of the main attribute-based homomorphic encryp-
tion scheme [5] which is used by the participants of our proposed
scheme in Section 4 to encrypt, evaluate and decrypt is enhanced
by implementing the two underlying encryption schemes: 1) a
multi-key homomorphic encryption scheme (mKH), and 2) a lev-
eled attribute-based encryption scheme (lAB). To implement the
mKH scheme, we substitute the mKH scheme of Clear et al. with
a simpler multi-key homomorphic encryption scheme of Mukher-
jee et al. [9]. We expand the TFHE library 2 to manage different
ciphertexts which are encrypted by multiple keys. We use the same
TFHE library to control the access structures and attributes for lAB
scheme. We implement and examine our program using C++. The
test environment is a Mac OSX operating system with Intel Core i5
processor, and the key size has 1024−bit length.

We evaluate the operation costs regarding the effort of 1) the
MU in encrypting the two related test parameters, 2) the CI in the
encryption of the patient’s variants, and 3) the SPU to calculate
Eq. (1) via the attribute-based homomorphic operations. In Table 2,
we summarize the achieved running times of the participants of
our protocol in the presence of 1 and 3 medical units.

We emphasize that CI encrypts the SNPs once, but each medical
unit encrypts 2 various parameters of the related test. Therefore, it
is logical that the effort of each medical unit dominates the effort
of the certified institute. Furthermore, as the number of medical
units increases in the protocol, the SPU requires more effort to
evaluate the test function.

We compare the runtime and storage cost of each involved party
in our proposed scheme with just one medical unit in the system
while the participants leverage aBHE scheme [5] with the existing

2https ://github.com/tfhe/tfhe/ library

privacy-preserving protocol of Namazi. et al. [10] which allows
storage and processing on genomic data via a homomorphic en-
cryption scheme over lattices denoted by BGV [4] for only one
medical unit without access policies. We investigate how adding ac-
cess policies affects the operations in return for gaining more safety
for the genomic data of the patients. Finally, we briefly compare the
implementation cost of our proposed scheme with that of Ayday
et al. [3] which applies the Paillier scheme [12] and represent the
results in Table 3.

Since our proposed scheme is non-interactive, the patient P
spends no effort after releasing her biological sample. In [10] the
patient’s effort to encrypt the variants with BGV scheme takes
1.8 ms. In [3], the patient performs the decryption of the Paillier
encryption scheme in 26 ms.

Switching to homomorphic encryption over lattices (via BGV
encryption scheme) significantly increases the efficiency of the
evaluation in running the test function of Eq. (1) at the SPU
side to be 6 ms in [10], and adding attributes slightly increases the
running time to 11 ms. TheMU performs the evaluation operation
with Paillier encryption in the protocol of [3] with the cost of 1 sec.
In our scheme, theMUs require around 319 ms to encrypt the two
parameters related to the test with the embedded access structure,
while this effort takes 3.5 ms in [10] without the contribution of the
access structures. Besides, theMUs are responsible for decrypting
the final result which lasts 0.7 ms via BGV scheme in [10], and 1.5
ms in our scheme via aBHE scheme.

The certified institute CI encrypts each patient’s SNPs in a one-
time operation in [3] with Paillier in 30 ms while this time falls to
1.8 ms by BGV scheme in [10]. Adding access structures decreases
the encryption speed to 210 ms.

Storage cost at the SPU in [3] which is 500 MB sharply shrinks
to be approximately 30 MB in our scheme, while the protocol in
[10] needs 7 MB for storage.

Since our proposed scheme manages access policies and evalu-
ates over data that are encrypted by different parties, its evaluation
running time and storage cost in the SPU side is slightly higher
than [10] which deals with just one medical unit with no embedded
access policies.
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Table 2: Running time of participants of our proposed scheme (Sec. 4) with 1 and 3MUs.

Medical Units Certified Institute Storing and Processing Unit
Our scheme (Sec. 4) with 1−MU 319 ms 210 ms 11 ms
Our scheme (Sec. 4) with 3−MU 319 ms 212 ms 25 ms

Table 3: Complexity comparison of our proposed scheme with [10] and [3].

@P @MUs @CI @SPU

Ayday et al.’scheme [3]
Paillier Dec : 26 ms Hom. Operation : 1000 ms (per

10 variants)
Paillier Enc : 30 ms

Storage :500 MB/patient

Namazi et al.’scheme [10]
BGV Enc : 1.8 ms BGV Enc : 3.5 ms

BGV Dec : 0.7 ms
BGV Enc :1.8 ms Hom. Operation : 6 ms

Storage : 7 MB/patient

Our proposed scheme (Sec. 4)
aBHE Enc : 319 ms
aBHE Dec : 1.5

aBHE Enc : 210 ms Hom. Operation : 11 ms
Storage : 31 MB/patient

6 DISCUSSION
We guarantee the security of our protocol by running all the in-
teractions in an encrypted format. The SPU cannot observe the
genomic data of the patient and the clear-text of the final result.
During the interactions, the SPU receives encrypted SNPs of the
patient from the CI which are partially encrypted under her pub-
lic key and the master public key of the protocol. With the same
argument, the SPU does not have access to the test parameters
provided by each MUs. The test is a homomorphic evaluation
over these confidential data where the SPU has no decryption key
to observe the clear-text of the final result which provides more
security in our protocol. This decryption key which is issued by the
certified institute to the attributes is the only way of accessing the
final results if the attributes of a medical unit satisfy the defined
policies. Also, the collision of the medical units with each other or
with the SPU is not allowed. Hence, unauthorized medical units
whose attributes do not satisfy the defined policies have no chance
to decrypt and observe the final test results.

Each patient can define as many access policies as it is required
and explain how she authorizes each participant to access different
parts of her genomic data based on their attributes. However, the
number of decryption keys should remain below N , and the car-
nality of the set of attributes |{a1, . . . ,ad }| should always remain
below D (d ∈ [D]). Otherwise, the evaluation fails and decryption
does not return the correct message.

This scheme can be extended to multiple patients. Then different
patients define various access structures, and with a universal mas-
ter secret and public key, the CI generates keys for each attribute.
In this case, a doctorU with specialty Y in medical unit I can access
the medical records of all the patients if his attributes satisfy all the
defined policies. Assigning a master secret and public key to each
patient to define a unique access structure for each patient leads to
obtaining a system where the authorized parties can recover the

genomic data of this particular patient — a protocol that supports
this setting in on progress.

Our protocol enables various medical units to contribute to a
genomic test by sending their test parameters in an encrypted
format to the SPU. In our protocol’s core encryption scheme
multi-key homomorphic encryption is deployed which enables the
evaluation of data sets encrypted with multiple senders. However,
solely possessing the decryption key of the attributes which satisfy
the defined policy is sufficient to decrypt and recover final data.

Regarding granting access to a newly joined medical unit, it is
sufficient to generate a key corresponding to his attributes. In a
case that this medical unit asks for a test query, he should encrypt
his data under the master public key and embeds the policy in his
encryption. Later on, if this medical unit’s attributes satisfy the
defined policy, he can decrypt and recover the corresponding result.
No further attempt is necessary to encrypt the stored data or to
initialize the protocol from scratch. Revoking the accesses of the
parties who leave the system is not a straightforward task. Hence, it
is obligatory to implement the system with a list of revoked access
structures and check the list before issuing a decryption key to a
party.

7 CONCLUSION
We achieved an efficient and practical privacy-preserving suscepti-
bility testing method that describes the way of storing and process-
ing patients’ genomic data delegated to an untrustworthy server.
We defined how several medical units can access the authorized
parts of patients’ medical records by leveraging an attribute-based
homomorphic encryption scheme. Participants of the protocol en-
force their policies as access structures, and the server performs the
required test on encrypted genomic data without compromising
individuals’ privacy. Parties with the authorized attributes are the
only ones who can obtain the result of such tests. We enhanced
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automatic and non-interactive access structures while performing
the operations over genomic data at the cost of increased run time
by the medical units. However, such overhead is negligible since
the medical units are usually equipped with powerful computing
machines, where the operations required by the tests are carried
out. We further characterized the security of our proposed solution
for semi-honest participants.
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