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Abstract—The swift growth of cellular mobile networks in recent
years has made voice channels almost accessible everywhere.
Besides, data hiding has recently attracted significant attention
due to its ability to imperceptibly embed side information that can
be used for signal enhancement, security improvement, and two-
way authentication purposes. In this regard, we aim at proposing
efficient schemes for hiding data in the widespread voice channel of
cellular networks. To this aim, our first contribution is to model the
channel accurately by considering a linear filter plus a nonlinear
scaling function. This model is validated through experiments with
true speech signals. Then we leverage on this model to propose
two additive and multiplicative data hiding methods based on
the spread spectrum techniques. In addition, inspired by the
concept of M-ary biorthogonal codes, we develop novel schemes
that significantly outperform the previous ones. The performance
of all the methods that we present is assessed mathematically and
cross-validated with simulations. These are later extended to true
speech signals where the results evidence an excellent performance
as predicted by the theory. Finally, we assess the imperceptibility
by means of both subjective and objective benchmarks and show
that the perceptual impact of our watermarks is acceptable.

Index Terms—Data hiding, mobile communication vocoder,
nonlinearity, spread spectrum, watermarking.

I. INTRODUCTION

C ELLULAR networks have become major means of voice
communications around the world. This is to the extent

that the number of mobile network users in 2014 was estimated
to be 6.8 billion, showing a penetration rate of 97% among the
world’s population [1]. In spite of such spread, source and desti-
nation authentication is still an issue in cellular networks. There
exist a number of ways such as IMSI-Catcher or VoIP termi-
nation to spoof a personal number and utilize it for malicious
purposes [2]. Although some progress and solutions have been
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proposed to overcome this vulnerability, to the best of our knowl-
edge, most of them rely on one of the following prerequisites.

The first category of solutions imposes modifications to the
cellular network protocol [3], [4] which of course are hard to
implement in already deployed cellular networks. The second
category needs data transferring through mobile voice chan-
nels which is prohibitive and still not practical [5], [6]. With
the previous limitations in mind, we aim at developing a data
hiding method which can easily be implemented on common
existing smart cellular phones and seamlessly embeds the ap-
propriate data (e.g., authentication data) in the speech of the
user while he/she is regularly talking with another person on
his/her phone. Furthermore, data hiding in mobile voice chan-
nels can be exploited for improving the quality of service [7],
and for enhancing the security of communications by combining
watermarking and encryption algorithms [8].

Information hiding applications impose different constraints
that lead to substantially different methods. In steganography,
the mere existence of a hidden message is to remain unknown
to the adversary, while in data hiding this requirement can be
sacrificed for a larger robustness against intentional attacks and
common processing operations. When the information to be hid-
den is simply the presence or absence of a certain secret pattern,
the term one-bit data hiding is used and is sometimes equated
with watermarking. Since even in the multiple-bit case data is
hidden by embedding a low-power signal called watermark, we
will use the terms data hiding and watermarking interchangeably
throughout this paper. One-bit watermarking is usually utilized
in integrity verification applications such as copyright protec-
tion [9]. We are instead interested in multiple-bit data hiding
that must survive substantial channel distortions, so that it can
be reliably decoded at the receiver side [10]. Several methods
have been proposed for data embedding in audio and human
voice signals using data hiding techniques. These methods can
be considered as one of the following sorts. In the first one,
the information is embedded in the audio files in offline appli-
cations such as copyright protection of audio files [11], while
the second one concentrates on online applications such as data
insertion in Voice over IP (VoIP) streams [12]. Wang et al. pro-
posed a method to embed data in a G.711 vocoder by hiding
the information in the LSBs of the speech signal [13]. Ditmann
et al. proposed a general scheme for data embedding in all VoIP
streams by focusing on the active frame of the speech signal [14].

Huang et al. introduced a new method for data hiding in
G.723.1 VoIP frames. They insert the secret message into the
LSB of inactive speech VoIP frames [15]. They also suggested
another solution to embed data in G.729A VoIP frames based
on m-sequences [16]. Huang et al. also proposed a novel
embedding method into a low-bit rate codec. Therein, data
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insertion is performed in the process of pitch period prediction
for a G.723.1 VoIP codec [17]. Piotrowski and Gul presented
methods for watermarking in VoIP applications[18], [19].
Xiao et al. proposed a structure for low rate vocoders based
on Quantization Index Modulation (QIM) [20]. Finally, Wu
et al. introduced another method for data hiding over high rate
vocoders such as G.711 [21].

The aforementioned related art is generally focused on
steganography and not watermarking. Moreover, the targeted
vocoders are the common ones used in VoIP standards. As a con-
sequence, focus is put on implementation issues of IP networks
such as packet losses, jitter, etc. in order to design mechanisms
to mitigate these kind of impairments. For instance, some of
those works modify the standard vocoder structure and design
a new one with data hiding capabilities which is robust to the
targeted distortions.

Leveraging on the mentioned related art, the main contribu-
tions of this work can be summarized as follows:

1) Model the mobile communication vocoders with a com-
bination of linear and nonlinear blocks and validate the
constructed model.

2) Extend the baseline SS methods to make them robust to the
constructed model, in particular, to the nonlinear scaling
blocks within, even when multiple symbol constellations
are used.

3) Enhance the derived methods by considering bi-
orthogonal codes as spreading signals and carry out an
accurate performance analysis of the proposed methods.

Moreover, the other novelty in this paper is related to its ap-
plication. While most of the previous research in this domain
has concentrated on steganography and watermarking over VoIP
channels, and, consequently, on the group of vocoders which are
relevant there, we aim at proposing a method for watermarking
through mobile voice channels, which enjoy a tremendous pen-
etration. The main difference between our work and the related
art lies in the target vocoder, as VoIP customarily employs wave-
form vocoders (which do not make any prior assumption on the
speech signal) for which compression rates are in the range [24-
64] kbps (such as G.711, G.729) [22], whereas the vocoders
utilized in mobile voice channels such as AMR are based on
extracting the signal parameters and then modeling and syn-
thesizing the speech at the receiver side, and their compression
rate is in the range of [.6-13.2] kbps. It should be noted that
data hiding for the second group of vocoders (such as AMR) is
inherently more complicated due to the higher compression rate.

Actually, in real mobile voice communication environments,
there are several effects pertinent to the vocoder systems, wire-
less communication channel, synchronization, etc. [23]. In this
regard, and since data hiding robustness is our main motivation,
we believe that the vocoders at both the transmit and receive ter-
minals constitute the main impairment among all other effects
due to the following considerations:

1) The actual over-the-air transmission is handled by the
cellular network system with its (proprietary) waveform
design, modulation, forward error correction (FEC), for-
ward error detection (FED) and equalization. The digital
transmission/reception subsystems are in charge of guar-
anteeing that the samples (now, the watermarked samples)

are delivered reliably [23]. Since our work proposes a vari-
ant of spread-spectrum data hiding, which is known to be
robust to sample deletion, insertion and channel errors
[24], [25], the watermark will still be decoded correctly.

2) Even if several full frames may be affected by fading
or other network impairments, to the point that the wa-
termark cannot be reliably decoded, the hidden data (e.g.,
authentication information) can be repeated as many times
as needed and with a time separation that is much larger
than the coherence time of the channel, so that the critical
hidden information can still be decoded. This is of course
a rudimentary sort of repetition coding, but a small pay-
load will suffice in most applications. Obviously, other
more sophisticated methods for protecting the watermark
are possible, but we have not pursued them and are left
for future works.

3) Finally, a real implementation would need to include
means for achieving synchronization, both at the water-
mark symbol level and at the watermark data frame level.
This is also out of the scope of our paper, although some
solutions have been proposed to overcome these issues,
such as [24], [26], [27], which can also be integrated with
our proposed methods.

Therefore, this work centers on investigating data hiding
methods robust to the vocoder effects of the mobile voice chan-
nel. In doing so, we face two important constraints. On one
hand, the proposed method should operate on the vocoders al-
ready deployed in cellular networks; thus, in contrast to existing
solutions which modify the vocoders, for our purposes we rule
out such possibility. On the other hand, it must be achieved
with a low complexity that allows for implementations with low
impact in CPU usage and power consumption.

In order to design an efficient data hiding method robust to
mobile communication vocoders, there are two main options,
namely, Quantization Index Modulation (QIM) and Spread
Spectrum (SS) methods. Both have advantages and disadvan-
tages in terms of data rate, robustness, imperceptibility and se-
curity. For applications where security is important, SS-based
data hiding is arguably superior [28]. Moreover, SS-based data
hiding is more robust to strong channel distortions like the
ones we encounter in mobile voice networks [29], including
lossy compression, nonlinear gains, analog-to-digital conver-
sion, etc. [30]. Since high data embedding rates are not criti-
cal in the foreseen applications, we have singled out SS-based
solutions.

In this paper, we first model the mobile communication
vocoder as a combination of a linear filter and a non-linear block.
Then, according to the constructed model, two types of robust
suboptimal decoders based on the SS paradigm are designed
and developed. The performance of the proposed schemes is
analytically studied and the imperceptibility of the scheme is
investigated and evaluated using well-known subjective and ob-
jective metrics.

Notation: Throughout this paper, we use regular lowercase
letters for scalar variables and random variables, and lowercase
boldface letters for vectors. Matrices are represented using regu-
lar uppercase letters, while the corresponding regular lowercase,
with subscript indices, represents the entries. We use ‖x‖l to
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denote
∑

|xi |l . The probability distribution function of a ran-
dom variable is denoted by p(·) and the probability of occurrence
of a single event is written as Pr(·). Besides, E[·] is the expected
value of random variables.

The rest of this paper is organized as follows. Section II fo-
cuses on modeling of the mobile communication vocoder and
proposes an approximation of the nonlinear effects of the codec
voice channel. Spread spectrum embedders and decoders ac-
cording to the constructed model are proposed in Section III.
We proceed in this section with a performance analysis of these
decoders. Section IV provides the results of simulations with
synthetic signals as well as with true speech signals, including
an imperceptibility assessment based on both objective and sub-
jective benchmarks. Finally, Section V contains our conclusions
and discusses future research lines.

II. MODELING MOBILE COMMUNICATION VOCODERS

The behavior of vocoder systems mainly depends on the uti-
lized coding techniques. Generally, the codecs used in voice
dedicated channels are classified into two main groups: the first
group comprises waveform coders that encode the input sig-
nal without any prior assumption on the speech signal. These
codecs exploit coding techniques such as PCM (G.711 inter-
national standard) and ADPCM (G.726 international standard)
to achieve bit rates in the range of [24-64] kbps. Such high
data-rate codecs allow transmission of most signals in the voice
frequency range with minor distortion.

The second group is a set of vocoders that extract and en-
code some voice-specific parameters (mostly LPC-based speech
modeling parameters) from the input signal and use them to
synthesize the voice signal while decoding. These codecs use
coding techniques such as Regular Pulse Excitation with Long-
Term Prediction (RPE-LTP), Code Excited Linear Prediction
(CELP), ACELP, Conjugate Structure Algebraic Code Excited
Linear Prediction (CS-ACELP), Vector Sum Excited Linear Pre-
dictive Coding (VSELP), Mixed Excitation Linear Prediction
(MELP), etc. They can achieve output data rates in the range of
[0.6-13.2] kbps. Data embedding schemes that use codecs of the
second type which include cellular network vocoders such as
AMR are more complicated due to the higher compression rate.

Considering the nonlinear and complicated blocks of
vocoders [29], [31], it seems impossible to exactly model the
mentioned systems and derive the statistically optimum decoder
subject to ML criteria. In order to solve this problem, we con-
centrate on approximating this channel for human voice inputs.
We consider a linear filter plus noise and a nonlinear scaling
block as the basis of our approximate model and validate it. In
each stage of model validation, we will take into account the
interplay between the linear and nonlinear parts. In doing so,
we start constructing our model based on the linear part while
constraining the input signal to be small for preventing the oc-
currence of nonlinear effects. Then, we model the non-linear
part, and finally, we validate the entire model with actual speech
signals.

For the sake of simplicity and clarity, at first we consider pure
spread-spectrum (SS) watermarking (for improved SS water-

marking the computations differ, see Section III). To perform
the required analysis, let xk denote the kth sample of the host
signal, wk is the corresponding sample of the watermark, and
yk = xk + wk is then the watermarked signal.

As customary, we assume that watermarking is performed in
an i.i.d fashion, with a watermark with zero mean and variance
σ2

w . As to the host, we first assume it is stationary, with zero
mean, variance σ2

x and normalized autocorrelation function

ρi
.= E{xkxk+i}/σ2

x . (1)

With these definitions, the Document-to-Watermark Ratio
(DWR) can be written as σ2

x/σ2
w .

For hypothesizing our model, first, we conjecture that the non-
linearity behaves as a linear function if the input power is small,
in other words, to ensure that nonlinear effects are negligible, we
input low power signals to model the linear part. Finally, after
constructing both linear and nonlinear parts, we verify whether
the initial conjecture holds. To proceed with constructing the
linear part of our model, we are firstly interested in learning
how linear time invariant (LTI) filtering affects each signal. We
let hk denote the filter impulse response, and y′

k , x′
k , w′

k the
filtered versions of yk , xk , wk , respectively. Notice that due to
the superposition principle, we have y′

k = x′
k + w′

k . We assume
that the decision about wk is taken from y′

k alone; this means
that even though watermarking decoding would clearly benefit
from equalization of hk , we decide not to do so. Therefore, we
can write

y′
k = h0wk +

∞∑

i=−∞
i �= k

hiwk−i + xk ∗ hk . (2)

The second term in the right hand side of (2) is akin to the
intersymbol interference (ISI) found in communications, so we
will refer to it by this name.

If we want to know the effective DWR at the output of the
filter, we must compute the variance of the ISI plus host inter-
ference term, which we will denote by vk . Noticing that wk is
white, we can write

E{v2
k} = σ2

w + σ2
w

∞∑

i=−∞
i �= k

h2
i + σ2

x

∞∑

i=−∞

∞∑

m=−∞
hihm ρi−m (3)

while for the watermark part, we have that the variance is sim-
ply h2

0σ
2
w . Then, if the filter impulse response and the host

autocorrelation are known (or can be estimated), it is possible
to calculate the DWR.

We are interested in obtaining a manageable equivalent
model for y′

k . To this end, we notice that if we scale the wa-
termark, this affects both the useful part of the received signal
and the ISI term, while if we scale the host, this affects only the
host-interference term. Therefore we can write y′

k in terms of
ISI term (denoted by tk ) and the host-interference term (denoted
by uk )

y′
k = h0wk + tk + uk (4)

where wk , tk and uk are mutually independent, zero-mean, and

E{t2k} = σ2
w · ζ(h); E{u2

k} = σ2
x · β(h, ρ) (5)
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Fig. 1. Estimation of hi based on (7), (9) for two different scenarios
respectively: 1) y = x + w; σ2

x = 1, σ2
w = 0.01; 2) y = w; σ2

w = 1.

for some ζ and β that depend on the filter and the normalized
input autocorrelation, as explicitly indicated by the notation.
Finally, the effective DWR, denoted by τ , can be written as

τ =
σ2

t + σ2
u

h2
0σ

2
w

=
ζ(h) + σ2

x/σ2
w · β(h, ρ)

h2
0

(6)

which explicitly depends on the input DWR but in an affine
fashion. In this simplified model, one can use the superposition
principle to estimate the scalars h0 , ζ and β.

As a first step, to validate the adequacy of the linear part of our
model, we compare the estimated values for hi , which we will
denote by ĥi in the sequel, obtained in two different ways. In
the first, we compute the value of ĥi by the following estimator:

ĥ = R−1
xx ryx (7)

where ĥ .= [ĥ−l , . . . , ĥl ]T . The autocorrelation matrix of the
input signal (Rxx ) and the input-output cross-correlation vector
(ryx ) are defined as

Rxx = σ2
x

⎡

⎢
⎢
⎣

ρ0 · · · ρ−2l

...
. . .

...

ρ2l · · · ρ0

⎤

⎥
⎥
⎦ , ryx =

⎡

⎢
⎢
⎣

E{y′
kxk+ l}
...

E{y′
kxk−l}

⎤

⎥
⎥
⎦ (8)

and l indicates the effective length of the impulse response.
Alternatively, we can estimate hi as

ĥi =
E{y′

kwk−i}
σ2

w

(9)

and the obtained results for both methods are shown in Fig. 1.
As one can see, the achieved results here are consistent.

In addition, it should be noted that the achieved outcomes
here seem noisy. In order to determine how much the estimated
filter response changes with the input signal, we have conducted
an experiment in which true speech samples are passed through
the codec channel. In this simulation we move forward through

Fig. 2. Obtained values of ĥi over several true speech samples.

Fig. 3. Obtained value of τ over several true speech samples.

one long speech recording file with a window size of 50 samples
each, while assuming a window overlap of 50%. Fig. 2 shows
in one snapshot all the obtained channel responses, where we
can see that the estimated channel responses have little vari-
ance; therefore, the average channel response can be taken as a
good representative of the true impulse response. On the other
hand, Fig. 3 represents the value of τ in (6) as a function of
time for a speech signal. As we can notice, the obtained values
fluctuate over time. This fluctuation could be easily justified by
considering the definition of τ and its dependency on ρi which
obviously varies in time due the non-stationary nature of true
speech signals.

Moreover, to check if it is necessary to consider any noise
in our modeling, we compare the theoretical output power (i.e.,
E{y′2

k}) with the average measured output power in the simu-
lations (i.e., those conducted to plot Fig. 3). We compute the
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Fig. 4. Empirical input-output power curves (shown as a red band) and the
approximation based on Rapp’s model versus the power of input signal, denoted
by α.

output energy of the signal as

E
{
y′2

k

}
= σ2

w

∑

i

h2
i + σ2

x

∑

i

∑

m

hihm ρi−m . (10)

The achieved results show that the difference between the mea-
sured output power and E{y′2

k} is negligible (i.e., it was less
than 0.015). Thus, we can include noise in our model with an
approximate variance of 0.01 or, given its small contribution,
even neglect it. For the sake of simplicity, we proceed with the
latter.

As mentioned earlier, we conjectured that nonlinear effects do
not arise in the case of low input power, so the constructed model
up to here is entirely linear. In addition, we conducted additional
simulations to decide whether it is necessary to consider any
nonlinear constituent part. In other words, if the model is entirely
linear, scaling the inputs should produced scaled outputs. We
plot the input-output power curve in Fig. 4 to check whether such
property holds. Moreover, to verify whether this nonlinear block
is time-invariant, we rerun this simulation over different audio
files from TIMIT dataset (in particular, the core test set of TIMIT
material which contains 1920 sentences from 24 speakers) and
plotted the corresponding empirical input-output curves for each
file in one snapshot in Fig. 4. As illustrated in this Figure, these
curves constitute a thin red band, from which it can be inferred
that this block (i.e., the nonlinear scaling block) can be modeled
as time-invariant and insensitive to the attributes of the input
signal. This property has also been advocated for the structure
of the AMR vocoder in [29].

As illustrated in Fig. 4, assuming the entire linear model is
not tenable and we should consider a nonlinear block to model
the full regime (including clipping and gain-saturation). To do
so, we add a limiter function block to our hypothesized model as
illustrated in Fig. 5. Passing yk = xk + wk through the limiter
function denoted by H(·), we have y′′

k = H(yk ) at the output
of the limiter. Recalling that the watermark magnitude must

Fig. 5. Block-diagram of the complete model.

be small (i.e., |w| � 1) for perceptual reasons, we can deduce
that |w|n � |w| for any n > 1. Thus, we approximate H(·) by
applying a first-order Taylor expansion around yk = xk as

H(yk ) = H(xk + wk ) ≈ H(xk ) + wk
dH(x)

dx

∣
∣
∣
∣
x=xk

. (11)

Lets denote H(xk ) and wk
dH (x)

dx

∣
∣
∣
x=xk

by x′′
k and w′′

k re-

spectively. Considering the nonlinear part and according to
Fig. 5, we can update (6) by substituting σx and σw by σx ′′

and σw ′′ respectively. The variance of x′′ and w′′ now must be
calculated as

σ2
x ′′ =

∫ ∞

−∞
H2(x)px(x)dx (12)

σ2
w ′′ = σ2

w

∫ ∞

−∞

(
d

dx
H(x)

)2

px(x)dx. (13)

It is noteworthy to say that, since H(·) is an odd function and
px(x) assumed to be an even function, the mean of x′′ is zero.
Moreover, the power of the output signal (i.e., E{(y′′

k )2}) can be
computed as

E{(y′′)2} =
∫ ∞

−∞
H2(y)py (y)dy

=
∫ ∞

−∞

∫ ∞

−∞
H2(x + w)px(x)pw (w)dxdw. (14)

Let us denote the input-output power relationship by function
g(·). Invoking (11) and doing some algebraic simplifications

g(α) =
∫ ∞

−∞

∫ ∞

−∞
H2

(
(x + w)

√
α

√
σ2

x + σ2
w

)

px(x)pw (w)dxdw

≈
∫ ∞

−∞
H2

(
x
√

α
√

σ2
x + σ2

w

)

px(x)dx

+
ασ2

w

σ2
x + σ2

w

∫ ∞

−∞

(
d

dx
H

(
x
√

α
√

σ2
x + σ2

w

))2

px(x)dx.

(15)

It should be noticed that in practice we encounter the inverse
problem, that is, we know g(·) and we want to find H(·). To
solve this inverse problem, since an explicit expression for H(x)
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cannot be obtained, we approximate H(x) by a function in the
following set, parameterized by xmax

L(x;xmax , q) =
x

(

1 +
(

|x|
xm a x

)2q
) 1

2 q

. (16)

The family given by (16) corresponds to the limiter functions
encompassed by Rapp’s model [32]. To find the best match,
we numerically solve the following optimization problem using
true speech samples

x∗
max , q

∗ = arg min
xm a x ,q

∫ 5

0.1
‖g(α) − ĝ(α)‖dα (17)

where ĝ(α) is defined in the same fashion as g(α), replacing
H(x) by L(x;xmax , q) in (15). The optimization in (17) yields
x∗

max = 6.85 and q∗ = 10 which, as can be seen in Fig. 4, results
in a good approximation of H(x).

Our hypotheses for constructing the model in Fig. 5 include
the assumption that if the input power signal were low enough,
the linearity would hold and nonlinear effects would not be
significant. Fig. 4 validates such assumption: the utilized in-
put signal for modeling the linear part was small enough to
avoid noticeable nonlinear effects. Thus, since our conclusions
regarding the linear part have been drawn for such operating
point, the proposed nonlinear block does not alter them. As a
consequence, our global model that consists of a linear and a
nonlinear part will be exploited in the subsequent analyses per-
formed in this paper. Notice that with this model, even if x′

k

followed a known distribution (e.g., a generalized Gaussian),
y′

k would not, so we will focus instead on decoders that do not
make assumptions on px(x). This is pursued in the next section.
Last, to give more insights on the comfortability of proposed
model with vocoder structure let us say that, we have used the
standard version of AMR 12.2 codec which is officially released
by ETSI and written in ANSI-C in all simulations to ensure the
conformance of our results with the AMR 12.2 codec utilized in
cellular networks [33]. Recalling that the main purpose of our
model is to capture the impairments that the codec causes on the
watermark signal, it is worth pinpointing the roots of the model
in the constituent blocks of the codec.

The nonlinear block in Section II, namely H(·), straight-
forwardly corresponds to the (A-law, μ-law) compander. As
to the LTI filter h[n], it can be explained by the lossy encod-
ing/decoding of the LPC filter and by the low-pass filter that
performs subframe interpolation and long-term synthesis. To
elaborate, let Â(z) denote the LPC synthesis filter obtained
by quantizing the LSP (line spectral pairs) coefficients of the
analysis filter A(z), and let G(z) denote the low-pass filter.
Then, the input-output transfer function can be modeled by
L(z) .= A(z )G(z )

Â(z )
. Experiments conducted on real speech signals

confirm that the impulse response l[n] so obtained is remarkably
close to h[n] and despite the fact that both A(z) and Â(z) are
time-varying, their ratio, and thus l[n], are quite stationary, in
accordance with our observations for h[n].

Leveraging on the modeling methodology here presented,
one of the important advantages is that it can be extended to

other AMR codecs such as AMR 10.2, AMR-WB. Moreover,
as our watermarking methods have been designed to achieve a
large degree of robustness, they can be expected to perform well
with other vocoders having a similar underlying structure. We
have checked this for the AMR 10.2 and GSM FR codecs, with
promising results.

III. SPREAD SPECTRUM DATA EMBEDDING

Spread Spectrum (SS) methods are arguably the most popular
for data hiding. The SS scheme was first presented by Cox
et al. [34] in 1997. The authors proposed a method by which
the information could be embedded into the host signal with a
shared key. There are both additive [35] and multiplicative [36]
versions of SS. At the receiver side, the information is decoded
and extracted by using the same key as in embedding.

A. Improved Additive Spread Spectrum

In the case of additive spread spectrum, we insert one data bit
into one block of the host signal, i.e., N consecutive samples
of the host signal. The samples of the watermarked signal y for
each block are computed as

y = x + bw. (18)

Where the data bit b ∈ {−1, 1} is modulated and added
to N host coefficients x. The watermark signal w =
[w1 , w2 , . . . , wN ]T is a key-dependent pseudorandom sequence.
The imposed distortion to the host signal can be written as

D =
1
N

E
{
‖bw‖2} = σ2

w .

Having introduced the distortion parameter, the document to wa-
termark ratio (DWR) is DWR

.= σ2
x/D. Since the presented em-

bedding procedure does not compensate the interference from
the host contents, the resulting performance is generally not
acceptable. In order to improve the performance and have a
host-rejection approach at the receiver side which decreases the
error probability, the improved additive spread spectrum (IASS)
method can be used as follows [37]:

y = x + bw − γwwT x = x + bw + u (19)

where γ is set to 1/Nσ2
w to minimize the probability of error

and u denotes the host-rejection term. It is worth noticing that
the embedding distortion can be computed as

D = E
{
‖y − x‖2} = σ2

w +
σ2

x

N
. (20)

Next, according to the constructed model in Section II, the
output y′ is derived as

y′
k = hk ∗ H(yk ) (21)

which clearly illustrates the linear and nonlinear operations on
the watermarked signal yk . In the following sections, we mod-
ify the mentioned watermarking structure to tackle the issues
of both nonlinear scaling (i.e., the H(·) function) and linear
filtering (i.e., convolution with hk ). For the sake of simplicity,
we assume that H(·) operates pointwise on its input arguments
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Fig. 6. Block-diagram of the complete model for IASS.

(whether vectors or scalars), e.g., for an arbitrary vector a with
length N , H(a) = [H(a1), . . . , H(aN )]T .

1) Nonlinear Scaling: In the case of IASS we have

H(yk ) = H(xk + bwk + uk ). (22)

Recalling (11) and considering that for large N , we have σ2
u =

σ 2
x

N � σ2
x , the mentioned equation can be approximated as

H(yk ) ≈ H(xk ) + (bwk + uk ) · dH(x)
dx

∣
∣
∣
∣
x=xk

. (23)

To counterbalance the effect of nonlinear scaling, we first re-
place the host-rejection part by u′′ .= −γwwT H(x) and then
modulate both the watermark and new host-rejection terms by
(dH(x)/dx)−1 . In other words, we reformulate the encoder for
IASS as follows:

yk = xk + (bwk + u′′
k ) ·
(

dH(x)
dx

∣
∣
∣
∣
x=xk

)−1

. (24)

According to the parameters of Rapp’s model (i.e., xmax =
6.85), we can assume that almost all of the true speech samples
are less than xmax . So, since even in the extreme case of xk =
xmax , the value of (dH(xk )/dx)−1 is less than two, it is still
reasonable to hold the small signal assumption for this part (i.e.,
(bwk + u′′

k ) · (dH(xk )/dx)−1 ). Therefore, recalling (11), after
passing the mentioned signal through the nonlinear scaling part
of our model we have

H(yk ) ≈ H(xk ) + bwk + u′′
k . (25)

Consequently, as seen in Fig. 6 we can compensate the ef-
fect of nonlinear scaling by applying the proposed method and
just considering H(xk ) instead of xk as the host signal. The
cost of this compensation is the degradation of the error prob-
ability, i.e., since H(xk ) is always smaller than xk , then the
watermark power in (25) must be smaller to guarantee the same

DWR; this in turn produces an increase in the error probability.
This performance degradation was already expected due to the
nonlinear scaling of the vocoder. Finally, one might think of
applying the inverse of H(·) to yk to completely remove the
nonlinearity. However, this would increase the dynamic range
of the input signal to the voice channel, which would be unac-
ceptable in practice. In addition, denoting E{ dH (x)

dx |x=xk
} by β,

the embedding distortion in this new structure can be shown to
be

D =
σ2

w +
σ 2

x ′′
N

β2 . (26)

2) Linear Filtering: To mathematically discuss the effect of
linear filtering, let us periodically repeat the watermark signal to
make an infinite sequence, i.e., let us assume that wi = wi−mN

for all integer values of m. Now, considering (25), at the output
of model we have

y′
k =

∞∑

i=−∞
hiH(yk−i) ≈

∞∑

i=−∞
hi

(
x′′

k−i + bwk−i + u′′
k−i

)
.

(27)
By applying the correlator decoder, i.e., the inner product of

y′ and w at the decisor, we have

zA = wT y′ =
N∑

k=1

∞∑

i=−∞
wkhi

(
x′′

k−i + bwk−i + u′′
k−i

)
(28)

where zA indicates the test statistic. After some algebraic manip-
ulations, we can compute the mean and variance of zA , denoted
by mA and σ2

A , respectively, as

mA = Nbh0σ
2
w

σ2
A = Nσ2

w σ2
x ′′

∑

i �=0

∑

m �=0

hihm ρ′′i−m (29)

where ρ′′i−m indicates the normalized autocorrelation function
of x′′, i.e., ρ′′i = E{x′′

kx′′
k+i}/σ2

x ′′ . Recalling the central limit
theorem (CLT), for large N we can assume that test statistic
zA in (28) approximately follows a Gaussian distribution with
mean mA and variance σ2

A . Assuming an equal prior probability
for the information bit, i.e., Pr(b = +1) = Pr(b = −1) = 1/2,
we can approximate the error probability as follows1:

Pr(e) = Pr(e|b = 1) = Pr(e|b = −1)

≈ Q

(
mA

σA

)

= Q

⎛

⎜
⎜
⎝

√
Nh0σw

σx ′′

√∑

i �=0

∑

m �=0
hihm ρ′′i−m

⎞

⎟
⎟
⎠ . (30)

considering (26) and defining κ
.= β2 σ 2

x

σ 2
x ′′

, the approximate error

probability can be rewritten as

Pr(e) ≈ Q

⎛

⎜
⎜
⎝

h0

√
κN

DWR − 1
√∑

i �=0

∑

m �=0
hihm ρ′′i−m

⎞

⎟
⎟
⎠ . (31)

1Q(x) = (2π)−1/2
∫ ∞

x
exp(−v2 /2)dv.
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One way to increase the data rate of the introduced structure is
to use multi bi-orthogonal codes as spreading signals. To this
end, we propose a new structure (embedding/decoding struc-
ture) which aims at achieving host rejection with multiple simul-
taneous watermark carriers. Let wi , i ∈ {1, . . . ,M}with length
Nm denote a set of orthogonal codes, M indicates the number of
orthogonal watermark carriers and w∗ ∈ {w1 , . . . ,wM } repre-
sents the embedded symbol. Denoting the new host-rejection
term by r, i.e., r = (

∑M
i=1 wiwiT )H(x), the embedder and

decoder for the M-ary bi-orthogonal Additive (MA) structure is
proposed as follows:

yk = xk +
(

bw∗
k − rk

Nm σ2
w

)

·
(

dH(x)
dx

∣
∣
∣
∣
x=xk

)−1

(32)

where the decision is made by the decoder as

d̂MA = ĵ · sgn
(
y′T wĵ) (33)

with

ĵ = arg max
j∈{1...M }

|y′T wj |. (34)

The embedded distortion for this structure is

D =
1
N

E

⎧
⎨

⎩

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
bw∗ − (

∑M
i=1 wiwiT )x
Nm σ2

w

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2
⎫
⎬

⎭
=

σ2
w +

M σ 2
x ′′

Nm

β2 .

(35)

Since we now choose one among 2M spreading sequences, there
are log2 2M bits encoded in the decision, so we can increase the
length of the spreading sequences by this amount for the same
effective rate. Therefore Nm = N log2 2M . Carrying out some
algebraic manipulations, the error probability for the mentioned
structure can be approximated as [38]

Pr(e) = 1 − Pr(c|b = 1) = 1 − Pr(w∗ = wĵ |b = 1)

(33)
=

2M −1

2M − 1

⎡

⎢
⎣1 −

M∏

j=1
j �= ĵ

Pr
(
y′T w∗ >

∣
∣y′T wj

∣
∣
)

⎤

⎥
⎦

Pr(e) ≈ 2M −1

2M − 1

[

1 − 1
√

2πσ2
A

×
∫ ∞

0

(

1 − 2Q

(
x

σA

))M −1

e
− (x −m A )2

2 σ 2
A dx

]

. (36)

B. Improved Multiplicative Spread Spectrum Data Embedding

In the improved multiplicative spread spectrum (IMSS), the
watermarked signal is generated as [30]

yk = xk + bx2
kwk + uk . (37)

Now, similarly to Section III-A1, to take into account the effect
of nonlinear scaling, we modify (37) to

yk = xk +
(
bH2(xk )wk + u′′

k

)
·
(

dH(x)
dx

∣
∣
∣
∣
x=xk

)−1

. (38)

In this scheme, after some straightforward computations, D can
be shown to be

D =
σ2

w E{(x′′)4} +
σ 2

x ′′
N

β2 . (39)

After passing yk through the nonlinear scaling function of our
model, we have

H(yk ) ≈ x′′
k + b(x′′

k )2wk + u′′
k (40)

recalling the linear part of our model and akin to (27), the output
of linear block is

y′
k =

∞∑

i=−∞
hiH(yk−i)

≈
∞∑

i=−∞
hi

(
x′′

k−i + b(x′′
k−i)

2wk + u′′
k−i

)
. (41)

By applying the correlator decoder (i.e., the inner product of
y′, w as the test statistic) we have

zM = wT y′ ≈
N∑

k=1

∞∑

i=−∞
hi

(
x′′

k−i + b(x′′
k−i)

2wk + u′′
k−i

)
.

(42)
Next, to apply the CLT and compute the error probability, we
need to find the values of the mean and variance of zM denoted by
mM , σ2

M respectively. Noticing that the variables in the second
sum of (42) are zero-mean and uncorrelated with the watermark,
we can write

mM ≈ Nh0bσ
2
w σ2

x ′′ (43)

whereas σ2
M can be computed as

σ2
M = E{z2

M} − m2
M

≈ N

⎛

⎝σ2
w σ2

x ′′

∑

i �=0

∑

m �=0

hihm ρ′′i−m + σ4
w

∑

i �=0

∑

m �=0

hihm ϕi−m

⎞

⎠

+ Nh2
0E{w4

i }ϕ0 + h2
0σ

4
w

N∑

i=1

N∑

j=1
j �= i

ϕi−j − N 2h2
0σ

4
w σ4

x ′′

(44)

in which ϕi
.= E{(x′′

k−i)
2(x′′

k )2}. Assuming that E{w4
i } �

E{w2
i }, σ2

M can be approximated as

σ2
M ≈ Nσ2

w σ2
x ′′

∑

i �=0

∑

m �=0

hihm ρ′′i−m . (45)

Consequently, similarly to the additive case, the error probability
is

Pr(e) ≈ Q

(
mM

σM

)

= Q

⎛

⎜
⎜
⎝

√
Nh0σx ′′σw√∑

i �=0

∑

m �=0
hihm ρ′′i−m

⎞

⎟
⎟
⎠. (46)
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Denoting
√

E{(x ′′)4 }
σ 2

x ′′
by η and considering (39), the error proba-

bility can be reformulated in terms of the DWR as

Pr(e) ≈ Q

⎛

⎜
⎜
⎝

h0

√
κN

DWR − 1

η
√∑

i �=0

∑

m �=0
hihm ρ′′i−m

⎞

⎟
⎟
⎠ . (47)

Moreover, inspired by the M-ary bi-orthogonal watermarking
in Section III-A, a M-ary Multiplicative (MM) structure can be
proposed in the case of Improved multiplicative SS as follows:

yk = xk +
(

b(x′′
k )2w∗

k − rk

Nm σ2
w

)

·
(

dH(x)
dx

∣
∣
∣
∣
x=xk

)−1

(48)
in which w∗

k , wj
k rk are defined in the same fashion as in

Section III-A and, consequently, the decoder makes the deci-
sion as

d̂MM = ĵ · sgn
(
y′T wĵ) (49)

where

ĵ = arg max
j∈{1...M }

|y′T wj |. (50)

Furthermore, the embedding distortion can be written as

D =
σ2

w E{(x′′)4} +
M σ 2

x ′′
Nm

β2 . (51)

Let σ2
MM denote the variance of the interference that

results after multiplying by other spreading signal (i.e.,
E
{
yT wj

∣
∣wj �= w∗}). Next, recalling (36) and after some al-

gebraic manipulations the error probability becomes

Pr(e) = 1 − Pr(c|b = 1) = 1 − Pr(w∗ = wĵ|b = 1)

(49)
=

2M −1

2M − 1

⎡

⎢
⎣1 −

M∏

j=1
j �= ĵ

Pr
(
y′T w∗ >

∣
∣y′T wj

∣
∣
)

⎤

⎥
⎦

≈ 2M −1

2M − 1

[

1 − 1
√

2πσ2
M

×
∫ ∞

0

(

1 − 2Q

(
x

σMM

))M −1

e
− (x −m M )2

2 σ 2
M dx

]

(52)

where σ2
MM can be computed as

σ2
MM = N

∑

i �=0

∑

m �=0

hihm (σ2
w σ2

x ′′ρ′′i−m + σ4
w ϕi−m )

+ Nh2
0σ

4
w ϕ0 ≈ Nσ2

w σ2
x ′′

∑

i �=0

∑

m �=0

hihm ρ′′i−m . (53)

IV. SIMULATIONS AND RESULTS

In this section, we validate our analysis (in particular; er-
ror probability formulas) with several experiments. The good

Fig. 7. Empirical and analytical results over true speech samples for
N = 2500, AMR12.2.

conformance between experimental results and theory serves
as an additional supporting validation for the vocoder model-
ing from Section II. Afterwards, we assess the imperceptibility
of the proposed methods according to subjective and objective
benchmarks.

A. Performance Analysis

According to (6), the analytical error probability is highly
dependent on the autocorrelation of the input signals. We con-
sider two different scenarios to measure the goodness of our
proposed model. In the first one, we perform the simulations
over true speech samples and consider the average autocorrela-
tion of the input signal in our analytical formula. As shown in
Fig. 7, the empirical results are close to the analytical ones but
do not accurately match.

In the second scenario, we synthesize a signal with i.i.d Gen-
eralized Gaussian Distribution (GGD) samples [39], [40]. This
ensures a time-invariant autocorrelation. As illustrated in Fig. 8,
now the analytical and empirical results match more closely. We
can conclude that for stationary signals the analytical prediction
of the error probability is quite accurate, and that some accuracy
is lost for real speech signals, as stationarity does not hold in
this case. It is worth noticing that all the human voice samples
used in our simulations have been selected from the TIMIT
database [41].

It is worthy to note that the most common vocoders in cellular
networks are GSM FR, GSM HR in 2.5G and 2.75G, and AMR
in 2.5G, 2.75G, 3G. To the best of our knowledge, the most
prevalent one among the mentioned vocoders is AMR 12.2 [42],
[43]. So much so, we have focused on AMR 12.2 rather than
other compression rates. Additionally, as illustrated in Fig. 9, we
have conducted another simulation for AMR 10.2, AMR 7.95,
to show that the insights given by the proposed model can be
applied to other compression rates of AMR as well.
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Fig. 8. Empirical and analytical results over synthetic signals for N = 2500,
AMR12.2.

Fig. 9. Empirical and analytical results over synthetic signals for AMR
10.2 and AMR 7.95.

In addition, we conducted simulations for the case of M-ary
symbols. As illustrated in Figs. 10 and 11, the proposed M-ary
structures outperform the results shown in Figs. 7 and 8,
especially for low DWRs. It should be noted that for the sake
of clarity we do not plot the analytical results in Figs. 10 and
11, but the match is similar to that observed in Figs. 7 and 8.

We also compared the proposed methods with the baseline
additive and multiplicative SS schemes [35] [36], and with the
scheme proposed by Cheng known as Generalized Embedding
of Multiplicative (GEM) watermarking [44]. We plot the results
in Figs. 12 and 13 . As illustrated in these figures, the proposed
methods outperform the mentioned prior art.

The results shown in Figs. 7 and 11 have been obtained
by running the simulations over samples of audio files from
the TIMIT dataset [41], and plotting the average results.

Fig. 10. Empirical results over synthetic signals for N = 2500, AMR12.2.

Fig. 11. Empirical results over true speech samples for N = 2500, AMR12.2.

Experiments were conducted over the core test set of the TIMIT
material which contains 1920 sentences from 24 speakers.
Moreover, all simulations in this section have been conducted
with the following setup:

1) Watermark frame length: 2500, i.e., N = 2500.
2) Codec: AMR 12.2.
3) Synthetic signals follow a GGD distribution with zero

mean and unit variance, with a shape parameter of 1.5
which is matched with human voice properties [39].

4) The total length of human speech utilized in the simula-
tions was around 737 million samples which corresponds
to around 300,000 watermark frames.

Moreover, our proposed methods are based on spread-
spectrum. Although we have customized and particularized
them for our specific problem, they still inherit the main prop-
erties of spread-spectrum, discussed at length in [24]. This
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Fig. 12. Empirical and analytical results over synthetic signals based on the
proposed methods, baseline spread spectrum methods, and GEM.

Fig. 13. Empirical and analytical results over true speech samples based on
the proposed methods, baseline spread spectrum methods, and GEM.

means that they can be made robust against desynchronization
attacks, spectrum filtering, chess watermarking, cut-sampling,
zero-padding, resampling, noise addition, sample clipping, etc.

B. Imperceptibility Analysis

In this section we evaluate the proposed structures using ob-
jective and subjective benchmarks to assess their impercep-
tibility. ITU P.862 and ITU P.860 recommendations are two
well-known standards which are widely used to evaluate the
subjective quality of speech and the imperceptibility of em-
bedded watermarks. In these tests, we considered N = 2500
and a sampling rate of 8 KHz, so the embedding bit rate is
8000/2500 = 3.2 bps. Moreover, we considered M = 8 (i.e.,

TABLE I
TEST RESULTS FOR ITU P.860 (PERCENTAGE OF FAILURE)

Group I Group II Group III Group IV

M1 M2 M1 M2 M1 M2 M1 M2

Tester 1 45% 55% 45% 35% 50% 55% 60% 55%
Tester 2 55% 50% 40% 40% 55% 45% 55% 50%
Tester 3 55% 35% 40% 45% 60% 55% 60% 45%
Tester 4 45% 45% 50% 50% 50% 60% 50% 55%
Tester 5 60% 55% 45% 40% 55% 55% 55% 55%
Average 52% 48% 44% 42% 54% 54% 56% 52%

TABLE II
TEST RESULTS FOR ITU P.862

File Num MOSLQO Average

M1 M2 M1 M2

Group I F1.1 4.320 4.275 4.3352 4.2537
F1.2 4.311 4.206
F1.3 4.373 4.241
F1.4 4.377 4.268
F1.5 4.295 4.279

Group II F2.1 4.328 4.304 4.3474 4.2274
F2.2 4.321 4.246
F2.3 4.353 4.189
F2.4 4.363 4.191
F2.5 4.371 4.206

Group III F3.1 4.294 4.287 4.3167 4.2563
F3.2 4.359 4.205
F3.3 4.355 4.284
F3.4 4.276 4.204
F3.5 4.300 4.269

Group IV F4.1 4.330 4.219 4.3334 4.2228
F4.2 4.403 4.197
F4.3 4.304 4.205
F4.4 4.344 4.256
F4.5 4.286 4.236

8-ary symbols), Pr(e) = 0.001, and in order to achieve this tar-
get Pr(e), we set the operating DWR at 22.5 dB and 24.5 dB
for IMSS and IASS, respectively. To check the imperceptibil-
ity of the proposed methods in accordance with the ITU P.860
standard, we prepared four sound file groups, each consisting
of five audio files with a length of 10 seconds. We asked five
persons to execute the A/B/X test [17]. In the A/B/X test,
A indicates the watermarked signal, B stands for plain signal
and X is assigned randomly to be A or B. In each stage of this
experiment, whenever we played the X file for each listener,
we asked him to decide between A and B. We summarized
the results in Table I, where M1,M2 indicate 8-ary IMSS and
8-ary IASS, respectively. It should be noted that in the case of
ideal watermarking in this sort of test, the expected percentage
of failure would be 50%.

ITU P.862 recommendation describes an objective method for
predicting the subjective quality of narrowband speech codecs.
In this method, perceptual evaluation speech quality (PESQ) and
mean opinion score listening quality objective (MOSLQO) are
used to compare the proposed schemes. The results are shown
in Table II. It should be noticed that the PESQ value of the host
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TABLE III
TEST RESULTS OF COMPARING THE COMPUTATIONAL COMPLEXITY

OF VOICE ENCODING/DECODING AND THE PROPOSED DATA

HIDING ENCODING/DECODING IN TERMS OF MIPS

Methods Required MIPS

(N =2500)
Voice Enc/Dec 225-300
based on AMR 12.2
Enc/Dec based on IASS 20-40
Enc/Dec based on IMSS 20-40
Enc/Dec based on MA (M=4) 30-50
Enc/Dec based on MM (M=4) 30-50

signal before embedding the data was equal to 4.5. As expected
and shown in Tables I and II, although both methods exhibit an
acceptable level of imperceptibility, the multiplicative structure
behaves better than the additive one. In this work and according
to its main application (i.e., hiding data in regular voice calls
between two persons), we aimed at proposing a watermarking
method which would be imperceptible to the human hearing
system, as opposed to undetectability by steganalytic methods
such as [45], [46]. Therefore, since our primary application is
data hiding and not steganography, we have put emphasis on
transparency as measured by ITU P.860 and ITU P.860 which
are subjective tests of imperceptibility.

C. Complexity Analysis

To assess the complexity of the proposed schemes, we mea-
sured the required million instructions per second (MIPS) for
processing one time frame of data hiding (in particular, in the
case N = 2500) which encompasses both encoding and de-
coding processes. We report the achieved results in Table III
together with the required MIPS for voice encoding/decoding
(in particular, considering AMR 12.2 as the decoder/encoder)
the same time frame. As shown in Table III, the complexity of
the proposed schemes is a fraction of that of the vocoder in
cellular phones. We must remark that our implementation has
not been fully optimized, and even more so, no adaptation to the
specific architecture of cellular phone CPUs has been intended.
Considering this fact, we believe that a further reduction in the
results reported in Table III is feasible.

V. CONCLUSION

In this paper we have shown that for watermarking purposes
a mobile communication vocoder can be accurately modeled
by considering a non-linear scaling function plus a linear fil-
ter. Adhering to such model, we have proposed two Spread-
Spectrum-based data hiding methods, termed IASS and IMSS.
Moreover, their performance can be largely improved by con-
sidering multi bi-orthogonal codes as spreading signals. Finally,
the experimental assessment using both subjective and objec-
tive measures has revealed that our proposed schemes exhibit
an acceptable level of imperceptibility.

Although we have concentrated on detectors which do not
rely on the probability distribution of received signals, the

approximation of such distribution and the derivation of the
corresponding maximum likelihood detectors are topics for fur-
ther research. In addition, in order to increase the technological
readiness of the proposed methods for practical implementa-
tion, a technique to assure integrity of the hidden messages
in the case of packet losses, and a method for synchronization
considering the limited bandwidth constraints and nonlinearities
deserve further attention.
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Data Hiding Robust to Mobile
Communication Vocoders

Reza Kazemi, Fernando Pérez-González, Fellow, IEEE, Mohammad Ali Akhaee, and Fereydoon Behnia

Abstract—The swift growth of cellular mobile networks in recent
years has made voice channels almost accessible everywhere.
Besides, data hiding has recently attracted significant attention
due to its ability to imperceptibly embed side information that can
be used for signal enhancement, security improvement, and two-
way authentication purposes. In this regard, we aim at proposing
efficient schemes for hiding data in the widespread voice channel of
cellular networks. To this aim, our first contribution is to model the
channel accurately by considering a linear filter plus a nonlinear
scaling function. This model is validated through experiments with
true speech signals. Then we leverage on this model to propose
two additive and multiplicative data hiding methods based on
the spread spectrum techniques. In addition, inspired by the
concept of M-ary biorthogonal codes, we develop novel schemes
that significantly outperform the previous ones. The performance
of all the methods that we present is assessed mathematically and
cross-validated with simulations. These are later extended to true
speech signals where the results evidence an excellent performance
as predicted by the theory. Finally, we assess the imperceptibility
by means of both subjective and objective benchmarks and show
that the perceptual impact of our watermarks is acceptable.

Index Terms—Data hiding, mobile communication vocoder,
nonlinearity, spread spectrum, watermarking.

I. INTRODUCTION

C ELLULAR networks have become major means of voice
communications around the world. This is to the extent

that the number of mobile network users in 2014 was estimated
to be 6.8 billion, showing a penetration rate of 97% among the
world’s population [1]. In spite of such spread, source and desti-
nation authentication is still an issue in cellular networks. There
exist a number of ways such as IMSI-Catcher or VoIP termi-
nation to spoof a personal number and utilize it for malicious
purposes [2]. Although some progress and solutions have been
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proposed to overcome this vulnerability, to the best of our knowl-
edge, most of them rely on one of the following prerequisites.

The first category of solutions imposes modifications to the
cellular network protocol [3], [4] which of course are hard to
implement in already deployed cellular networks. The second
category needs data transferring through mobile voice chan-
nels which is prohibitive and still not practical [5], [6]. With
the previous limitations in mind, we aim at developing a data
hiding method which can easily be implemented on common
existing smart cellular phones and seamlessly embeds the ap-
propriate data (e.g., authentication data) in the speech of the
user while he/she is regularly talking with another person on
his/her phone. Furthermore, data hiding in mobile voice chan-
nels can be exploited for improving the quality of service [7],
and for enhancing the security of communications by combining
watermarking and encryption algorithms [8].

Information hiding applications impose different constraints
that lead to substantially different methods. In steganography,
the mere existence of a hidden message is to remain unknown
to the adversary, while in data hiding this requirement can be
sacrificed for a larger robustness against intentional attacks and
common processing operations. When the information to be hid-
den is simply the presence or absence of a certain secret pattern,
the term one-bit data hiding is used and is sometimes equated
with watermarking. Since even in the multiple-bit case data is
hidden by embedding a low-power signal called watermark, we
will use the terms data hiding and watermarking interchangeably
throughout this paper. One-bit watermarking is usually utilized
in integrity verification applications such as copyright protec-
tion [9]. We are instead interested in multiple-bit data hiding
that must survive substantial channel distortions, so that it can
be reliably decoded at the receiver side [10]. Several methods
have been proposed for data embedding in audio and human
voice signals using data hiding techniques. These methods can
be considered as one of the following sorts. In the first one,
the information is embedded in the audio files in offline appli-
cations such as copyright protection of audio files [11], while
the second one concentrates on online applications such as data
insertion in Voice over IP (VoIP) streams [12]. Wang et al. pro-
posed a method to embed data in a G.711 vocoder by hiding
the information in the LSBs of the speech signal [13]. Ditmann
et al. proposed a general scheme for data embedding in all VoIP
streams by focusing on the active frame of the speech signal [14].

Huang et al. introduced a new method for data hiding in
G.723.1 VoIP frames. They insert the secret message into the
LSB of inactive speech VoIP frames [15]. They also suggested
another solution to embed data in G.729A VoIP frames based
on m-sequences [16]. Huang et al. also proposed a novel
embedding method into a low-bit rate codec. Therein, data

1520-9210 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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insertion is performed in the process of pitch period prediction
for a G.723.1 VoIP codec [17]. Piotrowski and Gul presented
methods for watermarking in VoIP applications[18], [19].
Xiao et al. proposed a structure for low rate vocoders based
on Quantization Index Modulation (QIM) [20]. Finally, Wu
et al. introduced another method for data hiding over high rate
vocoders such as G.711 [21].

The aforementioned related art is generally focused on
steganography and not watermarking. Moreover, the targeted
vocoders are the common ones used in VoIP standards. As a con-
sequence, focus is put on implementation issues of IP networks
such as packet losses, jitter, etc. in order to design mechanisms
to mitigate these kind of impairments. For instance, some of
those works modify the standard vocoder structure and design
a new one with data hiding capabilities which is robust to the
targeted distortions.

Leveraging on the mentioned related art, the main contribu-
tions of this work can be summarized as follows:

1) Model the mobile communication vocoders with a com-
bination of linear and nonlinear blocks and validate the
constructed model.

2) Extend the baseline SS methods to make them robust to the
constructed model, in particular, to the nonlinear scaling
blocks within, even when multiple symbol constellations
are used.

3) Enhance the derived methods by considering bi-
orthogonal codes as spreading signals and carry out an
accurate performance analysis of the proposed methods.

Moreover, the other novelty in this paper is related to its ap-
plication. While most of the previous research in this domain
has concentrated on steganography and watermarking over VoIP
channels, and, consequently, on the group of vocoders which are
relevant there, we aim at proposing a method for watermarking
through mobile voice channels, which enjoy a tremendous pen-
etration. The main difference between our work and the related
art lies in the target vocoder, as VoIP customarily employs wave-
form vocoders (which do not make any prior assumption on the
speech signal) for which compression rates are in the range [24-
64] kbps (such as G.711, G.729) [22], whereas the vocoders
utilized in mobile voice channels such as AMR are based on
extracting the signal parameters and then modeling and syn-
thesizing the speech at the receiver side, and their compression
rate is in the range of [.6-13.2] kbps. It should be noted that
data hiding for the second group of vocoders (such as AMR) is
inherently more complicated due to the higher compression rate.

Actually, in real mobile voice communication environments,
there are several effects pertinent to the vocoder systems, wire-
less communication channel, synchronization, etc. [23]. In this
regard, and since data hiding robustness is our main motivation,
we believe that the vocoders at both the transmit and receive ter-
minals constitute the main impairment among all other effects
due to the following considerations:

1) The actual over-the-air transmission is handled by the
cellular network system with its (proprietary) waveform
design, modulation, forward error correction (FEC), for-
ward error detection (FED) and equalization. The digital
transmission/reception subsystems are in charge of guar-
anteeing that the samples (now, the watermarked samples)

are delivered reliably [23]. Since our work proposes a vari-
ant of spread-spectrum data hiding, which is known to be
robust to sample deletion, insertion and channel errors
[24], [25], the watermark will still be decoded correctly.

2) Even if several full frames may be affected by fading
or other network impairments, to the point that the wa-
termark cannot be reliably decoded, the hidden data (e.g.,
authentication information) can be repeated as many times
as needed and with a time separation that is much larger
than the coherence time of the channel, so that the critical
hidden information can still be decoded. This is of course
a rudimentary sort of repetition coding, but a small pay-
load will suffice in most applications. Obviously, other
more sophisticated methods for protecting the watermark
are possible, but we have not pursued them and are left
for future works.

3) Finally, a real implementation would need to include
means for achieving synchronization, both at the water-
mark symbol level and at the watermark data frame level.
This is also out of the scope of our paper, although some
solutions have been proposed to overcome these issues,
such as [24], [26], [27], which can also be integrated with
our proposed methods.

Therefore, this work centers on investigating data hiding
methods robust to the vocoder effects of the mobile voice chan-
nel. In doing so, we face two important constraints. On one
hand, the proposed method should operate on the vocoders al-
ready deployed in cellular networks; thus, in contrast to existing
solutions which modify the vocoders, for our purposes we rule
out such possibility. On the other hand, it must be achieved
with a low complexity that allows for implementations with low
impact in CPU usage and power consumption.

In order to design an efficient data hiding method robust to
mobile communication vocoders, there are two main options,
namely, Quantization Index Modulation (QIM) and Spread
Spectrum (SS) methods. Both have advantages and disadvan-
tages in terms of data rate, robustness, imperceptibility and se-
curity. For applications where security is important, SS-based
data hiding is arguably superior [28]. Moreover, SS-based data
hiding is more robust to strong channel distortions like the
ones we encounter in mobile voice networks [29], including
lossy compression, nonlinear gains, analog-to-digital conver-
sion, etc. [30]. Since high data embedding rates are not criti-
cal in the foreseen applications, we have singled out SS-based
solutions.

In this paper, we first model the mobile communication
vocoder as a combination of a linear filter and a non-linear block.
Then, according to the constructed model, two types of robust
suboptimal decoders based on the SS paradigm are designed
and developed. The performance of the proposed schemes is
analytically studied and the imperceptibility of the scheme is
investigated and evaluated using well-known subjective and ob-
jective metrics.

Notation: Throughout this paper, we use regular lowercase
letters for scalar variables and random variables, and lowercase
boldface letters for vectors. Matrices are represented using regu-
lar uppercase letters, while the corresponding regular lowercase,
with subscript indices, represents the entries. We use ‖x‖l to
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denote
∑

|xi |l . The probability distribution function of a ran-
dom variable is denoted by p(·) and the probability of occurrence
of a single event is written as Pr(·). Besides, E[·] is the expected
value of random variables.

The rest of this paper is organized as follows. Section II fo-
cuses on modeling of the mobile communication vocoder and
proposes an approximation of the nonlinear effects of the codec
voice channel. Spread spectrum embedders and decoders ac-
cording to the constructed model are proposed in Section III.
We proceed in this section with a performance analysis of these
decoders. Section IV provides the results of simulations with
synthetic signals as well as with true speech signals, including
an imperceptibility assessment based on both objective and sub-
jective benchmarks. Finally, Section V contains our conclusions
and discusses future research lines.

II. MODELING MOBILE COMMUNICATION VOCODERS

The behavior of vocoder systems mainly depends on the uti-
lized coding techniques. Generally, the codecs used in voice
dedicated channels are classified into two main groups: the first
group comprises waveform coders that encode the input sig-
nal without any prior assumption on the speech signal. These
codecs exploit coding techniques such as PCM (G.711 inter-
national standard) and ADPCM (G.726 international standard)
to achieve bit rates in the range of [24-64] kbps. Such high
data-rate codecs allow transmission of most signals in the voice
frequency range with minor distortion.

The second group is a set of vocoders that extract and en-
code some voice-specific parameters (mostly LPC-based speech
modeling parameters) from the input signal and use them to
synthesize the voice signal while decoding. These codecs use
coding techniques such as Regular Pulse Excitation with Long-
Term Prediction (RPE-LTP), Code Excited Linear Prediction
(CELP), ACELP, Conjugate Structure Algebraic Code Excited
Linear Prediction (CS-ACELP), Vector Sum Excited Linear Pre-
dictive Coding (VSELP), Mixed Excitation Linear Prediction
(MELP), etc. They can achieve output data rates in the range of
[0.6-13.2] kbps. Data embedding schemes that use codecs of the
second type which include cellular network vocoders such as
AMR are more complicated due to the higher compression rate.

Considering the nonlinear and complicated blocks of
vocoders [29], [31], it seems impossible to exactly model the
mentioned systems and derive the statistically optimum decoder
subject to ML criteria. In order to solve this problem, we con-
centrate on approximating this channel for human voice inputs.
We consider a linear filter plus noise and a nonlinear scaling
block as the basis of our approximate model and validate it. In
each stage of model validation, we will take into account the
interplay between the linear and nonlinear parts. In doing so,
we start constructing our model based on the linear part while
constraining the input signal to be small for preventing the oc-
currence of nonlinear effects. Then, we model the non-linear
part, and finally, we validate the entire model with actual speech
signals.

For the sake of simplicity and clarity, at first we consider pure
spread-spectrum (SS) watermarking (for improved SS water-

marking the computations differ, see Section III). To perform
the required analysis, let xk denote the kth sample of the host
signal, wk is the corresponding sample of the watermark, and
yk = xk + wk is then the watermarked signal.

As customary, we assume that watermarking is performed in
an i.i.d fashion, with a watermark with zero mean and variance
σ2

w . As to the host, we first assume it is stationary, with zero
mean, variance σ2

x and normalized autocorrelation function

ρi
.= E{xkxk+i}/σ2

x . (1)

With these definitions, the Document-to-Watermark Ratio
(DWR) can be written as σ2

x/σ2
w .

For hypothesizing our model, first, we conjecture that the non-
linearity behaves as a linear function if the input power is small,
in other words, to ensure that nonlinear effects are negligible, we
input low power signals to model the linear part. Finally, after
constructing both linear and nonlinear parts, we verify whether
the initial conjecture holds. To proceed with constructing the
linear part of our model, we are firstly interested in learning
how linear time invariant (LTI) filtering affects each signal. We
let hk denote the filter impulse response, and y′

k , x′
k , w′

k the
filtered versions of yk , xk , wk , respectively. Notice that due to
the superposition principle, we have y′

k = x′
k + w′

k . We assume
that the decision about wk is taken from y′

k alone; this means
that even though watermarking decoding would clearly benefit
from equalization of hk , we decide not to do so. Therefore, we
can write

y′
k = h0wk +

∞∑

i=−∞
i �= k

hiwk−i + xk ∗ hk . (2)

The second term in the right hand side of (2) is akin to the
intersymbol interference (ISI) found in communications, so we
will refer to it by this name.

If we want to know the effective DWR at the output of the
filter, we must compute the variance of the ISI plus host inter-
ference term, which we will denote by vk . Noticing that wk is
white, we can write

E{v2
k} = σ2

w + σ2
w

∞∑

i=−∞
i �= k

h2
i + σ2

x

∞∑

i=−∞

∞∑

m=−∞
hihm ρi−m (3)

while for the watermark part, we have that the variance is sim-
ply h2

0σ
2
w . Then, if the filter impulse response and the host

autocorrelation are known (or can be estimated), it is possible
to calculate the DWR.

We are interested in obtaining a manageable equivalent
model for y′

k . To this end, we notice that if we scale the wa-
termark, this affects both the useful part of the received signal
and the ISI term, while if we scale the host, this affects only the
host-interference term. Therefore we can write y′

k in terms of
ISI term (denoted by tk ) and the host-interference term (denoted
by uk )

y′
k = h0wk + tk + uk (4)

where wk , tk and uk are mutually independent, zero-mean, and

E{t2k} = σ2
w · ζ(h); E{u2

k} = σ2
x · β(h, ρ) (5)
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Fig. 1. Estimation of hi based on (7), (9) for two different scenarios
respectively: 1) y = x + w; σ2

x = 1, σ2
w = 0.01; 2) y = w; σ2

w = 1.

for some ζ and β that depend on the filter and the normalized
input autocorrelation, as explicitly indicated by the notation.
Finally, the effective DWR, denoted by τ , can be written as

τ =
σ2

t + σ2
u

h2
0σ

2
w

=
ζ(h) + σ2

x/σ2
w · β(h, ρ)

h2
0

(6)

which explicitly depends on the input DWR but in an affine
fashion. In this simplified model, one can use the superposition
principle to estimate the scalars h0 , ζ and β.

As a first step, to validate the adequacy of the linear part of our
model, we compare the estimated values for hi , which we will
denote by ĥi in the sequel, obtained in two different ways. In
the first, we compute the value of ĥi by the following estimator:

ĥ = R−1
xx ryx (7)

where ĥ .= [ĥ−l , . . . , ĥl ]T . The autocorrelation matrix of the
input signal (Rxx ) and the input-output cross-correlation vector
(ryx ) are defined as

Rxx = σ2
x

⎡

⎢
⎢
⎣

ρ0 · · · ρ−2l

...
. . .

...

ρ2l · · · ρ0

⎤

⎥
⎥
⎦ , ryx =

⎡

⎢
⎢
⎣

E{y′
kxk+ l}
...

E{y′
kxk−l}

⎤

⎥
⎥
⎦ (8)

and l indicates the effective length of the impulse response.
Alternatively, we can estimate hi as

ĥi =
E{y′

kwk−i}
σ2

w

(9)

and the obtained results for both methods are shown in Fig. 1.
As one can see, the achieved results here are consistent.

In addition, it should be noted that the achieved outcomes
here seem noisy. In order to determine how much the estimated
filter response changes with the input signal, we have conducted
an experiment in which true speech samples are passed through
the codec channel. In this simulation we move forward through

Fig. 2. Obtained values of ĥi over several true speech samples.

Fig. 3. Obtained value of τ over several true speech samples.

one long speech recording file with a window size of 50 samples
each, while assuming a window overlap of 50%. Fig. 2 shows
in one snapshot all the obtained channel responses, where we
can see that the estimated channel responses have little vari-
ance; therefore, the average channel response can be taken as a
good representative of the true impulse response. On the other
hand, Fig. 3 represents the value of τ in (6) as a function of
time for a speech signal. As we can notice, the obtained values
fluctuate over time. This fluctuation could be easily justified by
considering the definition of τ and its dependency on ρi which
obviously varies in time due the non-stationary nature of true
speech signals.

Moreover, to check if it is necessary to consider any noise
in our modeling, we compare the theoretical output power (i.e.,
E{y′2

k}) with the average measured output power in the simu-
lations (i.e., those conducted to plot Fig. 3). We compute the
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Fig. 4. Empirical input-output power curves (shown as a red band) and the
approximation based on Rapp’s model versus the power of input signal, denoted
by α.

output energy of the signal as

E
{
y′2

k

}
= σ2

w

∑

i

h2
i + σ2

x

∑

i

∑

m

hihm ρi−m . (10)

The achieved results show that the difference between the mea-
sured output power and E{y′2

k} is negligible (i.e., it was less
than 0.015). Thus, we can include noise in our model with an
approximate variance of 0.01 or, given its small contribution,
even neglect it. For the sake of simplicity, we proceed with the
latter.

As mentioned earlier, we conjectured that nonlinear effects do
not arise in the case of low input power, so the constructed model
up to here is entirely linear. In addition, we conducted additional
simulations to decide whether it is necessary to consider any
nonlinear constituent part. In other words, if the model is entirely
linear, scaling the inputs should produced scaled outputs. We
plot the input-output power curve in Fig. 4 to check whether such
property holds. Moreover, to verify whether this nonlinear block
is time-invariant, we rerun this simulation over different audio
files from TIMIT dataset (in particular, the core test set of TIMIT
material which contains 1920 sentences from 24 speakers) and
plotted the corresponding empirical input-output curves for each
file in one snapshot in Fig. 4. As illustrated in this Figure, these
curves constitute a thin red band, from which it can be inferred
that this block (i.e., the nonlinear scaling block) can be modeled
as time-invariant and insensitive to the attributes of the input
signal. This property has also been advocated for the structure
of the AMR vocoder in [29].

As illustrated in Fig. 4, assuming the entire linear model is
not tenable and we should consider a nonlinear block to model
the full regime (including clipping and gain-saturation). To do
so, we add a limiter function block to our hypothesized model as
illustrated in Fig. 5. Passing yk = xk + wk through the limiter
function denoted by H(·), we have y′′

k = H(yk ) at the output
of the limiter. Recalling that the watermark magnitude must

Fig. 5. Block-diagram of the complete model.

be small (i.e., |w| � 1) for perceptual reasons, we can deduce
that |w|n � |w| for any n > 1. Thus, we approximate H(·) by
applying a first-order Taylor expansion around yk = xk as

H(yk ) = H(xk + wk ) ≈ H(xk ) + wk
dH(x)

dx

∣
∣
∣
∣
x=xk

. (11)

Lets denote H(xk ) and wk
dH (x)

dx

∣
∣
∣
x=xk

by x′′
k and w′′

k re-

spectively. Considering the nonlinear part and according to
Fig. 5, we can update (6) by substituting σx and σw by σx ′′

and σw ′′ respectively. The variance of x′′ and w′′ now must be
calculated as

σ2
x ′′ =

∫ ∞

−∞
H2(x)px(x)dx (12)

σ2
w ′′ = σ2

w

∫ ∞

−∞

(
d

dx
H(x)

)2

px(x)dx. (13)

It is noteworthy to say that, since H(·) is an odd function and
px(x) assumed to be an even function, the mean of x′′ is zero.
Moreover, the power of the output signal (i.e., E{(y′′

k )2}) can be
computed as

E{(y′′)2} =
∫ ∞

−∞
H2(y)py (y)dy

=
∫ ∞

−∞

∫ ∞

−∞
H2(x + w)px(x)pw (w)dxdw. (14)

Let us denote the input-output power relationship by function
g(·). Invoking (11) and doing some algebraic simplifications

g(α) =
∫ ∞

−∞

∫ ∞

−∞
H2

(
(x + w)

√
α

√
σ2

x + σ2
w

)

px(x)pw (w)dxdw

≈
∫ ∞

−∞
H2

(
x
√

α
√

σ2
x + σ2

w

)

px(x)dx

+
ασ2

w

σ2
x + σ2

w

∫ ∞

−∞

(
d

dx
H

(
x
√

α
√

σ2
x + σ2

w

))2

px(x)dx.

(15)

It should be noticed that in practice we encounter the inverse
problem, that is, we know g(·) and we want to find H(·). To
solve this inverse problem, since an explicit expression for H(x)
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cannot be obtained, we approximate H(x) by a function in the
following set, parameterized by xmax

L(x;xmax , q) =
x

(

1 +
(

|x|
xm a x

)2q
) 1

2 q

. (16)

The family given by (16) corresponds to the limiter functions
encompassed by Rapp’s model [32]. To find the best match,
we numerically solve the following optimization problem using
true speech samples

x∗
max , q

∗ = arg min
xm a x ,q

∫ 5

0.1
‖g(α) − ĝ(α)‖dα (17)

where ĝ(α) is defined in the same fashion as g(α), replacing
H(x) by L(x;xmax , q) in (15). The optimization in (17) yields
x∗

max = 6.85 and q∗ = 10 which, as can be seen in Fig. 4, results
in a good approximation of H(x).

Our hypotheses for constructing the model in Fig. 5 include
the assumption that if the input power signal were low enough,
the linearity would hold and nonlinear effects would not be
significant. Fig. 4 validates such assumption: the utilized in-
put signal for modeling the linear part was small enough to
avoid noticeable nonlinear effects. Thus, since our conclusions
regarding the linear part have been drawn for such operating
point, the proposed nonlinear block does not alter them. As a
consequence, our global model that consists of a linear and a
nonlinear part will be exploited in the subsequent analyses per-
formed in this paper. Notice that with this model, even if x′

k

followed a known distribution (e.g., a generalized Gaussian),
y′

k would not, so we will focus instead on decoders that do not
make assumptions on px(x). This is pursued in the next section.
Last, to give more insights on the comfortability of proposed
model with vocoder structure let us say that, we have used the
standard version of AMR 12.2 codec which is officially released
by ETSI and written in ANSI-C in all simulations to ensure the
conformance of our results with the AMR 12.2 codec utilized in
cellular networks [33]. Recalling that the main purpose of our
model is to capture the impairments that the codec causes on the
watermark signal, it is worth pinpointing the roots of the model
in the constituent blocks of the codec.

The nonlinear block in Section II, namely H(·), straight-
forwardly corresponds to the (A-law, μ-law) compander. As
to the LTI filter h[n], it can be explained by the lossy encod-
ing/decoding of the LPC filter and by the low-pass filter that
performs subframe interpolation and long-term synthesis. To
elaborate, let Â(z) denote the LPC synthesis filter obtained
by quantizing the LSP (line spectral pairs) coefficients of the
analysis filter A(z), and let G(z) denote the low-pass filter.
Then, the input-output transfer function can be modeled by
L(z) .= A(z )G(z )

Â(z )
. Experiments conducted on real speech signals

confirm that the impulse response l[n] so obtained is remarkably
close to h[n] and despite the fact that both A(z) and Â(z) are
time-varying, their ratio, and thus l[n], are quite stationary, in
accordance with our observations for h[n].

Leveraging on the modeling methodology here presented,
one of the important advantages is that it can be extended to

other AMR codecs such as AMR 10.2, AMR-WB. Moreover,
as our watermarking methods have been designed to achieve a
large degree of robustness, they can be expected to perform well
with other vocoders having a similar underlying structure. We
have checked this for the AMR 10.2 and GSM FR codecs, with
promising results.

III. SPREAD SPECTRUM DATA EMBEDDING

Spread Spectrum (SS) methods are arguably the most popular
for data hiding. The SS scheme was first presented by Cox
et al. [34] in 1997. The authors proposed a method by which
the information could be embedded into the host signal with a
shared key. There are both additive [35] and multiplicative [36]
versions of SS. At the receiver side, the information is decoded
and extracted by using the same key as in embedding.

A. Improved Additive Spread Spectrum

In the case of additive spread spectrum, we insert one data bit
into one block of the host signal, i.e., N consecutive samples
of the host signal. The samples of the watermarked signal y for
each block are computed as

y = x + bw. (18)

Where the data bit b ∈ {−1, 1} is modulated and added
to N host coefficients x. The watermark signal w =
[w1 , w2 , . . . , wN ]T is a key-dependent pseudorandom sequence.
The imposed distortion to the host signal can be written as

D =
1
N

E
{
‖bw‖2} = σ2

w .

Having introduced the distortion parameter, the document to wa-
termark ratio (DWR) is DWR

.= σ2
x/D. Since the presented em-

bedding procedure does not compensate the interference from
the host contents, the resulting performance is generally not
acceptable. In order to improve the performance and have a
host-rejection approach at the receiver side which decreases the
error probability, the improved additive spread spectrum (IASS)
method can be used as follows [37]:

y = x + bw − γwwT x = x + bw + u (19)

where γ is set to 1/Nσ2
w to minimize the probability of error

and u denotes the host-rejection term. It is worth noticing that
the embedding distortion can be computed as

D = E
{
‖y − x‖2} = σ2

w +
σ2

x

N
. (20)

Next, according to the constructed model in Section II, the
output y′ is derived as

y′
k = hk ∗ H(yk ) (21)

which clearly illustrates the linear and nonlinear operations on
the watermarked signal yk . In the following sections, we mod-
ify the mentioned watermarking structure to tackle the issues
of both nonlinear scaling (i.e., the H(·) function) and linear
filtering (i.e., convolution with hk ). For the sake of simplicity,
we assume that H(·) operates pointwise on its input arguments
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Fig. 6. Block-diagram of the complete model for IASS.

(whether vectors or scalars), e.g., for an arbitrary vector a with
length N , H(a) = [H(a1), . . . , H(aN )]T .

1) Nonlinear Scaling: In the case of IASS we have

H(yk ) = H(xk + bwk + uk ). (22)

Recalling (11) and considering that for large N , we have σ2
u =

σ 2
x

N � σ2
x , the mentioned equation can be approximated as

H(yk ) ≈ H(xk ) + (bwk + uk ) · dH(x)
dx

∣
∣
∣
∣
x=xk

. (23)

To counterbalance the effect of nonlinear scaling, we first re-
place the host-rejection part by u′′ .= −γwwT H(x) and then
modulate both the watermark and new host-rejection terms by
(dH(x)/dx)−1 . In other words, we reformulate the encoder for
IASS as follows:

yk = xk + (bwk + u′′
k ) ·
(

dH(x)
dx

∣
∣
∣
∣
x=xk

)−1

. (24)

According to the parameters of Rapp’s model (i.e., xmax =
6.85), we can assume that almost all of the true speech samples
are less than xmax . So, since even in the extreme case of xk =
xmax , the value of (dH(xk )/dx)−1 is less than two, it is still
reasonable to hold the small signal assumption for this part (i.e.,
(bwk + u′′

k ) · (dH(xk )/dx)−1 ). Therefore, recalling (11), after
passing the mentioned signal through the nonlinear scaling part
of our model we have

H(yk ) ≈ H(xk ) + bwk + u′′
k . (25)

Consequently, as seen in Fig. 6 we can compensate the ef-
fect of nonlinear scaling by applying the proposed method and
just considering H(xk ) instead of xk as the host signal. The
cost of this compensation is the degradation of the error prob-
ability, i.e., since H(xk ) is always smaller than xk , then the
watermark power in (25) must be smaller to guarantee the same

DWR; this in turn produces an increase in the error probability.
This performance degradation was already expected due to the
nonlinear scaling of the vocoder. Finally, one might think of
applying the inverse of H(·) to yk to completely remove the
nonlinearity. However, this would increase the dynamic range
of the input signal to the voice channel, which would be unac-
ceptable in practice. In addition, denoting E{ dH (x)

dx |x=xk
} by β,

the embedding distortion in this new structure can be shown to
be

D =
σ2

w +
σ 2

x ′′
N

β2 . (26)

2) Linear Filtering: To mathematically discuss the effect of
linear filtering, let us periodically repeat the watermark signal to
make an infinite sequence, i.e., let us assume that wi = wi−mN

for all integer values of m. Now, considering (25), at the output
of model we have

y′
k =

∞∑

i=−∞
hiH(yk−i) ≈

∞∑

i=−∞
hi

(
x′′

k−i + bwk−i + u′′
k−i

)
.

(27)
By applying the correlator decoder, i.e., the inner product of

y′ and w at the decisor, we have

zA = wT y′ =
N∑

k=1

∞∑

i=−∞
wkhi

(
x′′

k−i + bwk−i + u′′
k−i

)
(28)

where zA indicates the test statistic. After some algebraic manip-
ulations, we can compute the mean and variance of zA , denoted
by mA and σ2

A , respectively, as

mA = Nbh0σ
2
w

σ2
A = Nσ2

w σ2
x ′′

∑

i �=0

∑

m �=0

hihm ρ′′i−m (29)

where ρ′′i−m indicates the normalized autocorrelation function
of x′′, i.e., ρ′′i = E{x′′

kx′′
k+i}/σ2

x ′′ . Recalling the central limit
theorem (CLT), for large N we can assume that test statistic
zA in (28) approximately follows a Gaussian distribution with
mean mA and variance σ2

A . Assuming an equal prior probability
for the information bit, i.e., Pr(b = +1) = Pr(b = −1) = 1/2,
we can approximate the error probability as follows1:

Pr(e) = Pr(e|b = 1) = Pr(e|b = −1)

≈ Q

(
mA

σA

)

= Q

⎛

⎜
⎜
⎝

√
Nh0σw

σx ′′

√∑

i �=0

∑

m �=0
hihm ρ′′i−m

⎞

⎟
⎟
⎠ . (30)

considering (26) and defining κ
.= β2 σ 2

x

σ 2
x ′′

, the approximate error

probability can be rewritten as

Pr(e) ≈ Q

⎛

⎜
⎜
⎝

h0

√
κN

DWR − 1
√∑

i �=0

∑

m �=0
hihm ρ′′i−m

⎞

⎟
⎟
⎠ . (31)

1Q(x) = (2π)−1/2
∫ ∞

x
exp(−v2 /2)dv.
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One way to increase the data rate of the introduced structure is
to use multi bi-orthogonal codes as spreading signals. To this
end, we propose a new structure (embedding/decoding struc-
ture) which aims at achieving host rejection with multiple simul-
taneous watermark carriers. Let wi , i ∈ {1, . . . ,M}with length
Nm denote a set of orthogonal codes, M indicates the number of
orthogonal watermark carriers and w∗ ∈ {w1 , . . . ,wM } repre-
sents the embedded symbol. Denoting the new host-rejection
term by r, i.e., r = (

∑M
i=1 wiwiT )H(x), the embedder and

decoder for the M-ary bi-orthogonal Additive (MA) structure is
proposed as follows:

yk = xk +
(

bw∗
k − rk

Nm σ2
w

)

·
(

dH(x)
dx

∣
∣
∣
∣
x=xk

)−1

(32)

where the decision is made by the decoder as

d̂MA = ĵ · sgn
(
y′T wĵ) (33)

with

ĵ = arg max
j∈{1...M }

|y′T wj |. (34)

The embedded distortion for this structure is

D =
1
N

E

⎧
⎨

⎩

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
bw∗ − (

∑M
i=1 wiwiT )x
Nm σ2

w

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2
⎫
⎬

⎭
=

σ2
w +

M σ 2
x ′′

Nm

β2 .

(35)

Since we now choose one among 2M spreading sequences, there
are log2 2M bits encoded in the decision, so we can increase the
length of the spreading sequences by this amount for the same
effective rate. Therefore Nm = N log2 2M . Carrying out some
algebraic manipulations, the error probability for the mentioned
structure can be approximated as [38]

Pr(e) = 1 − Pr(c|b = 1) = 1 − Pr(w∗ = wĵ |b = 1)

(33)
=

2M −1

2M − 1

⎡

⎢
⎣1 −

M∏

j=1
j �= ĵ

Pr
(
y′T w∗ >

∣
∣y′T wj

∣
∣
)

⎤

⎥
⎦

Pr(e) ≈ 2M −1

2M − 1

[

1 − 1
√

2πσ2
A

×
∫ ∞

0

(

1 − 2Q

(
x

σA

))M −1

e
− (x −m A )2

2 σ 2
A dx

]

. (36)

B. Improved Multiplicative Spread Spectrum Data Embedding

In the improved multiplicative spread spectrum (IMSS), the
watermarked signal is generated as [30]

yk = xk + bx2
kwk + uk . (37)

Now, similarly to Section III-A1, to take into account the effect
of nonlinear scaling, we modify (37) to

yk = xk +
(
bH2(xk )wk + u′′

k

)
·
(

dH(x)
dx

∣
∣
∣
∣
x=xk

)−1

. (38)

In this scheme, after some straightforward computations, D can
be shown to be

D =
σ2

w E{(x′′)4} +
σ 2

x ′′
N

β2 . (39)

After passing yk through the nonlinear scaling function of our
model, we have

H(yk ) ≈ x′′
k + b(x′′

k )2wk + u′′
k (40)

recalling the linear part of our model and akin to (27), the output
of linear block is

y′
k =

∞∑

i=−∞
hiH(yk−i)

≈
∞∑

i=−∞
hi

(
x′′

k−i + b(x′′
k−i)

2wk + u′′
k−i

)
. (41)

By applying the correlator decoder (i.e., the inner product of
y′, w as the test statistic) we have

zM = wT y′ ≈
N∑

k=1

∞∑

i=−∞
hi

(
x′′

k−i + b(x′′
k−i)

2wk + u′′
k−i

)
.

(42)
Next, to apply the CLT and compute the error probability, we
need to find the values of the mean and variance of zM denoted by
mM , σ2

M respectively. Noticing that the variables in the second
sum of (42) are zero-mean and uncorrelated with the watermark,
we can write

mM ≈ Nh0bσ
2
w σ2

x ′′ (43)

whereas σ2
M can be computed as

σ2
M = E{z2

M} − m2
M

≈ N

⎛

⎝σ2
w σ2

x ′′

∑

i �=0

∑

m �=0

hihm ρ′′i−m + σ4
w

∑

i �=0

∑

m �=0

hihm ϕi−m

⎞

⎠

+ Nh2
0E{w4

i }ϕ0 + h2
0σ

4
w

N∑

i=1

N∑

j=1
j �= i

ϕi−j − N 2h2
0σ

4
w σ4

x ′′

(44)

in which ϕi
.= E{(x′′

k−i)
2(x′′

k )2}. Assuming that E{w4
i } �

E{w2
i }, σ2

M can be approximated as

σ2
M ≈ Nσ2

w σ2
x ′′

∑

i �=0

∑

m �=0

hihm ρ′′i−m . (45)

Consequently, similarly to the additive case, the error probability
is

Pr(e) ≈ Q

(
mM

σM

)

= Q

⎛

⎜
⎜
⎝

√
Nh0σx ′′σw√∑

i �=0

∑

m �=0
hihm ρ′′i−m

⎞

⎟
⎟
⎠. (46)
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Denoting
√

E{(x ′′)4 }
σ 2

x ′′
by η and considering (39), the error proba-

bility can be reformulated in terms of the DWR as

Pr(e) ≈ Q

⎛

⎜
⎜
⎝

h0

√
κN

DWR − 1

η
√∑

i �=0

∑

m �=0
hihm ρ′′i−m

⎞

⎟
⎟
⎠ . (47)

Moreover, inspired by the M-ary bi-orthogonal watermarking
in Section III-A, a M-ary Multiplicative (MM) structure can be
proposed in the case of Improved multiplicative SS as follows:

yk = xk +
(

b(x′′
k )2w∗

k − rk

Nm σ2
w

)

·
(

dH(x)
dx

∣
∣
∣
∣
x=xk

)−1

(48)
in which w∗

k , wj
k rk are defined in the same fashion as in

Section III-A and, consequently, the decoder makes the deci-
sion as

d̂MM = ĵ · sgn
(
y′T wĵ) (49)

where

ĵ = arg max
j∈{1...M }

|y′T wj |. (50)

Furthermore, the embedding distortion can be written as

D =
σ2

w E{(x′′)4} +
M σ 2

x ′′
Nm

β2 . (51)

Let σ2
MM denote the variance of the interference that

results after multiplying by other spreading signal (i.e.,
E
{
yT wj

∣
∣wj �= w∗}). Next, recalling (36) and after some al-

gebraic manipulations the error probability becomes

Pr(e) = 1 − Pr(c|b = 1) = 1 − Pr(w∗ = wĵ|b = 1)

(49)
=

2M −1

2M − 1

⎡

⎢
⎣1 −

M∏

j=1
j �= ĵ

Pr
(
y′T w∗ >

∣
∣y′T wj

∣
∣
)

⎤

⎥
⎦

≈ 2M −1

2M − 1

[

1 − 1
√

2πσ2
M

×
∫ ∞

0

(

1 − 2Q

(
x

σMM

))M −1

e
− (x −m M )2

2 σ 2
M dx

]

(52)

where σ2
MM can be computed as

σ2
MM = N

∑

i �=0

∑

m �=0

hihm (σ2
w σ2

x ′′ρ′′i−m + σ4
w ϕi−m )

+ Nh2
0σ

4
w ϕ0 ≈ Nσ2

w σ2
x ′′

∑

i �=0

∑

m �=0

hihm ρ′′i−m . (53)

IV. SIMULATIONS AND RESULTS

In this section, we validate our analysis (in particular; er-
ror probability formulas) with several experiments. The good

Fig. 7. Empirical and analytical results over true speech samples for
N = 2500, AMR12.2.

conformance between experimental results and theory serves
as an additional supporting validation for the vocoder model-
ing from Section II. Afterwards, we assess the imperceptibility
of the proposed methods according to subjective and objective
benchmarks.

A. Performance Analysis

According to (6), the analytical error probability is highly
dependent on the autocorrelation of the input signals. We con-
sider two different scenarios to measure the goodness of our
proposed model. In the first one, we perform the simulations
over true speech samples and consider the average autocorrela-
tion of the input signal in our analytical formula. As shown in
Fig. 7, the empirical results are close to the analytical ones but
do not accurately match.

In the second scenario, we synthesize a signal with i.i.d Gen-
eralized Gaussian Distribution (GGD) samples [39], [40]. This
ensures a time-invariant autocorrelation. As illustrated in Fig. 8,
now the analytical and empirical results match more closely. We
can conclude that for stationary signals the analytical prediction
of the error probability is quite accurate, and that some accuracy
is lost for real speech signals, as stationarity does not hold in
this case. It is worth noticing that all the human voice samples
used in our simulations have been selected from the TIMIT
database [41].

It is worthy to note that the most common vocoders in cellular
networks are GSM FR, GSM HR in 2.5G and 2.75G, and AMR
in 2.5G, 2.75G, 3G. To the best of our knowledge, the most
prevalent one among the mentioned vocoders is AMR 12.2 [42],
[43]. So much so, we have focused on AMR 12.2 rather than
other compression rates. Additionally, as illustrated in Fig. 9, we
have conducted another simulation for AMR 10.2, AMR 7.95,
to show that the insights given by the proposed model can be
applied to other compression rates of AMR as well.
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Fig. 8. Empirical and analytical results over synthetic signals for N = 2500,
AMR12.2.

Fig. 9. Empirical and analytical results over synthetic signals for AMR
10.2 and AMR 7.95.

In addition, we conducted simulations for the case of M-ary
symbols. As illustrated in Figs. 10 and 11, the proposed M-ary
structures outperform the results shown in Figs. 7 and 8,
especially for low DWRs. It should be noted that for the sake
of clarity we do not plot the analytical results in Figs. 10 and
11, but the match is similar to that observed in Figs. 7 and 8.

We also compared the proposed methods with the baseline
additive and multiplicative SS schemes [35] [36], and with the
scheme proposed by Cheng known as Generalized Embedding
of Multiplicative (GEM) watermarking [44]. We plot the results
in Figs. 12 and 13 . As illustrated in these figures, the proposed
methods outperform the mentioned prior art.

The results shown in Figs. 7 and 11 have been obtained
by running the simulations over samples of audio files from
the TIMIT dataset [41], and plotting the average results.

Fig. 10. Empirical results over synthetic signals for N = 2500, AMR12.2.

Fig. 11. Empirical results over true speech samples for N = 2500, AMR12.2.

Experiments were conducted over the core test set of the TIMIT
material which contains 1920 sentences from 24 speakers.
Moreover, all simulations in this section have been conducted
with the following setup:

1) Watermark frame length: 2500, i.e., N = 2500.
2) Codec: AMR 12.2.
3) Synthetic signals follow a GGD distribution with zero

mean and unit variance, with a shape parameter of 1.5
which is matched with human voice properties [39].

4) The total length of human speech utilized in the simula-
tions was around 737 million samples which corresponds
to around 300,000 watermark frames.

Moreover, our proposed methods are based on spread-
spectrum. Although we have customized and particularized
them for our specific problem, they still inherit the main prop-
erties of spread-spectrum, discussed at length in [24]. This
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Fig. 12. Empirical and analytical results over synthetic signals based on the
proposed methods, baseline spread spectrum methods, and GEM.

Fig. 13. Empirical and analytical results over true speech samples based on
the proposed methods, baseline spread spectrum methods, and GEM.

means that they can be made robust against desynchronization
attacks, spectrum filtering, chess watermarking, cut-sampling,
zero-padding, resampling, noise addition, sample clipping, etc.

B. Imperceptibility Analysis

In this section we evaluate the proposed structures using ob-
jective and subjective benchmarks to assess their impercep-
tibility. ITU P.862 and ITU P.860 recommendations are two
well-known standards which are widely used to evaluate the
subjective quality of speech and the imperceptibility of em-
bedded watermarks. In these tests, we considered N = 2500
and a sampling rate of 8 KHz, so the embedding bit rate is
8000/2500 = 3.2 bps. Moreover, we considered M = 8 (i.e.,

TABLE I
TEST RESULTS FOR ITU P.860 (PERCENTAGE OF FAILURE)

Group I Group II Group III Group IV

M1 M2 M1 M2 M1 M2 M1 M2

Tester 1 45% 55% 45% 35% 50% 55% 60% 55%
Tester 2 55% 50% 40% 40% 55% 45% 55% 50%
Tester 3 55% 35% 40% 45% 60% 55% 60% 45%
Tester 4 45% 45% 50% 50% 50% 60% 50% 55%
Tester 5 60% 55% 45% 40% 55% 55% 55% 55%
Average 52% 48% 44% 42% 54% 54% 56% 52%

TABLE II
TEST RESULTS FOR ITU P.862

File Num MOSLQO Average

M1 M2 M1 M2

Group I F1.1 4.320 4.275 4.3352 4.2537
F1.2 4.311 4.206
F1.3 4.373 4.241
F1.4 4.377 4.268
F1.5 4.295 4.279

Group II F2.1 4.328 4.304 4.3474 4.2274
F2.2 4.321 4.246
F2.3 4.353 4.189
F2.4 4.363 4.191
F2.5 4.371 4.206

Group III F3.1 4.294 4.287 4.3167 4.2563
F3.2 4.359 4.205
F3.3 4.355 4.284
F3.4 4.276 4.204
F3.5 4.300 4.269

Group IV F4.1 4.330 4.219 4.3334 4.2228
F4.2 4.403 4.197
F4.3 4.304 4.205
F4.4 4.344 4.256
F4.5 4.286 4.236

8-ary symbols), Pr(e) = 0.001, and in order to achieve this tar-
get Pr(e), we set the operating DWR at 22.5 dB and 24.5 dB
for IMSS and IASS, respectively. To check the imperceptibil-
ity of the proposed methods in accordance with the ITU P.860
standard, we prepared four sound file groups, each consisting
of five audio files with a length of 10 seconds. We asked five
persons to execute the A/B/X test [17]. In the A/B/X test,
A indicates the watermarked signal, B stands for plain signal
and X is assigned randomly to be A or B. In each stage of this
experiment, whenever we played the X file for each listener,
we asked him to decide between A and B. We summarized
the results in Table I, where M1,M2 indicate 8-ary IMSS and
8-ary IASS, respectively. It should be noted that in the case of
ideal watermarking in this sort of test, the expected percentage
of failure would be 50%.

ITU P.862 recommendation describes an objective method for
predicting the subjective quality of narrowband speech codecs.
In this method, perceptual evaluation speech quality (PESQ) and
mean opinion score listening quality objective (MOSLQO) are
used to compare the proposed schemes. The results are shown
in Table II. It should be noticed that the PESQ value of the host
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TABLE III
TEST RESULTS OF COMPARING THE COMPUTATIONAL COMPLEXITY

OF VOICE ENCODING/DECODING AND THE PROPOSED DATA

HIDING ENCODING/DECODING IN TERMS OF MIPS

Methods Required MIPS

(N =2500)
Voice Enc/Dec 225-300
based on AMR 12.2
Enc/Dec based on IASS 20-40
Enc/Dec based on IMSS 20-40
Enc/Dec based on MA (M=4) 30-50
Enc/Dec based on MM (M=4) 30-50

signal before embedding the data was equal to 4.5. As expected
and shown in Tables I and II, although both methods exhibit an
acceptable level of imperceptibility, the multiplicative structure
behaves better than the additive one. In this work and according
to its main application (i.e., hiding data in regular voice calls
between two persons), we aimed at proposing a watermarking
method which would be imperceptible to the human hearing
system, as opposed to undetectability by steganalytic methods
such as [45], [46]. Therefore, since our primary application is
data hiding and not steganography, we have put emphasis on
transparency as measured by ITU P.860 and ITU P.860 which
are subjective tests of imperceptibility.

C. Complexity Analysis

To assess the complexity of the proposed schemes, we mea-
sured the required million instructions per second (MIPS) for
processing one time frame of data hiding (in particular, in the
case N = 2500) which encompasses both encoding and de-
coding processes. We report the achieved results in Table III
together with the required MIPS for voice encoding/decoding
(in particular, considering AMR 12.2 as the decoder/encoder)
the same time frame. As shown in Table III, the complexity of
the proposed schemes is a fraction of that of the vocoder in
cellular phones. We must remark that our implementation has
not been fully optimized, and even more so, no adaptation to the
specific architecture of cellular phone CPUs has been intended.
Considering this fact, we believe that a further reduction in the
results reported in Table III is feasible.

V. CONCLUSION

In this paper we have shown that for watermarking purposes
a mobile communication vocoder can be accurately modeled
by considering a non-linear scaling function plus a linear fil-
ter. Adhering to such model, we have proposed two Spread-
Spectrum-based data hiding methods, termed IASS and IMSS.
Moreover, their performance can be largely improved by con-
sidering multi bi-orthogonal codes as spreading signals. Finally,
the experimental assessment using both subjective and objec-
tive measures has revealed that our proposed schemes exhibit
an acceptable level of imperceptibility.

Although we have concentrated on detectors which do not
rely on the probability distribution of received signals, the

approximation of such distribution and the derivation of the
corresponding maximum likelihood detectors are topics for fur-
ther research. In addition, in order to increase the technological
readiness of the proposed methods for practical implementa-
tion, a technique to assure integrity of the hidden messages
in the case of packet losses, and a method for synchronization
considering the limited bandwidth constraints and nonlinearities
deserve further attention.
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security,” IEEE Trans. Inf. Forensics Security, vol. 4, no. 1, pp. 2–24, Mar.
2009.

[29] “Digital cellular telecommunications system (phase 2+); adaptive multi-
rate (amr) speech transcoding (GSM 06.90 version 7.2.1),” ETSI, Tech.
Rep. ETSI EN 301 704, 1998.

[30] A. Valizadeh, and Z. J. Wang, “An improved multiplicative spread spec-
trum embedding scheme for data hiding,” IEEE Trans. Inform. Forensics
Security, vol. 7, no. 4, pp. 1127–1143, Aug. 2012.

[31] M. Boloursaz, A. Hadavi, R. Kazemi, and F. Behnia, “Secure data commu-
nication through GSM adaptive multi rate voice channel,” in Proc. 2012
6th Int. Symp., Telecommun., 2012, pp. 1021–1026.

[32] A. A. Eltholth, A. R. Mekhail, A. Elshirbini, M. Dessouki, and A. Abdelfat-
tah, “Modeling the effect of clipping and power amplifier non-linearities
on OFDM systems,” Ubiquitous Comput. Commun. J., vol. 3, no. 1,
pp. 54–59, 2009.

[33] “Universal mobile telecommunication systaem (UMTS); AMR speech
codec general description (3gpp ts 26.071 version 5.0.0 released 5),” ETSI,
Tech. Rep. ETSI EN 126 071, 2002.

[34] I. J. Cox, J. Kilian, F. T. Leighton, and T. Shamoon, “Secure spread
spectrum watermarking for multimedia,” IEEE Trans. Image Process.,
vol. 6, no. 12, pp. 1673–1687, Dec. 1997.

[35] Q. Cheng and T. S. Huang, “An additive approach to transform-domain
information hiding and optimum detection structure,” IEEE Trans. Multi-
media, vol. 3, no. 3, pp. 273–284, Sep. 2001.

[36] A. Valizadeh and J. Wang, “A framework of multiplicative spread spectrum
embedding for data hiding: Performance, decoder and signature design,”
in Proc. GLOBECOM IEEE Global Telecommun. Conf., Nov.–Dec. 2009,
pp. 1–6.

[37] A. Valizadeh and Z. J. Wang, “Efficient blind decoders for additive spread
spectrum embedding based data hiding,” EURASIP J. Adv. Signal Process.,
vol. 2012, no. 1, pp. 1–21, 2012.

[38] J. Proakis, Digital Communications (ser. Communications and signal pro-
cessing). New York, NY, USA: McGraw-Hill, 1995. [Online]. Available:
http://books.google.com/books?id=cIqYQgAACAAJ

[39] S. Gazor and W. Zhang, “Speech probability distribution,” IEEE Signal
Process. Lett, vol. 10, no. 7, pp. 204–207, Jul. 2003.

[40] K. Kokkinakis and A. K. Nandi, “Speech modelling based on generalized
Gaussian probability density functions,” in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Process., Mar. 2005, vol. 1, pp. 381–384.

[41] J. S. Garofolo et al., TIMIT: Acoustic-Phonetic Continuous Speech Cor-
pus. Philadelphia, PA, USA: Linguistic Data Consortium, 1993.

[42] “The world’s premier supplier of speech and audio codec-voiceage,” 2015.
[Online]. Available: http://www.voiceage.com/AMR-NB.AMR.html

[43] “Mobile telecommunications-radio-electronics,” 2015. [Online]. Avail-
able: http://www.radio-electronics.com/info/cellulartelecomms.php

[44] Q. Cheng, “Generalized embedding of multiplicative watermarks,” IEEE
Trans. Circuits Syst. Video Technol., vol. 19, no. 7, pp. 978–988, Jul.
2009.

[45] S. T. Yong feng Huang, and Y. J. Y. Chunlai Bao, “Steganalysis of com-
pressed speech to detect covert VoIP channels,” IET Inf. Security, vol. 5,
no. 1, pp. 1–7, Mar. 2011.

[46] Y. Huang, S. Tang, and Y. Zhang, “Detection of covert voice-over inter-
net protocol communications using sliding window-based steganalysis,”
Commun. IET, vol. 5, no. 7, pp. 929–936, 2011.

Reza Kazemi was born in Ilam, Iran, in 1986. He
received the B.S., M.S., and Ph.D. degrees in com-
munication systems from the Sharif University of
Technology, Tehran, Iran, in 2008, 2010, and 2015,
respectively.

His research interests include watermarking,
steganography, information forensics, DoV, and
M2M communication.
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Prof. Pérez-González was an Associate Editor of the IEEE SIGNAL PRO-
CESSING LETTERS (2005–2009) and the IEEE TRANSACTIONS ON INFORMATION

FORENSICS AND SECURITY (2006–2010). He is currently is an Associate Editor
of the LNCS Transactions on Data Hiding and Multimedia Security, and the
EURASIP International Journal on Information Forensics and Security.

Mohammad Ali Akhaee (S’07–M’07) received the
B.Sc. degree in electronics and communications en-
gineering from the Amirkabir University of Technol-
ogy, Tehran, Iran, and the M.Sc. and Ph.D. degrees
from the Sharif University of Technology, Tehran,
Iran, in 2005 and 2009, respectively.

He is currently an Assistant Professor with the Col-
lege of Engineering and the Director of the Secure
Communication Laboratory, University of Tehran,
Tehran, Iran. He has authored or coauthored more
than 50 papers, and holds one Iranian patent. His re-

search interests include the area of signal processing, in particular multimedia
security, watermarking, and statistical signal processing.

Prof. Akhaee was the Technical Program Chair of EUSIPCO ’11 and the
Executive Chair of ISCISC ’14. He received the Governmental Endeavour Re-
search Fellowship from Australia in 2010.

Fereydoon Behnia was born in Tarom, Iran, in 1958.
He received the B.Sc., M.Sc., and Ph.D. degrees from
the Sharif University of Technology, Tehran, Iran, in
1985, 1987, and 1997, respectively.

Since 1988, he has been with the Electri-
cal Engineering Department, Sharif University of
Technology.


