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Abstract—The Variation of Prediction Footprint (VPF), for-
merly used in video forensics for double compression detection
and GOP size estimation, is comprehensively investigated to
improve its acquisition capabilities and extend its use to video
sequences that contain bi-directional frames (B-frames). By
relying on a universal rate-distortion analysis applied to a generic
double compression scheme, we first explain the rationale behind
the presence of the VPF in double compressed videos and then
justify the need of exploiting a new source of information such
as the motion vectors, to enhance the VPF acquisition process.
Finally, we describe the shifted VPF induced by the presence of B-
frames and detail how to compensate the shift to avoid misguided
GOP size estimations. The experimental results show that the
proposed Generalized VPF (G-VPF) technique outperforms the
state of the art, not only in terms of double compression detection
and GOP size estimation, but also in reducing computational
time.

Index Terms—Double compression detection, GOP size esti-
mation, video forensics, B-frames, rate distortion optimization.

I. INTRODUCTION

HEN compared with the proliferation of digital im-

age forensic techniques, video forensic research has
evolved at a much slower pace. This is probably caused by
the challenging nature of video processing, which includes
many different, highly configurable coding algorithms and
deals with enormous amounts of data compared to images,
making it difficult to create comprehensive standard datasets
for assessing the validity of the developed tools. Yet, deciding
about the integrity and authenticity of video sequences is of
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the utmost importance in several applications, even because
of the alleged trustworthiness of videos due to the (ever more
erroneous) belief that videos are more difficult to tamper
with than images. According to the guidelines issued by the
Scientific Working Group on Imaging Technologies, video
integrity verification consists in assessing whether the video
is complete and unaltered since the time of acquisition [1].
This definition directly implies that re-encoding a video breaks
its integrity. Video authentication, in turn, is the process of
substantiating that the content is an accurate representation
of what it purports to be [2]]. Since the vast majority of
video editing operations are carried out on the decompressed
version of the video, video tampering typically undergoes two
compression stages: the first during acquisition, and the second
after processing. Therefore, double compression detection,
that is, the task of blindly assessing whether a video was
compressed either once or (at least) twice, has gained great
attention as a direct indication of integrity violation and as an
indirect indication of tampering.

In this paper, we target the problem of video integrity
verification following a standard practice required in forensic
science [3]], i.e., we start with a deep study of the traces
left behind in a double video coding process and then we
design a forensic solution based on such analysis. In doing so,
we ensure that the derived algorithm is explainable, which
is an essential characteristic in legal contexts (e.g., when a
forensic analyst must provide objective judgments on some
observed data in a court of law). In addition, the acquired
knowledge from the theoretical characterization of the problem
allows us to precisely establish the limits of the proposed
algorithm, in constrast to techniques based on training complex
machines whose applicability in the forensic field is becoming
questioned [4]], because: i) generalization issues may occur,
given that the output results mostly depend on the training
data, and ii) there is still a lack of theoretical understanding
about the decision making process leading to the final result
(especially for deep learning), which usually reflects in hard
explanability of the outputs [5].

A. Literature review

The first works dealing with video integrity verification
through the detection of double video compression date back
to 2006, when Wang and Farid proposed a method to detect
double encoding of MPEG-2 video sequences [6] exploiting
double quantization traces. In the same work, the authors
observed that when one or more video frames are removed
before re-encoding the video, a periodic increase in the pre-
diction error is observed since some frames are re-encoded
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in a Group Of Pictures (GOP) different from the one of the
first compression. Later on, Stamm et al. [7] expanded this
idea proposing an automatic way for detecting such a periodic
artifact. While the above works considered a setting wherein
some frames are removed between the two compression steps,
it turns out that even simply re-encoding the video with
a different GOP structure leads to similar artifacts. Indeed,
when the GOP structure changes between the first and second
compression steps, some frames that were coded as I-frames
in the first video stream are re-encoded as predicted P- or B-
frames; these frames are sometimes referred to as “relocated
I-frames” in the literature [8], [9]. This fact has an impact on
the prediction residual and on the distribution of different types
of MacroBlocks (MBs). Such an observation was exploited in
[LO] by showing that the anomalous use of certain MB types
in double compressed videos, i.e., the so-called Variation of
Prediction Footprint (VPF), can be used to detect whether a
given video is compressed twice and, in case it is, to estimate
the size of the GOP used in the first compression.

The main limitations of the method proposed in [10] are
that: i) the GOP size of the first compressed stream is assumed
to be constant, and ii) the use of B-frames is not allowed in the
second compression. More recently, Chen et al. [11]] proposed
to improve the VPF acquisition by computing the distribution
of the average prediction residual in each frame and analyzing
to which extent such a prediction varies between adjacent
frames; the periodicity of such a variation is then studied
in a way that closely resembles [10]. While [L1] slightly
improves the performance of the original VPF analysis, it
also shares the main limitations of [[10] since it does not
support B-frames, and it assumes a constant GOP in the first
encoding. Moreover, the method was tested only on H.264
videos encoded with Constant BitRate (CBR). He er al. [9]
proposed to analyze the behavior of motion vectors in P-
frames, limiting the analysis to the static background of videos.
In those regions, for I-frames that were re-encoded as P-
frames, predicted macroblocks behave differently in terms of
motion vector magnitude and energy of prediction residual. A
problem with the method in [9]] is that it works only for static
videos, and it has been proposed and tested using MPEG-4
only for the last compression. In addition, it does not account
for the possible presence of B-frames. More recently, the same
authors proposed a method that improves the robustness of
the VPF for videos with rapidly changing content [12]]. The
extension consists in measuring the strength of the blocking
artifacts in each frame, and combining this information with
the VPF before running the periodicity analysis. The method is
defined and tested on MPEG-4 videos only, having a constant
GOP structure and without B-frames. Moreover, measuring the
strength of blocking artifacts requires decoding and analyzing
all the frames, thus increasing significantly the computational
complexity. Still leveraging on the fact that in a double
compressed video the time correlation is weak for I-frames
that are re-encoded as P-frames, Yao et al. [[13]] observed that
these frames require a larger number of bits in the bitstream.
Thus, the bit size of each frame is considered as the main
feature in [13]], allowing a fast and accurate detection of double
encoding. As all previous schemes, the method proposed in

[13] cannot cope with B-frames; in addition it has been tested
by using H.264 only for the last compression and CBR as
coding strategy. Finally, a different approach to the problem
was proposed in [8]], where authors employ a deep learning
approach to distinguish, in a frame-wise fashion, relocated
I-frames from other frames (which means: single encoded
frames or double encoded frames that maintained the original
type). In contrast to all previously mentioned approaches, the
latter method allows a fine-grained classification as opposite
to a video-wise classification. The method, however, has been
designed and tested on videos encoded with H.264, in CBR
coding mode only, and without the use of B-frames.

Bestagini et al. introduced a completely different approach
to the analysis of double compressed video sequences: they
propose to re-encode the video multiple times trying to match
the compression settings of the first encoding [14]. Indeed,
thanks to the (partial) idempotency property of video compres-
sion, and under the hypothesis that the second encoding does
not alter the video significantly, when the first compression
settings are matched the re-compressed video will not change
much. One of the main advantages of this method is that it
reveals many details about the first compression, including the
employed codec, the quality factor, and the GOP size. The
method was tested on MPEG-2, MPEG-4 and H.264 videos,
and also GOP structures with B-frames were considered. The
main limitation is related to the huge computational effort
required to re-encode the input video tens or even hundreds
of times, depending on the number of tested combinations.
Moreover, by definition, this method is expected to work when
the first compression is carried out under a Variable BitRate
(VBR) control mode, since idempotency hardly holds for the
CBR case. Finally, [14] considers only the estimation of the
parameters of the first encoding step for double compressed
videos, but it does not define any rule for double compression
detection.

Contrarily to all the methods mentioned so far, Jiang et
al. [15] focused on double compression detection in the case
where the same coding parameters are used in the first and sec-
ond compressions. The authors introduced a pool of features
that capture the quality degradation due to recompression, the
features are then used to train an SVM classifier. Different
feature extraction algorithms are proposed for MPEG-2/4 and
H.264 videos. The method is defined and tested for MPEG-2,
MPEG-4, and H.264, using CBR, VBR, and even the more
advanced Constant Rate Factor (CRF) bitrate control mode.
The main drawbacks of this scheme are the necessity of re-
encoding the video as part of the feature extraction procedure
and also the fact that B-frames are not considered.

Finally, some methods have been recently proposed for
double compression detection in HEVC videos. Costanzo
and Barni [16] focused on the case of H.264 videos re-
compressed with higher quality to HEVC, and observed that
the first compression influences the decision strategy of the
latter encoding rearding the motion prediction modes in bi-
directionally predicted frames. Liang et al. proposed in [17]]
to feed histograms of Prediction Unit (PU) partition types
to a support vector machine to uncover double compression,
limiting to P-frames and targeting the case where the last
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bitrate is higher than the former (the so-called “fake quality
scenario”); interestingly for us, the PU partition types are a
generalized version of the MB types to cover larger block
sizes and other prediction types in HEVC, thus anticipating
the generalization of the theory and algorithms presented in
this paper to the emerging HEVC standard. Li er al. [18],
instead, observed that double encoding has an impact both on
the transform unit size and on the statistics of DCT coefficients
(double quantization effect); they used such information to
train a classifier capable of detecting recompressed videos.

B. Contributions

From the above discussion, it is evident that most of the
existing schemes for double encoding detection roughly lever-
age on the same idea, that is, studying the artifacts introduced
in P-frames that were previously encoded as I-frames. While
being rather easy to justify intuitively, the theoretical reasons
underlying these artifacts have never been investigated with the
depth that a trustworthy use in forensic scenarios demands.
Moreover, most of the existing methods cannot deal with
the presence of B-frames in the second compression step,
which severely limits their applicability in real cases. The only
method providing support for B-frames, namely [14]], becomes
computationally intractable for modern high-resolution videos.
Most methods have been tested on a limited set of codecs and
bitrate control modes. With the aim of solving these issues,
this paper offers a four-fold contribution:

1) An in-depth theoretical analysis of the artifacts that
explain the presence of the VPF in double compressed
videos: in contrast to [10] where only few shallow hints
are provided, here we offer a unifying view of all the
video forensic techniques which are directly or indirectly
related to the VPF and which permits to understand why
such a footprint appears and to approximately predict its
strength, contributing to the explainability of this branch
of video forensics.

2) An improvement of the VPF acquisition process:
by exploiting the insights provided by the theoretical
analysis, information from the motion vectors, which was
not considered in [10], is used to better capture the VPF
with sizable improvements on performance.

3) A novel algorithm to compute the VPF under the
presence of B-frames in the second compression step:
this represents a major contribution since, to the best of
our knowledge, none of the schemes proposed so far
is able to work in the presence of B-frames, with a
reasonable complexity.

4) An extensive experimental campaign: by testing the
effectiveness of the derived method under a wide variety
of settings we conduct a far more exhaustive validation
than in [10], encompassing some of the latest and most
advanced video coding standards.

In the rest of this paper, we will refer to the newly proposed
approach for capturing the VPF, featuring contributions at
points 2) and 3), with the name Generalized VPF (G-VPF).
The paper is structured as follows: in Section [[T we recall the
video coding concepts necessary to understand the subsequent

sections. Section defines the problem addressed by the
paper and introduces the notation used afterwards. In Section
we analytically explain the presence of the VPF and its
shifted version induced by B-frames, while in Section [V] we
detail the proposed G-VPF technique for better capturing the
VPF and performing double compression detection and GOP
size estimation. Finally, Section provides a thorough ex-
perimental validation and comparison with existing methods,
while Section concludes the paper.

II. BASICS ON VIDEO CODING

Throughout the paper, we consider three major video coding
standards, namely MPEG-2 [19], MPEG-4 (Part 2) [20],
and H.264 [21]]. Although each standard has its own coding
characteristics, they are designed over a common block-based
hybrid video coding architecture and, consequently, the three
standards share several syntax features.

According to the block-based structure, each frame of a
captured video sequence is divided into MBs of size 16 x 16
samples, that are encoded with a suitable coding mode from
each particular standardﬂ Different types of frames are defined
depending on the prediction process carried out during the
encoding. The three standards share the definition of intra-
coded frames (or I-frames), where each MB is encoded with-
out any reference to other frames within the video sequenceE]
and inter-coded frames, where the MBs can additionally be
predicted from already coded and reconstructed frames (i.e.,
reference frames), which leads to two possible types of frames:
P-frames and B-frames. The MBs in P-frames can only be
predicted by referring to previously encoded frames, while
those in B-frames can be predicted from past and/or future
reference frames.

The different types of frames can be grouped into sequences,
creating a GOP which can be closed or open. A closed GOP
is an encoding of successive frames that can be completely
decoded without any reference to other GOPs [22]. On the
other hand, an open GOP can only be entirely decoded by
referring to other GOPs. Here, we will only consider closed
GOPs that are composed of a single I-frame that indicates
the beginning of the group and some combinations of P- and
B-frames.

Each video coding standard defines a number of coding
modes for each type of frame, with the final goal of increasing
the coding efficiency. Table [I| shows some of these coding
modes arranged according to the standard and the type of
prediction carried out in each case As noted above, the MBs
of an I-frame can only be encoded by means of intra coding
modes (i.e., I-MBs) with or without prediction depending on
the standard, while the MBs of a P-frame can be further
encoded through the inter coding modes that use reference

'Only progressive-scan videos and full-frame encodings are considered in
this work, thus, for the sake of clarity, the term “frame” is used to represent
a picture or a slice independently of the standard.

2In contrast to MPEG-2/4 standards, in H.264 an intra prediction is carried
out in the spatial domain by referring to neighboring samples of already coded
blocks (always within the same frame).

3Note that even if the same name is used, the functionality of each mode
could be different from one standard to another. Other existing modes and
sub-modes are not presented for the sake of brevity.
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TABLE I
CODING MODES FOR EACH STANDARD
Coding Mode Intra coding Inter coding
Prediction L . . . .
Standard No prediction Intra Prediction | No residue Past Future Bipredictive
MPEG-2 INTRA-16X16 X SKIP INTER-16x16
INTER-16x16
MPEG-4 INTRA-16X16 X SKIP INTER-88
INTER-16x16
H264 x INTRA-16x16 SKIP INTER-16x8
’ INTRA-4x4 DIRECT INTER-8x16
INTER-8x8
MB type I-MB P-MB | F-MB B-MB |
I-frames
P-frames
B-frames

frames from the past, either with residual data (i.e., P-MBs)
or without any residue nor motion vector (i.e., S-MBs). For the
case of B-frames, the MBs can additionally be encoded using
future reference frames (i.e., F-MBs) and bipredictive coding
modes (i.e., B-MBs), which build the prediction through a
weighted average of past and future frames.

The last row of Table [[] shows the five MB types we will
consider along the paper, which are grouped in line with the
type of frame that can use each of them. Accordingly, an
encoded I-frame only admits I-MBs, whereas a P-frame can
be composed of I-MBs, P-MBs, and S-MBs, and finally a
B-frame can contain I-MBs, P-MBs, S-MBs, F-MBs, and B-
MBs. The procedure that each encoder follows to select which
of these MB types is the most suitable in terms of coding
efficiency is described in Sect.

III. PROBLEM FORMULATION AND MODELING

The goal of this work is twofold: to detect video double
compression, and to estimate the size of the GOP employed
during the first encoding so that a more elaborate video foren-
sic analysis can be accomplished (see for instance [23], [24]).
To that end, we consider a nowadays common video double
encoding scenario where the first compression is carried out
by an acquisition device, typically a smartphone camera, and
the second compression is either performed by a video editing
tool or by a video storage service provider such as YouTube,
Vimeo, etc.

In this scenario, we assume that a sequence of N frames
with time indices n =0, ..., N — 1 is first compressed with a
constant closed GOP of length G; which is solely composed
of I- and P-frames. We discard the use of B-frames because
in practice most of the smartphone cameras do not usually
meet the computational resources to encode B-frames in real-
timeE] Regarding the bitrate control, we consider that any of
the VBR, CBR, or CRF modes can be applied during the
first compression, however, to keep the model analytically
tractable, we assume that the quality of the compressed video
is controlled by a fixed quantization parameter Q; that is
proportional to the compression strength, i.e., the larger the
value of Q; the stronger the compression. On the other hand,
the second compression is conducted with a closed GOP
of length Gy not necessarily constant, but different from
any integer multiple or submultiple of G;. We assume that

4Note, however, that the effect of B-frames in the first encoding is later
empirically evaluated in Sect. [VI-E]

U ’
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Quantization

Transform W’" Y;
&
Quantization

1 2

1%t Compression 2" Compression

Fig. 1. Double compression scheme: the left block diagram shows the first
compression stage and, correspondingly, the right block depicts the structure
of the second compression stage.

no temporal shift nor any inter- or intra-frame forgery is
introduced between both compressions. In this case, apart from
I- and P-frames, the GOP of the second encoding is assumed
to contain B-frames, since video editing tools or video service
providers are not subject to strict time constraints and so they
allow the use of B-frames for improving the coding efficiency.
To identify the type of encoding a frame has undergone at time
index n, we define the sets |, P, and B which respectively
contain the time indices of I-, P-, and B-frames (the subindex
1 or 2 will be added to explicitly refer to the first or second
encoding). As for the first compression, we assume that the
quantization is directed by a single parameter Q..

Concerning the video encoders, we assume that any of the
three contemplated standards can be indistinctly applied at
each compression stage. However, we limit the applicability
of the extensions made available by H.264, such as the multi-
frame motion-compensation [25] and the use of hierarchical
B-frames [26]]. In particular, this means that for encoding P-
frames, we assume that only the last encoded I/P-frame is used
as a reference frame, while for encoding B-frames, only two
reference frames are considered: the I/P-frame that precedes
the B-frame and the I/P-frame that succeeds it. [

Since we are interested in analyzing the double compression
processing chain independently of the standard employed dur-
ing each compression, we make use of the general framework
depicted in Fig. [} The left block diagram models the coding
scheme and variables that are used under the first compression,
while the right block diagram shows the second compression
counterpart. In particular, the left scheme in Fig. {l|models how
a given MB from the originally captured scene at a particular
time index n, denoted by X, is predicted based on a set
of previously coded and reconstructed samples at different
time and spatial locations stored in a buffer. Depending on
the type of frame, X,, is predicted according to the available
coding modes shown in Table [, obtaining the prediction
Xnﬁ After the prediction, a residual signal is obtained as
U, = X,, — X,,, whose samples are transformed applying
the Discrete Cosine Transform (DCT) on an 8 x 8 block-
basis for MPEG-2/4 or on a 4 x 4 block-basis in the case
of H.264. In the DCT domain, each coefficient is quantized
by a scalar quantizer with a particular step size A, which is

SThis constrained scenario simplifies the upcoming analysis, but it does not
prevent the use of our approach on encoded videos with the mentioned H.264
extensions. These extensions will only affect the method’s performance.

SIn the particular case of MPEG-2/4, no prediction is computed for the
intra coding modes, thus having Xn =0.



JOURNAL OF KTEX CLASS FILES, VOL. X, NO. X, MONTH YEAR

controlled by the aforementioned quantization parameter Q;.
Finally, the reconstructed samples X/, are recovered by adding
back the de-quantized and inverse transformed samples U/, to
the prediction X,,, such that X =u + X,,.

The above description straightforwardly extends to the sec-
ond compression block on the right of Fig. |1} the source and
predicted samples are denoted by Y, and Y, respectively,
the residual signal by W,, and its reconstructed version by
W/ ; in this case, the quantization parameter is Q, and the
recovered samples are indicated by Y7,.

A. Description of video coding strategies

The main goal of an encoder is to efficiently represent an
input sequence of pictures using the available syntax elements
of a particular video coding standard. To achieve this, the
encoder minimizes under certain constraints the distortion
between the original sequence and its reconstruction after
encoding. Here, we only use a maximum rate r as a constraint,
because no error-prone transmissions are taken into account.
Therefore, the general problem of finding the most suitable
syntax elements for encoding a set of samples X stemming
from a captured scene can be formulated as

minimize D(X,X’)
subject to  R(X’) <, (1)

where D(X, X') measures the distortion between the original
source samples X and their reconstructed version X’, while
R(X') denotes the number of bits needed to encode the syntax
elements that allow the reconstruction of the samples X”.

There are multiple ways of addressing the above minimiza-
tion problem. In practice the overall problem is split into
different parts, such that specific rules can be applied for MB
coding-mode decision, motion estimation, and quantization
[27]. In this case, since the footprint we rely on for double
compression detection is directly related to the methodology
adopted for MB coding-mode decision, we focus on the
strategies employed to solve this problem. One of the first
(and also less sophisticated) encoding strategies that were
proposed by the ITU-T Video Coding Experts Group is the
one described in Test Model Number 9 (TMN-9) [28], which
is fundamentally based on the use of thresholds to compare
the different distortion values achieved by each coding mode.
As noted in [27]], this strategy is very convenient because it is
computationally cheap, however, the coding performances are
much lower than those achieved by novel encoding strategies
that are based on Rate-Distortion (R-D) theory. In that sense,
in [27] the optimization problem in (I), is solved by using
Lagrange multipliers, resulting in the following unconstrained
problem

minimize J(X,X’) = D(X,X’) + AR(X),

where A represents the Lagrange multiplier associated to the
optimum solution of (I)) for a particular value of ». When this
Lagrangian-based encoding strategy is applied to the selection
of the MB coding-mode, the minimization of the Lagrangian
functional for each coding mode c¢ applied to the source

macroblock X,, at time index n (i.e., J.(X,, X)), yields the
following minimization problem

MB type = argmin D(X,, X;,) + AR(X3), ()

where ¢ denotes any of the available coding modes from
Table thus having C £ {I-MB, P-MB, S-MB, F-MB, B-MB},
and ). is the corresponding Lagrange multiplier for the
selected coding mode (whose value is obtained as a function
of the quantization parameter, as described in [29]]). The
distortion measure D(X,,X/) is commonly taken as the
Sum of Squared Differences (SSD) between the reconstructed
block X/, and the source block X,,, such that D(X,,, X/ ) =
|X,, — X! ||3, while the rate measure R(X!)) is generally an
estimate of the number of bits required for encoding X/, with
the coding mode c.

The above Lagrangian-based strategy is nowadays estab-
lished as the de-facto paradigm in video coding because it
significantly improves the coding efficiency of a video se-
quence independently of the standard employed. So, assuming
the use of such encoding strategy in our coding scheme,
in the next section we will analyze how the consecutive
application of two compressions affects the decisions taken
by the encoder in each compression stage, which ultimately
leads to the anomalous variation of prediction footprint, i.e.,
the VPF, first identified in [[10]. Since the derivation of the R-
D function of the double-compression processing chain could
be overwhelmingly complicated due to the different types of
frames and coding modes involved, we rather perform the
analysis of the VPF by relying on known properties of R-
D functions and on the particular characteristics of the double
compression scheme shown in Fig. [T}

IV. ANALYSIS OF THE VPF THROUGH R-D CURVES

Here, we provide a more rigorous analysis of the reasons
behind the appearance of the VPF, showing that this footprint
is directly connected to the technique employed for the selec-
tion of the MB coding-mode. With the aim of explaining the
origin of the VPF, we first describe the expected behavior
of the encoder when a single compression is carried out
(Sect. IV-A), then we focus on how the application of a
subsequent compression biases the decisions of the encoder
so that the VPF shows up in P-frames that were originally
encoded as I-frames (Sect. [V-B). This part of the study
will validate the use of motion vectors by our novel G-VPF
approach to enhance the VPF acquisition process with respect
to [10]. Finally, we also characterize the VPF in GOPs that
contain both P- and B-frames (Sect. [V-C), thus laying the
basis for the adoption of the G-VPF technique also in the
case where B-frames are present in the second encoding.

Before starting the analysis, we recall two important proper-
ties of the R-D function R(D) for the SSD distortion measure
described in Sect. [III-A} i) the rate distortion function R(D) is
a non-increasing and convex function of D, and ii) there exists
a value Diyay, so that VD > Doy, R(D)=0, where Dy is
proportional to the variance of the source. In the following, the
conclusions drawn from the R-D characterization of the VPF
are always supported by R-D curves obtained empirically from
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the average calculation of the distortion and rate of the set of
video sequences from [30]] that are described in Sect.
With regard to the encoder, we only use the implementation
of the MPEG-2 standard available in the FFmpeg library
[31], because its code can be conveniently adapted to extract
the values of distortion and rate from each MB type during
the encoding. Still, the specific characteristics of the other
two standards are also discussed, especially for H.264, which
introduces different prediction structures.

A. Single compression of P- and B-frames

The expected behavior of a video encoder when the coding-
mode decision is guided by a Lagrangian-based strategy is ex-
amined here under a single compression: initially for P-frames
and then for B-frames. To guide the discussion, we show R-
D curves stemming from each of the MB types collected in
Table [, except for the S-MBs because the use of S-MBs
is decided afterwards, i.e., once the Lagrangian functional
achieves a minimum using any of the remaining inter-coding
modes: P-MB, F-MB, or B-MB, with the peculiarity of having
a zero-motion vector and null residual data. Specifically, the
empirical R-D curves are obtained after computing the average
distortion and rate for all MBs from an uncompressed frame
at time index n and for all possible values of the quantization
parameter Q;, which ranges from 2 to 31, thus obtaining a
data-driven version of the R-D function.

1) P-frames: In this case, only I-MBs, P-MBs, and S-
MBs are available. In a predictive coding scheme such as
the one shown on the left of Fig. [IJ the R-D function
depends on the variance of the residue Var (U,,) since the
distortion of the source can be expressed in terms of the
prediction residue U, ie., D (X,, X)) = [|X, — X/ |3 =
U, + X, — (U, +X,)||3 = D(U,,U,). For typical video
contents with a certain amount of temporal redundancy, the
intra-coding modes are the less efficient option given that no
temporal prediction is carried out. Indeed, for the particular
standards MPEG-2 and MPEG-4, the available intra-coding
modes do not apply any intra-prediction process, so X, =0
and U,, = X,,, implying that the variance of the residue equals
the variance of the source, which is generally large. For the
H.264 standard, even if a spatial prediction is performed, the
resulting variance of the prediction residue is supposed to be
larger than the one obtained through an inter-prediction (or
motion-compensation) process, thus in general we can assume
that Var (U,,) |c=1.mp > Var (U,,) |c=p.MB. As a consequence,
the R-D curve for I-MBs is expected to be well above the one
obtained for P-MBs, as it is perfectly reflected in the empirical
R-D curves shown in Fig. P{a).

Given the gap between the curves, when applying the
Lagrangian optimization procedure, the encoder will regularly
opt for the use of P-MBs instead of I-MBs. In fact, the only
case in which the above condition on the variance of the
residues is not expected to be satisfied is when the motion
compensation is ineffective (e.g., at a change of scene or when
a certain portion of the scene is suddenly uncovered), thus
leading to residual signals with variance of the same mag-
nitude, and the probability of using I-MBs would marginally
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Fig. 2. Single compression R-D curves obtained on average when encoding
P-frames (a). Double compression R-D curves obtained on average at n € Iy
(b) and n€P1 (c).

increase. On the other hand, the amount of S-MBs will depend
on the video content characteristics, since their use is only
effective in static regions. In general, the smaller the variance
of the residue, the larger the probability of using S-MBs
given that a low variability in the residual signal means a
high temporal redundancy. Also typically, large values of Q;
favor the use of S-MBs, since the probability of having a null
residual increases at higher compression rates.

2) B-frames: For this type of frames, the encoder can
use all the MB types shown in Table [l The aforementioned
selection process of I-MBs is equally applicable to this case, so
we mainly focus on how the P-MBs, F-MBs, and B-MBs are
selected. To simplify the discussion, we introduce the notion
of sub-gop which denotes the set of adjacent B-frames that
are delimited by the reference frames (I or P) on both sides
as illustrated in Fig. [3]

Considering again a video sequence with a certain amount
of temporal redundancy, at the beginning of the sub-gop
we expect the variance of the residue obtained by the
P-MBs to be the smallest one, i.e., Var(U,)|c—pmp <
min (Var (U,,) |c=pms, Var (U,,) |c=p-mB), due to the proxim-
ity in time to the reference frame. This variance will follow an
upward trend towards the end of the sub-gop. Conversely, the
same reasoning applies to the F-MBs, showing a downward
trend from the beginning to the end of the sub-gop. In the
intermediate positions of the sub-gop, the smallest variance
should be achieved by the B-MBs, while for P- and F-MBs
the variance of the residue should have a similar magnitude.

All these effects are well reflected in the R-D curves shown
in Fig. where it can be observed how Var (U,,) |c—p.mB
gradually increases on the way to the end of the sub-
gop (conversely, Var (U,,) |c—r.vp decreases), and also how
Var (U,,) |c—s-mB keeps constant across the sub-gop. Conse-
quently, regarding the number of each type of MB along the
sub-gop, we expect P-MBs to prevail at the beginning of the
sub-gop, whereas F-MBs will be dominant at the end. The
number of B-MBs will moderately increase in the intermediate
positions of the sub-gop.

B. Double compression: VPF on P-frames

From the previous analysis, we know that the selection of
the most efficient MB type is driven by the relation between
the variance of the prediction residues. Let us focus now on
the right block diagram of Fig. [T] where, depending on the
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type of frame employed during the first compression (either I
or P), the encoder will behave differently with respect to the
single compression case. This time, to obtain the empirical
R-D curves, all the video sequences are first compressed at
a medium quality (i.e., Q; = 16) and then we compute the
average distortion and rate values achieved during the second
encoding, covering the values of Qg from 2 to 31. In the
following, we specialize the analysis for a given frame at time
index n, when n € |; and when n € P;.

1) Case n € l;: With respect to the single compression
case, the main differences introduced by the re-encoding of
an I-frame with I-MBs are:

o Var (W,,) [c=1mp < Var (U,,) |c=1.mp: after the first com-
pression, part of the spatial details of the scene are
removed, yielding a smaller variance of Y,, and W,,.

e D(Y,,Y,)=D(W,, W) =0 for those values of Q,
that divide Q;: the reason is that the distribution of DCT
coefficients of W, is discrete (due to the quantization
applied in the first compression) with a probability mass
function denoted by Py (w). Therefore, the expression
for the above distortion can be written as

D(W,, W7,)
-]

-y ¥

P =+ 1) 52 ]

[N

(JA1L = kA2)* Py (A1),

where a mid-riser quantizer is assumed without loss of
generality. A; and A, represent the quantization step
sizes used for a given DCT coefficient during the first
and second compression, respectively. Due to the previous
quantization, the above distortion is zero whenever A is
an integer multiple of A,, i.e., whenever Q, divides Q;.

Both effects become apparent when comparing the red curves
of Figs. 2(a) and 2[b). In addition, the main characteristic that
arises from the re-encoding of an I-frame with P-MBs is:

o Var (W,,) [c=p.mB =~ Var (U,,) |c=p.mp: surprisingly, even
if the input frame is the result of a previous compression
and hence one would expect a smaller prediction variance
(as for I-MBs), in this case, what is actually rising up the
variance of the residue is not a sudden lack of temporal
redundancy (since the original scene remains unchanged
between compressions), but the quantization noise added
when encoding the I-frame in the first compression, which
is not of the same nature as that arising from the reference
frame of the second compression.

The mentioned differences imply that the gap between the
R-D curves decreases (see Fig. [2[b)), and accordingly the
following variation of coding modes takes place in the second
compression when encoding an original I-frame as a P-frame:

a) The number of I-MBs increases: the decrease in
Var (W ,,) |c=1.mp together with the zero distortion values
in D(W,,, W/ ) bias the decision toward I-MBs.

b) The number of S-MBs decreases: even if the real motion
of the scene leads to a null motion vector, the different
nature of the residual noise prevents the use of S-MBs.

i
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Fig. 3. Single compression R-D curves obtained on average when encoding
B-frames.

¢) The number of P-MBs with null motion vector increases:
this is a consequence of the above point.

In [10], only the first two effects were pointed out, however,
the last finding definitely contributes to improving the acqui-
sition of the VPF, as we will later confirm in Sect. [V}

2) Case n € P;1: The differences that emerge with respect
to the single compression case when a previously encoded
P-frame is predicted using I-MBs are:

e Var (W,,) |c=1mp < Var (U,,) |c=r.mp: the reason is the

same as the one pointed out when n € |;.

e D(W,,W/) # 0: it is still possible to find distortion
values equal to zero for some MBs when Q, divides Qy,
but it is not the prevailing case as in n € |;. In fact,
only null distortion values can be attained in MBs that
are predicted with S-MBs in the first compression and
whose content is directly taken from an I-frame.

On the other hand, the differences introduced when a P-frame
is encoded with P-MBs are:

e Var(W,,) [c=zp.mp < Var (U,,) |c=p.mB: As opposed to
the case n € |i, here the variance of the residue is
notably smaller. This is consistent with what we expect
from the application of a compression in a previous stage.
The reason of such reduction is that in this case the
quantization noise added during the encoding of the P-
frame in the first compression shares the same nature of
the one coming from the reference frame.

Fig. [2fc) shows the corresponding empirical R-D curves for
this case, where it can be observed that the gap between the
R-D curves has grown with respect to the one in Fig. 2(b),
so that the behavior of the encoder is nearly aligned with that
of a single compression. This “return to normality” ensures
that the VPF can be captured, as later described in Sect.
For further details on how different coding parameters, such
as the quantizer deadzones and step sizes used in MPEG-2,
affect the strength of the VPE, the reader is referred to the
technical report that complements this work in [32].

C. Double compression: VPF on B-frames

We now focus on the two effects that a previously encoded
I-frame produces on the second compression when it is re-
encoded as part of a sub-gop of B-frames: i) a shifted VPF
is induced, and ii) an abrupt change in the number of P-MBs
and F-MBs shows up within the sub-gop.

Regarding the first effect, as long as the reference frames
that delimit the sub-gop are P-frames and the size of the
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Fig. 4. Double compression R-D curves obtained on average when encoding
P- and B-frames from previously encoded I-frames located at the beginning
(a), middle (b), and end (c) of the sub-gop.

sub-gop is short (e.g., not larger than 5 frames, which is
reasonable in practice), a shifted version of the VPF arises
during the encoding of the reference frame that follows the
sub-gop. The encoding of this reference frame shares several
similarities with the case discussed in Sect. [V-B1] with the
subtle difference that here the source of the reference frame is
not the I-frame from the first compression, but a subsequent
P-frame that results from a concatenation of predictions that
starts from the I-frame. Consequently, the similarity between
the R-D curves of the I-MB and P-MB coding modes shown
across the top-right corners of Figs. fa)-(c) with those shown
in Fig. [2[b) becomes more evident as the I-frame approaches
the end of the sub-gop. This effect can be better observed
in Fig. 5] where the R-D curves at the top-right corners of
Figs. @[a)-(c) are plotted together (zoomed in and separated
according to the MB type) and compared with the R-D curves
from Fig. [Jb) (dashed lines). The set of chained predictions is
the reason why the VPF appears at a shifted point with respect
to the real position of the I-frame. The proposed approach to
correct such shift is further described in Sect.

of th

e sub-gop)
2(o) for P-MB

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
istortion Distortion

(@) (b)

Fig. 5. Zoomed version of the R-D curves shown at the top-right corners of
Figs. Eka)—(c), splitted according to the MB type: (a) I-MB, (b) P-MB. For
comparison, the respective R-D curve from Fig. Ekb) is added (dashed line).

Concerning the second effect, the explanation below ana-
lyzes the abrupt changes in the number of P-MBs and F-MBs
that occur under three different scenarios depending on the
position of the I-frame: at the beginning, in the middle, or at
the end of the sub-gop.

1) I-frame located at the beginning of the sub-gop: This
scenario is depicted in the top-left corner of Fig.[(a). As noted
in Sect. [V-A2] when encoding the first B-frame of a sub-gop,
the P-MB is expected to be the most efficient coding mode due
to the proximity to the first reference frame. However, in this
particular scenario, with an I-frame located at the beginning of
the sub-gop, the temporal redundancy is broken because the I-
frame adds a new quantization noise that cannot be predicted
by a motion translation, thus increasing the variance of the
prediction residue for P-MBs.

In addition, from the above analysis, it is clear that the
reference frame that comes after the sub-gop is the result
of a series of predictions that start from the I-frame, which
converts this future reference frame into a more suitable source
for predicting the first frame of the sub-gop, and so the
variance of the residue for the F-MB coding mode decreases.
This observation is consistent with the R-D curves shown in
Fig. [(a), from which we can deduce that the use of F-MBs
will prevail in the second encoding with respect to B-MBs and
P-MB:s.

This anomalous prevalence of F-MBs at the origin of a sub-
gop will be used as a feature to measure the VPF in Sect.

2) I-frame located in the middle of the sub-gop: Consider-
ing the scenario shown in the top-left corner of Fig. @|b),
we observe that the behavior of the encoder prior to the
compression of the I-frame follows the path described in
Sect. [IV-A2] Hence, in the first position of the sub-gop, the use
of P-MBs is more frequent. Then, once the I-frame comes into
play, we return to the same situation discussed in the previous
scenario, with a sudden drop of P-MBs in favor of an abrupt
increase on the number of F-MBs. Once more the R-D curves
depicted in Fig. fb) support these findings.

The main difference with respect to the previous scenario
is that the abrupt change in the number of P-MBs and F-MBs
reveals the position of the I-frame, which will also be used as
a feature to measure the VPF in Sect. [V-Al

3) I-frame located at the end of the sub-gop: In this case,
no new feature arises, but the R-D curves collected in Fig. Ekc)
reinforce the observation of the abrupt change in the coding
modes to the end of the sub-gop, where the I-frame is located.
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V. DESCRIPTION OF THE G-VPF TECHNIQUE

In this section we describe a new improved strategy to detect
whether a given video sequence has been doubly compressed
and, if so, to estimate the size of the GOP employed during
the first compression. The proposed G-VPF technique consists
of three phases: first, the strength of the VPF is quantified
(Sect. [V=A), then, if needed, the shifted VPF is corrected
(Sect. [V-B)), and finally a periodicity analysis is carried out
to detect double compression and to estimate the GOP size of
the first compression (Sect. [V-C).

A. Enhanced acquisition of the VPF

For a given video sequence of N frames, we first need to
extract the location of each type of frame to build up the sets
I, P, and B. Then, for each of these frames, the position of
the different MB types must be accounted for to measure the
strength of the VPF. Assuming that each frame contains a total
of Ny macroblocks, we define the set of MB indices coded
as I-MBs at time index n, as follows

I, 2 {j € {0,... Nyg — 1} : MB_type (X,&J’)) - I-MB},

where MB_type (-) is a function that returns the MB type of
a given MB, and ng ) denotes the j-th MB from the n-th
frame of the given video sequence. Similarly, we define the
sets S, P, and F,,, which respectively contain the indices
of the S-MBs, P-MBs, and F-MBs. From the analysis in
Sect. it is clear that the evolution of the B-MBs does
not present significant changes in case of double compression,
so their use in the measure of the VPF is disregarded. On
the other hand, since the P-MBs with null motion vector can
positively contribute to VPF detection, we define the set M,
that contains the indices of the MBs with null motion vector:

M, 2 {j €{0,... Nyg — 1} : MV (X;ﬂ) _ (0,0)},

where MV (+) is a function that returns the motion vector of
a given MB. The set containing the indices of P-MBs with
null motion vector is then defined as P,, £ P,, N M,,. Note
that this type of MBs is the new feature that results from the
R-D analysis in Sect. to improve the VPF acquisition
process, which was not previously contemplated in [10].

The quantification of the VPF is related to the number of
MBs of each type and their evolution over time. Therefore, we
build vectors of N samples that contain the number of MBs
of each type. In the particular case of I-MBs, we build the
vector i, whose i,,-th component is:

|In|7 lf’IlGPUB
in = T y], ifnel , forn=0,...,N—1,
0, ifn=20
where | - | indicates the cardinality of a set. Notice that in

the above equation, the first case corresponds to counting the
number of [-MBs in P- and B-frames, while the remaining
cases are taken into account to avoid strong peaks in the
vector i that are not related to the VPF, but to the presence of
an I-frame in the second encoding. For the other MB types,
we define the vectors s, p, p, and f, whose components are

respectively obtained as s, £ Sy, pn

and f, £ |F,|, forn=0,...,N — 1.

Once all the information for each MB type has been
collected, we have to measure the strength of the VPF. Here,
we do not only gather information from P-frames, but also
from B-frames, in contrast to [[10]. Specifically, to capture the
abrupt change in the number of P-MBs and F-MBs discussed
in Sect. we define the function hy, ¢(n) that analyzes, at
each index value n, if there is a sudden change in the number
of P-MBs and F-MBs. If so, we measure the magnitude of such
an effect by taking the product of the corresponding slopes:

hp.£(n)
A {l(pn_pn—l)(fn _fn—1)| ;o ifppa> fn—l and p, < fn

£ |Puls Bn £ |Pul,

0, otherwise

On the other hand, to quantify the 3 prediction variations
pointed out in Sect. we define a generic function ga(-)
applied over an arbitrary vector a that computes the amplitude
difference between a rising peak and its immediate neighbors

|an - an—k‘?
n, k) =
9a(n. k) {1, otherwise

if ap, > max(an—1,ant1)

)

where k € {—1,1} in such a way that the magnitude of the
rise level is measured for k£ = 1 and the fall level for k = —1.
Note that the above function is equal to 1 when there is no peak
at time n. This function is applied to process the evolution of
the number of I-MBs, S-MBs, and P-MBs with null motion
vector, thus resulting in the functions g;(n, k), g_s(n, k), and
gp(n, k), where we take the negative version of s to seize the
decreasing peaks. Considering these functions, we define the
vector v that quantifies the VPF, whose components are

v, 2 hpf(n)? if gi(n’ 1) = g-S(n’ 1) = gf’(nv 1) =1
> okeay 9i(n, k)gs(n, k)gs(n, k), otherwise ’

where the first and second cases represent the contribution
of the VPF from B- and P-frames, respectively. In Fig. [6{a)
we graphically explain how to compute v,, for P-frames and
compare the resulting VPF strength with that from the method
in [10]]. Fig. [f[b) shows a particular example where the method
in [10] fails detecting the VPF, whereas our new approach
relying on the P-MBs with null motion vector is able to
quantify it. Still, following this new VPF acquisition process,
the vector v can present shifted peaks caused by the presence
of B-frames that are corrected as described next.

B. Correction of the shifted VPF induced by B-frames

As detailed in Sect. a shifted version of the VPF
occurs in the P-frame that follows a sub-gop of B-frames. This
can be seen in point (D) from the illustrative example shown in
Fig. [6[c). Therefore, to correct the position of a shifted peak
in vector v, we must separately analyze all the components
for which v,, > 0 and m € P. Then, we need to identify the
sub-gop preceding the P-frame at each time index m. We do
so by calculating the set of indices B,,:

By 2{k€B:m—Gg(m) <k<m-1, m—1¢B},
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Fig. 6. Graphical examples showing how to obtain v, with the proposed G-VPF technique vs. the method in [10] on P-frames from news: (a) Q; =16, Q, =2,
(b) Q1 =16, Qy=24. In (c), from points () to 3), graphical illustration of the shift correction procedure under B-frames with the proposed G-VPF technique
(Qy =12,Q,=6). Note that in the above frames from news, we superimpose the colors defined in Table [l to represent each type of MB.

where Gg(m) £ min;ejup,j<m(m—1—1) represents the size of
the sub-gop (see points Q) in Fig. [f[c)). Note that if B,,, = 0,
this means that there is no sub-gop of B-frames at time index
m and so the value of v,, does not need to be corrected.
Now, since the effect that reveals the actual position of the
I-frame in the first encoding (and thus the correction to apply)
is the sudden change in the number of P-MBs and F-MBs
between adjacent frames, we need to capture that particular
event. To do so, we first define the vector b which gathers
the difference between the number of P-MBs and F-MBs at
each time index n as b £ p — f, with b, = p, — f,, and
n = 0,...,N — 1. In addition, to identify the exact instant
of the abrupt change, we take into account the number of
co-located MBs that suddenly change from P-MB to F-MB,
which we measure through the cardinality of the set that results
from the intersection: P, _1 NJF,. Since this exchange of MBs
can only be measured when at least two consecutive B-frames
are present in the sub-gop, in case of a single B-frame, the
difference f,, — p, is taken instead. Accordingly, we define a
vector b whose components are given by

|Prn—1NFyl|, if(n—1)cBandn€B
bn 2 fr — pu, if (n—1)¢BandneB.
0, otherwise

With this information, the correction of the shift for the vector
v at time index m, i.e., 7(m), is given by
A ] M —argmaxgep,, Bk, if minkeBm b <0
T(m) = . .
0, otherwise

From the analysis in Sect. we consider in the above
definition that the correction of the shift must only be captured
when at some point within the sub-gop the number of F-MBs
exceeds that of P-MBs (see point Q) in Fig. |§Kc)), otherwise
T(m) is set to zero. Finally, provided that 7(m) # 0, the
measure at the actual position of the VPF, i.e., vp—r(m), is
updated by increasing its value by the contribution of the
shifted peak v,, (see point @ in Fig. @c)), then the shifted
peak is removed by setting v,, = 0 (see point 3 in Fig. [{c)).

C. Periodicity analysis of the measured VPF

After correcting all the shifted peaks in the vector v, it is
possible to use it for frame-wise relocated I-frames detection,
video double encoding detection, and GOP-size estimation.
The former application is simply obtained by classifying all
elements of v exceeding a selected threshold as relocated I-
frames. For the other two applications, the periodicity analysis
from our work in [10] can be applied, which is summarized
hereafter. First, a set of candidate GOPs to match the real one
applied during the first compression, i.e., Gy, is determined
from the vector v that quantifies the VPF. Since we look for
an artifact that is periodically repeated across the vector, we
restrict the search to the set of the greatest common divisors
(gcd) between all possible couples of non-zero elements from
the vector v. Hence, we define the set G of candidate GOPs
as

G £ {gcd(ny,n2):vn, >0,v,,>0,¥n1,n2€{0,..., N—1}}.

Then, each candidate value ¢ € G is associated with a
fitness value ¢ : G — R, that measures how well the
choice of g models the periodicity of the signal captured by
v. In particular, the fitness function ¢(g) is built upon the
combination of the three following measures:

1) The energy of the peaks that are located at multiples of

g, e, ¢1(g) = Z,I::O Uk.g» Where K £ %

2) The absence of peaks that would be expected in mul-
tiples of g, quantified as ¢2(g) = B|A,|, with A, =
{k-g:v44=0,k=0,...,K}, where 3 penalizes peak
missing and is taken as 3 £ 0.1 max,, vp.

3) The maximum energy of the peaks that are not aligned
with the period ¢: ¢3(g) = max;=1,._ g1 Ef:_ol Vkgti-

The combination of these measures is taken as ¢(g) =
d1(g) — d2(g9) — ¢3(g), where it is evident that ¢o and ¢
penalize the candidate g. Once the fitness of every candidate
in G has been evaluated for a given video sequence, the video
can be classified as single or double compressed depending
on the test statistic p, which is defined as p £ max,eg ¢(g).
After setting a predefined threshold Ty, video sequences with
p > Ty are classified as double compressed, and otherwise
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TABLE II
COMPRESSION SETTINGS.

1st encoding

2nd enconding

Settings Q, (H.264/MPEG) Ry Ci Q, (H.264/MPEG) Ro Co
VBR-VBR [20/2, 26/5, 32/10, 42/20] - - [10/1, 27/6, 31/9, 38/18] - -
VBR-CRF [20/2, 26/5, 32/10, 42/20] - - - - 5, 15, 30]
CRF-CRF - - [10, 18, 26] - - (5. 15, 30]
CBR-CBR - [100, 500, 900] - - [100, 500,900] -

ENC,/ENC; algorithms [H.264, MPEG-2, MPEG-4] [H.264] [H.264, MPEG-2, MPEG-4] [H.264]
B1/Bg frames [0] and [2, 3, 5] in Sect. [0, 2, 3, 5]
G1/G [14, 30] [9, 25, 120]

as single compressed. Finally, whenever a video sequence
is classified as double compressed, the estimate of Gj is

G = argmaxgyeg ¢(9).

VI. EXPERIMENTAL RESULTS

We evaluated an implementation of our methocﬂ on a wide
variety of configurations, some of which are challenging for
the proposed algorithm itself. The experimental dataset is
based on well known YUV videos at CIF resolution com-
pressed with three different encoders (MPEG-2, MPEG-4, and
H.264) using a vast range of configurations in terms of rate
control modes, encoding quality, and GOP size/structure. We
compare our method against its previous version (VPF [10]),
and against three recently proposed algorithms, whose imple-
mentations were kindly provided by the respective authors.
The first one is the algorithm described in [[14], which per-
forms GOP size estimation even on videos compressed with
B-frames, but does not perform double encoding detection.
The second is the one developed by Chen er al. [11]], which
performs double encoding detection but does not support B-
frames. The third one is the algorithm proposed by He et
al. in [8] which performs frame-wise “relocated I-frame”
detection, a special case of double compression detection.

The experimental validation is organized as follows:
Sect. describes the dataset used for the experiments and
the compression settings; Sect. presents the performance
of the proposed method comparing it against [10f], [L1],
and [14] with regard to the estimation of the first GOP size;
Sect. evaluates our technique with regard to double
compression detection; Sect. studies the impact of video
content on the G-VPF performance; Sect analyzes how
the introduction of B-frames in the first encoding affects the
proposed method; Sect. evaluates the “relocated I-frame”
detection performance of the G-VPF with respect to [8]; finally
Sect. provides some insights on the computational cost
of the considered algorithms.

A. Dataset and settings description

Experimental validation was carried out by collecting 31
uncompressed YUV videos with CIF resolution [30], which
are either static (low-motion scenes captured by a fixed
camera) or dynamic (scenes with motion caused by a focal
length change or a moving Camera)

7 Available online: https://github.com/IAPP-Group/GVPF

8Static: akiyo, bridge-close, bridge-far, bowing, container, deadline,
galleon, hall, mother-daughter, news, pamphlet, paris, sign-irene, silent,
students, vtclnw, washdc. Dynamic: city, coastguard, crew, flower, football,
foreman, harbour, highway, husky, intros, mobile, soccer, tempete, waterfall.

Each uncompressed video is encodecﬂ by means of the
three encoders: MPEG-2, MPEG-4 and H.264, and rate control
modes: CBR, VBR and CRF. In CBR, the number of bits per
second is fixed throughout the encoding process, since the
perceived quality is less important than the file size. VBR
dynamically changes the bitrate of the media content depend-
ing on the specified quality factor but takes longer than CBR
to produce a higher quality video. CRF is a constant quality
encoding mode which dynamically changes the quantization
parameters so as to maintain a prescribed level of perceived
quality in the encoded video, thus simultaneously taking into
account both quality and bitrate.

Interestingly, we noticed that the results of all the tested
methods are strongly influenced by the rate control mode
employed in the first or the second encoding, thus we tested 4
double compression scenarios: VBR-VBR, CBR-CBR, VBR-
CRF and CRF-CRF. In detail, VBR-VBR and CBR-CBR
are the most common scenarios tested in the state of the
art, however we deem that VBR-CRF is the most realistic
case. Indeed, the first encoding is usually performed by the
acquisition device, which has limited processing power and
has to operate in real-time, thus making the computationally
intensive CRF mode hard to use. On the other hand, the
second compression can take advantage of more processing
power and time, being usually performed off-line, so using
the more advanced CRF mode will produce a video with the
best balance between quality and file size.

Table [l] summarizes the first/second compression param-
eters used for our validation in terms of: bitrate value
(R1/R2), quantization value depending on the encoding algo-
rithm (Q;/Q,), CRF value (Cl/Cgm group of pictures size
(G1/G2) and number of consecutive B-frames (B1/Bs). The
combination of parameters in Table [[I| produced an overall
dataset of 10044 single compressed videos and 200880 double
compressed videos. We point out that the values reported in
Table |lI] with respect to the VBR scenario consider different
quantization values depending on the encoding algorithm,
namely H.264 and MPEG-2/MPEG-4 (e.g., Q; = 20/2
indicates H.264 with Q; = 20 and MPEG-2/MPEG-4 with
Q; = 2). Indeed, the range of quantization values used by
H.264 is wider ([0, 51]) than the one used by MPEG-2/MPEG-
4 ([0,31]); to allow for a meaningful comparison, we chose
four quantization parameters in H.264 ranging from high to
poor visual quality and we identified the corresponding quanti-

We used FFmpeg v3.0.1 software [31] to encode with MPEG-2 and
MPEG-4 codecs. x264 v0.148.x software [33] to perform H.264 compression.
10The CRF mode is available only with the H.264 codec.
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TABLE III
G1 MATCH ACCURACY WITH B; =B2 =0 (MARGINALIZED OVER THE CODEC-PAIR (ENC1, ENC3)).
G match accuracy | VBR-VBR [ VBR-CRF CRF-CRF CBR-CBR
ENC; ENC; | G-VPF_ VPF[I0] [I4] [ G-VPF__ VPF [I0] [I4] | G-VPF__ VPF [I0] [14] | G-VPF__VPF [10] [0
H.264 H.264 81.7 80.5 185 93.2 92.4 30.1 75.4 71.6 20.1 91.3 91.8 71.6
H.264  MPEG-4 79.7 56.8 9.5 - - - - - - 64.5 54.1 -
H.264  MPEG-2 80.2 53.8 8.7 - - - - - - 64.2 47.6 -
MPEG-4  H.264 82.2 81.4 29.0 90.8 90.4 353 - - - 95.5 96.5 63.7
MPEG-4 MPEG-4 82.9 66.7 25.4 - - - - - - 70.0 65.2 -
MPEG-4 MPEG-2 85.6 63.6 26.1 - - - - - - 72.8 55.7 -
MPEG-2 H.264 73.2 71.7 352 88.2 84.1 38.3 - - - 95.8 97.3 72.3
MPEG-2 MPEG-4 75.6 60.4 312 - - - - - - 68.9 66.8 -
MPEG-2 MPEG-2 79.8 62.6 29.7 - - - 71.9 65.0
TABLE IV TABLE V
G1 MATCH ACCURACY IN H264 CBR-CBR SCENARIO WITH B; =B2=0. G1 MATCH ACCURACY IN VBR-VBR SCENARIO WITH B; = B2 = 0.
G1 match accuracy CBR-CBR G1 match accuracy VBR-VBR
Ry Ro G-VPF  VPF [10] L] Q1 Qs G-VPF  VPF [10] [14]
100 100 99.1 99.6 53.6 20/2 10/1 83.9 61.9 39.4
100 500 98.9 100.0 74.2 20/2 2716 54.8 29.0 2.6
100 900 97.5 100.0 70.3 20/2 31/9 43.1 15.5 0.7
500 100 90.9 88.9 45.9 20/2 38/18 21.0 7.2 0.3
500 500 97.3 99.8 89.1 26/5 10/1 92.1 88.0 55.1
500 900 96.4 100.0 93.0 26/5 27/6 87.6 74.7 12.7
900 100 78.3 73.8 31.7 26/5 31/9 78.7 50.3 2.8
900 500 94.3 96.1 74.0 26/5 38/18 534 21.5 0.6
900 900 95.2 98.6 91.0 32/10 10/1 96.4 95.3 58.0
32/10 2716 96.5 94.4 329
32/10 31/9 94.7 86.9 15.8
zation values for codecs MPEG-2/MPEG-4 by comparing the 32/10 38/18 83.3 46.8 1.6
PSNR of YUV videos after compression with both codecs. 42120 1071 99.3 99.2 559
. . . 42/20 2716 98.5 99.9 48.2
Considering that B-frames are rarely employed by capturing 42/20 31/9 993 997 389
devices (e.g., in videos of the recent VISION dataset [34]] 42/20 38/18 99.0 88.9 13.7

only one smartphone out of 35 uses them), we chose to limit
the main experimental validation to consider only I/P frames
in the first encoding, whereas the second encoding uses I/P
and 2, 3, or 5 consecutive B-frames. Nevertheless, we dedicate
Sect. to analyze the sensitivity of the proposed method
to the presence of B-frames in the first encoding. Since the
periodicity analysis of the measured VPF only works when
the first compression GOP size is static, we decided to fix this
parameter in both compression stages. While this could seem a
strong limitation, we observe that many modern smartphones[r]
acquire videos by means of a static GOP (see again the
VISION dataset [34]).

B. GOP size estimation

The evaluation regarding the first GOP size estimation
is presented in terms of percentage of exact match, here
on referred as “G; match accuracy”. Results are presented
separately, first for the case without B-frames and then with
B-frames in the second encoding. In order to perform a fair
comparison with the algorithms presented in [14]] and [11],
we tested the former under fixed quantization scenarios only,
and the latter under a fixed bitrate scenario only, according to
each method capabilities. In the following tables we show the
G; match accuracy marginalized over one coding parameter
at a time, averaging with respect to all the other parameters
and all the tested videos.

1) Results without B-frames: Table reports the perfor-
mance of the proposed method, without B-frames, compared

“Examples include: Samsung Galaxy S5, Huawei P9/P9Lite, Xiaomi Redmi
Note3, Apple iPhone 6s, etc.

with those achieved by the algorithms by Bestagini et al. [14],
by Chen et al. [11] and by the original VPF [10]. We describe
the G; match accuracy for each encoding mode marginalized
over the codec-pair.

We see that the proposed algorithm outperforms almost
always all the other algorithms. Noticeably, the new method
is also the only one that can be used under all considered
codecs and rate control modes. Indeed the best performance,
95.8% of first GOP estimation accuracy is obtained with the
pair (MPEG-2, H.264) in the CBR-CBR scenario, whereas
only 64.2% of accuracy is obtained with the opposite encoding
pair, namely (H.264, MPEG-2). This is likely due to the
stronger compression artifacts introduced by MPEG-2 in the
second compression stage, resulting in a significant loss of
information. The limited performance obtained with [14] is
probably due to the fact that our experimental setting focuses
on exploring several combinations of coding modes and GOP
sizes rather than different codec implementations.

Table[[V]shows how the G-VPF accuracy varies for different
bitrate pairs, focusing on the H.264 codec (CBR-CBR setting).
In this specific configuration, the proposed algorithm outper-
forms Chen et al. but it is slightly worse than the original
VPF (5% of accuracy loss in the worst case). However, it
is worth observing that G-VPF improves the VPF accuracy
when the second encoding bitrate is lower that the first one
(+5% in the best case). Table |V| reports the percentage of
first GOP accuracy in a VBR-VBR scenario comparing the
proposed method to the original VPF and Bestagini et al.’s
method. The quantization parameters in Q; and Q, describe
the corresponding values used for the H.264 encoder and the
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TABLE VI
G1 MATCH ACCURACY WITH B1 =0, B2 € {0, 2,3, 5} (MARGINALIZED OVER THE NUMBER OF B-FRAMES IN THE SECOND ENCODING B2).
G match accuracy VBR-VBR VBR-CRF CRF-CRF CBR-CBR
B2 G-VPF  VPF [10] [14] | G-VPF VPF [10] [i4] | G-VPF  VPF [10] [14] | G-VPF  VPF [10] [i]
0 80.1 66.4 237 [ 907 89.0 345 754 71.6 201 [ 772 711 69.2
2 38.0 - 20.3 66.5 - 28.0 47.2 - 15.9 45.8 - -
3 42.0 - 19.7 65.5 - 24.6 48.1 - 12.8 51.0 - -
5 36.1 - 20.3 44.9 - 25.9 31.6 - 12.8 43.1 - -
MPEG-2/MPEG-4 encoders (e.g., Q; = 20/2 indicates H.264 TABLE VII

with Q; = 20 and MPEG-2/MPEG-4 with Q; = 2). It is
interesting to note that the accuracy tends to decrease as the
second quantization parameter increases, since in this situation
a great part of the traces left by the first compression are
erased. The G-VPF clearly outperforms the state-of-the-art al-
gorithms, with the exception of (Q; = 42,Q, € {10,27,31})
where the original VPF performs equally or slightly better. The
hardest scenario for all the algorithms presented in Table [V]
is (Q; = 20, Q4 € {27,31,38}): G-VPF performs best, but it
obtains an accuracy of only 21.0% in the worst case.

2) Results with B-frames: Table [VI|represents the accuracy
of the first GOP estimation of each algorithm when B-frames
are allowed in the second compression. To facilitate the
performance comparison with the previous case (Sect. [VI-BI)),
Table also shows the aggregated results in absence of
B-frames: in that case the G-VPF is compared against the
original VPF, Bestagini et al. and Chen et al., whereas when B-
frames are present the G-VPF algorithm can be compared only
against Bestagini et al.’s method. Our results show that the best
performance is obtained when B-frames are not used, indeed
G-VPF accuracy is greater than 75% in all encoding scenarios.
Clearly, the decreased accuracy is linked to the increment of
the number of consecutive B-frames. Interestingly, a 66.5%
accuracy is obtained by G-VPF in a VBR-CRF scenario
with two consecutive B-frames, that is +38.5% compared to
Bestagini et al.

Table presents the first GOP estimation accuracy ag-
gregating the cases where 2, 3 and 5 B-frames are used,
comparing the results of G-VPF with Bestagini et al. whenever
possible; the results are split based on the encoding algo-
rithm used in the first and second compressions. The best
performance is obtained in the CBR-CBR case when the first
compression algorithm is MPEG-2 and the second is H.264.
Table confirms once more that the VPF effect is more
evident when the first encoding is stronger than the second
one (MPEG-2/MPEG-4 encoding algorithms are undoubtedly
rougher than H.264). Overall, the task is challenging and
calls for further research, nevertheless the G-VPF is one of
the first video forensic algorithms dealing with B-frames and
outperforms existing schemes.

Table [VIII] analyzes G-VPF and Bestagini et al. performance
in the VBR-VBR and VBR-CRF scenarios, focusing on the
first and second encoding quantizer scale. Interestingly, both
methods obtain the highest accuracy in the VBR-CRF sce-
nario, with the proposed algorithm outperforming Bestagini
et al.’s approach in all tested configurations. Once more we
observe that performance drops significantly when the second
compression is more aggressive than the former, for the same

reasons provided in Sect.

G1 MATCH ACCURACY WITH B1 =0, B2 € {2,3,5} (MARGINALIZED
OVER THE CODEC-PAIR (ENC1, ENC3)).

G, maich accuracy | VBR-VBR | VBR-CRF | CRF-CRF | CBR-CBR
ENC, ENC; | G-VPF_ [14] | G-VPF_ [14] | G-VPF_ [14] | G-VPF
H.264 H.264 476 103 | 637 208 | 423 138 622
H264  MPEG-4 | 388 75 - - - - 335
H264 MPEG-2 | 350 62 - - 33.1
MPEG-4  H.264 432 252 | s82 274 63.3
MPEG-4 MPEG-4 | 405  23.1 - - 41.9
MPEG-4 MPEG-2 | 335 223 - - 39.8
MPEG-2  H.264 419 328 | 549 304 65.4
MPEG-2 MPEG-4 | 36.6  28.1 - - 424
MPEG-2 MPEG-2 | 315 256 379
TABLE VIII

G1 MATCH ACCURACY IN VBR-VBR AND VBR-CRF SCENARIOS WITH
B1=0,B; € {2,3,5}.

G1 match accuracy VBR-VBR VBR-CRF
Q; Q, [ G-VPF_[4] | C; [ G-VPF__ [14]
20/2 10/1 45.2 329 5 52.6 46.3
20/2 2716 44 2.3 15 55.7 6.8
2072 31/9 1.3 0.6 30 35 0.2
20/2 38/18 0.7 0.4 - - -
26/5 10/1 55.7 52.0 5 62.3 51.3
26/5 2716 43.2 8.3 15 67.5 24.2
26/5 31/9 12.1 2.1 30 30.0 0.5
26/5 38/18 1.8 0.6 - - -
32/10 10/1 64.3 54.7 5 66.1 53.1
32/10 2716 65.0 24.8 15 72.7 33.0
32/10 31/9 56.8 9.8 30 71.9 32
32/10 38/18 10.6 1.7 - - -
42/20 10/1 68.4 53.0 5 70.3 52.6
42/20 2716 65.7 40.0 | 15 78.1 33.9
42/20 31/9 66.3 30.5 | 30 76.9 9.3
42/20 38/18 58.1 8.3 - - -

C. Double compression detection

Double compression detection performance is evaluated
using the G-VPF as a detector: we use a set of training videos
to build the ROC curve, compute its AUC and then determine a
threshold targeting a False Positive Rate (FPR) of 3%. Finally,
we use such threshold to classify videos in the test set. The
detector performance is evaluated by means of: True Positive
Rate (TPR), True Negative Rate (TNR) and balanced accuracy
B—Acc = (TPR + TNR) / 2.

Single compressed videos (the negative class) are generated
by using the same encoding parameters employed for the sec-
ond compression stage of double compressed videos. There-
fore, for each scenario, the single compression parameters used
are those described in Table [l in the second encoding column,
whereas the double compressed videos use the same settings of
Table [[} The detector performance is evaluated by averaging
the results of 5 random train-test folds. Each train-test fold is
made of 14 training videos and 14 testing videos. For both
the train and test set we select randomly 7 motion and 7 static
videos from the 31 YUV sequences. In Table [[X| we report the
double compression detection performance without B-frames
by comparing the proposed method against the VPF [10]] and
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TABLE IX
DOUBLE COMPRESSION DETECTION WITH B; = B2 =0 (BY MEANS OF A TARGET FPR = 3% DURING TRAINING).
Double Compression Detection [ G-VPF VPF [10] [INN
Mode 1 Mode 2 | Train AUC [ B—Acc TPR TNR | Train AUC [ B—Acc TPR TNR | Train AUC [ B—Acc TPR TNR
CBR CBR 0.89 0.85 0.73 0.96 0.85 0.81 0.65 0.96 0.84 0.76 0.56 0.96
VBR VBR 0.90 0.86 0.75 0.97 0.85 0.79 0.62 0.96 - - - -
VBR CRF 0.95 0.91 0.85 0.97 0.95 0.90 0.84 0.96 - - - -
CRF CRF 0.88 0.82 0.68 0.97 0.88 0.80 0.63 0.96 - - - -
TABLE X TABLE XI

DOUBLE COMPRESSION DETECTION FOR G-VPF WITH B1 =0,
B2 € {2,3,5} (BY MEANS OF A TARGET FPR = 3% DURING TRAINING).

G1 MATCH ACCURACY FOR G-VPF WITH B; =0 AND COMPARING B2 = 0
WITH B2 € {2, 3,5} (MARGINALIZED OVER THE VIDEO CONTENT).

Mode 1  Mode 2 [ Train AUC [ B—Acc TPR TNR Video Content [ VBR-VBR [ VBR-CRF [ CRF-CRF [ CBR-CBR
CBR CBR 0.73 069 041 097 Bz = 0 (without B-frames)
VBR VBR 0.71 0.67 0.37 097 Dynamic 68.9 84.9 63.4 78.0
VBR CRF 0.81 0.76 0.55 0.96 Static 90.1 95.5 85.2 77.8
CRF CRF 0.74 0.68 0.39  0.96 Bo € {2,3,5} (with B-frames)
Dynamic 30.5 41.7 31.5 38.9
Chen et al.’s [11]] algorithms; and finally in Table[X]we present Static 45.5 73.6 51.9 534

the G-VPF double compression detection results in case of
B-frames. Note that we cannot compare with Bestagini et
al.’s approach, since their method estimates first compression
parameters assuming that the video is double compressed.
The best performance is obtained in a VBR-CRF scenario
without B-frames, where G-VPF yields B—Acc = 0.91 for
TNR = 0.97. However, encouraging results are also obtained
in presence of B-frames, indeed G-VPF B—Acc ranges from
0.67, in the worst case, to 0.76 in VBR-CRF mode that
remains the best scenario even for videos with B-frames.

D. Sensitivity to video content

The proposed method analyzes MB types to perform GOP
size estimation and double compression detection. Clearly, the
MB type selection is influenced by the compression parameters
but also by the video content. We have therefore studied
the G-VPF performance separately for videos with static and
dynamic contents (as listed at the beginning of Sect. [VI-A).

Tables and report, respectively, the performance
of G; match accuracy and double compression detection
marginalized over the video content. Table shows that
overall G-VPF performs the best with static video sequences,
reaching an exact estimation 95.5% of the times without
B-frames, and 73.6% with B-frames in the best scenario.
Nevertheless, even in the case of dynamic videos, G-VPF still
reaches 84.9% without B-frames in the VBR-CRF scenario.

Table reports the average G-VPF performance for
double compression detection using 5 random train-test folds.
Similarly to Sect. for each split and each motion
category, 7 video sequences are randomly chosen for training
and 7 are randomly chosen for testing, in such a way that every
video appears at least once in both training and testing. As in
the previous case, G-VPF performs best for static video con-
tents, indeed the accuracy without B-frames in the VBR-CRF
scenario decreases by 9% from static to dynamic contents,
whereas in case of B-frames in the second compression, the
drop is more significant, with a 17% accuracy loss.

E. Sensitivity to B-frames in the first encoding

To complete the experimental validation of our G-VPF
method we also analyze its sensitivity to the presence of

B-frames during the first compression stage. For the sake
of conciseness, we limit the analysis to the best and worst
performing scenarios for the G-VPF, namely VBR-CRF and
CRF-CREF, using the settings described in Table[[I} To highlight
how the presence of B-frames affects the G-VPF performance,
we compare the cases where no B-frames are used in the first
encoding (i.e., B; = 0), with those where sub-gops of either
2, 3, or 5 B-frames are employed (i.e., By € {2,3,5}).

Table presents the Gy match accuracy of the G-VPF
method as a function of the number of B-frames used in the
first and second compression phases. In general, these results
reveal that the use of B-frames in the first compression reduces
the accuracy of our method, achieving a loss in performance
of 1.1% in the best case and almost a 14% in the worst.
The reason behind this loss in performance is the rise of
noisy contributions in the G-VPF signal at transitions between
sub-gops of B-frames, which impair the periodicity analysis
described in Sect. [V-C] Although a more robust analysis could
be conceived to filter out noisy components, further research
is required to understand the rise of such artifacts in the VPF
acquisition process when By # 0.

Table [XIV]reports the average double compression detection
capabilities of the proposed method over 5 train-test splits.
Interestingly, the decrease in detectability with respect to B; =
0 is at worst 3% in terms of B—Acc, thus indicating that the
referred noisy contributions do not strongly affect the detection
of double compression traces. Still, as mentioned above, a
better characterization of these emerging artifacts is further
needed to minimize their effect on the acquisition of the VPE,
which will be the subject of future work.

F. Relocated I-frames detection

Using the G-VPF for frame-wise relocated I-frames detec-
tion is as simple as thresholding the G-VPF signal instead of
conducting the periodicity analysis. Since the method proposed
by He et al. [8] is designed to work on H.264 videos with
CBR coding mode and without the presence of B-frames,
we used a subset of our experimental settings (Table |lI) that
respects these constraints for a fair comparison. Similarly to
what we did for video-wise double encoding detection, and
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TABLE XII
DOUBLE COMPRESSION DETECTION FOR G-VPF WITH B; =0 AND COMPARING B2 = 0 WITH B2 € {2, 3,5} (BY MEANS OF A TARGET FPR = 3%
DURING TRAINING AND MARGINALIZED OVER THE VIDEO CONTENT).

Video Content | VBR-VBR [ VBR-CRF [ CRF-CRF [ CBR-CBR
B2 = 0 (without B-frames)
[ B—Acc TPR TNR [ B—Acc TPR TNR [ B—Acc TPR TNR | B—Acc TPR TNR
Dynamic 0.80 0.63  0.97 0.86 0.73  0.98 0.75 0.51  0.99 0.84 0.70  0.98
Static 0.93 0.88 097 0.95 094 095 0.89 0.81  0.96 0.86 0.74 098
Bs € {2,3,5} (with B-frames)
[ B—Acc TPR TNR [ B—Acc TPR TNR [ B—Acc TPR TNR [ B—Acc TPR TNR
Dynamic 0.63 0.28 097 0.67 0.36  0.98 0.63 0.27  0.98 0.66 0.36  0.96
Static 0.71 044 0098 0.84 0.71 097 0.73 0.50 097 0.73 049 097
TABLE XIII TABLE XIV

G1 MATCH ACCURACY FOR G-VPF COMPARING B1 =0 WITH
By € {2,3,5} (MARGINALIZED OVER Bg).

B-frames VBR-CRF CRE-CRF
B B1 0 [2, 3, 5] 0 [2, 3, 5]
2
0 90.7 784 754 65.7
2 66.5 573 472 453
3 65.5 51.6 48.1 36.9
5 449 40.0 31.6 30.5

consistently with [8], we use a train-test approach to this
task, with the same dataset construction strategy explained
in Sect. For training, we build the positive class by
collecting the values of the G-VPF vector v (as defined
in Sect. , at those positions of the re-located I-frames
stemming from double compressed train videos. On the other
hand, the negative class is built by gathering an equivalent
number of values of v randomly picked at the positions of
double compressed P-frames and single compressed P-frames
from double and single compressed train videos, respectively.
For testing, both positive and negative classes are built in
the same way, but using test videos. The whole train-test
procedure is repeated five times and results are averaged for
better statistical significance.

We first trained He ef al.’s own implementation of the deep
network described in [8]], and used the resulting network to
classify all frames in the test set. Performance is reported in
Table [XV] last column. We then built the ROC for our detector
and selected three different thresholds: 77, yielding the same
TNR achieved by [8]]; 75, yielding the same TPR achieved
by [8l; and T3, yielding our detector’s best operating point as
computed by Matlab’s perfcurve function; for each case
we then computed the performance of our threshold-based
classifier on the test set, as reported in Table We observe
that the G-VPF detector outperforms He et al.’s method at
every selected operating point: when matching the same TNR
obtained by the deep learning classifier, the G-VPF achieves
+26% on the TPR; when matching the same TPR obtained by
the classifier, the G-VPF achieves +16% on the TNR. When
setting both classifiers to work at their best best operating
point, the G-VPF achieves a B—Acc gain of 16%.

We acknowledge that the performance achieved by the
method proposed by He e al. in our experimental setting is
significantly different than the one reported in the original pa-
per, where the balanced accuracy reaches 97%. We thus swept
through the hyper-parameters regulating the training phase

DOUBLE COMPRESSION DETECTION FOR G-VPF COMPARING B; =0 WITH
B1 € {2,3,5} (BY MEANS OF A TARGET FPR = 3% DURING TRAINING).

B1 =0, B2 € {2,3,5} B1,B2 € {2,3,5}

Mode 1  Mode 2 ‘

B—Acc TPR TNR | B—Acc TPR TNR

VBR CRF 0.76 055 0.96 0.73 0.49  0.96

CRF CRF 0.68 039 0.96 0.66 035 0.96
TABLE XV

RELOCATED I-FRAMES DETECTION PERFORMANCE OBTAINED BY THE
G-VPF AND THE METHOD FROM [8]] IN OUR EXPERIMENTAL SETTING.

G-VPF

\ [

Measure |7~ [g]s TNR 75 : [8]s TPR 75 : Perfourve | L
B—Acc 0.88 0.84 091 075
TPR 0.94 0.68 0.89 0.68
TNR 0.83 0.99 0.93 0.83

(learning rate, number of epochs), without any advantage. To
eliminate any remaining doubts on the comparative results,
we first tested He et al.’’s own implementation on the same
experimental setting described in [8] (achieving very close
results to those reported in their paper) and then proceeded
to evaluate the G-VPF on the same scenario. Table
collects the performance obtained by our method next to the
results reported by He et al. in their original work, showing
that our detector even slightly improves the already excellent
performance of their classifier. This comparative study rein-
forces the importance of designing forensic solutions rooted on
theoretical grounds, as our G-VPF approach is, because they
are not only simpler, faster and less data-depedent, but also
generalize much better than learning-based methods which
may often fail for reasons that are hard to fathom.

G. Computational cost summary

We compared the computational cost of the GOP size
estimation task for each tested algorithm. We used a work-
station with an Intel (R) Core(TM) 1i7-3770 CPU
@3.40GHz with Matlab 2018b, and we averaged the
execution time obtained for 10 videos, each 10 seconds long.
The obtained values are: 2.7s for the G-VPE, 1.8s for the
VPF [10], 5.4s for Chen et al.’s algorithm, and 217.2s for
Bestagini et al.’s algorithm. We can conclude that the VPF
is the fastest solution, closely followed by the G-VPF and by
Chen et al.’s approach. As expected, Bestagini et al.’s method
takes much longer to run.

As to relocated I-frames detection, we had to use a
workstation equipped with an appropriate GPU, namely:
Intel (R) Core(TM) 19-7940X CPU @ 3.10GHz
with an NVIDIA Quadro P6000 with 24GB of RAM.
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TABLE XVI
RELOCATED I-FRAMES DETECTION PERFORMANCE OBTAINED BY THE
G-VPF AND [8] UNDER THE EXPERIMENTAL SETTING FROM [8]].

Measure [ G-VPF

Performance reported in [8]

B—Acc 0.98 0.97
TPR 0.99 0.96
TNR 0.97 0.97

The average G-VPF computation time for a single video is
2.1 seconds whereas He et al.’s approach takes 2.5 seconds.

VII. CONCLUSIONS

This paper brings a contribution to the field of digital video
forensics, presenting a tool for double encoding detection
and previous GOP size estimation. Compared to the existing
literature and to the original work introducing the VPF [10],
the main contributions of this paper are: a deeper theoretical
investigation of the reasons behind the VPF, reasons that
are implicitly shared by several other works covering the
same topic; the introduction of the G-VPF technique, which
builds on an enhanced VPF acquisition process and allows the
analysis of videos containing B-frames (which are neglected
by most works in the state of the art); and a wide experimental
validation covering different encoders, quality factors, and
GOP sizes. Noticeably, the proposed method can be imple-
mented efficiently, without even the need of fully decoding
the video, allowing tractable computation times, which is also
an important contribution compared to the state of the art.

New research questions will be addressed in the future,
starting from the extension of our VPF-related theory to the
recent HEVC standard, which presumably will become the
most commonly adopted video coding standard in the coming
years. Furthermore, we will also investigate the noisy artifacts
that emerge in the G-VPF signal when B-frames are employed
during the first video compression, since the use of more
complex coding profiles in modern acquisition devices (such
as smartphones, camcorders, etc.) will probably increase in the
near future.
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