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Abstract

We consider the problem of estimating the frame error rate (FER) of a given memoryless binary

symmetric channel by observing the success or failure of transmitted packets. Whereas FER estimation

is relatively straightforward if all observations correspond to packets with equal length, the problem

becomes considerably more complex when this is not the case. We develop FER estimators when

transmissions of different lengths are observed, together with the Cramer-Rao Lower Bound (CRLB).

Although the main focus is on Maximum Likelihood (ML) estimation, we also obtain low complexity

schemes performing close to optimal in some scenarios. In a second stage, we consider the case in

which FER estimation is performed at a node different from the receiver, and incorporate the impairment

of unreliable observations by considering noisy ACK/NAK feedback links. The impact of unreliable
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feedback is analyzed by means of the corresponding CRLB. In this setting, the ML estimator is obtained

by applying the Expectation-Maximization algorithm to jointly estimate the error probabilities of the

data and feedback links. Simulation results illustrate the benefits of the proposed estimators.

Index Terms

FER Estimation, Maximum Likelihood, Unreliable Feedback, Link Adaptation, Expectation-Maximization.

I. INTRODUCTION

Frame error rate (FER) estimation is a crucial step in many problems related to the design and

deployment of wireless communication systems. FER estimation is used in PHY layer abstraction

for system-level simulation [2]–[4], as well as in rate adaptation algorithms where a modulation

and coding scheme (MCS) is selected according to the state of the channel [5]–[8]. Some of these

rate adaptation schemes rely only on the estimation of the channel state by exploiting binary

feedback information about the success or failure in the decoding of previously transmitted

packets [9], [10]. Also, network analyzers for different wireless protocols (IEEE 802.11 [11],

3GPP LTE [12], DVB-T [13]) provide FER estimates as a result of the observation of the current

channels.

The core of any FER estimation method is the observation of the outcome of the transmission

process of several frames over a channel. For the case of constant length codewords, the FER can

be readily estimated as the sample mean of the error events. In many communication standards,

however, frames have a length that varies with different parameters, and depends on the size of

the protocol data units (PDU) delivered by the MAC layer. For instance, standards such as those

in the IEEE 802.11 family [14] or 3GPP LTE [15] operate with codewords of variable length; as

a particular example, in the LTE Physical Downlink and Uplink Shared Channels (PDSCH and

PUSCH) the PHY layer adds a 24-bit Cyclic Redundancy Check (CRC) to data blocks whose

sizes may vary between 40 and 6144 bits including CRC bits [16]. Estimating the FER for

a given frame length based only on those observations corresponding to received frames with

that same length is clearly suboptimal, due to an inefficient usage of available data. However,

generalizing FER estimation in order to account for observations corresponding to packets with

different lengths is not straightforward, as it will be shown. The goal of this paper is to study
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and build novel FER estimators for this setting, based on statistical estimation theory.

Previous work on FER estimation dealt with the issue of variable frame length in different

ways. In [5]–[7], [17], [18] constant frame length was assumed, which is not realistic for current

communication systems, as discussed above. In other examples [19]–[22], perfect knowledge of

the bit error rate (BER) was assumed, and the corresponding FER is obtained from that value.

This approach, however, has two significant drawbacks. First, it is not clear how BER estimation

errors would affect the quality of the resulting FER estimate. Second, in many communication

scenarios (link adaptation or network analysis) the BER is not directly measurable, since it would

require knowledge of the transmitted bits. Alternatively, if the transmitter makes use of an error

detection code (e.g. CRC) as it is usually the case, then it becomes feasible to measure packet

error events at the receiver, so that FER estimation becomes feasible based on these observations

even if the BER is not available or observable.

Our approach hinges on a memoryless binary symmetric channel (BSC) abstraction for bit-

level transmission. Previous works have considered estimation of the BSC parameter in several

scenarios, e.g., in [23], [24], where estimation is based on the observation of the BSC output and

the assumption of a nonrandom input with finite complexity; or in a distributed source coding

or channel coding framework [25], [26], based on the availability of the received individual bits,

including the syndrome, of a single codeword. These approaches can be regarded as ”PHY-layer

estimators.” In contrast, the FER estimators considered in this paper are based on the observation

of multiple binary (success/failure) packet error events alone (albeit with packets of different

lengths), and therefore they can be directly applied at the MAC layer.

FER estimation is further complicated when an observer different from the receiver (a trans-

mitter, or a third node acting as a network analyzer) tries to estimate the FER experienced by

a receiver. In that case the FER-related information is obtained from the ACK/NAK sequence

reported by the receiver. If this feedback channel is unreliable, then the estimation procedure

has to be modified, since treating the ACK/NAK information as true may result in performance

degradation. In this paper, we will consider unreliable feedback links and develop estimators for

the error probability of the feedback channel as well as the FER of the forward data channel.

The contributions of this paper are summarized as follows:

1) FER estimation from perfect measurements. We derive estimators for the FER of a given

frame length from ACK/NAK observations which may correspond to frames of different
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lengths. In this first step, we assume that the ACK/NAK information is correct, i.e., either

the feedback channel can be assumed error-free, or the estimation process is directly carried

out by the receiver itself. We obtain the Maximum Likelihood estimator (MLE) in this setting

by means of an iterative procedure. We also obtain reduced complexity approximations to

the MLE in some particular scenarios (e.g. large number of observations, small number of

errors) and compare their performance to the Cramer-Rao Lower Bound (CRLB).

2) FER estimation with an unreliable feedback link. In this second setting, the ACK/NAK obser-

vations are no longer assumed to be perfect. The feedback link is modeled as a BSC with error

probability ε. The impact of unreliable feedback is analyzed by studying the corresponding

CRLB. We obtain joint estimators for the general case in which the error probabilities in both

links are unknown. Interestingly, these estimators only exist for the case of having codewords

of different length: for the constant codeword length, the parameters become unidentifiable.

The joint estimator is obtained by applying the Expectation-Maximization (E-M) algorithm.

The remaining of the paper is organized as follows. Section II presents the system model,

addressing the difficulty of FER estimation with codewords of different lengths. The CRLB and

the estimators for the case of reliable feedback are derived in Section III. The estimation problem

with an unreliable feedback channel is presented and analyzed in Section IV, and conclusions

are presented in Section V. Simulation results for the different estimators are included at the

end of each of the corresponding sections.

II. SYSTEM MODEL AND PRELIMINARIES

Consider a transmitter-receiver pair communicating through a noisy channel. The transmitter

builds blocks of bits [b1, . . . , bL] , bi ∈ {0, 1} of variable bit length L, that we will refer to

as frames. The receiver observes
[
b̂1, . . . b̂L

]
at the output of the channel, with b̂i ∈ {0, 1}.

We assume a memoryless BSC with BER p, i.e., p , P
[
b̂i = 1 | bi = 0

]
= P

[
b̂i = 0 | bi = 1

]
.

We also denote q , 1 − p for the sake of simplicity. The transmitter makes use of an error

detection encoder, such that the receiver is able to identify any received block with at least one

erroneous bit. We also assume that the undetected error probability of the error detection code

is negligible1. If we denote by θL the probability of receiving an erroneous block of length L,

1The undetected error probability of a CRC code is approximately 2−r , where r is the number of check bits. For example,

for the PDSCH and PUSCH of LTE, r = 24 and 2−r ≈ 6× 10−8.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TWC.2017.2686845

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



5

i.e., the FER for frame length L, then we have that

θL = 1− P

[
L⋂
i=1

{
bi = b̂i

}]
= 1− qL. (1)

If the FER for a frame length L was perfectly known, then it would be possible to obtain the

FER for a different frame length L̃ as

θL̃ = 1− (1− θL)L̃/L . (2)

Unfortunately, in practice, the exact FER is unlikely to be available for any length, and its

value has to be estimated based on the observation over a time period of the success and failures

of the transmission of frames of a certain length. Moreover, in a realistic environment, frames

of different length may be transmitted during the observation window. In the following, we

formalize the problem of FER estimation from observations of frames of various sizes.

Consider a communication system over a BSC with ` different frame sizes L1 < L2 < · · · <

L`. During an observation period, a receiver observes ni transmissions of size Li, out of which

mi are received with errors. The random variable mi is binomially distributed with parameters

ni and θLi , so that its probability mass function (PMF) is given by

f (mi; θLi) =

(
ni
mi

)
θmiLi (1− θLi)

ni−mi . (3)

The mean value of mi is given by

E [mi] = ni(1− qLi). (4)

The MLE of θLi given the observation {ni,mi} is the empirical FER, i.e.,

θ̂Li =
mi

ni
, (5)

which is unbiased, and whose variance is given by

σ2
i , E

[(
θLi − θ̂Li

)2]
=

(1− θLi) θLi
ni

. (6)

In view of (2), when only observations from equal length frames are available (i.e., ` = 1),

the MLE of θL̃ can be obtained from that of θL1 by virtue of the invariance property of the

MLE [27, Th. 7.2] as θ̂L̃ = 1−
(

1− θ̂L1

)L̃/L1

.

If ` > 1, however, the derivation of the MLE of θL̃ is more involved. Due again to the

invariance property, the MLE of θL̃ could be readily obtained if that of q were available: θ̂L̃,ML =
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1− (q̂ML)L̃. We will see that although the MLE cannot be expressed in closed form in general,

it is possible to derive some of its properties, as well as an efficient numerical method for its

computation. We will also analyze some asymptotic cases (small p, large number of observations

for each length), for which closed-form approximations will be exposed.

III. FER ESTIMATION WITH OBSERVATIONS OF DIFFERENT LENGTH

Given a vector of observed errors m , [m1, · · · , m` ]T , the goal is to estimate the FER

corresponding to a frame length L̃. Since the channel is assumed memoryless, observations are

independent, and therefore the PMF of m parameterized by the FER θL̃ can be obtained from

(2) and (3) as

f (m; θL̃) =
∏̀
i=1

(
ni
mi

)(
1− (1− θL̃)

Li
L̃

)mi
(1− θL̃)

Li
L̃
(ni−mi) . (7)

Alternatively, we can rewrite (7) in terms of q as

f (m; q) =
∏̀
i=1

(
ni
mi

)(
1− qLi

)mi
q(ni−mi)Li . (8)

Depending on the formulation of the problem we may resort to using (7) or (8). In the following,

we derive different estimators for the problem under study. First, we derive the CRLB (which

constitutes a bound on the variance of any unbiased estimator) to benchmark the performance

of the different proposed estimators.

A. CRLB

We now derive the CRLB for the estimation of q from the observations m; the CRLB for the

estimation of θL̃ can be obtained by applying a suitable transformation to the final result [27].

The log-likelihood function (LLF) of q is obtained from (8) as

L (q) =
∑̀
i=1

[
mi log

(
1− qLi

)
+ (ni −mi)Li log q

]
, (9)

where a constant term was omitted. Its derivative is readily obtained as

L′ (q) =
∑̀
i=1

[
(ni −mi)Li

q
− miLiq

Li−1

1− qLi

]
. (10)

It can be checked that the regularity condition E [L′ (q)] = 0 (necessary and sufficient for the

application of the CRLB) is satisfied, just by substituting (4) after taking expectation in (10). It
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is also seen that an efficient estimator for q (or, equivalently, p) does not exist for this problem,

as it is not possible to find functions g (m) and I (q) such that L′ (q) = I (q) (g (m)− q) [27,

Th. 3.1]. The second derivative of the LLF is

L′′(q) = −
∑̀
i=1

Li

(
ni
(
1− qLi

)2
+mi

(
(1 + Li) q

Li − 1
))

q2 (1− qLi)2
. (11)

Therefore, using (4), the Fisher information is found:

I(q) = −E [L′′ (q)] =
1

q2

∑̀
i=1

niL
2
i q
Li

1− qLi
. (12)

As the observations are independent, the Fisher information is the sum of the corresponding

contributions for each frame length Li, weighted by the number of observations ni. The dominant

individual term in (12) depends on the actual value of the parameter: for very small p, the term

with largest frame length is dominant, but eventually the situation is reversed as p increases.

Note that I(q) increases without bounds as p → 0, and goes to zero as p → 1. This is due to

the fact that we can only observe if a packet is in error or not, but not how many errors there

are in an erroneous packet. For p � 1
Li

, multiple bit errors within a packet become unlikely,

so that the BER becomes “easier” to estimate from the observations. When the probabilty of

multibit error events is not negligible, however, estimating the BER based on observation of

packet errors becomes much more difficult.

The CRLB, which bounds the variance of any unbiased estimator q̂, is Var [q̂] ≥ I−1 (q). In

view of (1), and following [27, Sec. 3.6], the Normalized CRLB (NCRLB) of any unbiased FER

estimate for packets of length L̃ follows:

Var
[
θ̂L̃

]
θ2
L̃

≥

(
L̃qL̃

1− qL̃

)2

∑̀
i=1

niL
2
i q
Li

1− qLi

. (13)

It is insightful to examine the asymptotic behavior of (13). On the one hand, as p → 0, using

1− (1− p)L ≈ pL in (13) yields the following low-BER approximation of the NCRLB:

Var
[
θ̂L̃

]
θ2
L̃

≥ 1

p
∑̀
i=1

niLi

, (14)
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which is independent of L̃. On the other hand, for p→ 1, the corresponding asymptote is

Var
[
θ̂L̃

]
θ2
L̃

≥ L̃2

n1L
2
1

(1− p)2L̃−L1 . (15)

The behavior of (15) clearly depends on the target length L̃. If L̃ > L1

2
, then the NCRLB goes

to zero as p → 1; it settles to a constant when L̃ = L1

2
, and goes to infinity if L̃ < L1

2
. Note

that, in the extreme case of packets with length L̃ = 1 bit, the FER equals the BER and, from

the discussion following (12), we know that the Fisher information for the problem of BER

estimation goes to zero as p → 1. Thus, it is reasonable to observe such behavior for short

lengths L̃.

As an example, Fig. 1 shows the NCRLB (13) for a setting with ` = 3, {L1, L2, L3} =

{1000, 2000, 3000}, for different target lengths, and with a total number of observations n1 +

n2 + n3 = 60 distributed in three different ways. It is clear that estimating the FER for packets

whose length is much shorter than those for which observations are available is considerably

difficult when the BER is high. In such regime, it is preferrable to have more observations of

shorter frames, as indicated by (15). This example also illustrates the fact that the NCRLB need

not be a monotonic function of the BER.

B. Maximum Likelihood estimation via bisection

The MLE of q is obtained by maximizing the LLF (9): q̂ML = arg maxq∈[0,1] L (q). Consider

first the following two particular cases. If m = 0, then the MLE is readily obtained from (9)

as q̂ML = 1; moreover, if q̂ML = 1 then m = 0, since otherwise L(1) = −∞ cannot be the

maximum value. Analogously, q̂ML = 0 iff m = n , [n1, · · · , n` ]T .

Therefore, let us assume that m 6= 0 and m 6= n, so that q̂ML ∈ (0, 1). Since (9) is continuous

in q, we can obtain its maximum by finding the roots of its derivative. By rearranging the terms

in (10) and performing some elemental operations, we arrive at

L′ (q) = −1

q

∑̀
i=1

[
miLi

1− qLi
− niLi

]
, (16)

so the MLE is a solution of

Ψ (q) ,
∑̀
i=1

miLi
1− qLi

−
∑̀
j=1

njLj = 0. (17)
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Fig. 1: Normalized CRLB (13) for FER estimation vs. BER. {L1, L2, L3} = {1000, 2000, 3000}.

Solid: {n1, n2, n3} = {20, 20, 20}. Dashed: {n1, n2, n3} = {35, 20, 5}. Dotted: {n1, n2, n3} =

{5, 20, 35}.

Although the roots of Ψ cannot be obtained in closed form (unless ` = 1), it is possible to

characterize them by means of the following proposition.

Theorem 1: Assume that m 6= 0 and m 6= n. Then the MLE q̂ML is the unique root of Ψ in

(0, 1), and can be obtained by application of the bisection algorithm in the interval [0, 1].

Proof: As q̂ML ∈ (0, 1), we examine the behavior of Ψ in this interval. Note that, since

mi ≤ ni ∀ i and m 6= n, one has

Ψ (0) =
∑̀
i=1

Li (mi − ni) < 0. (18)

Also, Ψ(1) = +∞; therefore, since Ψ is continuous, there exists at least one root in (0, 1). The

derivative of Ψ satisfies

Ψ′ (q) =
∑̀
i=1

qLi−1L2
imi

(1− qLi)2
> 0, 0 < q < 1, (19)

since m 6= 0. Hence, Ψ(q) is strictly monotonically increasing in (0, 1), so that only one root

exists in this interval, which can be found by applying the bisection method2.

2The fact that Ψ(1) = +∞ should not lead to numerical problems: since the sign of Ψ(q) at q = 0 and q = 1 is known,

there is no need to evaluate the function at these points.
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Since q ∈ [0, 1], the number of bisection iterations required to obtain an estimate p̂ satisfying

|p̂− p| < δ is log2
1
δ
. In the following sections, we present results for particular cases for which

simpler FER estimators can be found.

C. Low Bit Error Rate regime

The intricate formulation of the MLE is due to the nonlinear dependency of the FER θL on

the BER p (or, equivalently, on q = 1− p). We now explore suboptimal alternatives in the low

BER regime, which is of particular interest since most practical systems operate with low target

FER values in the range 0.01–0.1 [28], corresponding to even lower BER values.

First, we develop the asymptotic expression of the MLE in the low-BER regime. Let

Φ(q) , (1− q)Ψ(q) (20)

=
∑̀
i=1

miLi
1− q

1− qLi
− (1− q)

∑̀
i=1

niLi, (21)

so that the MLE is the root of Φ(q) in q ∈ (0, 1). If we let z be a random variable denoting the

total number of bits in error in all received frames, it can be readily shown that (21) satisfies

Φ(q) = E[ z |m ]− E[ z ], (22)

and therefore the MLE is such that the a priori and a posteriori expected values of the total

number of erroneous bits are equal.

Consider the first-order Taylor approximation of Φ(q) about q = 1, Φ(q) ≈ Φ(1)−Φ′(1)(1−q).

Then the MLE approximately satisfies Φ(1)−Φ′(1)p̂ = 0. Using the fact that 1−qL
1−q =

∑L−1
n=0 q

n,

one finds that

Φ(1) =
∑̀
i=1

mi, Φ′(1) =
∑̀
i=1

(
niLi −mj

Li − 1

2

)
, (23)

and therefore, asymptotically as p→ 0, the MLE is given by

p̂ =

∑`
i=1mi∑`

i=1 niLi −
1
2

∑`
i=1mi(Li − 1)

. (24)

An alternative estimator in the low-BER regime can be developed as follows. A first-order

approximation of (1) around p = 0 yields θL = 1− qL ≈ pL, which amounts to neglecting the

fact that bit errors are not mutually exclusive (i.e., multiple bits can be in error in the same

packet):

θL = P

[
L⋃
i=1

(
bi 6= b̂i

)]
≈

L∑
i=1

P
[
bi 6= b̂i

]
= pL. (25)
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Now, using 1− qLi ≈ pLi in (17) yields

p̂ =

∑`
i=1mi∑`
i=1 niLi

. (26)

This estimator divides the total number of frame errors by the total number of transmitted bits,

in line with the low-BER assumption that neglects multi-bit errors within a frame. Observe that

the estimators (24) and (26) differ only by the second term in the denominator of (24).

Note that (26) is linear in the observations. Its bias and variance are readily found:

p− E[p̂] = p−
∑`

i=1 ni(1− qLi)∑`
i=1 niLi

, (27)

Var [p̂] =

∑`
i=1 ni(1− qLi)qLi(∑`

i=1 niLi

)2 . (28)

When ` = 1, (26) reduces to p̂ = m1

n1L1
, and in fact, if we define p̂i , mi

niLi
, i.e., the

corresponding estimate based on the observations from length-Li packets only, then (26) can

be rewritten as

p̂ =

∑`
i=1 niLip̂i∑`
i=1 niLi

, (29)

which is a convex combination of the ` individual estimators p̂i, with weights proportional to

the number of observed bits niLi. This suggests one potential means to extend the range of

applicability of (29) to include larger values of p by substituting p̂i in (29) with the MLE based

on the observations of length-Li packets only, which is given by p̂ML,i , 1−
(

1− mi
ni

)1/Li
:

p̂ =

∑`
i=1 niLip̂ML,i∑`

i=1 niLi
. (30)

D. Large number of observations

Inspired by (29) and (30), in this section we propose a computationally efficient approach by

which the FER θL̃ is estimated as a linear combination of ` individual estimators, each obtained

from the observations corresponding to packets of the same length. These individual estimators

are chosen as the corresponding MLEs, which are given by θ̂L̃ (Li) , 1 −
(

1− θ̂Li
)L̃/Li

=

fi(θ̂Li), i = 1, . . . , `, with θ̂Li as in (5), as can be seen by solving (17) when ` = 1. Then, given

a set of weights {βi, i = 1, . . . , `}, the proposed estimator is given by

θ̂L̃ =
∑̀
i=1

βiθ̂L̃ (Li) . (31)
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Fig. 2: Optimal weights as a function of αi and for different FER values.

Ideally, one should select the weights βi in order to optimize performance. This is difficult,

however, because the bias and variance of θ̂L̃ (Li) depend on the unknown parameter. Next, we

propose a method for weight selection based on the assumption that the number of observations

{ni, i = 1, . . . , `} is sufficiently large. In that case, the MLEs θ̂Li become (asymptotically)

unbiased and normally distributed [27]: θ̂Li ∼ N (θLi , σ
2
i ), with σ2

i as in (6). Therefore, the

proposed estimator (31) will be unbiased provided that
∑`

i=1 βi = 1.

Under a large number of observations, the variance σ2
i will be small, so we can use the

first-order approximation

θ̂L̃ (Li) ≈ fi(θLi) + f ′i(θLi)(θ̂Li − θLi)

= θL̃ + αi(1− θLi)αi−1(θ̂Li − θLi), (32)

where αi , L̃/Li. Then the variance ρ2i , Var
[
θ̂L̃(Li)

]
asymptotically becomes

ρ2i = α2
i (1− θLi)2αi−2 σ2

i

=
α2
i

ni
(1− θL̃)2

(
1

(1− θL̃)
1
αi

− 1

)
. (33)

Then, the weights minimizing the asymptotic variance of θ̂L̃ in (31) under the constraint
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∑`
i=1 βi = 1 are given by

βi =

1
ρ2i∑`
j=1

1
ρ2j

, i = 1, . . . , `. (34)

Fig. 2 shows the optimal weights 1/ρ2i as a function of αi and for different values of the FER

θL̃ (normalized by their peak value for each θL̃), assuming ni is the same for all i. The shape

of these curves is due to the following: the transmissions of very short packets (small Li, i.e.,

large αi) are very likely to result in no errors, whereas those of very long packets (large Li,

i.e., small αi) will likely result in a packet error always. Therefore, the information gathered by

observing these events is low. Depending of the FER θL̃, there is a “sweet spot” corresponding

to the peak of the curves in Fig. 2, located at αi ≈ log 1√
1−θL̃

(≈ θL̃
2

for small θL̃). Since this is

not necessarily near αi = 1, simply assigning more weight to observations with similar length

Li ≈ L̃ can result in significant performance degradation. Note that the peak gradually shifts

toward longer packets as the FER becames smaller.

Since the optimum weights depend on the unknown parameter θL̃, they cannot be directly

computed. We propose a two-step procedure, in which an initial estimate θ̂L̃,0 as in (31) with

weights βi = 1/` is first obtained. Then, this estimate θ̂L̃,0 is substituted in (33) in lieu of the

true value θL̃ to compute approximate values of ρ2i , which are then used to obtain the weights

βi according to (34) for the final estimator3.

E. Simulation results

We evaluate the performance of the proposed schemes via Monte Carlo simulation4, in a setting

with ` = 5 in which observations of packets with lengths {L1, . . . , L5} = {100, 1000, 5000, 8000,

10000} are available. Two different target lengths are considered: L̃ = 2000 and L̃ = 50, corre-

sponding to long and short packets, respectively. We assume the same number of observations

for each length, and consider two cases for each value of L̃: ni = 10 and ni = 1000. The total

number of observed packets is therefore 50 and 5000, respectively.

3Although in principle this reweighting process could be further iterated, in practice the variation in performance after the

first iteration seems to be negligible.
4For each BER value, a total of 20, 000 Monte Carlo runs were executed.
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Fig. 3: NMSE for the different estimators vs. BER. L̃ = 2000, ` = 5. (a) ni = 10, (b) ni = 1000.

Figs. 3 and 4 show the CRLB (13) and the Normalized Mean Squared Error (NMSE) E[(θ̂L̃−

θL̃)2]/θ2
L̃

of the MLE (obtained via bisection) as a function of the BER p, together with that of

several other estimators, namely:

• The asymptotic MLE for low BER (24) (AsymML);

• The MLE approximation (26) (AML1);

• The convex combination of MLEs (30) (AML2);

• The two-step estimator based on the asymptotically Gaussian property of the MLE, with

weights as in (34) (2-Step);

• The convex combination (31) with weights βi = 1/` for all i (LC-Average);

• The convex combination (31) with weights βi = 1 if i = arg minj

∣∣∣Lj − L̃∣∣∣, and 0 otherwise.

(LC-Closest).

The true MLE presents a small gap to the CRLB for ni = 10, but for ni = 1000 it is efficient

over the considered BER range. The performance of its low-BER approximations AsymML

(24), AML1 (26) and AML2 (30) is close to optimal for small p as expected, but degrades

significantly as p increases. With few observations, AsymML consistently outperforms both

AML1 and AML2; whereas with a larger number of observations, the BER range over which

AML2 performs close to the CRLB is significantly larger than those of AsymML and AML1.

For ni = 10, AsymML and AML1 present some bias as evidenced by the fact that their NMSE
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is slightly below the NCRLB5.

Regarding the convex combination-based estimators, the simple Average and Closest ap-

proaches show a significant gap with respect to the CRLB, although Closest becomes close

to efficient for large FER values (note that with L̃ = 2000, a BER of p = 10−3 translates into

a FER value of θL̃ = 0.865, whereas for L̃ = 50, a BER of p = 10−2 yields θL̃ = 0.395). The

reason is that in this setting, Closest picks the observations with Li = 1000 and Li = 100 for

L̃ = 2000 and L̃ = 50 respectively, yielding αi = 2 and αi = 0.5, and in view of Fig. 2 these

weights are close to the optimal ones when θL̃ is large. The poor performance of Average is due

to the large disparity of available packet lengths (L`/L1 = 20 dB), because in such situations the

optimal linear combination weights will be far from being uniform as evidenced by the shape

of the curves in Fig. 2.

The two-step estimator shows a good tradeoff between performance and complexity as long

as the number of observations per length is sufficiently large: for example, it is seen to achieve

efficiency for L̃ = 2000, ni = 1000. However, with a small number of observations per length,

the Gaussian approximation of the individual MLEs underlying the derivation of this estimator is

no longer valid, and its performance may be poor in such cases. This is clearly seen for ni = 10

in Figs. 3 and 4, and is further illustrated by the following example. Suppose that ` = 100, and

5Recall that the Cramer-Rao bound applies to the variance of unbiased estimators only.
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that we observe a total of 100 packets, with lengths {100, 200, . . . , 9900, 10000} (thus, there is

a single packet for each length, i.e., ni = 1 for all i). Results for L̃ = 2000 in this setting are

shown in Fig. 5. The true MLE found via bisection remains efficient in this case. This example

shows the importance of carefully choosing an appropriate estimator depending on the particular

scenario.

IV. FER ESTIMATION WITH FEEDBACK ERRORS

So far we have assumed that it is possible to perfectly discriminate whether a packet was

correctly decoded or not. In practice, however, this need not be the case when estimation is

carried out either by the transmitter (rather than the receiver), or by a third node observing

the network packet exchange. In that case, knowledge of successful/unsuccessful decoding is

obtained by means of a feedback channel: the receiver sends a positive acknowledgement (ACK)

each time a packet is correctly decoded, and a negative acknowledgement (NAK) otherwise. This

information may be affected by channel errors. The feedback channel is modeled as a BSC with

error probability ε:

ε , P [rx ACK|tx NAK] = P [rx NAK|tx ACK] . (35)
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We assume that ε is unknown and does not depend on the packet length Li, as ACK/NAK

signaling is usually constant-length. Throughout this section, we denote by mi the number of

received NAKs for packets of length Li (which reduces to the original definition of mi in Sec. II

when ε = 0).

Let ξi be the probability of getting a NAK after transmission of a packet of length Li. Then,

ξi = (1− ε)θLi + ε(1− θLi). (36)

From (36), ξi is a convex combination of θLi and 1 − θLi; in the absence of errors, ξi = θLi .

The observations mi are binomially distributed with parameters ni and ξi, and therefore

f (m;v) =
∏̀
i=1

(
ni
mi

)
ξmii (1− ξi)(ni−mi) , (37)

where v , [ q ε ]T is the vector of unknown parameters.

Ignoring the fact that the feedback channel is imperfect may significantly degrade performance.

To see this, consider the simplest scenario in which the FER for a given length L̃ = L1 is to

be estimated from observations of that same length. In the absence of feedback errors, the MLE

of θL1 is the empirical FER (5), i.e., θ̂L1 = m1

n1
, which is unbiased and efficient. However,

once feedback errors are present, this estimator becomes biased, with normalized bias (E[θ̂L1 ]−

θL1)/θL1 =
(

1
θL1
− 2
)
ε, which is worse for smaller FER values.

A. CRLB

The Fisher information matrix (FIM) I(v) has elements Iij(v) = −E
[
∂2 log f(m;v)

∂vi∂vj

]
, and boils

down to

I (v) =
∑̀
i=1

ni
ξi (1− ξi)

uiu
T
i , ui ,

 (1− 2ε)Liq
Li−1

1− 2qLi

 . (38)

If ` = 1 then I is singular, i.e., the parameter v is not identifiable [29]. This is because in that

case, (37) depends on q and ε through ξ1 alone, and different pairs (q, ε) can result in the same

value of ξ1. Note also that for ε = 0, the term I11(v) reduces to (12). From (38), the NCRLB

on the variance of any unbiased estimator of θL̃ is seen to be

Var
[
θ̂L̃

]
θ2
L̃

≥

(
L̃qL̃−1

1− qL̃

)2
I22(v)

I11(v)I22(v)− I212(v)
. (39)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TWC.2017.2686845

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



18

10
−6

10
−4

10
−2

−20

−10

0

10

20

BER p

N
C
R
L
B

(d
B
)

L̃ = 300

 

 

10
−6

10
−4

10
−2

−20

−10

0

10

20

BER p

N
C
R
L
B

(d
B
)

L̃ = 500

10
−6

10
−4

10
−2

−20

−10

0

10

20

BER p

N
C
R
L
B

(d
B
)

L̃ = 1, 000

10
−6

10
−4

10
−2

−20

−10

0

10

20

BER p

N
C
R
L
B

(d
B
)

L̃ = 5, 000

ǫ = 0
0.01
0.1
No feedback

Fig. 6: Normalized CRLB for FER estimation with imperfect feedback channel vs. BER.

{L1, L2, L3} = {1000, 2000, 3000}, n1 = n2 = n3 = 1. The curve labeled as ’No feedback’

corresponds to the case in which ε is known and equal to zero. Vertical lines indicate the BER

values corresponding to an FER θL̃ = 0.1 for each length L̃.

Note that if ε = 1
2

then I11(v) = I12(v) = 0, so that (39) goes to infinity; in that case, the

input and output of the feedback channel become statistically independent, so that the received

ACK/NAK do not carry any information about packet errors. Moreover, (39) does not change

if ε is replaced by 1 − ε, as it should be since the error probability of a BSC can be changed

from ε to 1− ε by deterministically flipping the channel output.

Fig. 6 shows the NCRLB (39) for the same setting as that of Fig. 1. The NCRLB (13), which

applies when estimation is directly performed at the receiver, is also shown for comparison. A

number of observations can be made:
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1) The degradation incurred by reporting through a feedback channel with unknown but small

error rate can be quantified by the ratio of the NCRLB (39) with ε = 0 to the NCRLB (13).

This ratio is larger than 1 and is given by 1
1−r , with

r ,
I212(v)

I11(v)I22(v)

∣∣∣∣
ε=0

∈ [0, 1]. (40)

Therefore, larger values of r imply larger degradation due to feedback errors. From (38), it

is straightforward to show that, with n ,
∑`

i=1 ni,

lim
p→1

r = 0, lim
p→0

r =

(∑`
i=1

ni
n

1
Li

)−1
∑`

i=1
ni
n
Li

, (41)

meaning that, on the one hand, as the BER increases, the two bounds tend to agree; and on

the other hand, for low BER values the degradation is quantified by the ratio of the (weighted)

harmonic to arithmetic means of the lengths Li, with weights ni
n

, i = 1, . . . , `. If the lengths

Li are close to each other, this ratio will be close to 1, resulting in larger degradation. For

the setting of Fig. 6, one has limp→0 r ≈ 0.8182, so that the degradation in the bound for

low BER is ≈ 7.4 dB.

2) For sufficiently small p, the NCRLB is independent of the frame length L̃; this is because
L̃qL̃−1

1−qL̃
goes to q

1−q as p → 0 for all L̃. In this regime, the effect of errors in the feedback

channel is particularly detrimental: whereas the NCRLB behaves as O(p−1) for small p when

ε = 0, as soon as errors are present in the feedback channel this asymptotic behavior becomes

O(p−2).

3) When ε > 0, the NCRLB asymptote for p→ 1 is

Var
[
θ̂L̃

]
θ2
L̃

≥ ε(1− ε)
(1− 2ε)2

nL̃2

(n− n1)n1L
2
1

(1− p)2(L̃−L1), (42)

which goes to zero, a constant, or infinity as p → 1 for L̃ > L1, L̃ = L1, and L̃ < L1

respectively. This is clearly seen in Fig. 6 (in that setting, L1 = 1000).

B. ML estimation via E-M algorithm

Maximizing (37) with respect to v = [ q ε ]T is not possible in closed form, so we propose

to apply the E-M algorithm [30], [31] to this task. To this end, we introduce the variables

{mij, j = 1, . . . , ni, i = 1, . . . , ` }, such that mij = 1 if a NAK is received for the j-th packet
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TABLE I: E-M algorithm for FER estimation with feedback errors.

Initialize 0 < ε̂1 � 1 and q̂1 = 1−
∑`

i=1mi∑`
j=1 njLj− 1

2

∑`
j=1mj(Lj−1)

.

For t = 1, 2, . . .

1) E-step: For i = 1, . . . , `, compute

ρ̂0i,t =
ε̂t(1− q̂Li

t )

ε̂t(1− q̂Li
t ) + (1− ε̂t)q̂Li

t

, ρ̂1i,t =
(1− ε̂t)(1− q̂Li

t )

(1− ε̂t)(1− q̂Li
t ) + ε̂tq̂

Li
t

. (44)

2) M-step: Obtain new estimates as

ε̂t+1 =

∑`
i=1

(
mi(1− ρ̂1i,t) + (ni −mi)ρ̂

0
i,t

)∑`
j=1 nj

, (45)

q̂t+1 = 1− 1− q̂t∑`
j=1 njLj

∑̀
i=1

Li
(
miρ̂

1
i,t + (ni −mi)ρ̂

0
i,t

)
1− q̂Li

t

. (46)

After convergence, set θ̂L̃ = 1− q̂L̃.

of length Li, and mij = 0 otherwise. In that way, one has mi =
∑ni

j=1mij . We also introduce

the variables {zij, j = 1, . . . , ni, i = 1, . . . , ` } such that zij ∈ {1, . . . , Li} denotes the number

of bit errors actually taking place in the reception of the j-th packet of length Li. Note that mij

is a Bernoulli random variable with parameter ξi as in (36), whereas zij is binomially distributed

with parameters Li and p.

Clearly, estimation of the FER θL̃ is hindered by lack of knowledge about the zij’s. Therefore,

we regard {mij} as the incomplete observations, and {mij, zij} as the complete data. Then the

E-M algorithm is based on the iterative application of the following two steps:

1) E-step: Given the current estimate v̂t = [ q̂t ε̂t ]T , compute the conditional expectation of the

LLF

Q(v, v̂t) , E [ log f(m̄, z̄ ; v) | m̄ ; v̂t ] , (43)

where m̄ and z̄ are vectors of size n =
∑`

i=1 ni comprising {mij} and {zij}, respectively,

and v denotes a trial value.

2) M-step: Obtain the next estimate as v̂t+1 = arg maxvQ(v, v̂t).

The final form of the algorithm is summarized in Table I. The detailed development is given

in Appendix A. Although not obvious from the final expressions (45)-(46), it follows from

the derivation in Appendix A that (i) the estimate ε̂t+1 in (45) is given by the ratio of a soft
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estimate of the number of errors in the feedback channel to the total number of transmissions

n =
∑`

j=1 nj; (ii) the BER estimate 1− q̂t+1 in (46) is obtained as the ratio of a soft estimate

of the number of bits in error in all n packets to the total number of bits
∑`

j=1 njLj in these

packets. As indicated in Table I, in order to initialize the iteration we suggest to set ε̂1 to a small

positive value, and to use the asymptotic MLE in the low BER regime with no feedback errors,

given by (24). Incidentally, note that if we set ε̂1 = 0, then it follows from Table I that ε̂t = 0

for all t, whereas

q̂t+1 = 1− 1− q̂t∑`
j=1 njLj

∑̀
i=1

miLi

1− q̂Lit
. (47)

It is readily checked that any fixed point of the iteration (47) must satisfy (17), so that (47)

provides an alternative means to numerically compute the MLE assuming no feedback errors to

the bisection method of Sec. III-B.

C. Simulation results

Consider a setting similar to that in Sec. III-E (` = 5, {L1, . . . , L5} = {100, 1000, 5000, 8000,

10000}), assuming ni = 100 for each observed length, and with a target length L̃ = 2000. We

evaluate the performance of the estimators from Sec. III-E, which are oblivious to potential

feedback errors, and also the E-M estimator from Table I, initialized with ε̂1 = 10−5 and run

for 103 iterations. Two values of the error probability in the feedback channel were considered,

namely ε = 0.01 and ε = 0.1.

The normalized bias (E[θ̂L̃] − θL̃)/θL̃ of the different methods is shown in Fig. 7. As the

fraction of feedback errors increases, the estimators which do not take this effect into account

become significantly biased, particularly for low BER values. The E-M estimator, in contrast,

is practically unbiased in this setting, except for a slight bias in the low BER region, which is

reduced if the number of observations increases (this is not the case for the other estimators,

which suffer from an irreducible bias). Fig. 8 shows the NMSE of the estimators. As expected,

the E-M estimator is the only method which remains close to being efficient in the whole BER

range. Although the performance of the bisection-based and 2-step estimators is acceptable in this

setting if the feedback channel is sufficiently reliable (ε = 0.01), the degradation is significant

for ε = 0.1.
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Fig. 7: Normalized bias for the different estimators vs. BER, with errors in the feedback channel.

(a) ε = 0.01, (b) ε = 0.1.
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Fig. 8: Normalized MSE for the different estimators vs. BER, with errors in the feedback channel.

V. CONCLUSIONS

We have analyzed the problem of FER estimation from the observation of packet error events

corresponding to the transmission of packets with disparate lengths; the set of observed packet

lengths may not even include the target length. The CRLB for this problem was obtained and

analyzed, and several estimators were proposed. Although the MLE admits no closed-form

expression, it can be unambiguously obtained by numerical means. Alternatives to the MLE
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based on low-BER and large sample size approximations were also presented, with varying

performance depending on the setting. As a general rule, the MLE comes out as a good

performance/complexity tradeoff.

The impact of having unreliable observations due to an imperfect feedback link has also been

studied. The corresponding CRLB reveals the importance of having observations from packets

with lengths as diverse as possible, and in fact when only measurements corresponding to a

single length are available, the FER is not identifiable. Estimators that implicitly assume perfect

measurements may degrade significantly if the error probability in the feedback link is sufficiently

large. The E-M algorithm can be applied in this setting to obtain the MLE. The computational

cost of this approach is relatively high, and thus developing simpler FER estimators robust

to unreliable feedback remains an open issue. Extending the framework to systems employing

forward error correction (FEC) encoders and to time-varying channels is also an interesting

avenue for future work.

APPENDIX A

E-M ALGORITHM DERIVATION

Since observations are independent, the joint PMF f(m̄, z̄ ; v) is given by

f(m̄, z̄ ; v) =
∏̀
i=1

ni∏
j=1

f(mij, zij ; v). (48)

Let us introduce the variable eij taking the value 1 if the j-th packet of length Li is received

with errors, and 0 otherwise. Since zij takes integer values, we can write eij = 1− δ[zij], with

δ[k] the unit impulse. Note that eij is a Bernoulli random variable with P[eij = 1 ; v] = 1− qLi .

Then we can write the joint PMF of mij and zij as

f(mij, zij ; v) = f(mij, zij | eij = 0 ; v)qLi

+ f(mij, zij | eij = 1 ; v)(1− qLi). (49)

For a binomial random variable Z with parameters L and p, let us denote

B(k;L, p) , P[Z = k] =

(
L

k

)
pk(1− p)L−k, 0 ≤ k ≤ L. (50)
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Then, the conditional PMFs in (49) are given by

f(mij, zij | eij = 0 ; v) = (1− ε)1−mijεmijδ[zij] (51)

= (1− ε)1−mijεmij(1− eij), (52)

f(mij, zij | eij = 1 ; v) = (1− ε)mijε1−mij

× B(zij;Li, p)

1−B(0;Li, p)
(1− δ[zij]) (53)

= (1− ε)mijε1−mijB(zij;Li, p)

1− qLi
eij. (54)

Then (49) can be written as

f(mij, zij ; v) = (1− ε)1−mijεmijqLi(1− eij)

+ (1− ε)mijε1−mijB(zij;Li, p)eij (55)

=
[
(1− ε)1−mijεmijqLi

]1−eij
×
[
(1− ε)mijε1−mijB(zij;Li, p)

]eij . (56)

Therefore, up to terms not depending on v, the logarithm of (56) is given by

log f(mij, zij ; v) = [(1− eij)mij + eij(1−mij)] log ε

+ [(1− eij)(1−mij) + eijmij] log(1− ε)

+ [(1− eij)Li + eij(Li − zij)] log q

+ eijzij log(1− q). (57)

Note that the random variable xij , (1− eij)mij + eij(1−mij) takes the value 1 if eij 6= mij

(i.e., if an error event took place in the feedback channel), and 0 otherwise. Note also that
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eijzij = (1− δ[zij])zij = zij . Hence,

log f(m̄, z̄ ; v) = log ε
∑̀
i=1

ni∑
j=1

xij

+ log(1− ε)
∑̀
i=1

ni∑
j=1

(1− xij)

+ log q
∑̀
i=1

ni∑
j=1

(Li − zij)

+ log(1− q)
∑̀
i=1

ni∑
j=1

zij. (58)

In the E-step, the conditional expectation of (58) has to be computed. Thus, let us introduce

êij,t , E[eij |mij ; v̂t], ẑij,t , E[zij |mij ; v̂t]. (59)

It follows that x̂ij,t , E[xij |mij ; v̂t] = (1− êij,t)mij + êij,t(1−mij), and therefore, taking the

conditional expectation of (58) yields

Q(v, v̂t) = X̂t log ε+ (n− X̂t) log(1− ε)

+

[(∑̀
i=1

niLi

)
− Ẑt

]
log q + Ẑt log(1− q), (60)

where

X̂t ,
∑̀
i=1

ni∑
j=1

x̂ij,t, Ẑt ,
∑̀
i=1

ni∑
j=1

ẑij,t. (61)

Note that X̂t and Ẑt are soft estimates (based on the observations {mij} and the current estimate

v̂t) of the total number of errors in the feedback channel and the total number of bits in error,

respectively. Now, maximizing (60) with respect to ε and q, the estimates are updated as

ε̂t+1 =
X̂t

n
, q̂t+1 = 1− Ẑt∑`

i=1 niLi
. (62)

It remains to compute the conditional expectations in (59). We can write

êij,t = (1−mij)ρ̂
0
i,t +mij ρ̂

1
i,t, (63)

where

ρ̂0i,t , E[eij |mij = 0 ; v̂t] =
ε̂t(1− q̂Lit )

ε̂t(1− q̂Lit ) + (1− ε̂t)q̂Lit
, (64)

ρ̂1i,t , E[eij |mij = 1 ; v̂t] =
(1− ε̂t)(1− q̂Lit )

(1− ε̂t)(1− q̂Lit ) + ε̂tq̂
Li
t

, (65)
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which do not depend on j. On the other hand, observe that zij can be written as zij = eijbij ,

where bij is a random variable statistically independent of eij and mij , taking values in the set

{1, 2, . . . , Li} with probabilities

P[bij = k ; p] =
B(k;Li, p)

1−B(0;Li, p)
, 1 ≤ k ≤ Li. (66)

Therefore,

ẑij,t = E[eijbij |mij ; v̂t]

= êij,tE[bij ; v̂t] = êij,t
Li(1− q̂t)

1− q̂Lit
. (67)

Using (64)-(65) in (63) and (67) and then substituting in (62), the iteration is completed.
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