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Abstract

We develop adaptive self-interference cancellation algorithms for both filter-and-forward and decode-and-forward

multiple-input multiple-output relays. The algorithms are blind in the sense that they only exploit the spectral properties

of the transmitted signal to identify the self-interference channel, while dealing with frequency-selective channels and

arbitrary signal spectra. Our approach is non-intrusive in the sense that the algorithms can successfully identify, track,

and cancel the self-interference distortion while the relay is operating in its normal mode. We study the stationary

points of the algorithms and analyze under which conditions they achieve perfect cancellation of the self-interference.

Simulation results show that the algorithms provide residual self-interference levels below the noise floor by using

the time samples of only a few OFDM symbols.

I. INTRODUCTION

MIMO techniques, such as diversity schemes or spatial multiplexing, can provide high system throughput in a

bandwidth-efficient manner [1]. However, extending network coverage while preserving consistent performance can

be resource-demanding and, therefore, in-band relaying offers an attractive alternative for coverage extension due

to the relaxed requirements for extra bandwidth usage [2], [3]. This paper concerns MIMO relays, which, as part

of a MIMO link, are equipped with antenna arrays at both the transmit and receive sides to support end-to-end

multistream communication.

Based on the employed transmission protocol, relays are usually classified as either filter-and-forward (FF) relays,

of which amplify-and-forward (AF) is particular case, or decode-and-forward (DF) relays [4]. While FF relays

simply forward the message, after some basic processing [5], [6], to the next network element without awareness

of the data content, DF relays process the message and regenerate/re-encode the source data streams [7], [8]. As a

consequence, DF relays generally yield better performance than FF relays [9], [10]. Relays can be further grouped

into half-duplex (HD) or full-duplex (FD) relays. In particular, HD relays use orthogonal resources for transmission

and reception, whereas FD relays share a common resource for both processes. For example, when in-band relaying

is used, HD relays must designate two non-overlapping time slots: one for reception and one for transmission. On
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the other hand, FD relays can receive and transmit at the same time, thus achieving higher data rates (approximately

double) or higher spectral efficiency than HD relays [11], [12].

Full-duplex transmission introduces a new form of distortion caused by the relay itself, so-called self-interference

(SI), wherein the transmitted signal loops back into the receive side. In particular, when both antenna arrays are

closely located, the power imbalance between the transmitted signal and the signal received from the source can

be high. As a consequence, we may end up with a scenario where the SI power at the relay input can be up to 100

dB higher than the information-bearing signal power,

rendering the relay useless [13]–[16]. Therefore, to realize maximum performance of the FD relay network,

efficient SI mitigation techniques must be employed at the relay.

A. Self-interference mitigation methods

The different SI mitigation techniques found in the literature can be classified into the following three categories

[17]:

1. Isolation methods [13], [18], [19] reduce SI power by optimizing the radiation pattern and improving the

passive electromagnetic isolation between antenna arrays. Although isolation can reduce the interference by

tens of decibels, the remaining residual SI in the system is likely high enough to affect the performance.

Therefore, isolation techniques are typically used together with active analog and/or digital signal processing

techniques that further reduce the residual interference.

2. Spatial-domain suppression methods [17], [20]–[23] exploit the degrees of freedom offered by multiple antennas

to reduce the SI signal. For example, the signal may be transmitted in the nullspace of the SI channel, which

ideally results in an interference-free signal at the receive side of the relay.

3. Time-domain interference cancellation methods [16], [17], [23]–[33] create a replica of the interference signal

and subtract it from the relay input. Ideally, through an estimate of the SI channel, the residual SI will be

negligible. Time-domain cancellation can be applied both in the analog domain to avoid glitches during analog-

to-digital (A/D) conversion and in the digital domain to effectively cancel the remaining interference in the

presence of multipath propagation.

The spatial suppression methods mentioned above, [17], [20]–[23] assume the explicit knowledge of the SI

path. This is normally solved by means of an external estimation method or taking advantage of a pilot scheme

embedded in the signal, which requires some processing in the frequency domain. Such approach only makes sense

in a DF relay, where the signal is being regenerated. This not only intensify the computing requirements of the

system, because each subcarrier should be treated independently, but also introduces an unavoidable delay due to

the required demodulation/modulation process. Any additional delay can be harmful at the destination if the relative

delay between the signal coming from the relay and the signal coming from the source exceeds the cyclic prefix

length. Therefore, a shorter delay in the relay may result in better performance. In this work, we take a time-domain

approach to reduce the processing delay by avoiding the demodulation/modulation to/from the frequency domain.
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The time-domain cancellation methods presented in [25]–[28] are restricted to work in a single-stream transmis-

sion. In [26]–[28], an additional delay is introduced to perform the cancellation. As explained before, when the

network uses OFDM any additional delay can be harmful. In [29], [30], a training-based cancellation method is

proposed that disrupts the relay transmission, with the consequent data rate loss. If the relay is used for coverage

extension, interrupting the transmission to redesign the interference canceller is not feasible. The use of a training

sequence of a pilot embedded scheme introduces another implementation problem: the relay needs to be synchronized

with the network, which, specially in the FF case, might not be possible. The use of blind techniques is convenient

and in some cases the viable only option. In this work, we propose mitigation blind algorithms that do not introduce

delay and do not require the use of any training sequence.

The implementation of the mitigation scheme follows one of the following categories: on-line or adaptive solutions

and off-line or closed-form solutions. Whereas in the DF case an off-line solution is feasible (we provide a recursive

implementation of an off-line solution), the nature of the problem does not allow to use a closed-form expression

in the FF case. This limits the possible FF solutions to iterative processes, from which an adaptive solution is a

natural choice. An adaptive solution has some advantages when compared to its off-line counterpart, e.g., reduced

computational load per sample, zero processing delay (the adaptation is performed as samples arrive with no

buffering required), and the ability to track time variations of the environment.

Finally, the mitigation scheme should not affect the relay normal operation. The link design is significantly simpler

when assuming no self-interference at the relay and, therefore, it is important that self-interference is removed before

any further processing of the received signal [17]. Our mitigation techniques are transparent to the relay operation

and delivers a below-noise-level interference signal within the relay.

B. Contributions of the paper

This paper focuses on low latency adaptive SI mitigation solutions for multistream relay networks.1 For this

purpose, blind time-domain adaptive cancellation algorithms are proposed that effectively cope with SI. Our

algorithms can be classified into stochastic gradient descent based algorithms and recursive least-squares based

algorithms, and they are tailored separately for both FF and DF relays. The proposed algorithms can deal with

arbitrary signal spectra and frequency-selective channels by exploiting statistical information about the source signal.

When considering OFDM relays, the proposed algorithms serve as attractive alternatives to frequency-domain

methods, e.g., [17], [20]–[23], since the computational load is independent of the number of subcarriers. The

algorithms also feature spectrally efficient implementation, since the estimation of the SI path requires only statistical

information of the source signal. That is, no external estimation method or dedicated pilot scheme is required.

This feature allows the algorithms to perform the interference mitigation without disrupting the relay’s normal

operation. Furthermore, the algorithms can efficiently cope with spatio-temporal inter-symbol interference (ISI),

while previously mentioned methods only consider spatial ISI.

1By latency we mean any additional delay introduced by the self-interference mitigation scheme in the source-destination link.
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Preliminary results pertaining to stochastic gradient implementations have appeared in [32] (FF case) and [33] (DF

case). The associated material for the current paper has been rewritten and significantly extended. In addition, we

present and analyze the stationary points of two new recursive least-squares based algorithms that features faster

convergence and improved performance when compared to their stochastic gradient counterparts. The analysis

presented herein is more thorough and the bias problem associated with MIMO FF relays is discussed in more

detail.

C. Organization of the paper

The paper is organized as follows. Section II describes the system model of the considered relay network, discusses

the impact of the SI in the system, and introduces the MIMO SI cancellation architecture. Section III addresses

the problem of SI for a MIMO DF relay and derives gradient descent based and recursive least-squares based

algorithms that effectively cancels the SI by using a power minimization approach. In this section we also provide

details on algorithm convergence and stationary points. Section IV describes the bias problem originating from

using a power minimization approach in a MIMO FF relay. Bias-corrected adaptive algorithms for SI cancellation

and channel compensation are presented and stationary points are analyzed. Section V illustrates the performance

of the proposed algorithms for an OFDM relay system, whereas Section VI draws the conclusions.

D. Notation

Let H[n] =
∑LH

k=0 H(k)δ[n − k] denote an LHth-order linear time-invariant causal filter of size M × N and

coefficients {H(k)}LH
k=0. Let x[n] denote a signal vector of size N × 1. The result of filtering x[n] with H[n],

denoted by signal y[n] of size M × 1, is given by the convolution operation (?)

y[n] = H[n] ? x[n] =

LH∑
k=0

H(k)x[n− k] = Hx[n] (1)

where H = [HT (0) . . .HT (LH)]T collects the taps of H[n] into a single matrix of size M ×N(LH + 1), and the

vector x[n] = [xT [n] . . .xT [n− LH]]T , of compatible dimension, contains LH + 1 past samples of x[n].

II. SYSTEM MODEL

The considered full-duplex MIMO relay link consists of a source node (S), a destination node (D), and an FD

relay node (R). The relay link supports the transmission of M ≥ 1 data streams and each node is equipped with

M receive/transmit antennas. Figure 1 illustrates the discrete-time equivalent baseband representation of the MIMO

relay link where S transmits signal st[n] ∈ CM , D receives signal dr[n] ∈ CM and R receives rr[n] ∈ CM while

simultaneously transmitting rt[n] ∈ CM . In the following we assume that all channels are block fading. In other

words, channels are assumed invariant for a few OFDM symbols or, equivalently, several hundreds or thousands of
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Fig. 1. System model of a single-frequency relay network with self-interference mitigation.

time-domain samples. The received signals at R and D are given by

rr[n] = HSR[n] ? st[n] + HRR[n] ? rt[n] + nR[n] (2)

dr[n] = HSD[n] ? st[n] + HRD[n] ? rt[n] + nD[n] (3)

where Hij [n] ∈ CM×M , i ∈ {S,R} and j ∈ {R,D}, is the Lij th-order channel impulse response matrix between

nodes i and j. Filter taps are drawn from a circularly-symmetric Gaussian distribution, i.e., vec{Hij(k)} ∼ CN (0, I)

up to a normalization factor. In (2) and (3), all channels are causal whereas HRR[n] is strictly causal, i.e., HRR[n] =∑LRR
k=1 HRR(k)δ[n − k], HRR(0) = 0. Finally, nD[n] ∼ CN (0, σ2

dI) ∈ CM is the noise at D, while nR[n] ∈ CM

represents all noise sources at R. Specifically, nR[n] is composed of two different noise sources: one originating

from the receive side of R while the other originates from the transmit side of R and couples back into the relay

through HRR[n], i.e.,

nR[n] = HRR[n] ? nR,t[n] + nR,r[n] (4)

where nR,r[n] ∼ CN (0, σ2
rI) ∈ CM represents the relay reception noise and nR,t[n] ∼ CN (0, σ2

t I) ∈ CM represents

the relay transmit noise, which accounts for impairments in the transmission process [17], [34]–[39].

The relay is normally designed together with the other nodes of the link, therefore linear precoding might be

present at the transmit side of S and R, e.g., the wideband precoding techniques in [40], [41]. To account for

precoding, let GS[n] denote the causal LSth-order M × M precoding filter in S and GR[n] denote the causal

LRth-order M ×M precoding filter in R. Then, precoded signals at S and R are given by

st[n] = GS[n] ? ŝt[n] (5)

rt[n] = GR[n] ? r̂t[n] (6)

where ŝt[n] ∈ CM and r̂t[n] ∈ CM are the respective signals before precoding in S and R. If linear precoding is

not present, we assume that GS[n] = Iδ[n] and GR[n] = Iδ[n]. Note that mitigation should work independently of
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the presence of GR[n].

The relay protocol, represented by r̂t[n] = pR(r̂r[n]), controls the information forwarding process in accordance

to some criterion or rule set. In particular, we distinguish between the following protocols:

• Filter-and-forward (FF) protocol: The relay simply forwards the received signal to the next element of the

network. Consequently, we can model the family of FF protocols with pR(r̂r[n]) = Br̂r[n], where B is an

M ×M full-rank matrix that spatially filters the different data streams. Note that the amplify-and-forward

(AF) protocol is the particular case GR[n] = Iδ[n].

• Decode-and-forward (DF) protocol: The relay regenerates the original M data streams from S before trans-

mission. Ideally we have r̂t[n] = ŝt[n−δ], for some delay δ > 0. The DF protocol includes various operations

such as frame alignment, time- and frequency-synchronization, signal demodulation, equalization, and data

decoding.

At R, we denote the information-bearing signal coming from S by řr[n] = HSR[n]?st[n] whereas the SI signal is

denoted by ir[n] = HRR[n] ? rt[n]. The received signal at R, rr[n], can be expressed as the sum of the information

signal, SI and noise:

rr[n] = řr[n] + ir[n] + nR[n] (7)

The SI term ir[n] in (7) can be seen as an additional noise source whose power can be significantly stronger than

that of řr[n] and, since rt[n] is a general function of řr[n], it may be correlated in time with řr[n]. To fully enjoy

the benefits of full-duplex relaying when compared to half-duplex relaying, the self interference must be reduced

as much as possible, see, e.g., [11]. For this purpose, we employ the cancellation architecture depicted in Fig. 1,

which consists of the strictly causal LAth-order M ×M MIMO filter A[n]. The input of the relay protocol pR(·)
is now given by

r̂r[n] = řr[n] + ir[n] + A[n] ? r̂t[n] + nR[n]

= řr[n] + HRR[n] ?Gr[n] ? r̂t[n] + A[n] ? r̂t[n] + nR[n]

= řr[n] + (A[n] + HRR[n] ?Gr[n]) ? r̂t[n]︸ ︷︷ ︸
ı̂r[n]

+nR[n] (8)

where ı̂r[n] denotes the residual SI at the input of pR(·). If we let ĤRR[n] denote the LR̂Rth-order impulse response

of the equivalent SI channel, i.e.,

ĤRR[n] = −HRR[n] ?GR[n] (9)

then we see from (8) that perfect cancellation is obtained when A[n] = ĤRR[n]. This implies that filter order LA

must be chosen as LA ≥ LR̂R = LRR + LR.

In practice, perfect knowledge of ĤRR[n] is not available at the relay and an estimate must be acquired.

Furthermore, the estimation of ĤRR[n] must be done while the relay is operating to avoid any interruption in

the transmission. This justifies the use of a blind adaptive scheme that is also able to track temporal variations of
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the SI path.

The setup of Fig. 1 resembles an identification scenario, since A[n] is placed in parallel with the effective SI

path ĤRR[n]. However, in contrast to a standard identification setup both A[n] and ĤRR[n] form part of a feedback

loop, i.e., their common input signals depends of their respective outputs. Before proceeding with the derivation of

the SI cancellation algorithms, we make two important remarks about the employed cancellation structure.

Remark 1: The self interference architecture in Fig. 1 does not increase the processing delay at the relay, i.e.,

the delay between řr[n] and rt[n] remains the same as without self-interference mitigation. As a consequence, the

propagation delay between S and R is unchanged. This is a desirable feature in systems that exploit cyclic prefix

for multipath compensation. This is in contrast with schemes which introduce an intentional delay in the relay

processing path, see, e.g., [27], [28].

Remark 2: The sampling rate at which the cancellation algorithm operates, Fs, is related to the baseband signal

bandwidth, B, as Fs = 2kupB, where kup ≥ 1 is the oversampling factor. Therefore, the cancellation algorithm

can operate directly with the waveform samples in an independent manner, without synchronization with the data.

This is of major importance in FF relays where timing recovery is not necessary.

III. ADAPTIVE INTERFERENCE CANCELLATION FOR MIMO DF RELAYS

In this section, we discuss the power minimization approach to SI cancellation and derive adaptive algorithms

based on gradient descent and recursive least-squares principles. Analysis of stationary points establishes conditions

for perfect cancellation.

A. Derivation of the algorithms

In the case of a MIMO DF relay, the associated decoding and regeneration process will introduce a significant

delay. As a consequence we can adopt the following assumption.

A1: For the DF protocol, it holds that E{řr[n]r̂Ht [n− k]} = E{nR[n]r̂Ht [n− k]} = 0, k ≥ 0. (10)

The decorrelation property in (10) allows us, as we shall see below, the use of a recursive least-squares algorithm

for updating the coefficients of the cancellation filter. We see from (8) that the residual interference ı̂r[n] is the

linear combination of past samples r̂t[n− k], with k > 0. Therefore, in view of A1, we have

E{řr[n]̂ıHr [n]} = E{nR[n]̂ıHr [n]} = 0 (11)

Consequently, the power of r̂r[n] in (8) can be expressed as

Pr̂r = E{‖r̂r[n]‖2} = E{‖̂ır[n]‖2}+ E{‖řr[n] + nR[n]‖2} (12)

Whereas the second term on the right-hand side of (12) does not depend on A[n], the first term clearly does.

In particular, E{‖̂ır[n]‖2} = 0 whenever A[n] = ĤRR[n], which corresponds to perfect SI cancellation. Thus,
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minimization of (an estimate of) Pr̂r with respect to the coefficients A[n] by means of an adaptive algorithm is a

sensible approach to obtain an unbiased estimate of the SI path.

Using the previously defined notation, let rewrite signal r̂r[n] as

r̂r[n] = rr[n] +

LA∑
k=1

A[k]r̂t[n− k] = rr[n] + Ar̂t[n− 1] (13)

where A ∈ CM×MLA collects all the LA coefficients of A[n], and vector r̂t[n] ∈ CMLA collects the LA past

samples of the regenerated signal, r̂t[n], i.e.,

A = [A[1] A[2] . . . A[LA]] (14)

r̂t[n] =
[
r̂Ht [n] r̂Ht [n− 1] . . . r̂Ht [n− LA + 1]

]H
(15)

We can solve the minimization of E{‖r̂r[n]‖2} with respect to A by using the following stochastic gradient descent

algorithm, hereafter referred to as the decode-and-forward stochastic gradient descent (DF-SGD) algorithm

A[n+ 1] = A[n]− µa∇A∗
{
‖r̂r[n]‖2

}
= A[n]− µa∇A∗

{
(rr[n] + Ar̂t[n− 1])

H
r̂r[n]

}
= A[n]− µa∇A∗

{
r̂Ht [n− 1]AH r̂r[n]

}
= A[n]− µar̂r[n]r̂Ht [n− 1] (16)

where µa > 0 is the adaptation step size that controls the stability, convergence speed and misadjustment.2 Note

that A[n] is updated for every new time-domain sample, so n denotes both sample and algorithm iteration index.

A recursive least-squares algorithm exhibiting better performance and faster convergence than DF-SGD algorithm

is obtained by solving the following optimization problem [42], [43], i.e.,

A[n] = arg min
A

n∑
k=0

λn−k‖r̂r[k]‖2 (17)

where 0 � λ ≤ 1 is the forgetting factor. Differentiating the cost function in (17) with respect to A and solving

for the minimum yields the following normal equation

A[n]P−1[n] = −T[n] (18)

where

P−1[n] =

n∑
k=0

λn−kr̂t[k − 1]r̂Ht [k − 1] (19)

2When computing the gradient in (16) we treated A and AH as independent quantities and applied the gradient rule ∇X∗
{
aHXHb

}
=

baH (X being a matrix, and a and b being vectors).
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TABLE I
STOCHASTIC GRADIENT DESCENT AND RECURSIVE LEAST-SQUARES POWER MINIMIZATION BASED ALGORITHMS FOR SI CANCELLATION

IN DF RELAYS.

DF-SGD algorithm

A[n+ 1] = A[n]− µar̂r[n]r̂Ht [n− 1]

DF-RLS algorithm

P[0] = ε−1I, 0 < ε� 1

K[n] = P[n− 1]r̂t[n− 1]

P[n] =
1

λ

(
P[n− 1]− K[n]KH [n]

λ+ KH [n]r̂t[n− 1]

)
A[n] = A[n− 1]− r̂r[n]r̂Ht [n− 1]P[n]

T[n] =
n∑

k=0

λn−krr[k]r̂Ht [k − 1] (20)

Substituting (13) into (18) yields the relation

A[n]P−1[n] = −λT[n− 1]− rr[n]r̂Ht [n− 1]

= λA[n− 1]P−1[n− 1]− rr[n]r̂Ht [n− 1]

= A[n− 1]P−1[n]− r̂r[n]r̂Ht [n− 1] (21)

from which we obtain the following recursive update

A[n] = A[n− 1]− r̂r[n]r̂Ht [n− 1]P[n] (22)

The adaptation rule in (22) constitutes the decode-and-forward recursive least-squares based algorithm (referred to

as DF-RLS) for SI cancellation. Matrix P[n] ∈ CMLA×MLA is efficiently updated by applying the matrix inversion

lemma to the recursive update of the auto-correlation matrix in (19), i.e., P−1[n] = λP−1[n−1]+r̂t[n−1]r̂Ht [n−1].

The DF-SGD and the DF-RLS algorithms are summarized in Table I. We note the similarities between the two

algorithms wherein step size µa in the DF-SGD algorithm is replaced with matrix P[n] in the DF-RLS algorithm.

B. Algorithm analysis

For the purpose of the analysis, a stationary point is defined as follows.

Definition 1. Let A[n + 1] = A[n] + X[n] be a generic adaptive algorithm with X[n] being the driving term.

Then, a stationary point of the algorithm, A?, results in a vanishing driving term, i.e.,

E{X[n]}|A[n]=A?
= 0 (23)

when the coefficients of A[n] are fixed to A?.
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The concept of stationary points is useful for analyzing the algorithm performance upon convergence and the

reader is referred to [44] and [45] for a thorough technical discussion on the validity of (23). In addition to A1,

the analysis will use of the following assumption

A2: The process r̂t[n] is wide-sense stationary, i.e, we assume the autocorrelation matrices

Rr̂t [k] = E{r̂t[n]r̂Ht [n− k]},∀ k, to be constant in time and independent of the relay state.

That is, the statistical properties of the regenerated signal r̂t[n] only depend on the modulation format, and not on

the particular realization of the data sequence embedded in r̂t[n] or internal parameters of the relay (relay state).

Assuming that µa � 1 and λ ≈ 1, i.e., (23) is a valid approximation, the conditions under which the SI distortion

can be perfectly cancelled are stated in the following theorem.

Theorem 1. If the LAth-order autocorrelation matrix of r̂t[n] is non-singular, then the DF-SGD and DF-RLS algo-

rithms have a unique stationary point, A?. If LA ≥ LR̂R holds, then this stationary point renders perfect cancellation.

Proof. The SI ir[n] in (7) can be expressed, using (9), as

ir[n] = HRRr̂i[n− 1] (24)

According to Definition 1, any stationary point, denoted by A?, must satisfy the following condition

E{r̂r[n]r̂Ht [n− 1]Q[n]} = 0 (25)

where Q[n] = I for the DF-SGD algorithm and Q[n] = P[n] for the DF-RLS algorithm. Combining (8)–(11),(13),

(24), and (25), the above condition translates into

A?E{r̂t[n− 1]r̂Ht [n− 1]Q[n]} = HRRE{r̂i[n− 1]r̂Ht [n− 1]Q[n]} (26)

For sufficiently large n, we may replace P[n] in (26) with its expected value E{P[n]} [46]. Factoring out E{P[n]}
we obtain

E{r̂t[n− 1]r̂Ht [n− 1]P[n]} ≈ E{r̂t[n− 1]r̂Ht [n− 1]}E{P[n]} (27)

Thus, in view of A2, (26) becomes linear in A?. Assuming the LA-th order autocorrelation matrix of r̂t[n] invertible,

i.e., E{r̂t[n− 1]r̂Ht [n− 1]}−1 exists, then E{P[n]} is non-singular and the unique solution of (26) is given by

A? = HRRE{r̂i[n− 1]r̂Ht [n− 1]}E{r̂t[n− 1]r̂Ht [n− 1]}−1 (28)

Since LA ≥ LR̂R, r̂t[n− 1] can be partitioned as

r̂t[n− 1] =
[
r̂Hi [n− 1] r̂Ht [n− LR̂R − 1] . . . r̂Ht [n− LA]

]H
(29)

After inserting (29) into (28) and invoking A2, we can apply the block matrix inversion lemma to the partitioned
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matrix E{r̂t[n− 1]r̂Ht [n− 1]}. Consequently, (28) reduces to

E{r̂i[n− 1]r̂Ht [n− 1]}E{r̂t[n− 1]r̂Ht [n− 1]}−1 =
[
I 0M×M(LA−LR̂R)

]
(30)

which gives A? = [HRR 0 . . . 0].

Remark 3: Theorem 1 ensures that the stationary points of the algorithms provide perfect cancellation of the SI

signal, whenever A has enough degrees of freedom and r̂t[n] is persistently exciting.3

The convergence properties of DF-SGD follow from [43]. Global convergence is ensured whenever µa < 1/ρmax,

where ρmax is the largest eigenvalue of the autocorrelation matrix of r̂t[n]. On the contrary, DF-RLS exhibits global

convergence almost independently of the statistical properties of r̂t[n]. The level of adaptation noise depends on

the chosen values for µa and λ: higher values of µa and lower values of λ yield noisier steady-state responses,

see, e.g., [42]. Finally, the differences in computational load between the DF-SGD and DF-RLS algorithms, is in

the calculation of matrix P[n] for the DF-RLS algorithm.

IV. ADAPTIVE INTERFERENCE CANCELLATION FOR MIMO FF RELAYS

In this section, we discuss the bias correction problem for proper SI cancellation in full-duplex MIMO FF relays.

We derive and analyze stochastic gradient descent and recursive least-squares based algorithms that not only cancel

the SI but also equalize the S-R channel.

A. Derivation of the algorithms

For the case of MIMO FF relays, the minimization of (an estimate of) Pr̂r does not guarantee proper SI mitigation.

The reason is that A1 and A2 do not hold for FF relays. In particular, in the FF relay case, Pr̂r can be expressed

as

Pr̂r = E{‖̂ır[n]‖2}+ E{‖řr[n] + nR[n]‖2}+ 2<{E{̂ıHr [n](řr[n] + nR[n])}} (31)

where the last term in (31) is due to correlation between ir[n] and řr[n] + nR[n]. The signal after cancellation,

r̂r[n], can be written in terms of the input as

r̂r[n] = ȞRR[n] ? (řr[n] + nR[n]) (32)

where ȞRR[n] is the impulse response of the equivalent system with transfer function

ȞRR(ejω) = (I− (A(ejω)− ĤRR(ejω))B)−1 (33)

3A stationary process is persistently exciting iff its power spectral density (PSD) Sr̂t (e
jω) is full rank at all frequencies, or, equivalently, the

autocorrelation matrix of r̂t[n] is positive definite.
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In view of (33), perfect cancellation yields ȞRR(ejω) = I and r̂r[n] = řr[n] + nR[n], which gives E{‖r̂r[n]‖2} =

E{‖řr[n] + nR[n]‖2}. However, on a closer inspection it becomes clear that the solution A(ejω) = ĤRR(ejω) does

not in general correspond to a minimum of (31) with respect to A. In particular, the following relation holds true

min
A

Pr̂r ≤ E{‖řr[n] + nR[n]‖2} (34)

where, for LA sufficiently large, the minimum of (34) is attained whenever ȞRR(ejω) = Λ(ejω), Λ(ejω) being the

optimum linear prediction error filter of signal řr[n] + nR[n]. Equality holds in (34) iff řr[n] + nR[n] is a white

signal, which corresponds to Λ(ejω) = I. As a consequence, perfect SI cancellation through the minimization of

Pr̂r with respect to A is only possible for the case when řr[n] + nR[n] is temporally white. If this condition is not

met, the solution to (34) will be biased, i.e., A[n] + ĤRR[n] 6= 0. Even under ideal conditions, i.e., a nondispersive

channel HSR[n] and nR[n] = 0, the received signal cannot be assumed white [31]. To ease filtering requirements

at the analog-to-digital and digital-to-analog conversion stages, the sampling rate at the relay is likely to exceed

the Nyquist rate, which results in signals having correlated samples or non-flat PSDs. Also note that, in general,

problem (34) has not a closed-form solution that allows us to use an off-line approach. An iterative process, such

as an adaptive filter, is therefore required for solving the self-interference problem.

Even though the minimization of (31) with respect to A does not directly lead to proper SI mitigation, we can still

develop a recursive least-squares based algorithm by introducing a bias-correcting term that results in the desired

interference cancellation properties [31]. For the sake of clarity, let first consider a bias-corrected minimization of

(31), which was introduced in [33].

In particular, consider the following recursive update for A

A[n+ 1] = A[n] + µa

(
R′ −∇′A∗

{
‖r̂r[n]‖2

})
(35)

where the M ×MLA constant matrix R′ represents the bias-correction term and ∇′A∗
{
‖r̂r[n]‖2

}
is the gradient

matrix, with size M ×MLA, of ‖r̂r[n]‖2 with respect to A. The stationary points of algorithm (35) satisfy

E{∇′A∗
{
‖r̂t[n]‖2

}
} = R′ (36)

consequently, adaptation rule (35) shifts the stationary points to the new location given by R′. In order to obtain

an expression for the adaptation rule in (35), let us define the gradient of a matrix function F with respect to a

matrix A as [47]

∇A∗{F(A∗)} =
∂ vec{F}
∂ vecT {A∗} (37)

Note that when F is a scalar function, denoted by f , expression (37) has dimension 1×M2LA, whereas in (35) the

gradient has dimension M ×MLA. The relation between these two definitions is a simple component reordering,

∇A∗{f(A∗)} = vecT {∇′A∗{f(A∗)}} (38)
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where operator vec stacks together the columns of a matrix into a single column vector. Using (37) and (38), the

gradient in (35) can be expressed as

∇A∗
{
‖r̂r[n]‖2

}
= ∇A∗

{
rHr [n]r̂r[n]

}
+∇A∗

{
r̂Ht [n− 1]AH r̂r[n]

}
= r̂Tr [n]H∗RR∇A∗

{
r̂Hi [n− 1]

}
+ rTt [n]A∗∇A∗

{
r̂Ht [n− 1]

}
+ (r̂Tr [n]⊗ r̂Ht [n− 1])∇A∗

{
AH

} (39)

where ⊗ denotes the Kronecker product. We see that the gradient in (39) depends on both A and HRR, which makes

online gradient computation impossible in practice. To circumvent this issue, we assume that r̂t[n] is independent

of A in a similar fashion to linear regressions. This approximation is known as the pseudo-linear regression and

allows us to neglect the nonlinear dependence induced by the two first terms of (39), see, e.g., [48]. Consequently,

(39) can be approximated as

∇′A∗
{
‖r̂t[n]‖2

}
≈ r̂r[n]r̂Ht [n− 1] (40)

and can be interpreted as the instantaneous crosscorrelation between signals r̂r[n] and r̂t[n]. As discussed in

Section II, r̂t[n] and r̂r[n] are related as

r̂t[n] = Br̂r[n] (41)

From Definition 1, we see that pre-multiplying the driving term of an adaptive algorithm by a full column-rank

matrix does not alter the locations of the stationary points. Consequently, by first substituting (40) in (35) and then

multiplying the driving term by B, we obtain the following recursions

A[n+ 1] = A[n] + µaB
(
R′ − r̂r[n]r̂Ht [n− 1]

)
= A[n] + µa

(
R− r̂t[n]r̂Ht [n− 1]

)
(42)

where R = BR′. Equation (42) now satisfies the following stationary point condition

E{r̂t[n]r̂Ht [n− 1]} = R (43)

In other words, the algorithm in (42) adjusts the autocorrelation of r̂t[n], at lags 1 through LA, to match the

predetermined template matrix R = [R(1) · · · R(LA)]. That is, at a stationary point we will have Rr̂t(k) = R(k),

1 ≤ k ≤ LA, where the choice of R(k) is at our disposal. To unambiguously adjust the autocorrelation of r̂t[n]

we should extend the conditions in (43) to include the autocorrelation at lag zero Rr̂t(0). This can be achieved by

means of matrix B in the feedforward path, which, following the same procedure as with A, is updated according

to

B[n+ 1] = B[n] + µb

(
R(0)− r̂t[n]r̂Ht [n]

)
(44)

The adaptation rules in (42) and (44) constitute the filter-and-forward instantaneous autocorrelation shaping (FF-
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TABLE II
INSTANTANEOUS AUTOCORRELATION SHAPING AND WEIGHTED INSTANTANEOUS AUTCORRELATION SHAPING ALGORITHMS FOR SI

CANCELLATION IN FF RELAYS.

The FF-IAS algorithm

B[n+ 1] = B[n] + µb(R(0)− r̂t[n]r̂Ht [n])

A[n+ 1] = A[n] + µa(R− r̂t[n]r̂Ht [n])

The FF-WIAS algorithm

P[0] = ε−1I, 0 < ε� 1

K[n] = P[n− 1]r̂t[n− 1]

P[n] =
1

λ

(
P[n− 1]− K[n]KH [n]

λ+ KH [n]r̂t[n− 1]

)
B[n] = B[n− 1] + µb(R(0)− r̂t[n]r̂Ht [n])

A[n] = A[n− 1] + (R− r̂t[n]r̂Ht [n])P[n]

IAS) algorithm for SI cancellation. If LA is chosen large enough, the FF-IAS algorithm can be seen as a spectrum

shaping algorithm that forces the PSD of the output signal r̂t[n] to match the particular spectrum template given

by the Fourier transform of R(k). The proper selection of template matrices R(k) is addressed in Section IV-B.

With the previous discussion in mind, we now derive a recursive least-squares based algorithm that exhibits better

performance and faster convergence than the FF-IAS algorithm. The least-squares cost function with respect to A

is

A[n] = arg min
A

n∑
k=0

λn−k‖r̂r[k]‖2 (45)

As was the case in (39), the gradient of (45) with respect to A will also depend on HRR and A. By invoking the

pseudo-linear approximation, as in (40), the adaptation rule for A, including a bias correction term R′, is given

by

A[n] = A[n− 1] + (R′ − r̂r[n]r̂Ht [n− 1])P[n] (46)

where matrix P[n] is defined in (19). As explained before, we may pre-multiply the driving term in (46) by matrix

B without altering the locations of the stationary points, i.e.,

A[n] = A[n− 1] + B(R′ − r̂r[n]r̂Ht [n− 1])P[n]

= A[n− 1] + (R− r̂t[n]r̂Ht [n− 1])P[n] (47)

Again, the particular choice of template matrix R is discussed in Section IV-B. Note that, though based on a

recursive least-squares principle, (44) and (47) do not correspond to a minimizer of (45). Nevertheless, as shown in

Section IV-B, the algorithm results in proper cancellation of the SI. Equations (44) and (47) constitute the filter-and-

forward weighted instantaneous autocorrelation shaping (FF-WIAS) algorithm for SI cancellation. The recursions

of the FF-IAS and FF-WIAS algorithms are summarized in Table II.
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B. Algorithm analysis

The algorithms in Table II require proper specification of matrices R(0) and R = [R(1) · · · R(LA)]. These

matrices are related to the autocorrelation of the transmitted signal r̂t[n] as summarized by the following proposition.

Proposition 1. At any stationary point of the FF-IAS and FF-WIAS algorithms, the autocorrelation of r̂t[n] is

given by the template matrices R(k) in (42), (44), and (47), i.e., Rr̂t(k) := E{r̂t[n]r̂Ht [n − k]} = R(k) for

k = 0, . . . , LA.

Proof. From (42), (44), and (47) it can be seen that any stationary point of the FF-IAS and FF-WIAS algorithms,

denoted by B? and A?, must satisfy:

I. E{r̂t[n]r̂Ht [n]} = R[0], and;

II. E{r̂t[n]r̂Ht [n− 1]Q[n]} = RE{Q[n]}, where Q[n] = I for the FF-IAS algorithm and Q[n] = P[n] for the

FF-WIAS algorithm.

It follows directly from Item I above that Rr̂t(0) = R(0). To verify Item 2, we first assume that n is sufficiently

large, which allows us to approximate P[n] with its expected value E{P[n]} [46]. Therefore, E{r̂t[n]r̂Ht [n −
1]P[n]} ≈ E{r̂t[n]r̂Ht [n − 1]}E{P[n]}. Assuming that E{P[n]} is invertible, it follows that the stationary points

of the FF-IAS and FF-WIAS algorithms also satisfy E{r̂t[n]r̂Ht [n− k]} = R(k), for k = 1, . . . , LA.

In view of Proposition 1, the FF-IAS and FF-WIAS algorithms shape the PSD of r̂t[n] to match the PSD associated

with the predefined autocorrelation template. Designing R(k) by exploiting knowledge of the (temporally correlated)

signals observed at the relay is not feasible due to their dependency on the unknown channels HRR[n] and HSR[n].

A better option is to exploit prior knowledge of the second-order statistics of the source signal ŝt[n]. We propose

here to choose R(k) = Rŝt(k) := E{ŝt[n]ŝHt [n − k]}. It is reasonable to assume that during the design stage,

the spectral characteristics at S are fixed and can be made available to every node. A relevant question is whether

this choice of matrices R(k) leads to SI cancellation upon algorithm convergence. We shall see that under certain

conditions this particular choice will not only cancel the SI at the relay but also compensate for (i.e., equalize) the

effects of the source-relay channel HSR[n]. In particular, we obtain the following result for r̂r[n].

Theorem 2. Assume that the entries of ŝt[n] are mutually uncorrelated and with the same PSD, LA is sufficiently

large, PnR → 0, and the equivalent source-relay channel HSR(ejω)GS(ejω) is of minimum-phase. Furthermore,

let R(k) = Rŝt(k) := E{ŝt[n]ŝHt [n − k]}. Then, any stationary point of the FF-IAS and FF-WIAS algorithms

corresponding to a stable transfer function and with an invertible matrix B results in r̂r[n] = Vŝt[n], where V is

a unitary matrix.

Proof : See Appendix A.

Under the conditions of the theorem, we have BȞRR(ejω)HSR(ejω)GS(ejω) = V at any stationary point. This

result has two implications: firstly, the SI is perfectly cancelled, and secondly, the S-R channel is compensated.

Simultaneous channel compensation and interference mitigation is a consequence of the restoration principle used
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by the algorithm, which tries to restore the PSD of the source signal at the relay output. We note that the residual

spatial rotation V has no impact on the system performance at D. This is because the combined R-D channel,

HRD(ejω)GR(ejω)V, yields the same SNR as the combined R-D channel of a relay without SI, HRD(ejω)GR(ejω).

In case HSR(ejω)GS(ejω) is a mixed-phase channel, only its minimum-phase part can be compensated and the

overall system relating ŝt[n] and r̂t[n] will be a paraunitary function, i.e., V(ejω).

Remark 4: The resulting relay transfer function BȞRR(ejω) can be interpreted as a three-stage filter: a first filter

that whitens the signal řr[n] + nR[n], followed by a unitary spatial rotation and, finally, a conformation filter that

shapes the PSD conforming to {R(k)}, see (52) in Appendix A. Overall, from the perspective of D, this approach

may be suboptimal but without information about HSD[n] and HSR[n] at R, it can be considered a “best-effort”

solution.

Remark 5: When a noisy case is considered, the locations of the stationary points will shift and cause bias.

Even in the case when HSR(ejω)GS(ejω) = I, ȞRR(ejω) will be frequency dependent, resulting in residual SI.

Unfortunately, the bias is related to the spectral factorization of both the information signal and noise, see (57) in

Appendix A, and it becomes difficult to analytically characterize the resulting stationary points due to the nonlinear

nature of the equations involved. Nevertheless, extensive simulations, provided in Section V, in noisy conditions

confirm that the algorithms yield residual SI below noise level.

V. SIMULATIONS AND RESULTS

We consider a MIMO-OFDM system transmitting M = 2 independent streams of 64-QAM modulated data. The

number of subcarriers is Ns = 8192 and the cyclic prefix length is Nc = Ns/4, which aims to overcome the relative

propagation delay between the S-D path and the S-R-D path. The sampling frequency is Fs = kup(Nc+Ns)Fsymb,

where Fsymb is an arbitrary OFDM symbol rate and kup = 1.15 is the upsampling factor. With this choice of

parameters, the signal spans approximately 87% of the available bandwidth. As we will see, the upsampling factor

has an impact on the performance of the algorithms. The equivalent S-R channel has order LSR = 2 with a bulk

delay of 5 samples accounting for propagation delay, i.e., HSR(ejω) = HSR(0)e−j5ω+HSR(1)e−j6ω+HSR(2)e−j7ω ,

and each element of HSR(k) is independently drawn from a zero-mean unit-variance circular complex Gaussian

distribution [17].

The delay introduced by the analog filters and RF processing [31] in the relay is 5 samples and the SI channel

ĤRR[n] has order LR̂R = 2, i.e., ĤRR(ejω) = ĤRR(1)e−j6ω + ĤRR(2)e−j7ω , and each element of ĤRR[k] is

independently drawn from a zero-mean unit-variance circular complex Gaussian distribution up to a scaling factor,

for k = 1, . . . , LR̂R.

We respectively define the signal-to-interference ratio at the relay, the signal-to-interference ratio after cancellation

and the signal-to-noise ratio as

SIRR = Přr/Pir (48)

ˆSIRR = Přr/Pı̂r (49)
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Fig. 2. Learning curves for different values of SI power. Vertical axis depicts the residual self-interference after cancellation.

SNRR = Přr/PnR (50)

where Pα
.
= tr

(
E{α[n]αH [n]}

)
denotes the power of a generic signal vector α[n].

The receiver noise nR[n] has PSD SnR(ejω) = σ2
rI + σ2

t HRR(ejω)HH
RR(ejω), where σ2

rI is the noise PSD at

reception and σ2
t HRR(ejω)HH

RR(ejω) is the PSD of the transmit noise that couples back into R. We consider a fixed

SNRt at the transmit side of SNRt = Prt/(Ntσ
2
t ) = 37 dB, while SNRr = Přr/(Nrσ

2
r) is variable. We evaluate

the algorithm performance by measuring the residual interference after cancellation, ˆSIRR. The cancellation filter

has order LA = LR̂R and the adaptive filter taps are all initialized with zeros. We also evaluate the algorithm

convergence time, τ , which is defined as the number of iterations needed from initialization to a point satisfying

‖A + HRR‖2F /‖HRR‖2F < −25 dB, i.e., the residual self-interference after cancellation is reduced more than 25

dB.

A. Results and discussion for the DF relay algorithms:

Figure 2 shows the learning curves of the algorithms when SNRr = 15 dB and SIRR = {−30,−20,−10, 0,∞}
dB. We see that the DF-RLS algorithm with λ = 0.9999 converges to the same steady-state residual SI independently

of SIRR. On the other hand, the convergence of the DF-SGD algorithm with µa = 0.001 slows down as SIRR

decreases, although the final steady-state residual SI does not depend on SIRR. Extensive simulations, for a wide

range of values of SNRr, confirm that both algorithms successfully reduces the SI well below noise level so that

it can be considered negligible. Additionally, as pointed out in Section III-B, the performance of the DF-SGD and
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DF-RLS algorithms will depend on other parameters, such as the spectral characteristics of r̂t[n]. Figure 3 shows

the SIR after cancellation versus the upsampling factor kup, i.e., the bandwidth of Srt(e
jω), when SIRR = −25 dB.

Note that kup = 1 means that rt[n] spans 100% of the available bandwidth, whereas kup = 8 means that rt[n]

spans 12.5% of the available bandwidth. We see that signals of smaller bandwidths yield lower SIR values than

wideband signals: approximately 8 dB for the DF-SGD algorithm, and 5 dB for the DF-RLS algorithm, which

implies that µa and λ should be chosen proportional to the bandwidth of r̂t[n].

Figure 5 shows the contour lines of the convergence time, in terms of number of iterations, as a function of SNRr

and SIRR for the DF-SGD algorithm when µa = 0.01. We observe that the convergence time is approximately

independent of SNRr and primarily depends on SIRR. This is a consequence of řr[n] being the major “noise

source”, from the algorithm’s point-of-view. Typical values of convergence time are around 600 samples, which lies

within the cyclic prefix of the OFDM symbol. Roughly speaking, the algorithm mitigates the SI signal by 25 dB

every 600 samples, until the steady state is reached. The DF-RLS algorithm outperforms the DF-SGD algorithm

in all cases. In general, the algorithms are fast enough to mitigate the SI within the duration of the cyclic prefix

and, consequently, convergence time is not a limiting factor of the mitigation scheme.

As in every adaptive scheme, there is a tradeoff between the convergence time and the residual SI level. The value

of µa, similarly λ, will determine the operation point in the tradeoff curve. Figure 4 shows the tradeoff curve for

the DF-SGD algorithm (fixed µa) and the DF-RLS algorithm (fixed λ), when SIRR = −25 dB and SNRr = 15.

We see that a lower residual interference level is reached at the expense of slower convergence. In the case of (22),
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when λ ≈ 1 lower residual interference is attained, while the convergence rate remains constant for any value of λ.

B. Results and discussion for the FF relay algorithms:

Figures 6 and 7 depict the contour lines of the residual SI after cancellation for the FF-IAS algorithm (µa = 10−5

and µb = 10µa) and the FF-WIAS algorithm (λ = 0.9999), respectively. In both cases, the residual interference

only depends on SNRr, i.e., noise power will bound the algorithm performance. As explained in Section IV-B, noise

will introduce bias in the estimation of the SI channel. Despite this fact, the residual SI is at least 5 dB lower than

the noise level, and even further below as SNRr decreases. In other words, the residual SI is only noticeable for

very high SNRr values, which have little impact on the link performance. Therefore, under normal operation, the

residual SI can be neglected. Also, the observed SNR is not changed after cancellation. We see that for this choice

of parameters, the performance of the FF-WIAS algorithm is consistently better than that of the FF-IAS algorithm,

especially for high SNR values.

Figures 8 and 9 show the convergence times for the FF-IAS and FF-WIAS algorithms, respectively. As was

the case with the DF relay, convergence time is roughly independent of SNRR. In contrast, the convergence time

increases for lower SIRR. Since the FF-IAS and FF-WIAS algorithms shape the PSD of the input signal, convergence

time will depend on ĤRR[n]. Lower values of SIRR, i.e., greater values of ‖ĤRR[n]‖2 will result in a slower

convergence. From Fig. 8, we see that when SIRR = −20 dB, the FF-IAS algorithm requires approximately 3 OFDM

symbols to mitigate the interference by 35 dB. Comparing the two figures, we see that the FF-WIAS algorithm
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convergences approximately seven times faster than the FF-IAS algorithm.

By Theorem 2 in Section III-B, the FF-IAS and FF-WIAS algorithms feature channel compensation capabilities.

For purpose of illustration, FF-IAS algorithm is tested in a scenario where HSR(ejω)GR(ejω) is a realization of a

minimum-phase channel drawn from the following general channel expression: HSR(ejω)GS(ejω) = h0H0e
−j5ω +

h1H1e
−j6ω +h2H2e

−j7ω , with coefficients h0 = 1, h1 = 0.4 and h2 = 0.1. The SI channel is randomly generated

at each simulation run and the elements of ĤRR[k] and Hi are independently drawn from a zero-mean unit-variance

circular complex Gaussian distribution. The coefficients of the FF-IAS algorithm are initialized to zero, step sizes

are chosen as µa = 8 · 10−5 and µb = 10µa, and filter order is set to LA = 2.

Figure 10 shows the learning curves obtained for the FF-IAS algorithm (solid lines). For comparison, we also

plot the curves obtained with a power minimization algorithm (dashed lines), i.e., by setting R(k) = 0 in the

FF-IAS algorithm. We know from Section IV-B that such algorithm will result in a biased solution (since ŝt[n] is

non-white), and Fig. 10 compares both algorithms. Note that A? denotes a point in which the overall system is

a spatial rotation (see Theorem 2), so Fig. 10 can be understood as the residual multipath channel at r̂t[n]. From

Fig. 10 we can conclude that, firstly, convergence time depends on SIRR (as already noted above) and, secondly,

the bias resulting from direct power minimization leads to poor performance. The gap between the two algorithms

is nearly 30 dB, and a bigger gap is expected for narrowband signals. Finally, from the obtained results, where the

residual channel has gain of around −38 dB, we can conclude that the FF-IAS algorithm effectively compensates

the S-R channel while mitigating the SI.
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TABLE III
RESIDUAL SELF-INTERFERENCE IN DB AS A FUNCTION OF LR̂R .

ˆSIRR \ LR̂R 2 4 6 8 10

FF-WIAS 30.87 25.76 22.38 20.37 18.71

FF-IAS 28.41 23.51 20.18 17.69 15.98

The achievable ˆSIRR depends on several factors related to the adaptive implementation, and we expect to see

the usual performance trade-off between algorithm parameters such as step size (or memory) and filter order [42].

In particular, if we consider the step size of the algorithm fixed and sufficiently small (equivalently, λ→ 1), then

increasing LR̂R (equivalently, increasing LA) will reduce the steady-state ˆSIRR and increase convergence time. Table

III shows the obtained ˆSIRR versus LR̂R for the case when SNRR = 10 dB and SIRR = −10 dB. We see that as

LR̂R increases (LA increases), the achievable ˆSIRR reduces due to, primarily, the misadjustment of the algorithm.

In practice, the adaptation step size (or forgetting factor) is tuned to account for the existing trade-off between the

convergence time and ˆSIRR (see Fig. 4 for a trade-off curve).

VI. CONCLUSIONS

We have proposed adaptive SI mitigation algorithms for filter-and-forward and decode-and-forward full-duplex

MIMO relays. In the decode-and-forward case, we derived and analyzed two power minimization based algorithms
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Fig. 7. SIR after cancellation for the FF-WIAS algorithm as a function of the signal-to-noise ratio (vertical axis) and the signal-to-interference
ratio at the relay (horizontal axis).

that effectively mitigate the SI signal. On the other hand, we showed that for the case of filter-and-forward relays,

a power minimization approach results in biased estimation of the SI channel. To overcome the bias problem, we

derived and analyzed two algorithms that estimate the SI channel without bias as well as equalize the source-to-relay

channel by only exploiting the second-order statistics of the source signal. Simulations confirmed that the proposed

algorithms reduce the residual SI signal to levels below that of the noise.

APPENDIX A

STATIONARY POINTS OF FF-IAS AND FF-WIAS

Let α[n] be an arbitrary vector of scalar wide-sense stationary sequences, with Rα(k) = E{α[n]αH [n − k]}
denoting its autocorrelation matrix. The power spectral density (PSD) of α[n] is defined as the Z-transform Sα(z), or

Fourier transform Sα(ejω), of its autocorrelation matrix. The PSD can be decomposed as Sα(z) = Γα(z)ΓH
α (1/z∗),

where Γα(z) is a causal minimum-phase filter for which all poles are inside the unit circle (|z| < 1) and has full rank

for |z| ≥ 1. Evaluating Sα(z) on the unit-circle, i.e., for z = ejω, we obtain Sα(ejω) = Γα(ejω)ΓH
α (ejω). Finally,

let V(z) denote a paraunitary matrix [49], i.e., V(z)VH(1/z∗) = VH(1/z∗)V(z) = I. In case V(ejω) = V is

constant for all frequencies, V is a unitary matrix.

Proof of Theorem 2. At a stationary point, if the resulting system is stable, we have from Proposition 1 that

E{r̂t[n]r̂Ht [n − k]} = R[k], for k = 0, . . . , LA. Consequently, by choosing R[k] = E{ŝt[n]ŝHt [n − k]} the
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resulting PSD of r̂t[n] equals Sŝt(e
jω), i.e.,

Sŝt(e
jω) = B?Ȟ?(ejω)Sřr (ejω)ȞH

? (ejω)BH
? (51)

where Ȟ?(ejω) = (I−(A?(ejω)−ĤRR(ejω))B?)−1, see (33). The overall relay response B?Ȟ?(ejω) is necessarily

causal by construction, and its inverse is given by B−1
? − (A?(ejω)− ĤRR(ejω)), which is clearly causal as well.

Thus B?Ȟ?(ejω) is minimum phase. By assumption, B? is invertible at any stationary point. Any solution of (51)

can be expressed in the Z-domain as [50]

B?Ȟ?(z) = Γŝt(z)V(z)Γ−1
řr

(z) (52)

for some paraunitary V(z), and with Γŝt(z), Γřr (z) the minimum phase spectral factors of Sŝt(z) and Sřr (z),

respectively. Since B?Ȟ?(z), Γŝt(z) and Γ−1
řr

(z) are causal transfer functions, it follows from (52) that V(z) must

be a causal paraunitary matrix. On the other hand, the inverse system (B?Ȟ?(z))−1 = Γřr (z)VH(1/z∗)Γ−1
ŝt

(z), is

also causal and stable, and thus, by the same argument, VH(1/z∗) must be causal as well. It follows that V(z) = V,

i.e., a unitary matrix independent of z. Using Γřr (z) = γ(z)HSR(z)GS(z), where γ(z) is the minimum-phase factor

of Sŝt(e
jω), i.e., Sŝt(z) = γ(z)γ∗(1/z∗)I, then (52) is in the frequency domain

B?Ȟ?(ejω) = V(HSR(ejω)GS(ejω))−1 (53)
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From (53) it follows that r̂t[n] = Vŝt[n].

When HSR(ejω)GS(ejω) is not a minimum-phase channel, then only its minimum-phase component can be

compensated, and Sr̂t(e
jω) = V(ejω)Sŝt(e

jω) for some causal paraunitary system. Also, if LA is not sufficiently

large, the autocorrelation of r̂t[n] equals that of ŝt[n] only for the first LA + 1 lags and (51) transforms into

Sŝt(e
jω)|LA + Se(e

jω) + SH
e (ejω) = B?Ȟ?(ejω)Sřr (ejω)ȞH

? (ejω)BH
? (54)

where Sŝt(e
jω)|LA =

∑LA
k=−LA

E{ŝt[n]ŝHt [n−k]}e−jωk and Se(e
jω) =

∑
k=LA+1 E{r̂t[n]r̂Ht [n−k]}e−jωk depends

on B? and A?. In the case that HSR(ejω)GS(ejω) is a minimum-phase channel, then

B?Ȟ?(ejω) = (HSR(ejω)GS(ejω))−1 (55)

is a solution of (54), for any Γŝt(e
jω). Equation (55) requires that LA ≥ max{LR̂R, LSR +LS}. Thus, the minimum

required order for SI cancellation and channel compensation is LA = max{LR̂R, LSR +LS}. Finally, when SNRR <

∞, the stationary points are shifted to a new location given by

B?Ȟ?(ejω) = Γŝt(e
jω)VΓ−1

řr+nR
(ejω) (56)
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which, in general, results in a biased solution. The bias, ∆, is

∆ = Γŝt(e
jω)V(Γ−1

řr+nR
(ejω)− Γ−1

řr
(ejω)) (57)

Unfortunately, there is no closed-form relation between Γřr+nR(ejω) and Γřr (ejω) that could provide deeper

knowledge of the properties of (57).
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