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Abstract

In an increasingly connected world, the protection of digital data when it is processed by other

parties has arisen as a major concern for the general public,and an important topic of research. The

field of Signal Processing in the Encrypted Domainhas emerged in order to provide efficient and

secure solutions for preserving privacy of signals that areprocessed by untrusted agents.

In this work, we study the privacy problem of adaptive filtering, one of the most important

and ubiquitous blocks in signal processing nowadays. We present several use cases for adaptive

signal processing, studying their privacy characteristics, constraints and requirements, that differ in

several aspects from those of the already tackled linear filtering and classification problems. We

show the impossibility of using a strategy based solely on current homomorphic encryption systems,

and we propose several novel secure protocols for a privacy-preserving execution of the LMS (Least

Mean Squares) algorithm, combining different SPED techniques, and paying special attention to

the error analysis of the finite-precision implementations. We seek the best trade-offs in terms of

error, computational complexity and used bandwidth, showing a comparison among the different

alternatives in these terms, and we provide the experimental results of a prototype implementation of

the presented protocols, as a proof of concept that showcases the viability and efficiency of our novel

solutions. The obtained results and the proposed solutionsare straightforwardly extensible to other

adaptive filtering algorithms, providing a basis and masterguidelines for their privacy-preserving

implementation.
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Secure Adaptive Filtering

I. INTRODUCTION

In modern society, digital data about individuals that could be considered to be highly personal,

can be found relatively easily in the communication networks, especially the Internet. Although

most people support the last decades’ advances in digital networks, the sensitiveness of these data

motivates an increasing concern about the public availability of personal data and the processing

performed on them. On the other hand, signal processing researchers have traditionally focused on

continuously improving the efficiency and robustness of theapplied algorithms, while often leaving

aside the crucial aspect of data privacy. Thus, advances in signal processing have not taken into account

the trustworthiness of the parties that manage users’ signals or the sensitiveness of the information

contained within these signals. There are many applicationscenarios where the need for privacy is

clearly present, mainly those in which biological signals (fingerprints, faces, iris, DNA, ECG signals,

MRI images,...) are involved, as they hold extremely sensitive information about users or patients,

and their privacy is traditionally addressed through written consents that represent the trust that users

must put on the party or parties that process their signals.

Signal Processing in the Encrypted Domain (SPED) is an emergent research field that has arisen

to effectively tackle the privacy problems involving signal processing. As an interdisciplinary area,

it has faced from its birth the challenge of bringing together the views of the cryptographic and the

signal processing communities in order to reach the target of efficiently applying privacy preserving

techniques to common signal processing operations.

The theoretical grounds of Signal Processing in the Encrypted Domain come from the field of

secure function evaluation, that was introduced by Yao in 1982 [1] (Secure two-party computation)

through the now widely knownMillionares’ problem, and then generalized to Secure Multiparty

Computation [2] (SMC). In the former setting, two millionaires wish to know who is the richest,

without disclosing to the other their respective wealth. The solution proposed by Yao was based on

the concept ofgarbled circuits. In spite of the generality of the presented solution, the inefficiency of

its implementation for many applications has constituted the biggest obstacle for the development of

this technology for many years, in such a way that the existence of efficient solutions for the secure

execution of a generic function is still an open problem. Nonetheless, many efficient and secure

techniques have been developed for specific applications inthe past few years, building up a set of

tools that foretell the potential of this technology.

Within this set of tools, the most efficient SPED primitives are those that exploit the properties of

homomorphic encryption for performing some linear fixed operations, but most of the times Signal
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Processing needs to go further, resorting to adaptive filtering algorithms, due to their greater flexibility,

higher responsiveness when tracking the changes in the environment, their convergence to the optimal

fixed solution when working in a stationary environment, andthe fact that they are the optimal solution

in settings where the information about the signal characteristics is not complete, offering a much

better performance than fixed filters. Hence, a considerablenumber of practical signal processing

applications make use of adaptive filters. As we will show, current homomorphic cryptosystems

cannot directly deal with adaptive filters due to cipher blowup after a given number of iterations;

on the other hand, full homomorphisms, like Gentry’s [3], able of executing any circuit without the

need of decryption, are still not practical, due to the huge size needed for the ciphertexts. In fact,

the existence of practical fully homomorphic cryptosystems is still an open problem. Even though

there are some linear transforms and basic operations that can be directly translated into homomorphic

processing, the set is too limited, and when privacy is a concern, the solution cannot impose that these

operations be replaced by simpler non-adaptive algorithms, as the negative impact on performance

could virtually destroy the usefulness of the algorithm. This is especially true when the involved

signals are not stationary, and the filter must track their changes over time.

In this work, we present several secure solutions for privacy-preserving adaptive filtering that

involve homomorphic processing, garbled circuits and interactive protocols, in order to overcome

the limitations of the three technologies, while profiting from their respective advantages. We take

the LMS algorithm as a prototypical example of a relatively simple but powerful and versatile

adaptive filter, and compare the privacy solutions for the execution of the algorithm in terms of

computation and communication complexity. Furthermore, we also perform a comparison in terms of

the effect of fixed-point arithmetic on the error that the algorithm produces. We show the trade-off

that the combination of these different technologies establishes between precision, computational load

and required bandwidth, and we look for the optimum configuration by proposing novel interactive

protocols aimed at efficiently solving the cipher blowup problem, coming to several solutions that

reach an optimum balance among the involved performance figures.

A. Notation

We will use indistinctly lowercase letters to represent classes in a ring(Zn,+, ·) and a representative

of that class in the interval[0, n). ⌈.⌋ will represent the rounding function of a number to the nearest

integer. The used vectors will be represented by lower-caseboldface letters, whereas matrices will be

represented by upper-case boldface letters. The encryption of a numberx will be represented byJxK,
and the vector (matrix) formed by the encryptions of the vector x (matrix X) will be represented

by JxK (JXK). When working with the binary representation of a numberx, the encryption of the

vector of binary bits of that representation will be denotedas JxKb.
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The operations performed between encrypted and clear numbers will be indicated as if they were

performed in the clear; e.g.JXK·b will represent the encryption ofJX · bK. Regarding the complexity

calculations, the communication complexity of each protocol will be denoted by Ccm, and it will be

measured in bits.

The rest of the paper is structured as follows: in Section II,we recall the fundamental algorithms

for adaptive filtering whose secure processing versions we provide. Section III presents several exem-

plifying adaptive filtering scenarios where privacy constraints make necessary the use of a privacy-

preserving protocol, together with the trust model in use within those scenarios. In Section IV, some

basic concepts about secure computation are introduced. Section V reviews the existing solutions for

SPED primitives, and their relationship with the posed problem of secure adaptive signal processing.

Section VI presents our solutions for privacy-preserving adaptive filtering. Section VII is devoted to

the evaluation of the presented protocols, in terms of bandwidth and computational complexity. A

special attention is devoted to finite precision effects anderror analysis in Section VII-B, as the private

protocols work with fixed-point arithmetic. Finally, Sections VIII and VIII-A describe the practical

implementation guidelines of the proposed algorithms, based on the prototypes we have built, and

present the obtained results for their complexity evaluation. Section IX gives some conclusions and

anticipates future research lines following those initiated in this work.

II. I TERATIVE ALGORITHMS FORADAPTIVE FILTERS

As a brief introduction to the implemented methods, we present a summary of the most represen-

tative adaptive filtering family of algorithms, the Stochastic Gradient Algorithms.

Stochastic Gradient Algorithms are characterized by the use of a non-deterministic estimate of

the gradient, opposed to other gradient descent methods. The Least Mean Squares (LMS) algorithm,

developed by Widrow and Hoff in 1960 [4], is the most characteristic algorithm of this family, for

being a simple yet powerful and widely used adaptive filtering algorithm. It comprises two processes

that jointly form a feedback loop: 1) a transversal filterwn with NE coefficients applied to the

input sequenceun, and 2) an update process of the coefficients of the transversal filter, based on the

instantaneous estimation erroren between the output of the filteryn and a desired responsedn. For

real signals, these two processes are expressed as

yn =wT
nun (1)

wn+1 =wn + µun (dn − yn)
︸ ︷︷ ︸

en

, (2)

whereµ is the step size and.T denotes transpose.

One of the variants of the LMS algorithm that does not update the filter coefficients after each

output sample, but after a block ofNb samples, is known as Block LMS [5]. It has the advantage of
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being computationally more efficient and allowing parallelimplementations, at the price of a slightly

higher error excess. The update equations of this algorithmare the following

yn =χnwn

wn+1 =wn +
2µ′

L
︸︷︷︸

µ

φn, (3)

whereχn is anNb×NE matrix in which theith row is the vectoruT
n·Nb+i = [unNb+i, unNb+i−1, · · · , unNb+i−NE+1],

and φn = χT
nen is the vector representing the opposite of the scaled averaged estimate of the

error gradient for theNb samples of thenth block (the scale constant is already embedded into

µ). Furthermore, for the same convergence speed, the BLMS algorithm presents, in some cases,

better numerical accuracy than the standard LMS. A study on the numerical accuracy for the BLMS

algorithm is undertaken in Section VII-B.

There are many other variants of the LMS algorithm, but we will constrain our analysis and designs

to only these two forms. For more complex adaptive algorithms, the difficulties of a privacy-preserving

implementation are essentially those derived from the cipher blowup problem and, additionally, those

derived from the implementation of nonlinear functions. The latter is a problem that does not come

specifically from the adaptive filtering scenario and, thus,falls out of the scope of this work. Hence,

the chosen forms of LMS are representative enough, as they hold the essential characteristics of

adaptive filtering, and at the same time they are practical developments widely used in a vast number

of applications, as those sketched in Section III, in the context of a privacy-aware scenario.

III. PRIVACY SCENARIO AND TRUST MODEL

For all our protocols, we will consider two parties,A andB, both using an additively homomor-

phic cryptosystem in an asymmetric scenario, whereB can only encrypt, butA possesses also the

decryption key, and can perform both encryption and decryption.

For the problem of private filtering, the studied scenario represents a problem of private data

processing, in which one party possesses the input signal and other party possesses the reference

signal or the system model for driving the filtering of the input signal.

Hence, we will assume that one partyB has clear-text access to the to-be-filtered sequenceun,

while the other partyA will provide the desired sequencedn; both parties’ inputs must be concealed

from each other. The system parameters can be known by both parties or be provided by one party; in

our case, we assume that the update stepµ is agreed by both parties. The output of the algorithm (the

filtered signal) is provided in encrypted form, in order to beinput to a subsequent private protocol.

Regarding the privacy requirements, we will assume that both parties are semi-honest, in the sense

that they will adhere to the established protocol, but they can be curious about the information they

can get from the interaction. In this scenario, our protocols can be proven private (cf. Section VI-A);
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informally, both partiesA andB can only get the information given by the disclosed output ofthe

system, and no information is leaked from the intermediate steps of the protocols.

Adaptive filtering has a considerable number of applications in the field of signal processing. They

can be classified in four categories, namely identification,inverse modeling, prediction and interference

cancellation. Within these categories, numerous applications are subject to privacy constraints and can

benefit from the primitives that we present in this work. In the following paragraphs, as illustrative

examples of the applicability of our secure protocols, we briefly introduce some of them, mainly

related tomultiuser communicationswhere the privacy of the users must be protected from each

other and, in the cases where it exists, from the central processing server. Further details of the

application of our protocols to these scenarios can be foundin [6]; we omit them here due to space

constraints.

A. Private Adaptive Beamforming

Adaptive beamforming is a spatial application of adaptive filtering where a system composed of an

array of antennas changes the directionality of the transmitted/received signal without mechanically

moving the antennas. In the most common setting, the system must determine the spatial direction of

the interfering signal and/or that of the target signal, andfilter the sensed signals in order to cancel

the former and extract the latter; it finds use in communications, radar, sonar or speech enhancement.

The interfering signal comes usually from another source. The trust model in this scenario deals with,

on the one hand, the protection of the transmitted/receivedtarget signal, and, on the other hand, the

protection of the interfering signal and the spatial position of the interfering source. The two parties

involved in the scenario are represented in the beamformer by the adaptive filtering mechanism that

cleans the desired signal, and the model and pilot information for the desired signal. Again, this

model fits perfectly in our framework, and the protocols thatwe present can be straightforwardly

adapted to this scenario. The private filtering block (Figure 1) provides the adaptive weights applied

to the received signals in order to adjust the directivity ofthe antenna array, without disclosing the

contents of the interfering private signal; as in a private interference cancellation scenario, it must

be complemented by another private block, denoted private beamforming block, that processes the

mixed signals while concealing the private information.

As a specific example of this scenario, we could pose the problem of a cellular smart antenna,

property of a mobile operator receiving signals (mixed intoa signalun) from his own users and

also from users of a second operator that subcontracts the infrastructure of the former. The latter

operator (partyA) has decryption capabilities (and reference signalsdn,i for each of his users) and

wants to perform adaptive beamforming to clean the signalsyn,i from the clients without disclosing

to the former (partyB) their positions or the contents of the cleaned signals, in such a way that the
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Fig. 1: Private Adaptive Beamforming Scenario.

information of the users ofB is also not disclosed toA.

B. Private Model-Reference Adaptive Control

There are many control applications [7] where the parameters of the controlled system are either

not fully known or vary over time. Adaptive control yields a solution for maintaining consistent

performance in these cases. It is used in many industrial contexts like, to name a few, robot ma-

nipulation, ship steering, aircraft control or metallurgical/chemical process control. Model-Reference

Adaptive Control (MRAC) is one approach for constructing adaptive controllers. An MRAC system

is composed of four elements:

• A plant with a known structure but unknown parameters.

• A reference modelthat specifies the desired output of the control system to theexternal command.

It should match the performance specification while being achievable by the control system.

• A feedback control law (controller) with adjustable parameters. It should guarantee tracking

convergence and stability.

• An adaptation mechanismfor updating the adjustable parameters.

The trust model in this scenario can be devised as a two party model (involving privacy of system

users at the plant and at the controller), where the plant outputs must be kept secret from the party

that runs the controller, and the reference model that the controller applies must also be kept secret for

the parties in the plant. In order to adaptively control the plant while keeping the privacy constraints,

the same philosophy that we apply to LMS can be used to straightforwardly translate the protocols

that we present for their use in this scenario.

As a specific example for this scenario, we could devise a spacecraft control system working with

classified information coming from a vehicle in orbit, usingan antenna under the control of a non-

trusted party; the control information cannot be disclosedfor keeping the management of the vehicle

behavior secret. In this case, the party that emits the control (referencedn) signal has decryption

capabilities, while the non-trusted party that receives the vehicle’s signals (un) can only encrypt.
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Current privacy-preserving solutions cannot be directly applied to these scenarios due to the cipher

blowup problem, that prevents the use of homomorphic computation alone. We will present in

the subsequent sections our novel solutions to that problem; they have a direct application in the

aforementioned scenarios and present efficient private protocols that overcome cipher blowup, finding

an optimal trade-off between precision and complexity.

IV. SECURE COMPUTATION

In this section, we review some of the concepts of secure computation that are needed for the

development of our constructions, namelyHomomorphic Encryption, Secret Sharingand Secure

Multiparty Computation.

A. Homomorphic Encryption

Some cryptosystems present homomorphisms [8] between the groups of clear-text and cipher-text,

that allow for the execution of a given operation directly onencrypted values, without the need of

decryption. Examples of homomorphic cryptosystems are RSA, with a multiplicative homomorphism,

or Paillier [9] and its variants, with an additive homomorphism.

In this work, we do not restrict the used cryptosystem for thepresented protocols, as long as it

presents an additive homomorphism. There are many semantically secure cryptosystems with this

property, like Paillier [9] or DGK [10], but for the sake of clarification, and for performing the

numerical calculations of Section VIII-A, we have chosen the extension of Paillier encryption given

by Damgård and Jurik [11], due to its good trade-off betweenefficiency, encryption size and cipher

expansion.

Damgård and Jurik’s cryptosystem presents an additive homomorphism that allows computing the

addition of two encrypted numbers and the product of an encrypted number and a known integer:

Jx + yK = EDJ [x+ y] = EDJ [x] · EDJ [y] mod ns+1, Jx · kK = EDJ [x · k] = EDJ [x]
k mod ns+1.

The message space isZns, wheren is the product of two safe primesp, q, and the parameter

s ∈ Z
+ is fixed.

The encryption of a messagex is obtained by picking a randomr ∈ Z
∗
ns+1 and computing the

ciphertextEDJ [x] asEDJ [x] = gxrn
s

mod ns+1.

We must also draw attention to the fact that currently there is no practical fully homomorphic

cryptosystem; i.e., there is no secure cryptosystem that allows for the homomorphic computation

of additions and products without restrictions. There havebeen recent contributions by Gentry [3],

that presents a cryptosystem based on ideal lattices with bootstrappable decryption, and shows that

it achieves a full homomorphism. Nevertheless, the author argues that making the scheme practical

June 14, 2011 DRAFT



8

remains an open problem. There is a research line currently underway, with works like [12], focused

on translating Gentry’s scheme into a practical fully homomorphic solution, but it is still limited

to very small plaintexts and very simple circuits. By now, wewill adhere to using an additively

homomorphic cryptosystem, always taking into account the advantages that an efficient and practical

fully homomorphic cryptosystem would provide.

B. Secret Sharing

Secret sharing is a technique introduced by Adi Shamir [13],by which a given value (the secret) is

divided among several parties, such that the cooperation among a number of these parties is needed

to recover the secret. None of the parties alone can have access to the secret.

Shamir’s scheme is based on polynomials, and the need ofk points to completely determine a

degree(k − 1) polynomial. Secret sharing is a widely used primitive in cryptographic protocols. In

this work we focus on two-party protocols; thus, we are only interested in the two-party version of

the secret sharing scheme, that is based on linear functionsand, consequently, naturally supports the

computation of sums and products directly on the shares: letZn be the domain of the secrets. Then,

a share of a secretx is defined as two valuesxA andxB , owned by their respective parties, such

that xA + xB ≡ x mod n. Hereinafter, randomizing an encrypted valuex will mean obtaining one

share and providing the encryption of the other (through homomorphic addition).

C. Secure Multiparty Computation

Secure Two-Party Computation was born in 1982 with Yao’s Millionaires’ problem [1], and later

generalized to Multiparty Computation by Goldreichet al [2]. Yao proposed a solution to the binary

comparison of two quantities in possession of their respective owners, who are not willing to disclose

to the other party the exact quantity they own. The solution that Yao proposed was based ongarbled

circuits, in which both parties evaluate a given circuit, gate by gate, without knowing the output

of each gate. Yao’s solution was not efficient, and later, many protocols based on other principles

like homomorphic computation or secret sharing were proposed in order to efficiently perform other

operations in a secure manner.

Nevertheless, while homomorphic computation and secret sharing are very efficient for implement-

ing arithmetic operations, circuit evaluation is still more efficient when dealing with binary tests [14].

Thus, there exist efficient protocols for binary comparison[14], [15] or Prefix-OR [14] that will be

needed, with some modifications, for the implementation of our solutions. Traditionally, the search

for efficient solutions has led to proposals for changing between integer and binary representations

in order to efficiently implement both arithmetic and binaryoperations; e.g., there are solutions like
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the BITREP protocol [16], that converts Paillier encryptedintegers to Paillier encryptions of their

corresponding bit representation.

For the garbled circuit constructions, we use the efficient protocols developed in [17], and for the

transformation from Paillier representation to a binary representation suitable for usage in a garbled

circuit, we employ the protocols in [18].

V. RELATED ART

Previous work on private linear filtering has been presentedas part of the SPEED project [19],

dealing with the privacy problem in a two-party setting where one party has an input to a linear filter

and another party holds the filter coefficients. Such efficient privacy-preserving solutions are based

solely on homomorphic processing, as it fits perfectly the linear filtering operation without imposing

any overhead on communication. Within the area of linear filtering, we can point out the works

by Bianchiet al. [20]–[22], dealing with encrypted DFT and DCT transforms and frequency-domain

linear filtering. Additionally, these works discuss also the problem of disclosing data derived from the

inputs without any dimensionality reduction, as the original data can be inferred from the disclosed

outputs.

There have been also some contributions for more complex operations, involving the combination

of garbled circuits and homomorphic processing, most notably those from Kolesnikovet al. [18],

in which homomorphic processing is used for the linear operations, while garbled circuits deal with

non-linear operations.

Regarding the privacy considerations in iterative algorithms, there are some contributions in the

area of private collaborative filtering, like those by Canny[23] and Erkin [24]. In the former, Canny

developed a privacy-preserving iterative conjugate gradient algorithm for the calculation of the SVD

decomposition of a shared preference matrixP . The setting in [23] is different from ours in several

aspects: a) It involves multiple parties, and the gradient estimate in each iteration is calculated as the

sum of the contributions from each of these parties; b) the result of every iteration is decrypted and

disclosed before the next iteration; hence, it does not involve successive products of encrypted values,

as each party uses only clear-text values for producing the results at every iteration; c) as a drawback,

the disclosure of the approximation of the preference matrix and the global gradient calculated at

each iteration are publicly known; hence, the security relies on those matrices having a very high

dimension and the system having a very high number of users. In the present work, we are dealing

with protecting the signals coming from one party during their adaptive filtering by another untrusted

party; in this setting, Canny’s solution loses its privacy properties, as the value disclosed after each

iteration allows each party to calculate the secret input from the other party. Furthermore, we must

keep all the intermediate values encrypted in order to effectively preserve the privacy of the involved
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users, and this involves repeated products of encrypted numbers that will have direct consequences

on the viability of the used privacy-preserving techniquesdue to the cipher blowup problem.

Other private iterative algorithms involveK-means clustering of a database shared between two

parties, like the one proposed by Jagannathanet al. [25]; again, in this setting, the results of each

iteration (the current classification of the elements) are disclosed before the next, and the security

relies on the dimensionality of the databases, unlike the case of private adaptive filtering.

Hence, to the best of our knowledge, there are no specific solutions within the emerging field of

Signal Processing in the Encrypted Domain for securely executing iterative or adaptive algorithms

besides [26], nor any study performed on the impact that an iterative implementation has on the range

of representable numbers when the results of each iterationcannot be disclosed. Thus, our solutions

are presented here as the first ones dealing with privacy preserving adaptive filtering algorithms.

VI. PROPOSEDPROTOCOLS

In this section, we present different approaches in order totackle the private implementation of the

LMS algorithm, and to overcome the limitations that the soleapplication of current homomorphic

encryption and garbled circuits has in our scenario.

A. Homomorphic processing

The LMS algorithm, and most of the adaptive filters currentlyin use, while having an essentially

non-linear behavior due to their adaptive nature, compriseonly linear operations. Thus, it is foresee-

able that homomorphic processing can yield a quite efficientsolution. Unfortunately, there are two

drawbacks in following this approach:

• There are no practical fully homomorphic cryptosystems; the most promising contribution in this

sense is Gentry’s poly-time and poly-space fully homomorphic cryptosystem, whose constant

factors make it impractical [3]; hence, using only homomorphic processing implies resorting to

interactive protocols for performing multiplications between encrypted values, or for any other

more complex operation.

• The inputs to the secure protocol must be quantized prior to encryption. Hence, it is necessary to

work in fixed point arithmetic, keeping a scale factor that affects all the values under encryption.

This factor will increase with each encrypted multiplication, limiting the number of allowed

iterations of the adaptive algorithm, until the encrypted numbers cannot fit the cipher, when it

is said that the cipher blows up.

There are two approaches for devising a private LMS protocol, depending on whether the output is

either disclosed or given in encrypted form. The simplest approach is the one in which the output of the

LMS algorithm can be disclosed to both parties; in this case,a secure protocol could be quite efficient,
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as the problem of the increased scale factor can be easily solved by requantizing the outputs in the

clear after every iteration with no additional overhead, requiring only homomorphic additions and

multiplications and interactive multiplication gates. Nevertheless, besides its simplicity, this scenario is

of no interest due to the fact that disclosing the output gives both parties all the necessary information

for retrieving the other party’s private input and rendering the privacy-preserving solution unnecessary

and unusable.

The private output scenario is more realistic, and it is the one on which we will focus, as it

corresponds to the case where the LMS block can be used as a module of a more complex system

whose intermediate signals must not be disclosed to any party. We will adhere from now on to

this scenario, and we will begin by presenting a protocol that uses only homomorphic computations

(Algorithm 1), in order to have a complexity reference and show its limitations. In Algorithm 1,

interactive multiplication protocols are avoided due to the division of the roles of both parties: the

party that provides the private inputu, without decryption capabilities, is the one that will perform

the homomorphic operations between the encrypted intermediate values andu. In this case, there is

a constant scaling factor (updateFactor) that is accumulated after every iteration, and that forces

to scale the inputs and the intermediate results in order to have the correct output. This accumulated

factor limits the maximum number of iterations that the protocol will be able to execute before the

cipher blows up:

Nmax iter =

⌊
ncipher

nx + log2(updateFactor)

⌋

,

where nx bits are used for representing each input, andncipher is the bit size of the maximum

representable number inside the cipher.

The communication complexity of this protocol, assuming Damgård-Jurik encryptions, is

CHPcm = (2Niter +NE − 1)|E|,

whereNiter is the number of performed iterations,NE is the length of the filter and|E| represents

the number of bits of an encryption.

It is important to note that the iteration limit imposed by this protocol, due to cipher blowup, is a

serious drawback and impedes the use of only homomorphic processing (in its current development

stage) to perform adaptive filtering. For typical values of the used precision (48-bit numbers,24 bits

for the fractional part) and medium-term security (2048 bits for Paillier modulus), this protocol is

limited to approximately 17 iterations, what is insufficient even for reaching the steady-state regime,

and prevents its use in any practical application. Therefore, we present it as a reference that sets the

minimum of computation and communication complexity that can be achieved for a private LMS. It

must be noted that this iteration limit could be improved through the use of a different encoding of

the inputs, like the logarithmic encoding presented in [27], but such approach comes at the price of

an increased communication and computation complexity even for additions and multiplications.
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In the following subsections, we propose several novel alternatives and extensions, through the

combination of other privacy-preserving techniques, aimed at overcoming the cipher blowup problem

with the minimum overhead in communication and computationcomplexity, while preserving an

acceptable excess error with respect to the infinite precision non-private LMS algorithm.

Algorithm 1 Homomorphic Processing (HP) PrivateLMS Protocol
Inputs: A: dn,w0; B: un,w0

Outputs: JynK.
A B

Initialize carriedFactor= 2nf , updateFactor= 23nf .

Encrypt inputs and sendJdnK to B.

for k = 1 to Niter

Perform the vector multiplicationJykK = JwkK · uk.

ScaleJd′kK = JdkK·carriedFactor.

ObtainJe′kK = µ · (Jd′kK − JykK).
Perform the scalar multiplicationJ∆wkK = Je′kK · uk.

Update the coefficients vector Jwk+1K =

JwkK·updateFactor+J∆wkK.
UpdatecarriedFactor=carriedFactor·updateFactor.

Output JykK.
endfor

Security:Regarding the security of this protocol and the ones presented in the following sections,

it can be proven, using a simulator argument, that all of themare statistically secure under the

random oracle model, assuming semi-honest parties: due to the use of sequentially composed secure

subblocks and the semantic security of the underlying cryptosystems, the views that each party gets

are statistically indistinguishable from a random sequence, and the parties cannot derive from those

views any extra information about the private inputs of the other party. We will not go into details

about these proofs, as they are rather straightforward.

B. Garbled Circuits Implementation

This protocol represents the whole LMS algorithm as a binarycircuit, in which we include a

rounding operation in each multiplication circuit in orderto preserve a constant bit-size for the

handled numbers. The protocol is sketched as Algorithm 2. Itis straightforward to derive the binary

circuit implementing Eqs. (1) and (2), so we do not detail itsconstruction in Algorithm 2; as for

the garbled implementation, we use the XOR-free version of [17], with the efficient extensions for

the Oblivious Transfer (OT) protocol of [28], and an Elliptic Curve version of ElGamal [29], [30]

for the encryptions. This implementation uses fixed precision, and rounds the numbers after every
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multiplication in order to preserve this precision. Hence,it overcomes the quantization problems that

the previous one presents, but it requires working at a bit level, thus being its performance highly

dependent on the bit-size of the represented numbers.

Additionally, every transferred bit must be independentlyencrypted, which also multiplies the

communication complexity of the whole protocol by a large factor, resulting in

CGCcm =|E|
(
4n2

x(Niter + 2NENiter) + 2nx(−1 + 10Niter + 4Niternf + 2NE(1 + 5Niter + 4Niternf ))

−4Niter(5 + nf (3 + nf) +NE(7 + 2nf (3 + nf )))) ,

whereNE is the length of the filter,|E| represents the number of bits of an EC-ElGamal encryption,

nx is the total number of bits for representing each number, andnf is the number of bits used for

the fractional part.

The complexity has, as expected, a linear dependence on the product of the number of iterations

and the size of the filter, while it has a quadratic dependenceon the bit-size of the used numbers and

the bit-size of the fractional part, due to the presence of multiplication circuits. The communication

complexity is much higher than in Algorithm 1, due to the needof communicating the whole garbled

circuit prior to its execution.

A remark worth noting on Algorithm 2 is that inputs get to the circuit once per iteration, even when

they could be joined all together (in long enough blocks) andapply OT reduction techniques [28]

for lowering the computational complexity of the whole protocol. The reason behind this structure

is that we are assuming that the system must work with some real time constraints, and offer the

outputs at the same rate as the input, without a significant delay. Hence, the inputs might be packed

together for reducing the computation overhead of the OTs insmall blocks, whenever the delay is

affordable; it must be noted that the communication overhead is not reduced though: the reduction

techniques in [28] replace public key encryptions with computationally lighter hash functions; since

we are using elliptic curves for the public key encryption, their size is comparable to that of a collision

resistant hash for the same security level. The effect of theOT reductions is shown for the hybrid

block protocol in Section VIII-A.

C. Hybrid Implementation

In order to overcome the quantization problem in Algorithm 1and lower the communication

complexity of Algorithm 2, we have developed a hybrid algorithm (Algorithm 3) that uses homo-

morphic processing for the bulk of the algorithm, and a quantization circuit to avoid carrying factors.

Conversion protocols from homomorphic encryption to binary representation and vice-versa are used

to connect both parts of the protocol.

There are several possible combinations of homomorphic processing and garbled circuits that

yield different results in the complexity balance. We can argue that the optimal point for applying
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Algorithm 2 Garbled Circuit (GC) PrivateLMS Protocol
Inputs: A: dn,w0; B: un,w0.

Outputs: JynKb.
A B

Obtain the bit representation of their respective inputs.

ExecutegenerateGC() for the firstm ≤ Niter iterations,

and send the garbled circuit and the keys corresponding

to her inputs toB; the garbled gates for the remaining

iterations can be generated and sent in parallel with the

execution of the previous ones.

for k = 1 to Niter

Perform parallelOT protocols so thatB get the input keys to initialize the circuit corresponding to thekth iteration.

Execute the circuit, using the received input keys fromA.

Output JykKb.
endfor

quantization in terms of efficiency is at every iteration, when the scaled output of the filtery′k is

obtained (cf. Algorithm 3), using a quantization step of23nf to recover the initial precision ofnf

fractional bits. When this strategy is chosen, only one scalar value is input to the quantization circuit

at every iteration, which means reaching the minimum of communication complexity for the used

garbled circuit. Furthermore, this quantization allows tokeep a constant scaling factor for the rest of

the handled values, avoiding the rescaling operation that is performed in Algorithm 1 for every input

value and for the filter coefficients; hence, the computationcomplexity also reaches its minimum with

this strategy. Lastly, the bounded size of the represented values makes possible the use of a packing

strategy for the homomorphic processing, such that more than one input value can be packed into

the same encryption. This will be further commented in Section VI-D.

The communication complexity of the protocol is

CHycm = (2Niter +NE − 1)|EH |+Niter|EC |(19nx + 7nsec+ 24nf),

whereNE is the length of the filter,|EH | and |EC | represent the bit-size of a homomorphic and a

garbled encryption respectively,nx is the total number of bits for representing each number,nf is

the number of bits used for the fractional part, andnsec is the number of security bits used for the

conversion protocols. As the circuit part involves only rounding operations, and the multiplications are

performed homomorphically, the complexity is linear on thebit-length of the inputs and the number

of iterations, instead of quadratic, as in the garbled-circuit solution.

In this case, the quantization step used for the filter coefficients is not the same as the one used for

the input/output values: filter coefficients are quantized with a finer step, using3 · nf bits for their

fractional part, instead ofnf . This is needed in order to keep the bit-size of the outputs constant and
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avoid any further quantization operations. Furthermore, as stated in Section VII-B, the quantization

step of the filter coefficients is the one that has the highest impact on the quantization error that is

propagated to the outputs, so this measure will make this method have a much better behavior than

Algorithm 2 in terms of mean square error (MSE).

Algorithm 3 Hybrid (Hy) PrivateLMS Protocol
Inputs: A: dn,w0; B: un,w0.

Outputs: JynK.
A B

Encrypt her inputs.

ExecutegenerateGC() for the rescaling circuit in each

of the first m ≤ Niter iterations, and send the garbled

circuit to B; the remaining circuits can be generated and

sent during the execution of the previous ones.

for k = 1 to Niter

Perform the vector multiplicationJy′
kK = JwkK · uk.

ConvertJy′
kK to its bit-representation using the bit conversion protocol.

Perform parallelOT protocols so thatB get the input keys to initialize the circuit corresponding to thekth iteration.

Execute the rescaling circuitJykKb =
r⌈

y′
k

2
3·nf

⌋z
b
, using

the received input keys fromA.

The shared output of the circuitJykKb is converted back to a homomorphic encryptionJykK.
ObtainJe′kK = µ · (JdkK − JykK).
Perform the scalar multiplicationJ∆wkK = Je′kK · uk.

Update the coefficients vectorJwk+1K = JwkK+ J∆wkK.
Output JykK.

endfor

D. Hybrid Block Protocol and Packing Strategy

As pointed out in the preceding section, the hybrid implementation of the algorithm has the

advantage of working always with bounded numbers, and it allows for a parallel block implementation

in the form of packed coefficients within a cipher, as introduced in [31].

Typically, the numbers involved in signal processing calculations can be bounded, and their bit-size

represents just a very small fraction of the size of a secure cipher modulus; the extra bit size is unused,

but it is necessary due to security constraints on the cryptosystem. Nevertheless, this space can be

utilized; assuming that every involved calculation resultx is bounded at the moment of unpacking

such that it occupies at mostnb bits (i.e., |x| ≤ 2nb−1; for the hybrid protocol,nb = nx + 3 · nf ),

everyK inputs {xi}
K−1
i=0 , with K ≤ ⌊

ncipher−nsec

nb
⌋ (beingnsec the number of security bits needed for

the conversion protocol), can be packed in only one encryption asJxpackedK = J
∑K−1

m=0(xm+2nb−1) ·
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2m·nbK, being2nb−1 a shift factor for considering only positive numbers1. This packing allows for

the computation of vector products and additions with a reduced complexity (it gets divided by the

number of packed elements), taking advantage of the unused huge space that the cipher allows.

This strategy was later generalized to an arbitrary base in [22], but due to the use of binary circuits,

2nb is the most efficient choice, as divisions and multiplications by this factor in the circuit are just

implemented for free as bit-shifts in the clear.

While the packing operation improves the efficiency of the homomorphic computations, on the

garbled circuit side of the protocol, it has the effect of increasing the size of the used circuits,

multiplying it by the number of values packed into the same encryption. Thus, the complexity of the

executed garbled circuits is preserved after packing (lowered if OT reduction techniques are used for

each packed block), while the conversion protocols also getan increase in performance, as only one

conversion is needed for each encryption containing several packed numbers.

Turning to the secure hybrid block protocol, the packed elements must be processed all together,

applying the same coefficients to all of them. Hence, the normal LMS algorithm cannot take advantage

of packing, as the filter is kept constant for each group of packed samples, and the update equation has

to be slightly modified in order to account for the average error of the whole set of packed samples

instead of the error of individual samples; this filter is known as the Block LMS algorithm [5], in

which the update equation is

wn+1 = wn + µ

Nb−1∑

i=0

un·Nb+i · en·Nb+i,

whereNb represents the size of the block. The usual choice ofNb for the Block LMS filter is

Nb = NE, as it yields the minimum computational complexity.

Since the packing factors2nb are chosen to be powers of two, the bit-conversion protocol auto-

matically unpacks the numbers without any extra complexity, and the conversion to homomorphic

encryption after the circuit evaluation is performed for each unpacked number in parallel.

The communication complexity of the hybrid block protocol,taking into account that the XOR

gates are free of communication for the used implementation, is exactly the same as for the hybrid

protocol:

CHBcm = (NE − 1 + 3Niter + 5NENiter)|EH |+Niter|EC |(19nx + 7nsec+ 24nf).

This complexity is linear in the number of iterations, the size of the filter and the bit size of the

numbers, and it is independent of the number of packed coefficients.

1The shift factor fixes the sign convention between the bit representation (−a ≡ 2nb − a) and the modular arithmetic

(−a ≡ n− a), working always in the range[0, 2nb), and avoiding errors in the conversion between both representations.

Hence, it is not an integral part of the packed formulation, and shall only be applied before a conversion protocol.
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Algorithm 4 Hybrid Block (HB) PrivateLMS Protocol
Inputs: A: dn,w0; B: un,w0.

Outputs: JynK.
A B

Encrypt her inputs.

A executesgenerateGC() for the unpacking, parallel

rescaling and output circuits in each of the firstm ≤ Niter

iterations, and sends these garbled circuits toB; the circuits

for the remaining iterations can be generated and sent

during the execution of the previous ones.

Pack the input vector asX(k)
j =

∑Nb−1
i=0 2nx+3nf ·

uk·Nb+i−j , j = {0, . . . , NE − 1}.

for k = 1 to ⌈Niter/Nb⌉

Perform the packed vector multiplicationJykK = JwkK ·
X(k).

ConvertJykK to its unpacked bit-representation using the bit conversion protocol.

Perform parallelOT protocols so thatB get the input keys to initialize the circuit corresponding to thekth iteration.

Execute the unpacking and parallel rescaling circuit, using

the received input keys fromA.

The output of the circuitJyk·Nb+iKb, i = {0, . . . , Nb−1} is converted back to a homomorphic encryptionJyk·Nb+iK, i =
{0, . . . , Nb − 1}.

Obtain Je′k·Nb+iK = µ · (Jdk·Nb+iK − Jyk·Nb+iK), i =

{0, . . . , Nb − 1}.

Perform the scalar multiplication J∆wkK =
∑(k+1)·Nb−1

i=k·Nb
JeiK · ui−NE+1.

Update the coefficients vectorJwk+1K = JwkK+ J∆wkK.
Output Jyk·Nb+iK, i = {0, . . . , Nb − 1}.

endfor

E. Fast Implementation

The hybrid block protocol is far more efficient than the one based solely on garbled circuits.

Nevertheless, the conversion protocols introduce an overhead, and the fact that the input values

to the rounding garbled circuits are generated on the fly prevents much of the preprocessing that

garbled circuits would need to compensate the complexity ofthe oblivious transfers. The gap in

computational complexity with respect to the solution based on homomorphic processing is too big (cf.

Section VIII-A), especially when using a high precision bitrepresentation. Thus, we have come to a

much more efficient solution that, in order to tighten that gap, avoids the use of circuits, and substitutes

them by an approximate rounding protocol with statistical security. The block implementation can also

profit from the use of this solution, with a decrease on the maximum packing efficiency, as now the

number of packed coefficients is bounded byN
(FB)
b ≤ ⌊

ncipher

nb+nsec
⌋, instead ofN (HB)

b ≤ ⌊
ncipher−nsec

nb
⌋,

where nb = nx + 3nf is the maximum number of bits that a coefficient can occupy, and nsec
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is the number of security bits required for the protocol. In this case, the approximate rounding

protocol also performs the unpacking of the results; it is described in its complete form in the next

subsection. The implementation of this fast protocol replicates exactly the implementation of the

hybrid protocols, without the generation and use of the garbled circuits, substituted by the much

more efficient approximate rounding protocol; thus, for thesake of brevity, we omit its sketch. The

disadvantage is that the rounding error rises with this protocol; however, it is compensated by a

reduction of the complexity gap with respect to the solely homomorphic solution.

The communication complexity of the fast implementation, in normal and block forms respectively,

is

CFPcm = (4Niter +NE − 1)|EH |, CFBcm =

((

3 +
1

Nb

)

Niter +NE − 1

)

|EH |,

whereNb is the number of packed coefficients for the block protocol. This complexity is of the

same order as that of the protocol that uses only homomorphicprocessing.

1) Approximate Rounding and Unpacking protocol:We have developed several protocols for

quantization under encryption. In Appendix B, we present two versions of them, with unconditional

blinding of the used values; one is an exact protocol that produces the same results as the clear-

text quantization, and the other is an approximate faster version; both use comparison circuits for

performing the quantization operation. We sketch at Algorithm 5 a third version of the secure

quantization protocol where a statistical blinding is usedinstead of an unconditional one, avoiding the

need for comparison circuits. The security of the algorithmis controlled by the parameternsec, chosen

such that2−nsec is negligible; then, the distribution of the blinded valuesis indistinguishable from a

random sequence (a distinguisher will succeed with probability 2−nsec); hence, due to the sequential

composition of statistically secure protocols and the semantic security of the encryption system, the

protocol can be proven statistically secure under the random oracle model using a simulator argument.

It can be seen that the rounding error that it introduces is higher than that of a linear quantizer, and

it is not uniform between[−1
2 ,

1
2), but triangular between[−1, 1), thus duplicating the quantization

MSE.

The communication complexity of the protocol is

CRPcm = (Nb + 1)|EH |,

whereNb is the number of packed elements in one cipher, and|EH | is the bit size of a homomor-

phic encryption. Due to the great benefit in efficiency with respect to the impact on accuracy (cf.

Section VII-B), this is the chosen protocol for the fast implementation of the private LMS algorithm.

We must point out that this solution to the cipher blowup problem represents the minimum increase

in computation and communication complexity with respect to plain homomorphic processing. We

have discarded the possibility of using a different number encoding due to the following reasoning:

June 14, 2011 DRAFT



19

our approximate rounding protocol is approximately equivalent to a secure multiplication protocol

in terms of bandwidth and total computation (at most, one periteration in the implementation of

the whole LMS); using a different encoding like the one in [27], would introduce the overhead

of working with triplets of encryptions for each number, adding two multiplication protocols per

encrypted multiplication, and twelve multiplication protocols and two comparison protocols per

encrypted addition; hence, our solution is notably more efficient.

Algorithm 5 Approximate Rounding and unpacking Protocol
Inputs: A: Quantization step∆ = 2l and a security parameternsec;

B: JxpackK = J∑Nb−1
i=0 xi · 2

i·(nb+nsec+1)K, ∆ = 2l, nsec

Outputs: {JQ′
∆(xi)K}Nb−1

i=0 .

A B

Generatex(b)
i ∈R {2nb−1, . . . , 2nb−1 + 2nb+nsec}, i =

{0, . . . , Nb−1}, with which he shifts and additively blinds

the packed encryptions:Jx(a)
p K = JxpackK+ J∑Nb−1

i=0 x
(b)
i ·

2i·(nb+nsec+1)K, homomorphically.

SendJx(a)
p K to A.

Decrypt and unpack the received encryptions, obtaining

{x
(a)
i }Nb−1

i=0 .

Apply a linear quantizer with step∆ = 2l to their clear-text vectors component-wise, obtaining{Q∆(x
(a)
i )}Nb−1

i=0 and

{Q∆(x
(b)
i )}Nb−1

i=0 , respectively.

Encrypt her quantized vector component-wise, and send

the encryptions back toB.

Unblind the quantized encrypted values obtained fromA,

obtaining the encrypted quantizations of the original values

{JQ′
∆(xi)K}Nb−1

i=0 = {JQ∆(x
(a)
i )K −Q∆(x

(b)
i )}Nb−1

i=0 .

VII. E VALUATION

In this section, we perform a comparison of the developed protocols in terms of bandwidth,

computational complexity and finite precision effects, providing also an evaluation of the chosen

techniques for each of the solutions, and their suitabilityfor the application scenarios. In the next

section we also introduce a practical implementation of ourprotocols, that we have used for measuring

actual execution times on real machines.

A. Bandwidth

In terms of communication complexity, the estimated transferred bits for each of the protocols

have been given together with their description in the previous section. All the protocols have a

communication complexity linear in the number of iterations, the size of the filter and the size of
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the encryptions; nevertheless, the constants are not the same and the difference is perceptible and

significant for normal values of the LMS parameters. As an exemplifying case, Figures 2a and 2b

show the number of communicated bits for each of the protocols for a varying number of iterations

and filter length respectively; the length of the encryptions is chosen for mid-term security (2048 bits

for Damgård-Jurik modulus, 224 bits for the elliptic curvemodulus, and 80 bits for the statistical

security parameter used in the conversion protocols).

The obtained results using 32-bit numbers with 16-bit fractional precision are shown for a 5 tap

filter in Figure 2a and for 50 iterations in Figure 2b. It can beseen that the bandwidth of the garbled

circuit solutions–only garbled circuits (GC) and hybrid protocol (Hy)–is several orders of magnitude

higher than that of the solutions including only homomorphic processing (HP). While the HP protocol

needs to transfer two encryptions per iteration (8192 bits), the GC protocol communicates around

165 Mb per iteration for the chosen parameters. Hence, the communication complexity for the HP

protocol and the fast protocols (FP and block FB) is higher than that of the clear-text protocols, but

still practical; on the other hand, the bandwidth needed by the solutions that include garbled circuits

make them almost totally infeasible for practical purposes, even when using small encryptions based

on Elliptic Curves. The hybrid protocol presents, though, an intermediate complexity, due to the

overhead, w.r.t. the HP solution, imposed by the use of conversion subprotocols for changing between

bit-representation and homomorphic encryptions. This overhead will be translated in a decrease in

computation load for the hybrid block protocol (cf. SectionVIII-A).
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Fig. 2: Communication complexity as a function of the number of executed iterations withNE = 5 (a) and the

filter length with 50 iterations (b) for|EH | = 4096, |EC | = 224, nsec= 80, Nb = min
(

NE , ⌊
ncipher

nx+3·nf+nsec
⌋
)

,

nx = 32, nf = 16.
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B. Error Analysis and Finite Precision Effects

One of the limitations of the presented protocols, inherentto privacy-preserving techniques that

deal with encryption based on finite-fields, is the need of using fixed point arithmetic. This is actually

not a severe issue, as current implementations of the traditional insecure algorithms also work with

finite precision, but the flexibility of floating point yieldsa much wider range of representable values,

and greatly improves on the quantization error propagated to the outputs of the algorithm. Numerical

stability and numerical accuracy of the filters, that determine the resilience to quantization errors,

come into play when dealing with fixed-point arithmetic.

While this issue is commonly avoided or mitigated by the use of a sufficiently large plaintext size to

accommodate the needed precision, we believe that it is necessary to devote some space to calculating

which is the needed precision and plaintext size for keepingthe output Mean Square Error (MSE)

within a given bound. In this section we review the error analysis of adaptive algorithms working

with fixed-point arithmetic and apply it to the specific casesthat our protocols involve. We assume

that the inputs and outputs are quantized withnf bits for their fractional part (of the totalnx bits

used for coding), and the filter coefficients and some intermediate results are quantized withnwf bits

andnIf bits for their fractional part respectively. The use of a different quantization level for vector

coefficients is explained in Section VI.

Neglecting the overflow effects and assuming stationarydn andun with variancesσ2
d andσ2

u, i.i.d.2

un, and uniform and independent quantization errors of the inputs (with varianceσ2 = 2−2nf

12 ) and

intermediate values (with varianceσ2
I = 2−2nIf

12 , andσ2
w = 2−2nwf

12 for the filter coefficients), it can be

shown that the average power of the error (MSE, orMean-Square Error) at the output in steady-state

is [33]

σ2
o(c, d) =σ2

min +
µσ2

mintrR

2− µtrR
+

(

||w∗||2 +
1

2
µσ2

minNE

)

σ2 + cσ2
I +

NEσ2
w + d · trRσ2

I
+ µ2 · σ2

((

1 + c
σ2
I

σ2 + ||w∗||2
)

· trR+ σ2
minNE

)

2µ − µ2trR
(4)

where the first two terms correspond to the error of the LMS filter with infinite precision, and the

rest of the terms stem from quantization. In Eq. (4),σ2
min = σ2

d − w∗E{dnun} is the error of the

optimum Wiener filterw∗, trR represents the trace of the input covariance matrix, andc andd are

factors that depend on the way quantization is handled in multiplications:

c =







1, if only the result ofwT
n · un in (1) is quantized

NE , if each intermediate product ofwT
n · un in (1) is quantized.

d =







1, if the productµen is quantized before multiplying byun in (2)

0, if there is no intermediate quantization inµenun in (2).

2The calculations can be generalized to anyun through the rotated or uncoupled coordinate space [32], butthe i.i.d. case

is representative enough of the effects of fixed-point precision on the output error.
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Equation (4) is not exactly the same as in [33], as we have considered the most general case of

having different quantization levels for inputs, filter coefficients, and also for intermediate values.

If only the inputs are quantized, but the intermediate operations do not perform any additional

quantization, then the MSE at the output will be, following aderivation analogous to [33],

σ2
o,QI = σ2

min +
µσ2

mintrR
2− µtrR

+

(

||w∗||2 +
1

2
µσ2

minNE

)

σ2.

Hence, for the studied non-block protocols, the error at theoutput can be expressed as

σ2
HP = σ2

o,QI, σ2
GC = σ2

o(NE , 1), σ2
Hy = σ2

o(1, 0).

For the fast protocol, the quantization error has a different shape, but the independence assumptions

can be applied exactly as in the other protocols, duplicating the power of this quantization error of

the intermediate values, that becomesσ2
I = 2−2nIf/6.

1) Block LMS protocol:Following a similar derivation to that of Caraiscos and Liu [33] for the

BLMS algorithm3, with the same independence assumptions, it is possible to generalize their formula

to provide the following approximation to the error in the Block LMS implementation:

σ2
o,Bk(c, d,Nb) =σ2

min +
µσ2

mintrR
2− µtrR

+

(

||w∗||2 +
1

2
µσ2

minNE

)

σ2 + cσ2
I

+

NEσ2
w

Nb
+ d ·

(

NE
Nb−1
Nb

σ2
w + σ2

I tr(R)
)

+ µ2 · σ2
((

1 + c
σ2
I

σ2 + ||w∗||2
)

· trR+ σ2
minNE

)

2µ− µ2NbtrR

(5)

wherec has the same meaning as in Eq. (4),Nb is the block size, andd = 1 when each product in

µ
∑

k ekuk in (3) is individually quantized, andd = 0 otherwise.

This result is coherent with the one obtained by Ewedaet al. [34] for the adaptive system

identification problem, but Eq. (5) is more general and takesinto account more parameters that allow

for a greater flexibility in predicting the error of our implementations. It can be seen that for the same

step sizeµ, both infinite-precision LMS and BLMS have the same misadjustment (first two terms in

Eq. (5)) and the same average time constant. For the finite-precision algorithms, Eq. (5) shows that

the BLMS reduces the sensitivity to the quantization error in the filter coefficients whend = 0 (first

term of the numerator), but the sensitivity to the quantization of the inputs is not altered (third term

in Eq. (5)); quantization of the filter coefficients has a muchmore critical and noticeable effect than

the quantization of the input values whenσ2 andσ2
w are comparable, what motivates the conclusions

in [34] about the better behavior of BLMS; nevertheless, when σ2 ≫ σ2
w, the averaging performed by

3The full derivation is rather direct but lengthy, and it is completely shown in [6].
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BLMS has a neglibible impact on quantization error resilience, as shown in Section VII-B3; hence,

for the same convergence speed, BLMS presents an MSE similarto that of LMS.

2) Transient Deviation due to Finite Precision:As shown in the previous sections, the use of

fixed-point precision affects the stationary regime of the algorithms, producing a higher level of

noise. Actually, the effect of finite precision is also noticeable in the transient period, introducing

errors during tracking and altering the adaptation behavior. Following a similar derivation to that

in [35], we have extended the theoretical adaptation curve to the BLMS algorithm. The result for

the weigth vector misadjustmentMn = E
[
∆wT

n∆wn

]
, for the same assumptions as in previous

sections, is

Mn = µ2 ·Nb ·NE ·

[

A · nγ2(n−1) +
A

γ − γ2

(
γn − γ2n

)
+

B

1− γ2

(
1− γ2n

)
]

+
NEσ

2
w

1− γ2

(
1− γ2n

)
, (6)

with

A = 2σ2σ2
u||w

∗||2, B = σ2
u

[
σ2(1 + ||w∗||2) + cσ2

I

]
+ σ2σ2

min, γ = 1− µNbσ
2
u.

Eq. (6) gives the evolution of the MSE of the filter coefficients that the finite precision algorithm

introduces with respect to the infinite precision LMS duringthe adaptation period. The notation and

parameters are the same as for Eq. (5). This error evolves with a fixed time constant, equal to that of

the infinite precision algorithm, until reaching the stationary state for which the output error is given

by Eq. (5). This evolution is shown in Figure 3 for the hybrid protocol for different values of the

adaptation step and used fractional bits. For a fair comparison, it must be taken into account that the

indexn refers to successive updates of the vector coefficients, that in BLMS are produced everyNb

output samples instead of every sample.

3) Comparison and Evaluation:Figure 4 shows a representative case of the excess MSE (i.e.,

E{e2} − σ2
LMS∞

) with respect to the infinite precision LMS, obtained for each of the proposed

protocols for varying bit-size of the fractional part. The theoretical approximations given by Eq (5)

are labeled with the subindexth, and the experimental results, with the subindexexp. The Garbled

Circuit implementation presents the highest error, mainlydue to the use of the same bit size for vector

coefficients as for input quantization, and the quantization performed after each multiplication. The

hybrid protocol is the most robust against quantization errors, due to the use of a higher resolution

for the vector coefficients, and the presence of quantization only in the outputs, and in no other

internal calculations. On the other hand, the fast protocolpresents a MSE slightly higher than the

hybrid protocol, due to the approximate quantization of theoutputs. Finally, the MSE produced by the

block protocols is virtually the same as the MSE of the corresponding non-block implementations,

due to the predominant effect of input quantization over that of filter coefficients quantization. The

experimental results are obtained as the average error after running the algorithms for 40968 iterations

in steady-state regime, for the system identification setupwith σ2
u = 0.25, σ2

d = 0.2821, µ = 2−8,
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σ2
min = 2.5·10−5 andσ2

LMS∞
= 2.5147·10−5. The homomorphic processing protocol is not shown, as

its cipher blows up before reaching the steady-state in practical cases; e.g., a modulus of2048 bits can

only hold28 iterations using48 bit numbers with8 bits for the fractional part. Nevertheless, in theory

and with a big enough cipher, it would be the most robust protocol due to the absence of intermediate

quantizations. Besides this protocol, the concordance between the theoretical approximation and the

experimental results in all the other protocols is remarkable, given the magnitude of the errors with

which we are working, assessing the validity of the initial assumptions for obtaining Eq (5).
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There are several effects noticeable in Figure 4 that deserve a comment: on the one hand, the

experimental results for the Garbled Circuit protocol are not shown, as for the used bit-sizes the

precision used for filter coefficients is too low (equal to that of the inputs and intermediate results),

and it suffers from stalling effects, that prevent it from converging; as a consequence, it needs a much

higher precision in order to avoid stalling, and even when converging, as shown in the plot, the error

that it produces is significantly higher than that of the other protocols. The second observable fact is

that the gap of precision in block protocols is almost negligible whenσ2 ≫ σ2
w. This difference is

not noticeable in Figure 4, and it would only be significant with very long blocksNb ≫ 1 or with

σ2 ≈ σ2
w. The way our protocols are designed avoids this second condition, as they use always a

higher precision for the filter coefficients than for the inputs/outputs.

At last, the value ofNb is limited by the maximum plaintext size and the number of bits used for

representing each number. Thus, Eq. (5) can be used togetherwith the packing limits for the block

protocolsN (FB)
b ≤ ⌊

ncipher

nb+nsec
⌋, N (HB)

b ≤ ⌊
ncipher−nsec

nb
⌋, for finding a trade-off between the committed

error due to the used precision, and the complexity of both protocols, dependent on the number of
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coefficients that are packed together.

VIII. P RACTICAL IMPLEMENTATION

In this section, we present and comment the results of a practical implementation of the proposed

protocols. For this purpose, we have chosen the Damgård-Jurik [11] extension of Paillier cryptosystem,

due to its flexibility for fitting larger plaintexts with a constant expansion ratio. For the protocols

involving garbled circuits, we have chosen theXOR-free garbled circuit solution in [17], and the

efficient oblivious transfer protocols of [28] with EC-ElGamal encryptions, aiming to the most efficient

algorithms currently available for implementing garbled circuits.

For the evaluation of computational complexity, we have implemented the presented protocols and

their block versions in C++ using thecrypto++ library [36] for the elliptic curves cryptosystems,

and the GNUGMP library [37] for multiprecision arithmetic, and we have provided our own implemen-

tation of Damgård-Jurik encryptions, with some efficiencyimprovements in modular exponentiations,

detailed in Appendix A. We use these implementations in order to plot the execution times of the

three protocols and compare them in terms of CPU usage. We have made the whole software package

of our implementation available at [38].

A. Computational Load

We have measured the computational load of the developed algorithms through the total computation

time that their efficient implementation yields on a PC with no parallelization, for a fair comparison.

Nevertheless, these protocols, and especially their blockversions, are easily parallelizable, obtaining

a great reduction in execution time when several cores are available. The experiments were performed

using our C++ implementation on an Intel Core2Duo processorat 3 GHz with 4GB of RAM running

a 64-bit linux distribution. In order to measure only computation times, we have neglected the

communication stack, and we have run in the same core the client and the server sequentially, obtaining

the aggregated computation times for both parties.

Figure 5 shows the aggregated computation time for the 48 initial iterations of each of the presented

protocols, as a function of the filter size. The three protocols involving garbled circuits are the most

expensive ones, due to the load that oblivious transfers impose. While this load is normally absorbed

through precomputation, with an adaptive algorithm it is not possible to perform the heavy encryption

operations a priori, as they involve the results generated in each iteration; hence, no precomputation

is applied to any of the performed operations. This has also an impact on their parallelization, as each

oblivious transfer round involves only the bits of one input. This is especially critical in the case of

the hybrid protocol, as the small OTs in each iteration cannot be joined together into a longer and

more efficiently reducible OT. On the other hand, the packingperformed in the hybrid block protocol

June 14, 2011 DRAFT



26

allows for this reduction, greatly improving computational load as the number of packed coefficients

(chosen to equal the size of the filter) increases.

Finally, the execution times of the fast protocols are several orders of magnitude below those of

the garbled circuits solutions, and slightly increase the complexity of the homomorphic computation

protocol due to the addition of the rounding protocols. Thisis a remarkable result, taking into account

that without this rounding subprotocols, the whole homomorphic computation protocol is completely

unusable due to cipher blowup. For the fast protocol, the block-based one does not improve on the

computational load, as the fast rounding protocol requiresa whole unpacking protocol for each of

the packed numbers, and it does not yield the same improvement as in the hybrid block protocol.

Hence, the fast protocol is more time-efficient than its block version.
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iterations and increasing filter size and maximum packed coefficients.

IX. CONCLUSIONS AND FURTHER WORK

Addressing privacy in adaptive filtering applications is animportant open issue in the field of

Signal Processing in the Encrypted Domain. In this work, we have presented the problem of privacy-

preserving adaptive filtering, with several representative scenarios and their trust model and privacy

requirements. Due to the impossibility of using a practicalfull homomorphism, we have proposed

several novel solutions employing different techniques, like garbled circuits, additive homomorphisms

and interactive protocols, looking for the optimal trade-off in terms of complexity and output error; we

have also provided several private quantization algorithms of independent interest to tackle the cipher

blowup problem; we have implemented all our novel protocolsfor the Private LMS algorithm in a

working prototype, and we have performed a comparison in terms of bandwidth and computational

complexity, concluding that garbled circuits are still farfrom providing an efficient solution to adaptive
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filtering, and interactive approximate protocols with statistical security can yield much more practical

solutions.

We have also tackled the issue of the limitation to fixed-point precision when working with

encrypted values, resorting to analytical studies on the impact of finite-precision in the output error

of the used adaptive filters, during the transient period andin steady-state regime, particularizing the

expressions to each of the studied cases. The fast protocolsthat we have introduced are almost as

robust as the original (B)LMS algorithm with respect to quantization errors, while presenting low

computational and communication complexity.

This work covers the two main problems of any secure adaptivefiltering algorithm, namely cipher

blowup and precision limits due to the use of fixed point arithmetic. Further research will aim also at

the implementation of more complex nonlinear functions, being this problem not specific of adaptive

filtering. Hence, the present work opens the door to further improvements in secure adaptive filtering,

setting the basis and a reference implementation for the development of new solutions.
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APPENDIX A

FAST ENCRYPTION AND DECRYPTION FORDAMGÅRD-JURIK CRYPTOSYSTEM

Encryption and decryption are two of the most costly operations, due to the heavy modular

exponentiations that they must perform. For our implementations, we have used a different version

of the decryption operation, and for the private encryptionof the Paillier cryptosystem (and the

Damgård-Jurik extension) that enhance the performance ofthe original methods. This appendix

describes both methods. Modular exponentiations are the most computationally demanding basic

operations, whose complexity is linear in the exponent size|e| and quadratic in the modulus size

|n| (i.e., O(|e||n|(|n| − 1))). Thus, reducing the bit size of the involved operands yields important

efficiency gains. The presented reductions are based on using the knowledge of the factorization

of the public modulusn, enhancing all decryption operations and encryption operations performed

by a party with decryption privileges (private encryption). Looking at the most common two-party

scenarios of homomorphic encryption, the party that owns the data and owns the decryption keys is

usually the client, that normally has a processing power lower than the server; hence, it makes sense

to optimize the operations that this party must perform, andthis is exactly what our modifications

do. We will preserve the notation used in Section IV-A.

a) Decryption: Let La(b) be defined asLa(b) = b−1
a , for b ≡ 1 mod a, 0 < b < a2, as in

Paillier’s work. In [11], it is suggested that the decryption operation, after the exponentiationcd
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mod ns+1, be divided into two parts, usingL′
p(c

d) = Lp(c
d) · q−1 andL′

q(c
d) = Lq(c

d) · p−1 instead

of Ln(c
d), and then joined using the Chinese Remainder Theorem (CRT).While this strategy can

provide a speed-up in the computations, as each part of the decryption works with half-sized numbers,

the initial exponentiation is still the most costly operation. We next show how the knowledge of the

factorization ofn allows also for breaking up this exponentiation into two parts.

For a messagex, its encryptionc = (1 + n)xrn
s

mod ns+1, can be reduced modulops+1 and

qs+1, obtaining two partial encryptions with half the size ofc: cp = (1 + n)xrn
s

mod ps+1 and

cq = (1 + n)xrn
s

mod qs+1. By Carmichael’s Theorem, the order of the units in the groupZps+1

(resp.Zqs+1) is a divisor ofps(p − 1) (resp.qs(q − 1)). Hence, the minimum exponent that cancels

the effect ofrn
s

is p− 1 (resp.q − 1), that is

L′
p(c

p−1
p ) =Lp

(

((1 + n)x)
p−1

rq
s·ps·(p−1)

)

· q−1

≡



1 + x(p− 1)n+




x(p− 1)

2



n2 + . . .+




x(p− 1)

s



ns



 mod ps,

and analogously forq. Applying the decryption algorithm withp andq for both parts, and multiplying

afterwards each of them by the inverses ofp− 1 andq − 1, the desired result is obtained:

dp = decps(cp−1
p ) · (p− 1)−1 ≡ x mod ps, dq = decqs(cq−1

q ) · (q − 1)−1 ≡ x mod qs.

The application of the CRT yields that, ifap andaq are two integers such thatap · ps+aq · q
s = 1,

thenx ≡ dp · aq · q
s + dq · ap · p

s mod ns.

Finally, as the values of(p−1)−1 mod ps, (q−1)−1 mod qs, aq ·qs mod ns andap ·ps mod ns

can be precalculated, and theL′ functions can be executed once for the highest power ofp andq and

subsequently modularized for the rest of the iterations of the algorithm (asLb(a mod bj+1) ≡ Lb(a

mod bs+1) mod bj), neglecting the complexity of a modularization and the addition/subtraction of

a unit, the total decryption complexity is reduced to

2

(

X (s+1)|n|
2 ,

|n|
2

+D (s+1)|n|
2

+ Ps|n| +

s∑

k=2

(

(k − 1)(P k|n|
2

+A k|n|
2
)
)
)

+As|n|,

whereXa,b is the computational complexity of an exponentiation with modulus sizea and exponent

size b, Ab and Pb are the complexity of a modular addition and product with modulus size b

respectively, andDa is the complexity of an integer division with dividend’s size a. This results

can be compared to the complexity of a regular decryption, performed as stated in [11],

X(s+1)|n|,|n| +D(s+1)|n| +

s∑

k=2

(
(k − 1)(Pk|n| +Ak|n|)

)
.

The reduction factor in complexity due to splitting the exponentiation is almost four.
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b) Encryption: For regular encryption there is no additional gain to the onepointed out in

Paillier’s original work, by virtue of which takingg = 1+n reduces the exponentiationgx mod n2

to a productgx ≡ (1+x ·n) mod n2, generalized in [11] tons+1 as a sum ofs chained products; the

exponentiationrn
s

is, in principle, unavoidable. Nevertheless, when the encryption is performed by a

party with decryption capabilities (“private” encryption), the knowledge of the private key allows for

further improvements on efficiency, applying the same rationale as for fast decryption. In this case,

the reduction seeks partitioning the exponentiationrn
s

into two exponentiations with half-sized base

and exponent.

Given aps+1 andaqs+1 such thataps+1 · ps+1 + aqs+1 · qs+1 = 1, rn
s

mod ns+1 can be calculated

as

rp ≡ rp
s(qs mod (p−1)) mod ps+1, rq ≡ rq

s(ps mod (q−1)) mod qs+1,

rn
s

≡ rp · aqs+1 · qs+1 + rq · aps+1 · ps+1 mod ns+1.

Precalculating the values ofaqs+1 · qs+1 mod ns+1 and aps+1 · ps+1 mod ns+1, the complexity

of each encryption is reduced to

2X (s+1)|n|
2 ,

(s+1)|n|
2

+ 2(s+ 1)P(s+1)|n| + 2s ·A(s+1)|n|,

compared toX(s+1)|n|,(s+1)|n| + 2s · P(s+1)|n| + (2s − 1)A(s+1)|n| of a normal encryption, which

yields a complexity reduction almost by a factor of four.

APPENDIX B

CIPHER RENEWAL: QUANTIZATION UNDER ENCRYPTION

In order to renew the cipher and eliminate part of the excess of precision accumulated by the

lack of a division operation, it is necessary to quantize theencrypted values. For this purpose,

and to preserve perfect secrecy, we have developed interactive protocols of independent interest for

performing quantization:

Let [x] ∈ Zn be a class inZn, andx its positive representative in the intervalx ∈ [0, n). A and

B possess their respective sharesxA, xB of x (i.e. xA + xB ≡ x mod n). Both A andB want to

requantizex with a step∆ ∈ (2, ⌈n/2⌋), with a maximum quantization error of∆. Let us assume

that A knows the decryption key of an additive homomorphic cryptosystem, and bothA and B

can produce encryptions using this cryptosystem. The scenario can be plotted also with a threshold

homomorphic cryptosystem, with straightforward modifications.

If B owns an encryption ofJxK, then he generates a randomxB ∈ Zn, blinds with it the encryption

of JxK, and sends the resultJx+ xB mod nK to A, who decryptsxA = x+xB mod n. Then, both

parties start with a share ofx.
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Each party quantizes his/her sharexAQ =
⌈

xA

∆/2

⌋

, xBQ =
⌈

xB

∆/2

⌋

; with these values, both parties

can obtain the bit representation of their respective quantities and run a binary comparison protocol

(cf. [6]) xBQ >
⌈

n
∆/2

⌋

− xAQ, ending up with an encryption of the binary comparison.

Then,A can obtainJQR(x)K = JxAQK + JxBQK −
⌈

n
∆/2

⌋

·
r
xBQ ≥

⌈
n

∆/2

⌉

− xAQ

z
. We denote

the resultQR(x) because it does not coincide exactly with the quantizationQ(x) when performed in

the clear, becauseQR(x) is quantized with a precision of∆/2, but the split in two shares introduces

an error of±1 in the quantization ofx. Thus, even when the obtained precision is∆, the resulting

encrypted number must be scaled by∆/2 after decryption in order to obtain the true quantized value.

The previous protocol could be thought of as afast version of the quantization protocol, that has

the drawback of introducing some noise due to the independent quantization of both shares. When

the quantization must yield exactly the same results as in the clear, we can use anexactversion of

the previous protocol, that provides a perfect quantization, with the same result as if performed in

the clear, at the cost of an increased computation and communication complexity. We now describe

this exactsolution.

After splitting x in two sharesxA andxB, each party quantizes his share with step∆, obtaining

respectivelyxAQ =
⌈
xA

∆

⌋
, xAr = xA mod ∆, andxBQ =

⌈
xB

∆

⌋
, xBr = xB mod ∆; both have

the quantityn∆ = n mod ∆ in the clear. The quantization ofx as a function of the previous four

values can be expressed as

JQ(x)K =
q
xAQ

y
+

q
xBQ

y
+

(

1− 2

[

xBr ≥

⌈

∆

2

⌉])

·

(

1− xor

(s
xAr ≥

⌈

∆

2

⌉{
,

[

xBr ≥

⌈

∆

2

⌉]))

·

(s
xAr + xBr ∈

[⌈

∆

2

⌉

,

⌈

3∆

2

⌉){
+

(

JxAr + xBr ∈ In∆K −
s
xAr + xBr ∈

[⌈

∆

2

⌉

,

⌈

3∆

2

⌉){)

·
r
xBQ ≥

⌈ n

∆

⌉

− xAQ

z)
−

⌈ n

∆

⌉

·
r
xBQ ≥

⌈ n

∆

⌋

− xAQ

z
.

As the only needed binary operation is the exclusive-OR, forefficiency reasons we avoid the use

of garbled circuits and implement it homomorphically asxor(a, b) = a + b − 2a · b in Zn. The set

In∆
represents an interval reduced modulo2∆:

In∆ =







[⌈
3∆
2

⌉
+ n∆,

⌈
∆
2

⌉
+ n∆

)

2∆
, if n∆ ≥

⌈
∆
2

⌉

[⌈
∆
2

⌉
+ n∆,

⌈
3∆
2

⌉
+ n∆

)

2∆
, if n∆ <

⌈
∆
2

⌉
,

being [, )2∆ the modular reduction of the interval with modulus2∆.

The binary comparisonsxAb = [xAr ≥
⌈
∆
2

⌉
] and xBb = [xBr ≥

⌈
∆
2

⌉
] are performed by each

party independently.A can encryptJxAbK and send it toB, who can perform(1 − 2[xBb]) · (1 −

xor(JxAbK , [xBb])) using only homomorphic operations. Each of the two needed interval checks can

be performed through two comparison circuits and a homomorphic sum (Jx ∈ [a, b)K = Jx ≥ aK −
Jx ≥ bK). After obtaining these values, the whole expression can beevaluated with 5 homomorphic

sums and 3 invocations of the secure multiplication protocol.
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The total complexity calculated for theexactprotocol, for a modulus bit-size|n| = l, is

CEQcm(n,∆) =|E|+ 3CMULTcm + 4CCOMPcm (⌈log2 ∆⌉+ 1) + CCOMPcm

(⌈

log2
n

∆

⌉)

,

CEQcp,A(n,∆) =CEncBit + 3CMULTcp,A + 4CCOMPcp,A (⌈log2 ∆⌉+ 1) + CCOMPcp,A

(⌈

log2
n

∆

⌉)

, (7)

CEQcp,B(n,∆) =CEncrypt + 2CEP + 10CEA + 3CMULTcp,B + 4CCOMPcp,B (⌈log2 ∆⌉+ 1) + CCOMPcp,B

(⌈

log2
n

∆

⌉)

,

where|E| represents the number of bits of an encryption (or share). The subindexcm stands for

communication complexity, andcp for computational complexity for partyA or B, being CMULTxx

the corresponding complexity of the interactive multiplication protocol; CEA, CEP respectively denote

the computational complexity of a homomorphic addition andproduct (by a known scalar) for the

used cryptosystem (or secret sharing scheme), CEncrypt and CEncBit represent the computational

complexity for encrypting (sharing) an integer inZn or a bit respectively, and CCOMPxx(l) is defined

in [6].

The fast protocol has complexity

CEQfcm(n,∆) =|E|+ CCOMPcm

(⌈

log2
n

∆

⌉

+ 1
)

,

CEQfcp,A(n,∆) =CCOMPcp,A

(⌈

log2
n

∆

⌉

+ 1
)

,

CEQfcp,B(n,∆) =CEncrypt + CEP + 2CEA + CCOMPcp,B

(⌈

log2
n

∆

⌉

+ 1
)

.
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