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and Pedro Comesaña-Alfaro, Senior Member, IEEE

Abstract—The forensic analysis of resampling traces in up-
scaled images is addressed via subspace decomposition and
random matrix theory principles. In this context, we derive
the asymptotic eigenvalue distribution of sample autocorrelation
matrices corresponding to genuine and upscaled images. To
achieve this, we model genuine images as an autoregressive
random field and we characterize upscaled images as a noisy
version of a lower dimensional signal. Following the intuition
behind Marčenko-Pastur law, we show that for upscaled images,
the gap between the eigenvalues corresponding to the low-
dimensional signal and the ones from the background noise
can be enhanced by extracting a small number of consecutive
columns/rows from the matrix of observations. In addition, using
bounds provided by the same law for the eigenvalues of the noise
space, we propose a detector for exposing traces of resampling.
Finally, since an interval of plausible resampling factors can be
inferred from the position of the gap, we empirically demonstrate
that by using the resulting range as the search space of existing
estimators (based on different principles), a better estimation
accuracy can be attained with respect to the standalone versions
of the latter.

Index Terms—Image forensics, Marčenko-Pastur law, random
matrix theory, resampling detection, resampling estimation.

I. INTRODUCTION

THE ubiquity of the Internet together with the prevalence

of multimedia technology in our society have fostered

the usage of digital images in our daily life. Nowadays,

digital images serve as a means of communication and can

be used to disseminate knowledge in e-learning platforms, to

inform people across the media, or as an instrument to share

experiences in social networks, among other applications.

Their growing importance has unavoidably been tied to the

development of editing software tools that were originally

devised to enhance image quality, but that now enable an

unskilled person to manipulate any captured content. This state

of affairs has boosted a major concern about the reliability of

digital images and, as a response, a number of techniques

have emerged in the last years to automatically analyze the

authenticity or integrity of a given image in a blind way [1].
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Estratéxica Consolidada de Galicia accreditation 2016-2019; Red Temática
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The main idea behind the study of resampling traces to

unveil tampering arises from the fact that credible forgeries

are often performed by geometrically adapting the new added

contents to the original scene. Such adaptation may require

the utilization of spatial transformations that involve the use

of resampling operations which inherently leave characteristic

traces that are not typically present in genuine contents.

The forensic analysis of resampled signals has been largely

investigated in recent years and many different directions

have been explored to detect resampling traces from an ob-

served image block [1, Sect. 5.1.2]. Despite this variety of

approaches, most of the available detectors share a common

processing structure. Generally, as a first step, a residue

signal from the observed image is extracted, where resampling

artifacts are observable. Depending on the foundations of

each method, this signal can be obtained either by a global

predictor [2], by prefiltering the image with a fixed linear

filter [3] or a derivative one (e.g., [4], [5], [6], [7]), or by

computing the difference of predictor coefficients stemming

from adjacent rows/columns of the image [8]. Then, given

that the resampling artifacts vary periodically, a postprocessing

step is applied in the frequency domain to detect the presence

of spectral peaks (related to these periodicities) and, finally, a

decision on whether the observed block has been resampled

is rendered. Some approaches (e.g., [9], [10], [11]), avoid the

postprocessing part in the frequency domain and check if a set

of candidate resampling factors satisfies the underlying linear

structure induced by the application of a resampling process.

Other detectors, instead, bypass the frequency-based analysis

by making use of a Support Vector Machine (SVM) to take the

final decision. For example, in [12] a set of features is gathered

from the singular value decomposition of the observed image,

while in [13] the normalized energy density for different

window sizes of the image is used.

Although initial works studying resampling traces were

mainly focused on resampling detection, several approaches

have also been oriented towards the identification of the

particular geometric transformation undergone by an image.

For instance, the estimation of the scaling factor applied to

an image has been analytically investigated in [14] together

with the estimation of the applied rotation angle, which has

been further assessed in [15] and [16]. Later, a more general

solution has been derived in [17], where a frequency-based

analysis is used to estimate an arbitrary affine transformation.

On the other hand, the authors of [18] have figured out how

to solve some of the ambiguities that show up when facing

the resampling factor estimation in the frequency domain and,
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more recently, other research works such as those in [19] and

[20], have been able to identify the particular interpolation

kernel used during the resampling process.

It is clear from the above description that at some point,

most of the mentioned techniques perform an analysis in the

frequency domain for resampling detection or resampling fac-

tor estimation. However, as indicated in [11], frequency-based

analyses present some drawbacks impairing the performance

of the proposed approaches when a reduced number of samples

is available. On the other hand, exhaustive-search detectors

(e.g., [9]), may suffer from high positive rates due to the need

of a large set of candidates to cover all plausible resampling

factors. Similarly, SVM-based approaches (e.g., [12], [13]),

need to build up a large and representative number of training

samples which might be difficult to obtain.

To overcome these deficiencies, in this paper we follow up

the new direction hinted in our previous work [21], where the

particular signal-plus-noise structure of upscaled images has

been highlighted. In that case, the distinct evolution of the sin-

gular values of genuine images with respect to their upscaled

counterpart, enabled the definition of a statistic to distinguish

them. To deepen the understanding of such distinct evolution,

we resort to Random Matrix Theory (RMT), which provides

useful tools for modeling the behavior of the eigenvalues and

singular values of random matrices [22]. This theory finds

applications in many different fields, such as signal processing

and communications, where a considerable volume of works

has been recently published [23], which attracted our interest.

In our case, RMT offers a proper way to numerically

derive the asymptotic eigenvalue distribution of the N × N
sample autocorrelation matrix corresponding to a genuine

image or its upscaled version, as N → ∞. Moreover, land-

mark contributions from this theory, such as the Marčenko-

Pastur law [24], suggest us to process submatrices containing

K < N consecutive columns/rows from the N × N matrix

of observations as a means to sharpen the underlying signal-

plus-noise structure in upscaled images. Coupling this property

with the bounds provided by the same law to the eigenvalues

of the noise space, a new resampling detector is proposed. On

the other hand, focusing on the gap that marks the transition

between the signal subspace and the noise, we propose an

alternative form to accomplish resampling factor estimation.

By simply combining our strategy with existing approaches

(e.g., [6], [14]), we achieve a substantially better estimation

accuracy, because their advantages complement each other.

In this paper, we do not theoretically examine the downscal-

ing case (i.e., a reduction in image size), because its analysis

is formally quite different. Nevertheless, for the sake of

completeness, in Sect. VI-A we do test the proposed approach

in a downscaling scenario and compare its performance against

the state-of-the-art detector in [8]. Hence, this work should be

considered as a first step towards the complete characterization

of the resampling problem in terms of RMT, leaving the

analysis of downscaling for a future work.

The remainder of the paper is organized as follows. In

Sect. II, the resampling process is formally described, in-

troducing the signal-plus-noise decomposition of upscaled

images. Drawing on the technical report that complements this

TABLE I
SUMMARY OF NOTATION

Symbol Meaning

X Matrix representing a genuine image

H Matrix containing coefficients of an interpolation kernel

Y Matrix representing an upscaled image

W Random matrix containing i.i.d. white noise entries

Z Matrix representing an upscaled and quantized image

ξ Resampling factor (ξ > 1)

kw Width of the interpolation kernel (kw ∈ 2Z+)

∆ Step size of the uniform scalar quantizer

ρ Correlation coefficient of the autoregressive model

β Aspect ratio of an N × K matrix, i.e., β , K
N

P Position of the gap in the evolution of the eigenvalues

For an arbitrary N × N matrix A:

Ai,j (i, j)-th element of matrix A, with i, j ∈ {0, . . . , N − 1}
σ2
A Variance of the entries of A

AK N × K submatrix with K consecutive columns from A

ΣAK
Renormalized sample autocorrelation matrix of AK

λi

(

ΣAK

)

i-th eigenvalue of ΣAK
, with i = 1, . . . , N

λ−

(

ΣAK

)

Smallest eigenvalue of ΣAK

λ+

(

ΣAK

)

Largest eigenvalue of ΣAK

fΣAK
(λ) Probability density function of the eigenvalues of ΣAK

Rounding

Genuine

image
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Fig. 1. Block diagram of the model we use for the resampling process.

work [25], Sect. III characterizes the eigenvalue distribution

for genuine and upscaled images. In Sect. IV, the proposed

detector and the strategy developed for estimating the resam-

pling factor are specifically detailed, while their experimental

validation is carried out in Sect. V. A robustness analysis of

the proposed detector in more realistic scenarios is tackled in

Sect. VI. Finally, the conclusions are summarized in Sect. VII.

Notation: Given a matrix X of size N × K, K ≤ N ,

its sample autocorrelation matrix is K−1XXT . Instead, we

will often work with the renormalized sample autocorrelation

ΣX , N−1XXT . The i-th eigenvalue of an arbitrary matrix

A is denoted by λi(A), whereas its i-th singular value is

σi(A). Both λi(A) and σi(A) are sorted in descending order.

For the sake of clarity, the notation used throughout the paper

is summarized in Table I together with an illustration of the

considered resampling model in Fig. 1.

II. RESAMPLING PROCESS AND PROBLEM FORMULATION

Let X be the matrix representation of an image with a single

color channel. Unless otherwise stated, we will assume that X

has not been subject to any prior resampling operation, so we

will refer to it as a genuine or natural image. The resampling

operation is assumed to be linear, so each pixel value in

the resampled image is computed by linearly combining a

finite set of neighboring samples coming from the genuine

image X. The process of resampling involves two main steps:

the definition of the resampling grid with the new pixel

locations and the computation of the intensity values in those

new locations. For the first operation, we assume an affine
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transformation of the original axes (u, v)∈Z2 to A (u, v)
T
+b,

where A is a matrix that embodies the linear transformation

(e.g., scaling, rotation, etc.) and b represents the translation

vector. In this paper, we will consider that the resampling

operation uniformly upscales each dimension of the genuine

image X by a resampling factor ξ > 1, so A = ξI2, where

I2 is the 2 × 2 identity and ξ is rational, i.e., ξ , L
M

with

L and M relatively prime natural numbers. In addition, a

homogeneous translation through b , (φ, φ)T is generally

applied with φ = 1
2

(

M
L

+ 1
)

, such that the sampling points

of the resampled image are centered with respect to the grid

of the original image. A more detailed analysis on the role of

φ in the pixel grid alignment is given in [26].

For the second step, the calculation of the intensity values in

the new resampled grid can be implemented by using different

two-dimensional (2D) interpolation kernels. Here, we study

symmetric linear kernels that are separable (i.e., they can

be interpreted as the successive application of the same one-

dimensional (1D) function across each dimension of the grid),

given that they are the most common in practice. We leave out

more complex interpolation algorithms, such as adaptive or

non-linear, since their use is typically constrained to perform

demosaicing and they are rarely employed to resize images.

Summarizing the steps described above, each (i, j)-th pixel

value Yi,j from an upscaled image can be obtained as

Yi,j =
∑

u,v∈Z

h
(

iM
L

+ φ− u
)

h
(

jM
L

+ φ− v
)

Xu,v, (1)

where Xu,v denotes the (u, v)-th element of the genuine image

X and h(·) is the 1D impulse response of the underlying

continuous interpolation kernel, whose width is denoted by

kw ∈ 2Z+. Given a genuine image X of size U × V , our

analysis will be performed on a block Y of size N ×N from

the upscaled image by ξ, i.e., with N ≤ ξ ·min(U, V ). For the

sake of readability, we will assume that N is a multiple of L
and also that both blocks X and Y are aligned so that their

upper-left corner corresponds to the (0, 0) element. Hence,

using (1), the N ×N block Y can be written in matrix form:

Y = HX̂HT , (2)

where the entries of H are given by

Hi,j = h
(

iM
L

+ ϕ− j
)

, (3)

with ϕ , φ+ kw/2− 1, such that X̂ only contains the R×R
samples of X that are involved in the computation of Y, and

R , N M
L

+ kw, i.e., X̂u,v = Xu,v , for u, v = 0, . . . , R− 1.

It is important to note that, by construction, the size of H

is N × R, so we will assume that for sufficiently large N ,

H is full column rank (i.e., rank(H) = R), which is true for

all kernels we tested; for a more detailed discussion about

the conditions that H must satisfy to have rank(H) = R, the

reader is referred to [27].

As a last step, after all the pixels of the resampled image

have been obtained, we assume that the interpolated values are

rounded or, in general, quantized by a uniform scalar quantizer

with step size ∆ to fit a particular bit depth. If we denote by

Z the resulting quantized image, we can model it as

Z = Y +W, (4)

where matrix W stands for the quantization noise. We assume

an additive white noise model in (4), such that the entries

of W are i.i.d. U
[

−∆
2 ,

∆
2

)

with zero mean and variance

σ2
W = ∆2

12 . It is commonly accepted that this assumption holds

whenever the probability density function (pdf) of the input

signal is smooth and its variance is much larger than the square

quantization step, which is generally the case for real images.

Note, however, that this model will not be valid for image

blocks containing flat regions (e.g., they may appear when

capturing uniform areas or when undesired artifacts, such as

saturation, occur). Hence, these special cases will be dealt with

specifically when deriving the proposed approaches.

A. Subspace Decomposition to Expose Resampling Traces

In this section, we present somewhat informally the main

ideas in the paper. Recall that rank(H) = R ≈ N/ξ. Thus,

the rank of Y in (2) will be at most R, so at least N − R
columns (or rows) will be linearly dependent. In other words,

the columns/rows from an N × N unquantized upscaled

image (considered as N -dimensional vectors) will lie in an

R-dimensional subspace. On the other hand, the noise W in

(4) is expected to span the full space. Thus, through a Singular

Value Decomposition (SVD) it is possible to extract the signal

subspace and, upon determining its dimensionality, detect the

presence of resampling traces. This is in fact the idea that

we followed in [21], where the SVD was used to solve this

forensic problem. Prior to that, Kao et al. proposed in [9] a

different way to detect the signal subspace: by first computing

a series of zeroing masks from a set of candidate resampling

factors (each mask contains a basis vector of the orthogonal

complement of a candidate signal subspace), an exhaustive

search over this set is performed, and the presence of the signal

subspace is finally exposed whenever a candidate matches the

applied resampling factor. This idea works reasonably well,

but the detector performance strongly depends on the selected

set of candidates, which is unknown in a realistic forensic

scenario.

On the other hand, the heuristic approach derived in [21]

performs remarkably well detecting traces of resampling, but

the same idea cannot be successfully exploited to estimate the

applied resampling factor, because the ordered singular values

from a square image block Z as in (4) do not show a clear

break between the significant components and the noisy ones.

Moreover, a measure of saturated pixels is needed in [21] to

deal with linearly dependent regions, but it is not sufficiently

robust to recognize non-saturated uniform regions, which also

hinders the detectability of resampling traces using the SVD.

To circumvent these problems, we focus on the analytical

characterization of the singular value distribution of an image

block, by modeling Z as a random field. This allows us

to draw connections with the fascinating theory of random

matrices [28], [29]. As it can be checked in [22] and [23],

there exist a significant number of powerful theorems that

ensure the convergence of empirical eigenvalue distributions

to deterministic functions. In fact, our key idea comes from

the surprising fact that taking from Z a submatrix ZK of size

N × K, K ≤ N , helps to discriminate the signal and noise
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subspaces. This property is illustrated in the most-celebrated

result from RMT, Marčenko-Pastur Law (MPL) [24], which is

stated in the following theorem.

Theorem (Marčenko-Pastur Law). Let A be an N × N
random matrix whose entries are i.i.d. zero-mean random

variables with variance σ2
A and consider a submatrix AK

of size N × K, K ≤ N , with K consecutives columns

from A. As K,N → ∞ with K
N

→ β ∈ (0, 1], the

eigenvalues of the renormalized sample autocorrelation ma-

trix ΣAK
, N−1AKAT

K are distributed according to the

following probability density function

fΣAK
(λ) =







√

(λ+ (ΣAK
)−λ)(λ−λ− (ΣAK

))
2πσ2

A
λβ

, if λ− (ΣAK
) ≤ λ ≤ λ+ (ΣAK

)

0, otherwise

,

with a point mass (1− β) at the origin if K
N

→ β < 1. The

limits of the domain of fΣAK
(λ) are given by

λ± (ΣAK
) = σ2

A

(

1±
√

β
)2

.

For our purposes, the most important consequence of this

law is that the eigenvalues of ΣZK
, N−1ZKZT

K cluster

around the variance σ2
Z as the matrix aspect ratio β converges

to zero, i.e., as K/N → 0.

If, for large N , the rank of Y were approximately N/ξ,

for submatrix YK the rank would be approximately K/ξ.

Therefore, from the eigendecomposition of ΣZK
, we count on

finding approximately K/ξ leading eigenvalues corresponding

to the underlying interpolated signal and the remaining portion

of nonzero eigenvalues will correspond to the noise space.

Moreover, by taking a relatively small number of columns K
in ZK , we can expect the signal eigenvalues to cluster around

σ2
Z , while the noise eigenvalues will do so around σ2

W . Hence,

such clustering will make more evident the existence of a low-

dimensional signal subspace when resampling is in place. Note

that the above discussion easily extends to the case where K
rows (instead of columns) are extracted from Z, i.e., we would

only need to redefine Z by transposing the original.

To illustrate whether these findings may also apply in a

practical setting with real images, we plot the eigenvalues

against their indices (i.e., the so-called “scree plot” [30]) of

ΣZK
for two different aspect ratios K/N . In order to highlight

the main differences with respect to the non-interpolated case,

we compare the scree plots obtained when ZK is constructed

from an upscaled image by ξ = 2 with a linear kernel and

when ZK comes from a genuine image. For this analysis, we

use the image block shown in Fig. 2(a).

In the first case, we work with the full N × N block Z

with N = 512, which leads us to the same scenario studied in

[21]. As can be seen in Fig. 2(b), when K = N , only an “S-

shape” can be discerned in the evolution of the eigenvalues for

the upscaled image with a very smooth drop around i = 230
(i.e., nearby K/ξ) which barely hints the transition between

the low-dimensional signal and the noise space.

TABLE II
IMPULSE RESPONSE AND WIDTH OF SEVERAL INTERPOLATION KERNELS.

Kernel Type Impulse Response

Linear

(kw = 2)
h(t) =

{

1 − |t|, if |t| ≤ kw
2

0, otherwise

Catmull-Rom

(kw = 4)
h(t) =











3
2
|t|3 − 5

2
|t|2 + 1, if |t| ≤ kw

4

− 1
2
|t|3 + 5

2
|t|2 − 4|t| + 2, if

kw
4

< |t| ≤ kw
2

0, otherwise

B-spline

(kw = 4)
h(t) =











1
2
|t|3 − |t|2 + 2

3
, if |t| ≤ kw

4

− 1
6
|t|3 + |t|2 − 2|t| + 4

3
, if

kw
4

< |t| ≤ kw
2

0, otherwise

Lanczos

(kw = 6)
h(t) =

{

sinc(t)sinc
(

t
3

)

, if |t| < kw
2

0, otherwise

In the second case, the submatrix ZK is obtained by

extracting the first K = 64 columns from the observed block

Z. Contrary to the former case, we can observe in Fig. 2(c)

that now a clear gap in the evolution of the eigenvalues for

the upscaled image becomes apparent. The gap marks the

transition at i = 33 (i.e., very close to K/ξ) between the signal

subspace and the background noise. This is a consequence

of the compaction of the eigenvalues of ΣZK
predicted by

MPL. On the other hand, since the underlying signal-plus-

noise structure is generally not present in the non-interpolated

case, there is no visible gap for genuine images.

The above discussion is formalized in Sect. III with a

stochastic model for X and a characterization of the eigenvalue

distribution for genuine and upscaled images. Further, in

Sect. IV, we explain how the described eigenvalue compaction

property (fostered by the elimination of columns/rows from

the observed block Z), can be exploited to expose resampling

traces. Although the proposed solution is not optimal due to

the loss of information after discarding samples from Z, the

design of an optimal approach still remains an open problem

and we conjecture that it will probably require an exhaustive

search strategy, which is eventually less convenient in practice.

B. Interpolation Kernels

The forthcoming analysis is applicable to any 2D linear

interpolation kernel of separable nature; however, in order to

illustrate some interesting properties and the different behavior

among individual kernels, we take as examples the most

common types of kernels available in any editing software

tool, such as linear, cubic, and Lanczos (i.e., truncated sinc).

From the family of cubic filters described in [31], we select

two well-known cardinal splines: the Catmull-Rom spline and

the cubic B-spline, both having uniformly spaced knots. As

Lanczos kernel, we take a three-lobed Lanczos-windowed filter

defined as in [32]. Table II gathers the 1D impulse response

h(t), t ∈ R of each separable kernel together with its width.

These kernels will also be employed in the experimental

validation of the proposed approaches for resampling detection

and estimation.

III. EIGENVALUE CHARACTERIZATION FOR GENUINE AND

UPSCALED IMAGES

In Sect. II-A, we have briefly outlined how to take advantage

of the distinct evolution of the eigenvalues stemming from
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(a) Natural image (1000 × 1000)
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(b) K = N = 512
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(c) K = 64, N = 512

Fig. 2. Scree plot comparison of ΣZK
when ZK is obtained by extracting the first K columns from the N ×N centered block Z of the image in (a) after

resampling it by ξ = 2 with a linear kernel (solid lines), and when no resampling operation is applied (dashed lines). In (b), K = N , and in (c) K < N .
Note that in (c) we only depict the nonzero eigenvalues of ΣZK

, i.e., the first K eigenvalues λi

(

ΣZK

)

with i = 1, . . . ,K.

upscaled images to unveil the presence of resampling traces.

Now, to devise a method capable of detecting these traces

from an observed image (which might be upscaled or not) and

further estimate the applied resampling factor (where applica-

ble), here we formally characterize the statistical distribution

of the eigenvalues coming from genuine and upscaled images.

As noted above, RMT provides tools to derive deterministic

functions that describe the asymptotic pdf of the eigenvalues

corresponding to random matrices, however, prior to their

application, a stochastic representation of genuine images is

required to model the dependencies that arise in real images.

The empirical distribution of the eigenvalues corresponding

to a genuine image can be approximated by using a causal

two-dimensional autoregressive (2D-AR) model with a single

correlation coefficient ρ, as explained in [25]. The generated

2D-AR random field (denoted by X) as a model of an N ×N
genuine image can be expressed in matrix form as

X = USUT , (5)

where S is an (N + Q − 1) × (N + Q − 1) random matrix

with i.i.d. elements following N (0, σ2
S), and U is a Toeplitz

matrix of size N × (N +Q− 1), with Q denoting the length

of the truncated infinite impulse response of the AR model.

Hence, matrix U is fully described as

Ui,j =

{

ρQ−1−(j−i), if (j − i) = 0, . . . , Q− 1

0, otherwise
,

where the value of Q is generally taken as Q ≥ N to minimize

modeling errors due to truncation.

Fig. 3 reports the practical suitability of this model by

illustrating how well the evolution of the eigenvalues coming

from a real image can be fit using the above random field X.

Adhering to the model in (5) for genuine images, we

can apply a procedure proposed by Tulino and Verdú in

[23, Theorem 2.43] to analytically compute the asymptotic

eigenvalue distribution of ΣX as N → ∞, which affords a

better understanding of the empirical eigenvalue distribution

arising in real images. Likewise, by adding the resampling

process described in Sect. II, the behavior of the eigenval-

ues coming from upscaled images can also be determined.

Interested readers are referred to our technical report in [25],

where the process for calculating these asymptotic eigenvalue

distributions is comprehensively detailed.
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5

i

λ
i

Genuine Image, λ
i
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X
)

2D−AR Random Field, λ
i
(Σ

X
)

~

Fig. 3. Comparison of the scree plot of Σ
X̃

with X̃ a zero-mean version of
the depicted image in Fig. 2(a), against the scree plot of ΣX with X the 2D-
AR random field in (5), using ρ = 0.945, σ2

S
= 22.34, and Q = N = 1000.

In the following, we describe the effect on the evolution

of the eigenvalues when K out of N columns/rows from

the N × N matrix under study (either genuine or upscaled)

are used to compute the sample autocorrelation matrix. The

conclusions drawn from this analysis will lay the foundations

of our strategies for resampling detection and estimation.

A. Eigenvalue Distribution for Genuine Images

Adopting the N × N random field X in (5) as a model

for genuine images, we analyze the eigenvalues of ΣXK
,

1
N
XKXT

K , when XK is an N×K matrix made up of K ≤ N
consecutive columns from X. The particular effect on the evo-

lution of the eigenvalues of ΣXK
for different matrix aspect

ratios β = K
N

is explained next by graphically examining their

asymptotic pdf fΣXK
(λ), which can be analytically obtained

as detailed in [25, Sect. 1.1].

Fig. 4 shows the eigenvalues of ΣXK
, i.e., λi (ΣXK

) with

i = 1, . . . , N , together with their pdf fΣXK
(λ) for three

different values of β, which yield different aspect ratios

for the submatrices XK as depicted in the leftmost column

pictures. The middle column compares the distinct evolution

of the eigenvalues, where it can be observed that the number

of zero eigenvalues (i.e., N − K), increases as β = K
N

decreases, which is reflected in fΣXK
(λ) with a point mass

at λ = 0, whose magnitude is accordingly (1 − β) for

β < 1. In addition, the pdfs displayed in the rightmost column

indicate through their smallest and largest eigenvalues, i.e.,

λ− (ΣXK
) and λ+ (ΣXK

), that the nonzero eigenvalues of

ΣXK
tend to be compacted around the variance of X when β

decreases, as predicted by MPL for random matrices with i.i.d.

entries. This finding is very important because it generalizes
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Fig. 4. Graphical representation of the distinct behavior of the N eigenvalues
λi

(

ΣXK

)

, when XK has different aspect ratios β (leftmost column). Scree
plots of ΣXK

are displayed in the middle column. The corresponding pdfs

are depicted in the rightmost column. AR model: ρ = 0.97, σ2

S
= 1, Q = N .

the intuition behind this law to stochastic representations of

genuine images. In the following subsection, we will show

that this property still holds after an interpolation.

B. Eigenvalue Distribution for Unquantized Upscaled Images

In line with the resampling process described in Sect. II,

an upscaled image can be represented by an N × N matrix

Y generated as in (2) and using the model introduced in (5)

for X̂. Accordingly, the same procedure by Tulino and Verdú

in [23, Theorem 2.43] can be applied to analytically compute

the eigenvalue distribution of ΣYK
, 1

N
YKYT

K when YK is

constructed by extracting K ≤ N consecutive columns from

matrix Y, as we explain in [25, Sect. 1.2]. Besides helping

us understand the effect of different aspect ratios β = K
N

on

the evolution of the eigenvalues of ΣYK
, the knowledge of

the asymptotic pdf fΣYK
(λ) in this case allows us to describe

the behavior of the eigenvalues as a function of the applied

resampling factor and the employed interpolation kernel.

Fig. 5(a)-(b) represents the eigenvalues of ΣYK
, i.e.,

λi (ΣYK
) with i = 1, . . . , N , together with the corresponding

pdf fΣYK
(λ) for a fixed value of β, but assuming an upscaling

operation by ξ = 2 and two different interpolation kernels: B-

spline and Lanczos.1 A crucial difference with respect to the

case of genuine images (see Fig. 4(c)), is that now YK has

rank P strictly smaller than K, i.e., P ≈ K/ξ, due to the linear

dependencies induced by the resampling process. Therefore,

only the first P leading eigenvalues are different from zero

and the remaining N − P are zero, which yields in fΣYK
(λ)

a point mass at λ = 0 of magnitude (1− βξ−1).

1We refrain from showing graphical results for Catmull-Rom and Linear
kernels since their behavior is similar to the Lanczos one (cf. [25, Sect. 1.2]).

50 100 150 200 250 300 1000
10

−2

10
0

10
2

10
4

zero eigenvalues

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

1

f
(λ

)
Y

Σ
K

λ
i(

Y
Σ

K
)

i λ

(a) B-spline kernel, β = 0.125, K = 125, N = 1000, ξ = 2

50 100 150 200 250 300 1000
10

−2

10
0

10
2

10
4

zero eigenvalues

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

1

λ
i(

Y
Σ

K
)

f
(λ

)
Y

Σ
K

i λ

(b) Lanczos kernel, β = 0.125, K = 125, N = 1000, ξ = 2

50 100 150 200 250 300 1000
10

−2

10
0

10
2

10
4

Gap

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

Signal

Subspace
Noise

1

λ
i(Σ

Z
K
)

i λ

f
(λ

)
Σ

Z
K
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Fig. 5. Graphical representation of the distinct behavior of the N eigenvalues
λi

(

ΣYK

)

when two different interpolation kernels are employed. The effect

of pixel quantization in λi

(

ΣZK

)

is shown in (c). Scree plots are displayed
in the middle column and the corresponding pdfs are depicted in the rightmost
column. AR model: ρ = 0.97, σ2

S
= 1, Q = N . Quantization step: ∆ = 1.

Focusing now on the shape of the pdfs, it is evident that

the eigenvalues are squeezed in the same way as with genuine

images, which confirms that the compaction of eigenvalues

as β decreases still holds for upscaled images. Similarly,

in [25, Sect. 1.2], we show that the larger the resampling

factor ξ is, the more compacted the eigenvalues become. Both

properties will prove to be important in the following section

for distinguishing the signal subspace from the background

noise. Finally, the particular effect of each interpolation ker-

nel also becomes apparent since, for instance, the B-spline

kernel has its eigenvalues more concentrated towards zero

than the Lanczos one. This difference on the magnitude of

the smallest eigenvalue λ− (ΣYK
) among the different kernels

will unavoidably result in different performance when tackling

resampling detection and estimation, as we will see next.

C. Eigenvalue Distribution for Upscaled & Quantized Images

The effect of further quantizing the pixels of an upscaled

image is examined here through the model in (4) and by

analyzing the eigenvalues of ΣZK
, whose definition is given in

Sect. II-A. Drawing on MPL and Tulino and Verdú’s theorem,

we will analytically support the empirical findings discussed

in Sect. II-A from the example in Fig. 2(c).

Fig. 5(c) depicts the eigenvalues λi (ΣZK
) and their pdf, so

as to visually compare the main differences with respect to the

unquantized case shown in Fig. 5(b). Given that YK has rank

P , in ΣZK
there are P leading eigenvalues corresponding to

the signal subspace, but the following K − P are no longer

zero, because they now correspond to the background noise.

The remaining N − K eigenvalues are zero, as reflected in
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fΣZK
(λ) with a point mass at λ = 0 of magnitude (1 −

β). From Weyl’s inequality applied to the singular values [29,

Exercise 1.3.22], we know that if A and B are m×n matrices,

m ≤ n; then σi+j−1(A+B) ≤ σi(A)+σj(B) for all i, j ≥ 1
such that i + j − 1 ≤ m. Hence λP+j(ΣZK

) ≤ λj(ΣWK
),

for all j = 1, . . . , N −P . In particular, we can write an upper

bound for the first eigenvalue belonging to the noise space:

λP+1(ΣZK
) ≤ λ1(ΣWK

) ≤ λ+(ΣWK
) → σ2

W (1 +
√
β)2, (6)

where λ+(ΣWK
) denotes the limiting upper bound on the

eigenvalues of ΣWK
given by MPL. Now we turn our attention

to the last eigenvalue from the signal subspace λP (ΣZK
).

Resorting again to Weyl’s inequality, we can derive a lower

bound for λP (ΣZK
), which is of interest for us to model the

transition between the signal subspace and the noise space.

To this end, we write σi+j−1(A) − σj(−B) ≤ σi(A + B),
leading us to the following lower bound for λP (ΣZK

):

λP (ΣZK
) ≥ λP (ΣYK

)− λ1(ΣWK
) ≥ σ2

Sλ−(ΣYK
)− λ+(ΣWK

). (7)

Combining (6) and (7) we confirm the existence of an asymp-

totic gap between λP (ΣZK
) and λP+1(ΣZK

), i.e.,

λP (ΣZK
)

λP+1(ΣZK
) ≥

σ2
Sλ−(ΣYK

)−λ+(ΣWK
)

λ+(ΣWK
) →

(

σ2
S

σ2
W

)

λ−(ΣYK
)

(1+
√
β)2

− 1,

(8)

which marks the transition between the signal subspace and

the noise, as shown in Fig. 5(c). The limiting bound in (8)

monotonically increases with the signal-to-noise ratio
(

σ2
S

σ2
W

)

,

which is intuitively appealing. Moreover, it also increases as

β → 0, since λ−(ΣYK
) and (1+

√
β)2 respectively increases

and decreases as β → 0. Finally, for a fixed value of β, the

gap becomes smaller as both the resampling factor ξ and the

correlation coefficient ρ get closer to 1, as reported in [25,

Sect. 1.2]. Analyzing the gap with respect to the interpolation

kernel we can conclude that the smallest gap will be obtained

through the B-spline kernel, while the largest bound will be

achieved by the Lanczos kernel. A significant gap is also

expected for the Catmull-Rom kernel since it keeps a similar

behavior to the Lanczos filter. Finally, the Linear kernel is

halfway between Catmull-Rom and B-spline.

IV. RESAMPLING DETECTION AND ESTIMATION

One obvious concern regarding the asymptotic eigenvalue

analysis in Sect. III would be its applicability in practical cases

where the observed N × N image block has a finite size.

However, it is a well-known fact from RMT that, even for

small N , the asymptotic limit turns out to be an excellent

approximation (cf. [23], [29]). Therefore, all the results from

the preceding section can be applied to the problems of

resampling detection and resampling factor estimation.

In the definition of our hypothesis test, we make the

following assumptions: under the null hypothesis, i.e., H0,

the observed matrix Z comes from a genuine image that has

not been resampled and has negligible quantization noise, i.e.,

it follows the model introduced in Sect. III-A; while, under

the alternative hypothesis, i.e., H1, the observed matrix Z

stems from a genuine image that has been upscaled and later

quantized, thus containing quantization noise as in Sect. III-C.

In order to easily understand the behavior of the eigenvalues

of ΣZK
with K < N in a finite realistic setting, we outline

an example covering the two hypotheses that uses the image

in Fig. 2(a). Under H0, the observed matrix Z is taken from

the 512 × 512 centered block of the image, while under H1,

Z is built from the 512 × 512 centered block of its upscaled

version by ξ = 2 (using the kernels in Table II and ∆ = 1).

In both cases, ZK contains the first K = 64 columns from Z.

Fig. 6 collects the scree plots of ΣZK
for each of these

cases. As expected, under H1 we observe a clear gap in the

evolution of the eigenvalues that marks the transition between

the signal subspace and the noise, while under H0 there is

no apparent break. Examining the magnitude of the gap for

each kernel, we can see that it follows the theoretical findings

exposed at the end of Sect. III-C. On the other hand, the gap

position found in Sect. II must be broadened, because its exact

location depends on the alignment of ZK with the resampled

grid, the values of φ and kw, and the relation between K and

ξ, which are unknown in a realistic forensic setting. According

to (1), we can determine a range where the position of the gap

P will lie for any ZK (regardless of the alignment and φ), i.e.,

kw+

⌊

(K − 1)
M

L

⌋

−1 ≤ P ≤ kw+

⌈

(K − 1)
M

L

⌉

+1, (9)

where, in these conditions, the position of the gap only

depends on kw and the ratio between K and the applied

resampling factor L
M

, which defines the resulting bounds. Note

also that narrower bounds can be achieved for φ = 0. As

can be checked in Fig. 6, the position of the gap for all the

interpolation kernels is consistent with the theoretical range in

(9) when kw = 2.2 Therefore, by estimating the position of

the gap, we can provide a feasible interval where the applied

resampling factor ξ = L
M

should lie in.

Focusing now on the bounds given by MPL for the quan-

tization noise, i.e., σ2
W (1±√

β)2, depicted as well in Fig. 6,

we can also confirm that even working with matrices with a

relatively small value of K and N , the trailing eigenvalues of

ΣZK
under H1 fall within the predicted range. In addition, the

magnitude of the smallest nonzero eigenvalue in the resampled

case is significantly smaller than its genuine counterpart, thus

suggesting that the smallest nonzero eigenvalue of ΣZK
can

be used to distinguish between both hypotheses.

A. Description of the Resampling Detector

Based on the previous discussion, the definition of the test

statistic for resampling detection will rely on the limiting

bounds for the smallest nonzero eigenvalue of ΣZK
under

each hypothesis, which corresponds to the K-th eigenvalue

λK(ΣZK
). Hence, for a fixed value of K (or equivalently β),

we build a vector Λ collecting these eigenvalues from a set of

V different submatrices ZK belonging to the observed matrix

Z. Notice that we take different submatrices to sort out regions

that may contain linear dependencies leading to rank-deficient

2We fix kw = 2 even for the kernels with a larger width (e.g., Catmull-
Rom, B-spline, or Lanczos), because their smallest eigenvalues (which corre-
spond to the contributions of the filter outside the main lobe, i.e., for |t| > 1)
fall below the quantization noise level for practical values of σ2

S
/σ2

W
.
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Fig. 6. Scree plot comparing the eigenvalues of ΣZK
under H0 and H1, for

different interpolation kernels and using the genuine image shown in Fig. 2(a).
Notice that only the nonzero eigenvalues are depicted for K = 64 and N =
512 (i.e., β = 1

8
). Under H1, we use ξ = 2 and σ2

W
= ∆2/12 (∆ = 1).

matrices. In particular, we first take each sliding N × K
submatrix ZK of Z, and then we repeat the same process after

transposing Z, finally obtaining a total of V , 2(N −K +1)

submatrices. Denoting by λK

(

Σ
(v)
ZK

)

the K-th eigenvalue

of Σ
(v)
ZK

corresponding to the v-th submatrix, the vector of

eigenvalues is defined as

Λ ,

(

λK

(

Σ
(0)
ZK

)

, λK

(

Σ
(1)
ZK

)

, · · · , λK

(

Σ
(V−1)
ZK

))T

.

To avoid possible rank-deficient matrices Σ
(v)
ZK

, we define a

set S containing the indices of those vector components from

Λ whose magnitude is smaller than the limiting lower bound

under H1, i.e., λ−(ΣWK
) = σ2

W (1−√
β)2. The set is defined

as follows

S ,

{

v ∈ {0, . . . , V − 1} : λK

(

Σ
(v)
ZK

)

< σ2
W (1−√

β)2
}

. (10)

Accordingly, the test statistic is defined as:

κ ,



















min
v∈{0,...,V−1}

Λv, if |S| = 0

median
v∈{0,...,V−1}\S

Λv, if 1 ≤ |S| < V

λ0, if |S| = V

, (11)

where Λv denotes the v-th component of Λ, |S| is the

cardinality of S , and λ0 represents the magnitude of the

smallest eigenvalue among all λi

(

Σ
(v)
ZK

)

that are larger than

the limiting lower bound λ−(ΣWK
) = σ2

W (1−√
β)2. Notice

that the last two cases in (11) are set to discard the linear

dependencies that may naturally arise in an image block as

mentioned in Sect. II-A. When there are some rank-deficient

submatrices, as in the second case in (11), we take the median

instead of the minimum eigenvalue to avoid a possible bias

in the decision towards upscaling, since, in this case, the

block under analysis will probably contain several “nearly”

rank-deficient matrices even without being resampled. The

pseudocode of our resampling detection approach is shown

in [25, Alg. 1].

In case one would like to set the detector to operate at

a fixed false alarm rate, an empirical threshold Tκ must be

first calculated, and then images with κ < Tκ are declared as

upscaled, and else genuine.

B. Description of the Resampling Estimator

As pointed out above, the estimation of the applied resam-

pling factor ξ can be performed by determining the position of

the gap λP (ΣZK
)/λP+1(ΣZK

) between the signal subspace

and the background noise. From a theoretical point of view,

the interval containing the actual position of the gap is given

by (9) for a fixed value of K, and so the range for ξ becomes

K − 1

(P − kw) + 1
≤ ξ ≤ K − 1

(P − kw)− 1
. (12)

Although this interval provides a rough approximation to ξ,

the lack of resolution can be mitigated to some extent by

intersecting the obtained intervals using different values of K.

Following a similar procedure to the one exposed in

Sect. IV-A, for a fixed value of K, we process a set of V
submatrices ZK from Z to obtain an estimator of P . For

each v-th submatrix we compute the eigenvalues of Σ
(v)
ZK

and

analyze the evolution of the sequence

Ψv[i] ,
λi

(

Σ
(v)
ZK

)

λi+1

(

Σ
(v)
ZK

) , ∀i ∈ {1, . . . ,K − 1}.

Given that the values of Ψv[i] for the first leading eigenvalues

are typically high, the set of indices for i is shortened to

I = {⌊K/ξmax⌋, . . . ,K− 1}, so as to easily capture the peak

that signals the transition between subspaces. Notice that by

doing so, we limit the maximum resampling factor that can

be estimated to ξmax. As before, to avoid the contributions

of possible rank-deficient matrices, we restrict the analysis to

those matrices Σ
(v)
ZK

with v /∈ S , where S is the set of indices

in (10). On the other hand, since the gap can occasionally be

misdetected as, for instance, with the B-spline kernel which

yields gaps of small magnitude (cf. Sect. III-C and Fig. 6), we

quantify the strength of the gap, by averaging the sharpness

of the peaks in Ψv[i] for the available submatrices, i.e.,

µ ,
1

V − |S|
∑

v∈{0,...,V−1}\S
max
i∈I

Ψv[i]/median
i∈I

Ψv[i].

When µ is smaller than an empirical threshold Tµ, we assume

that the transition between subspaces is not so evident and we

rely on the index where the eigenvalues cross the upper bound

in (6), i.e., σ2
W (1 +

√
β)2, to infer the applied resampling

factor. Having this in mind, we build up a vector p with

components pv, v = 0, . . . , V − 1, defined as

pv ,















argmax
i∈I

Ψv[i], if v /∈ S and µ ≥ Tµ

iv, if v /∈ S and µ < Tµ

0, if v ∈ S
,

where iv , arg min
i∈{1,...,K}

∣

∣

∣
λi

(

Σ
(v)
ZK

)

− σ2
W (1 +

√
β)2

∣

∣

∣
is the

index of the closest eigenvalue to the upper bound in (6). Note

that the nonzero components of p contain candidate values of

P , so its estimation can be drawn from

P̂ , arg max
i∈{0,...,K}

h(i,p), (13)

where the function h(i,p) counts the number of times that

a candidate value i appears in vector p. In case P̂ = 0, this
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would indicate that the observed block is mostly flat (e.g., due

to saturation) and no reliable estimation can be obtained.

Given that the index iv is less precisely related to the applied

resampling factor than the actual position of the gap, the

derived interval from the estimate in (13) also depends on

µ. When a clear gap is obtained, i.e., µ ≥ Tµ, the feasible

interval in (12) is directly taken. Conversely, when µ < Tµ,

we modify the lower bound from (12) to a more conservative

value, because in this case the trailing eigenvalues converge

faster to the variance of the quantization noise, thus having

1 < ξ ≤ K − 1

(P − kw)− 1
. (14)

According to this, we denote by ξ̂
(l)
K the lower bound of the

possible interval for ξ obtained either from (12) or (14) for a

particular value of K. In a similar way, the upper bound is

denoted by ξ̂
(u)
K . When P̂ = 0, we set ξ̂

(l)
K = 1 and ξ̂

(u)
K =

ξmax. The pseudocode to obtain this interval for a particular K
is summarized in [25, Alg. 2]. As previously stated, by taking

the intersection of the obtained intervals for different values

of K, we can narrow the bounds of the resulting range. So,

assuming a set K with distinct values of K, the final interval

is

max
K∈K

(

ξ̂
(l)
K

)

≤ ξ̂ < min
K∈K

(

ξ̂
(u)
K

)

. (15)

Note that in practice, some of the intervals may not intersect,

so the finally selected interval will be the one resulting from

the largest number of intersections.

In a practical setting, the interval in (15) will be generally

wide since small values of K are needed to easily localize

the gap (recall that the gap increases as K becomes smaller).

This would be a problem if we could only rely on the

interval in (15) to estimate ξ. However, the interval for ξ can

be translated into a range of frequencies where the spectral

peak due to resampling should be located. Therefore, for any

frequency-based resampling estimator (e.g., [6] or [14]), the

combination of both approaches will consequently limit the

search space to find the spectral peak. Moreover, since the

principles used in each approach are fundamentally different,

a gain is to be expected from their combination. Indeed, a first

desirable byproduct of this combination is that the provided

interval resolves the well-known ambiguity that appears when

estimating resampling factors in the ranges (1, 2) and [2,+∞)
with frequency-based methods. In Sect. V-B, the combined

approach (with [6] and [14]) will be experimentally validated.

V. EXPERIMENTAL RESULTS

The experimental validation of the proposed methods for

resampling detection and estimation is first addressed fol-

lowing the resampling process described in Sect. II. To fur-

ther evaluate the reliability of our detector when facing real

forensic scenarios, we examine in Sect. VI its robustness in

case of downscaling and after some common postprocessing

operations or targeted attacks (as the ones proposed in [33]).

The set of experiments is conducted over a total of 1317 raw

images captured by different Nikon cameras belonging to the

Dresden Image Database [34]. Prior to applying the resampling

operation, all raw images are demosaiced using the so-called

“variable number of gradients” method [35] (which is available

in the dcraw software tool with option -q 1). Given its

extensive use, we employ the image processing tool convert

from ImageMagick’s software to perform each full-frame

resampling operation. As interpolation kernels, we select the

ones most commonly available (cf. Table II). To assess the

most suitable upscaling factors avoiding the introduction of

visible distortions, we constrain the set of resampling factors

to the interval [1.05, 2] uniformly sampled with step 0.05.

The analysis of resampling traces is performed over the

green channel of each image under study by processing its

central square block Z of size N × N . To test our detector

in a practical scenario where the tampered regions might be

small, we process image blocks with N = 32. On the other

hand, to give an accurate estimation of the applied upscaling

factor, a larger block is processed by taking N = 128.

A. Performance Analysis of the Detector

The performance of the proposed detector is measured in

terms of the Area Under the Curve (AUC) corresponding to the

Receiver Operating Characteristic (ROC), and the True Posi-

tive Rate (TPR), or detection rate, at a fixed False Acceptance

Rate (FAR). For comparison, the same tests are applied to

three state-of-the-art detectors: the “SVD-based” detector de-

rived in [21], the “LP-based” detector proposed in [8] (where

LP stands for Linear Predictor), and the “ZM-based” detector

from [9] (where ZM stands for Zeroing Mask). We configure

our detector to work with submatrices of small aspect ratio

β = 0.2812 (i.e., K = 9, yielding V = 48), because it

makes the separation between the smallest eigenvalue under

each hypothesis more evident. For [21] we set ξmin = 1.05,

for [8] we fix a neighborhood of 3 rows/columns, and finally,

for [9] we take the tested set of upscaling factors as the set

of candidates3 and we adapt the computation of the zeroing

masks to handle more kernels than the Linear one with φ = 0.

The values of AUC for each tested upscaling factor ξ
are computed by applying the four detectors on both the

genuine and the upscaled images. However, when deriving the

detection rates for each ξ, the database is randomly split in

two disjoint sets, where 1/3 of the images (i.e., a total of 439)

are exclusively used to empirically determine the thresholds

of each detector, and the remaining 878 images are used for

testing. Upon deriving the thresholds at a fixed FAR ≤ 1%, all

detectors are applied on the upscaled versions of the images

from the testing set to compute the detection rates for each ξ.

Fig. 7(a) shows the obtained AUC values for each detector.

Since the SVD-based detector relies on the same principle of

subspace decomposition than our detector, the performance

of the two approaches in terms of AUC is similar, achieving

better results for B-spline and Linear interpolation kernels

than for Catmull-Rom and Lanczos. Both methods outperform

the LP-based detector, which shows difficulties when dealing

with small block sizes, and also the ZM-based detector, which

suffers from high FARs as N gets smaller. This is the reason

3This selection of the set of candidates clearly benefits the approach in [9],
since a larger set would notably increase the false acceptance rate.
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(b) Detection rate at FAR ≤ 1%

Fig. 7. Evaluation of our detector (solid lines) against the SVD-based [21] (dashed lines), the LP-based [8] (dotted lines), and the ZM-based [9] (dash-dotted
lines) detectors in terms of AUC and detection rate for 32× 32 blocks. No detection rates are shown for the ZM detector, since the obtained FAR was about
34%.

TABLE III
TPR VALUES AT FAR ≤ 1% FOR DIFFERENT N ×N BLOCK SIZES. BOLD NUMBERS INDICATE THE BEST RESULTS.

Kernel Types: Linear Catmull-Rom B-spline Lanczos

Detectors: Ours SVD LP ZM Ours SVD LP ZM Ours SVD LP ZM Ours SVD LP ZM

N = 32 0.9946 0.8897 0.5882 0.9383∗ 0.9911 0.8296 0.6727 0.8032∗ 0.9966 0.9749 0.0226 0.9942∗ 0.9781 0.8067 0.4325 0.7873∗

N = 64 0.9983 0.9541 0.9402 0.9157† 0.9979 0.9108 0.9390 0.8341† 0.9985 0.9923 0.3812 0.9954† 0.9960 0.8924 0.9138 0.9240†

N = 128 1.0000 0.9842 0.9793 0.7086 1.0000 0.9544 0.9708 0.8176 1.0000 0.9985 0.8194 0.9964 0.9999 0.9387 0.9524 0.8569

N = 256 1.0000 0.9924 0.9988 0.7038 1.0000 0.9764 0.9988 0.7936 1.0000 0.9990 0.9293 0.9986 1.0000 0.9640 0.9924 0.9110

N = 512 1.0000 0.9838 0.9996 0.7013 1.0000 0.9518 0.9997 0.7343 1.0000 0.9993 0.9455 0.9969 1.0000 0.9337 0.9986 0.8722

∗FAR≈ 34%, †FAR≈ 18%

(a) Forged image

−4

−3

−2

−1

0

1

(b) log-κ map (c) Binary mask

Fig. 8. Example of forgery detection using the proposed resampling detector. The forged image in (a) has been created by adding the policeman on the
bottom-left corner. The log-magnitude of the statistic κ given by (11) is painted in (b) for each 32× 32 block from the green channel of the forged image.
Warmer colors indicate smaller values. The intersected binary mask (after applying threshold Tκ to each color channel), is shown in (c).

why the detection rates for the latter method were not included

in Fig. 7(b), as the respective FAR was about 34%.

In Fig. 7(b) it can be seen that the proposed technique

clearly improves the detection performance of the other two

methods when 1.05 ≤ ξ ≤ 1.5, which is particularly interest-

ing in practice for exposing slightly transformed regions. In

fact, this range was known to be especially challenging for

existing resampling detectors when dealing with small image

blocks. For our detector, the compaction of eigenvalues for

K < N elicits this notable improvement, making it possible

to achieve a FAR ≤ 1% with a threshold Tκ = 0.0827
(i.e., approximately one-half of the upper bound in (6):

σ2
W (1+

√
β)2 = 0.1952). Related to this, the fast convergence

towards zero of the eigenvalues when using the B-spline kernel

(see Fig. 5(a)), improves the separability between upscaled and

genuine images, thus providing always the best performance.

To save space representing the obtained results in different

experiments and to facilitate comparisons with state-of-the-art

detectors, we use a meaningful measure that summarizes the

performance of each detector under each setting. This overall

digest, denoted by TPR, reflects the average rate of detection

across all the tested upscaling factors for a given detector:

TPR ,
1

|Ξ|
∑

ξ∈Ξ

TPR(ξ), (16)

where TPR(ξ) represents the obtained true positive rate (at a

fixed FAR) for the tested upscaling factor ξ, which in our case

belongs to the set Ξ , {1.05, 1.1, . . . , 2}.

As an example, the first row of Table III contains the TPR

values corresponding to the curves represented in Fig. 7(b)

for N = 32. Additionally, we also include in Table III the

TPR values when each detector works with blocks of a larger

size, i.e., for N ∈ {64, 128, 256, 512}. From these results,

we can appreciate that larger block sizes generally increase

detection rates, and also that our approach keeps yielding

superior detection results with respect to the rest of detectors.

It is important to note that the values of FAR achieved by the

ZM-based detector strongly depend on the size of the block

under analysis (a FAR close to 1% is not reachable for N = 32
or N = 64, while this is not an issue for a larger N ). These

FAR values may even get worse in a real forensic scenario

since no prior knowledge on the range of plausible upscaling
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Fig. 9. Description of the intermediate steps involved in the whole analysis of a forged image to obtain the result shown in Fig. 8.

factors is available, and a larger number of candidates implies

an increase on the detector FAR.

To further illustrate the good separability between genuine

and upscaled regions afforded by our detector, we test it

with a hand-made forgery in which only a portion of a

demosaiced image has been resampled. To this end, we plot a

log-magnitude map of the proposed test statistic (11) for each

32 × 32 block of the image, which compellingly highlights

potential geometrically transformed regions. Fig. 8(b) depicts

the resulting map after processing the green channel of the

forged image in Fig. 8(a). Applying the obtained empirical

threshold Tκ for demosaiced images, we then construct a

binary map for each color channel. Finally, by computing the

logical AND operation between each of the three resulting

binary masks, the suspected region is exposed in Fig. 8(c). The

accuracy of the result further supports the robustness of the

threshold Tκ, since the dataset from which it was determined

is totally independent from the forged image. Fig. 9 illustrates

the whole process, showing each intermediate step.

Finally, for the sake of computation time comparison, we

compute the average time that each method takes to process the

central 32×32 block of the 1317 images from the database. All

simulations are performed using MATLAB R2013a on a desk-

top computer,4 obtaining (in seconds): 0.0066 for our method,

0.0003 for the SVD-based detector [21], 0.0108 for the LP-

based one [8], and 0.2074 for the ZM-based method [9]. From

these results, we can see that the two approaches based on

subspace decomposition (i.e., the SVD-based and ours) are

more computationally efficient than the others. The SVD-

based approach achieves the best performance because, unlike

ours, only the calculation of one SVD per block is needed.

Nevertheless, the performance of our detector could be further

improved by resorting to iterative eigenvalue algorithms (cf.

4Intel Core i5-2500K @ 3.30GHz, 8GB RAM, running Ubuntu 14.04.

[36, Section 4.4]), so as to reduce the whole eigenvalue

decomposition to the computation of the smallest eigenvalue

of a given matrix, which is the one actually employed in our

statistic (11).

B. Performance Analysis of the Estimation Strategy

In this section, we study the viability of using the described

estimation strategy in Sect. IV-B as a complementary tech-

nique for resampling factor estimation through its combination

with existing approaches to the same problem. In particular, we

analyze the performance of the combination of the proposed

strategy and two state-of-the-art frequency-based estimators:

the “2D frequency-based method” described in [14], and the

“1D frequency-based method” in [6]. The evaluation is con-

ducted in terms of Mean Squared Error (MSE) and percentage

of correct resampling factor estimates, which is determined

according to the criterion |ξ̂ − ξ| < 0.05, where ξ̂ is the

estimated factor and ξ the true one. For each combination, the

obtained results are compared against its standalone version.

The tests are performed over blocks of size N × N
(N = 128) coming from the full-frame upscaled versions

of the 1317 demosaiced images in the database. For our

strategy, we restrict ourselves to ξmax = 2.1, employ the set

K = {29, . . . , 33}, fix kw = 2 and the threshold Tµ = 2.5,

and shorten the number of processed submatrices to V = 20
(i.e., we only process the first 10 shifted submatrices in each

direction). For the 2D frequency-based method, a set of 9 lags

and a spectral window of size 11× 11 are chosen.

The procedure to combine our strategy with the referred

methods is simple and can be synthesized as follows: first, the

interval for ξ is determined by following the process described

in Sect. IV-B. In the meantime, each frequency-based method

separately computes its statistic in the Fourier domain. Then,

the obtained interval in (15) is translated to the corresponding
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(b) Percentage of Correct Resampling Factor Estimation
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(c) MSE (1D frequency-based method)
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(d) Percentage of Correct Resampling Factor Estimation

Fig. 10. Evaluation in terms of MSE and percentage of correct resampling factor estimation of the combined methods (solid lines) against their standalone
versions (dashed lines). The upper panels contain results from the 2D frequency-based method [14] and the lower ones gather the outcomes from the 1D
approach [6].

frequencies in the 2D and 1D domains, as respectively required

by each method. Finally, the estimate ξ̂ is determined from

the position of that spectral peak with largest magnitude in

the calculated range of frequencies.

The upper panels of Fig. 10 depict the obtained results

when combining our estimator with the 2D frequency-based

method. From Fig. 10(a), we can observe how the MSE is

significantly reduced for all the interpolation kernels, except

for the B-spline, which achieves the smallest gain as expected.

With this particular kernel, the upscaling factor is only well

approximated when the interpolation is performed over images

with high frequency content. The significant MSE reduction

translates into an important gain in the percentage of correct

resampling factor estimates, as shown in Fig. 10(b). It is

interesting to notice how the provided interval helps improve

the estimation accuracy for resampling factors close to 1.

The lower panels of Fig. 10 contain the corresponding

results for the combination of our estimator with the method in

[6]. In general, the combination of both methods yields better

results, significantly so for the Lanczos kernel. However, in

comparison with the previous combined approach, consider-

ably large values of MSE are now obtained for resampling

factors close to 1. This means that the statistic from the

1D frequency-based method does not provide a clear peak

in the expected range for resampling factors approaching 1.

Similarly, the gain from the combination of estimators is

negligible for ξ = 2, since no spectral peak is available at

that upsampling rate for the 1D frequency-based method (a

fact that was pointed out in [14]).

Note that we have constrained this viability study to the

methods in [14] and [6], but the proposed strategy can be

easily combined with others. For instance, following the same

idea, we can use our estimator to relax the exhaustive search

required by Popescu and Farid in [2] and we can even go

beyond frequency-based techniques, such as the methods in

[9], [10], and [11], where the interval in (15) can be used to

narrow the set of candidate resampling factors to a few values,

heavily reducing the computation time.

VI. ROBUSTNESS ANALYSIS OF RESAMPLING DETECTION

For evaluating the robustness of our resampling detector

in more realistic scenarios, we test our detector sensitivity to

different pre/postprocessing operations using the same dataset

described in Sect. V. The comparison with state-of-the-art

approaches is carried out in terms of TPR (cf. (16)), but

constraining the analysis to the LP-based and ZM-based

detectors. We leave out the SVD-based detector because it

shows a similar behavior to our approach, but with worse

performance. Due to space constraints, we only report results

for blocks of size N ×N with N = 512, which can be seen

as upperbounds on each detector’s performance, since smaller

blocks generally lead to worse detection results. In this case,

we configure our detector to work with K = 51 and V = 20.

A. Multiple Resampling and Downscaling

We have conducted several experiments in the presence of

multistage resamplings, such as different upscalings followed

by multiple downscalings and vice versa. As long as the global

resampling factor (which results from the product of each

intermediate rate) is larger than one, the performance of our

detector is similar to that obtained with an analogous upscaling

operation by the global factor. Therefore, we do not report

these results here. Interestingly, rounding errors originated in

each resampling stage do not strongly affect the performance.

As noted in Sect. I, our approach based on RMT and

subspace decomposition has not been originally conceived to

detect image downsizing. However, given the potential use of

downscaling operations as a way to hide traces of tampering,

here we investigate the performance of our detector in case
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Fig. 11. Detection rates at FAR ≤ 1% for downscaling. Comparison among
our detector (solid lines) and the LP-based detector [8] (dotted lines). N =
512.

of downsizing with a set of factors in the range [0.5, 0.95]
(uniformly sampled with step 0.05). To perform full-frame

downscalings we use the tool convert, which automatically

applies an antialiasing filter.

Fig. 11 shows the detection rates obtained with our detector

and the LP-based approach after downscaling using the kernels

in Table II. The ZM-based detector is not tested because,

under downscaling, the signal subspace spans the whole N -

dimensional vector space and it is not possible to obtain

zeroing masks. While in most cases the LP-based approach

yields the best performance, we remark that our detector shows

superior results for ξ = 0.5 and mainly for the B-spline kernel,

whose influence on the fast convergence of the eigenvalues

towards zero boosts the distinction between downscaled and

genuine images.

As a conclusion, even without a specific model for the

downscaling process, the large potential of RMT translates into

acceptable detection rates for some kernels, so RMT properties

should be further investigated to detect image downsizing.

B. Common Postprocessing Operations

The behavior of our detector is evaluated here when com-

mon postprocessing operations like JPEG compression, rota-

tion, or linear filtering are applied after upscaling.

1) JPEG re-compression: we analyze the case where demo-

saiced images are first JPEG compressed with a quality factor

QF1, then upscaled by ξ ∈ Ξ, and finally re-compressed with

the same factor, i.e., QF2 = QF1 = QF.5 It is known that

most of the resampling detectors fail after moderate JPEG

compression [33], so we only consider QF ∈ {90, 95, 98, 100}.

The obtained TPR values for each tested detector are

collected in Table IV(a) and are classified as a function

of the distinct interpolation kernels. Although the JPEG re-

compression scenario might be the most common in practice,

all detectors start failing at QF ≤ 95. Our detector generally

yields higher detection results for quality factors above 95,

but when the applied lossy compression is strong enough to

render the subspace decomposition unreliable, it suffers from

severe performance loss.

We have also tested the case where genuine images are not

JPEG compressed and the compression is only applied after

upscaling. Under this setting, all detectors ended up discerning

uncompressed from compressed images instead of exposing

5All compressions are performed in MATLAB with the imwrite function.

resampling traces (in other words, their performance was no

longer dependent on the applied ξ, but on the selected JPEG

quality factor), so we do not report the results.

2) Rotation: we examine the resampling detectability when

demosaiced images are upscaled and later rotated by an angle

Θ in the range [5, 45] sampled at equidistant steps of 10◦.6

Table IV(b) collects the obtained TPR values which show

that the performance of the tested detectors regularly decreases

as the rotation angle increases. An exception to this behavior

occurs with the LP-based detector that is only able to detect

resampling traces for Θ = 45◦, where subtle periodic corre-

lations among adjacent rows and columns are still preserved.

On the other hand, our detector achieves the best detection

results by means of the implicit search towards all directions

performed by the eigenvalue decomposition, which always

seeks the most suitable underlying subspace.

3) Linear Filtering: we evaluate to what extent linear

filtering can blur resampling traces when it is applied after

upscaling by ξ ∈ Ξ a demosaiced image. The analysis is

focused on a 3× 3 Gaussian kernel with σg ∈ {0.5, 1, 1.5}.

The obtained results are gathered in Table IV(c) and they

reveal the high degree of robustness of our detector for this

type of filtering. Unlike the LP-based method which suffers

from moderate blurriness (i.e., for σg ≤ 1) and the ZM-

based approach which only shows difficulties for σg = 0.5,

our detector always achieves the best performance for all

combinations of interpolation kernels and values of σg .

C. Targeted Attacks Against Resampling Detection

As can be presumed from the example in Fig. 6, a possible

attack to deceive our detector would be to add random noise

to the samples of the upscaled image. By doing so, the

resulting magnitude of the trailing eigenvalues arising from

the background noise of the attacked image will increase and

may finally reach the expected magnitude of those arising

from genuine images. This might impede a reliable resampling

detection; however, the addition of noise will unavoidably

degrade the quality of the upscaled images and consequently

raise suspicions about their authenticity, thus making this

attack mostly ineffective. A more subtle way to mislead our

detector could be conceived by using non-linear or content-

adaptive interpolation techniques (such as those commonly

employed in demosaicing) to perform any resampling oper-

ation. This would yield a potential anti-forensic technique

against our detector.

Despite the existence of this type of ad hoc attacks, we find

particularly interesting the analysis of our detector’s robustness

against existing countermeasures, such as the ones presented

in [33], which were specifically designed to hide resampling

traces. In the following, we describe the parameters we use in

the three types of attacks that were proposed in [33, Sect. V].

1) Nonlinear filtering: a median filter of size 3×3 is applied

after the upscaling process.

2) Geometric Distortion (GD): the resampling process is

manipulated by introducing a geometric distortion [33,

6MATLAB imrotate function with Linear kernel is used for all rotations.
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TABLE IV
TPR VALUES AT FAR ≤ 1% FOR DIFFERENT PRE/POSTPROCESSING OPERATIONS. BOLD NUMBERS INDICATE THE BEST RESULTS.

Kernel Types: Linear Catmull-Rom B-spline Lanczos

Detectors: Ours LP ZM Ours LP ZM Ours LP ZM Ours LP ZM

(a) JPEG re-compression

QF = 90 0.1183 0.0001 0.1663 0.0908 0.0003 0.3212 0.1824 0.0009 0.6896 0.0829 0.0009 0.4876

QF = 95 0.4473 0.0189 0.2503 0.3966 0.0314 0.3250 0.7399 0.0110 0.8263 0.4151 0.0223 0.5027

QF = 98 0.9551 0.9672 0.7113 0.9298 0.9618 0.7023 0.9990 0.8972 0.9948 0.9568 0.9532 0.8196

QF = 100 1.0000 0.9948 0.7928 1.0000 0.9962 0.7890 1.0000 0.8039 0.9987 1.0000 0.9637 0.9008

(b) Rotation

Θ = 5◦ 0.9897 0.0000 0.8650 0.9771 0.0000 0.8789 0.9998 0.0002 0.9992 0.9839 0.0002 0.9435

Θ = 15◦ 0.9708 0.0001 0.8629 0.9494 0.0001 0.8647 0.9991 0.0002 0.9991 0.9612 0.0002 0.9282

Θ = 25◦ 0.9445 0.0001 0.8517 0.9141 0.0001 0.8325 0.9970 0.0002 0.9955 0.9206 0.0002 0.8822

Θ = 35◦ 0.9120 0.0003 0.8119 0.8640 0.0001 0.7705 0.9887 0.0002 0.9744 0.8595 0.0002 0.8080

Θ = 45◦ 0.9200 0.4619 0.8072 0.8666 0.4653 0.7540 0.9870 0.2044 0.9688 0.8528 0.3223 0.7937

(c) Linear filtering

σg = 0.5 1.0000 0.9808 0.9387 1.0000 0.9701 0.9324 1.0000 0.8700 0.9999 1.0000 0.9554 0.9744

σg = 1 1.0000 0.3395 1.0000 1.0000 0.4080 1.0000 1.0000 0.0253 1.0000 1.0000 0.3528 1.0000

σg = 1.5 1.0000 0.1093 0.9998 1.0000 0.1916 0.9999 1.0000 0.0023 1.0000 1.0000 0.1004 1.0000

(d) Targeted attacks

Median filtering 0.8785 0.7285 0.4700 0.8257 0.5895 0.4802 0.9259 0.1038 0.7197 0.7949 0.3605 0.5345

GD without edge modulation 1.0000 0.0010 0.0637 1.0000 0.0009 0.0916 1.0000 0.0031 0.1485 1.0000 0.0010 0.1305

GD with edge modulation 1.0000 0.8771 0.1340 1.0000 0.8858 0.2261 1.0000 0.1241 0.3829 1.0000 0.6286 0.3169

Dual-path approach 0.7718 0.8313 0.2314 0.7240 0.8315 0.2396 0.8423 0.0264 0.4744 0.7010 0.4331 0.2921

Eq. 13], whose strength is controlled by σ. In addition,

an extension of the same idea with edge modulation is

also considered [33, Eq. 14]. In both cases, σ = 0.4.

3) Dual-path approach: this attack combines median filter-

ing with the above geometric distortion [33, Eq. 16]. In

this case, we use a 5× 5 median filter and σ = 0.4.

Table IV(d) reports TPR values obtained by the three detectors

in each scenario. On the one hand, these results reflect that

the application of nonlinear operations (such as the median

filter), either before or after the upscaling process slightly

affects the performance of our detector. On the other hand,

geometric distortions with the selected strength σ = 0.4 do not

impair its reliability. The reason why our detector is resilient to

geometric distortions is that our test statistic does not only rely

on the linear dependencies induced by the resampling process,

but also on the level of noise that remains after the subspace

decomposition. Under these targeted attacks, the transition

between subspaces becomes less evident (preventing a correct

resampling factor estimation), but the level of noise is still

consistent with the one from undistorted upscaled images.

As a conclusion, since our method faces the resampling

detection problem from a different perspective, a fusion of

the outputs of the discussed detectors or other existing ones

that already prevent resampling anti-forensics techniques, e.g.,

[37], might be considered to improve the overall detectability

in these realistic scenarios.

VII. CONCLUSIONS

The forensic analysis of resampling traces has been inves-

tigated in this paper using new tools and concepts from RMT.

We have proven that there is a large potential in the use of

RMT coupled with the subspace decomposition approach for

resampling detection. As our approach is radically different

from existing ones, it also contributes new information. In fact,

we have shown that the combination of our scheme with other

techniques yields substantial improvements in the accuracy of

resampling factor estimates. Remarkably, the computational

complexity of the proposed approaches is low and could

be further reduced by using iterative eigenvalue computation

algorithms, thus bringing the possibility to design efficient

implementations.

Although this work can be deemed as a first step towards the

characterization of resampled signals in terms of their eigen-

value distribution, greater advances need to be made in the

analysis of their behavior in more complex scenarios. In this

direction, our incipient robustness analysis in realistic scenar-

ios shows promising results, but it also reveals that nonlinear

operators must be further investigated. Moreover, the analysis

of image downscaling within this random matrix framework

needs to be addressed separately to check whether processing

the three color channels might be useful. Further research

is also required to better model the asymptotic eigenvalue

distribution from genuine images that contain demosaicing

traces.
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