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Abstract

Traditionally, digital watermarking and data hiding technologies have been evalu-
ated according to robustness, capacity and imperceptibility measures. In this thesis we
address a new performance measure based on security considerations. In our context,
security has to do with the ability of the watermarking systems to properly conceal
the information that must be kept secret, such as the secret keys and the embedded
messages. The results of this thesis show that traditional watermarking techniques
lack, in general, good security properties. This, in conjunction with the often simplis-
tic key management strategies, puts at risk the security of watermarking systems in
many practical situations.

Our security assessment is inspired in a cryptanalytic approach. First, we propose
a formal framework for assessing security, and we choose an information-theoretic se-
curity measure based on the work by Shannon in the field of secrecy systems. This
information-theoretic measure is used to quantify in a precise manner the amount of
secret information that is made available to an attacker upon the observation of marked
contents, and it is also the key component of several useful performance bounds. A
second part of this thesis is concerned with more practical security considerations: we
design estimators and algorithms to exploit the security weaknesses identified in the
theoretical analysis, in order to assess security from a practical point of view and com-
pare the obtained results with the theoretical limits predicted by our security measure.
In some cases, surprisingly, the devised estimators achieve performance close to the
theoretical limit. In general however, it is not possible to extract all the available
information with manageable complexity, so several simplifications must be made. It
is also shown how attackers can exploit the non publicly available information after
performing a security attack.

Both analyses, from theoretical and practical points of view, are performed for the
two main groups of watermarking methods: spread spectrum and quantization-based
ones. Watermarking security brings new challenges to the field, so a good understand-
ing of the problem is a must for the design of next-generation watermarking and data
hiding systems.
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Chapter 1

Introduction

1.1 A brief history

Digital watermarking can be defined as the process of embedding information in a
certain digital signal that acts as a “host” or “cover” signal. The invention of digital
watermarking can be traced back to 1954 [90], when Hembrooke filed a patent [130]
describing a method for the identification of music signals through the embedding
of inaudible codes, with the objective of proving ownership. However, it was not
until the early/mid-nineties when the interest in digital watermarking technologies
started to grow significantly, due to the advent of Internet and the wide spread of
digital contents distribution. During the first years, digital watermarking was mainly
intended as a tool for protecting the intellectual property rights over digital works
[213],[209],[52],[95], as originally conceived in [130]. However, the range of potential
applications soon became largely increased: copy protection [51],[144], fingerprinting
(traitor tracing) for piracy deterrence [53],[163],[212], metadata annotation [47],[58],
covert communications (steganography) [34],[56][223],[118], monitoring of broadcast
transmissions [98],[177], authentication of digital items [153],[43],[109], etc., giving rise
to the wider term “information hiding” technologies. A variety of algorithms were
developed for embedding information in still images [40],[132], video [128],[210], audio
[127],[151], text [33],[216], natural language [211],[219], digital circuits [154], and more.

As a result of this intense activity, digital watermarking shortly became a very
active field of research with a promising future, as one can see in the number of work-
shops, conferences and journals devoted nowadays to watermarking research. However,
it was an excess of self-confidence during these first years what probably led to several
remarkable failures, such as the Secure Digital Music Initiative (SDMI) [21] and the
well-known SDMI challenge [20]. Some voices raised strong criticisms against water-
marking technologies [131], claiming that they would never succeed. Fortunately, the
watermarking community reacted in consequence [171], clarifying that digital water-
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marking was still an open topic and far from being a mature technology.

For the moment, digital watermarking technologies have not successfully addressed
some of the challenges they were originally devised to solve, mainly in the Digital
Rights Management field [27]. However, they have found other market opportunities,
and there exist indeed a number of companies successfully exploiting watermarking
technologies in diverse scenarios, such as broadcast monitoring, audience metering, or
audio and video watermarking for forensic applications. Digimarc [7], Teletrax [12],
Philips [2], Thomson [13], Cinea [3], Verimatrix [16], Verance [15], and Aquamobile
[1] are some examples of companies with business models based on digital water-
marking technologies. Furthermore, a number of small companies are incorporating
watermarking capabilities to their video surveillance solutions, such as GeoVision [9],
MediaSec [10] and TRedess [14], for instance. Recently, the Digital Watermarking Al-
liance (DWA) [8] has been created by the sector’s main companies for promoting the
adoption of digital watermarking technologies. Recent reports [152] state that content
identification technologies such as digital watermarking and fingerprinting will exper-
iment a rapid grow in the next years, probably surpassing US $500 million worldwide
by 2012. The main applications will be, according to this report, in Digital Rights
Management (DRM) related applications and forensics. Due to the increasing process-
ing capabilities of handheld devices, other emerging applications such as interactive
advertising (linking printed content to the web) will also enter the picture.!

When talking about DRM related applications, we no longer mean copy control and
conditional access solutions. Indeed, the failure of traditional DRM technologies has
much to do with this restrictive approach that takes into account only the interests of
the industry, neglecting those of consumers. Therefore, there is a common agreement
in the need of rethinking the digital content distribution and DRM models in order
to achieve a better balance of interests [160]. The new models will probably be more
based on content monitoring and traceability approaches than on usage restriction
[38],[50],[146]. As such, watermarking and data hiding will play an important role as
enabling technologies (along with content-based identification) for these new business
models.

Forensic applications, on the other hand, have two main facets:

1. Fingerprinting (traitor tracing) applications, where the objective is to embed in-
formation in the digital contents in order to 1) enable their traceability and 2)
link them to particular individuals. This has immediate application in trans-
actional business models where redistribution of the contents is not allowed, in
general, such as pay-TV and online music selling. Fingercasting techniques (joint
decryption and watermark embedding in set top boxes) seem promising in this

nterestingly, these trends had been foreseen by Cox et al. some years ago [90].
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regard [30]. The digital cinema industry, through the Digital Cinema Initiative
specification [142], has also planned to benefit from this kind of forensic tools,
requiring the embedding of fingerprints during the public exhibitions of movies.

2. Authentication-like applications, where the aim is to check the authenticity of a
digital item taking advantage of a certain watermark embedded in the content
beforehand. This has a clear application when digital contents want to be used
as legal evidence in a court of law.

Forensic applications are probably the best examples so far of the usefulness of
watermarking technologies. The two cases below are highly illustrative.

e Case 1: The cinema industry vs Sprague and Caridi [4]. This case was
highly publicized. Carmine Caridi, a member of the Academy of Motion Picture
Arts and Sciences, leaked to a friend of his (William Sprague) several promotional
DVDs (screeners) for the Academy Awards during 2003, that the latter illegally
commercialized on Internet. The screeners came from major picture studios,
like Sony Pictures, Universal, Warner Brothers... All of them were protected by
means of digital watermarks for identifying each of the individuals receiving a
promotional copy. The FBI Forensic Services detected the embedded watermark
in several illegal copies, and this automatically led to the primary source of the
leak: Carmine Caridi. After arresting Caridi and Sprague, they were found to
be guilty and sentenced to pay US $600,000 to the cinema industry for the lost
revenues.

e Case 2: Warner Music Group [6]. It is usual that many songs delivered as
promotional copies to radio stations and related media appear on the Internet
and P2P networks before the corresponding music albums are available for sale.
Several years ago, Warner Music Group (WMG) resorted to digital watermarking
technology in the promotional copies of one of their artists’ new album. These
copies were distributed to radio and TV stations all over the world, and shortly
after this, the first copies started to circulate on the Internet. Fortunately for
WMG, the watermarks embedded in the promotional copies permitted to identify
the sources of the leak and take the pertinent legal actions.

Forensics, despite being probably one of the most promising applications of water-
marking technologies, is also highly demanding from the technological point of view.
In applications where forensic marking is involved, money and legal issues usually come
into play. Hence, it is of utmost importance to guarantee that the watermarking tech-
niques being used are highly reliable, in such a way that innocent users will not be
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incriminated (this is currently an important problem in the case of fingerprinting for
large populations, for example).

In the next section we will analyze more in detail some of the issues arising from
the legal application of watermarking technologies.

1.2 Legal considerations

Legal aspects are rarely taken into account when considering watermarking tech-
nologies. We can find in the literature some references [201],[32], focused on DRM
applications (not specifically addressing watermarking) and the circumvention of Tech-
nological Protection Measures (TPMs). These papers are mainly concerned with the
legislative framework for DRM, especially the “Digital Millennium Copyright Act”
(DMCA) [26], and its foreseen influence in the development of future content distri-
bution models. On the other hand, [94] and [160] are more specific to watermarking
techniques, yet focused on DRM and proof of ownership scenarios. The considerations
presented below are more oriented to forensic applications.

1.2.1 Digital images as legal evidence

It is well known that visual evidence (still pictures, videos) is often crucial for
determining the result of a trial. The most recent techniques in digital photography
and video allow to obtain high-quality images that can be provided as valuable proofs,
but there is an inherent reasonable doubt about the authenticity of such images. Of
course, it is possible to tamper with images in analog format, but it is much easier to
do it with digital images (nowadays, any average user has access to powerful editing
tools). In fact, there exist documented cases [48] where it has been proved that digital
retouching techniques were used to incriminate innocents. Currently, it is enough to
suggest that a digital image could have been maliciously modified in order to reject it
as a valid proof, if there is no reliable mechanism for proving its authenticity.

1.2.2 Forensic analysis of digital images

Due to the simplicity for tampering with digital images and videos, the work of the
forensic scientist as a specialist in digital imagery becomes particularly relevant when
using digital images as legal evidence. The forensic scientist establishes whether a cer-
tain image is authentic or not. The most important techniques for proving authenticity
are hashing, encryption and watermarking [28]. All these measures must be applied
beforehand (i.e. in a preventive manner). Being conscious of these legal needs, many
companies have incorporated these technological measures as an added value in their
video surveillance solutions ([9],[10],[11],[5], just to reference some examples).
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In spite of this, the introduction of watermarking technology in the legal machinery
is not so easy. Watermarks may be seen as irrefutable tools for authenticating digital
images and videos, but we can identify at least the following shortcomings:

1. At the embedding side: from the very moment that the watermark is embedded
in the original content, a reasonable doubt may arise: is the watermarked image
indeed the same as the original image? Obviously, the watermark must have
been embedded in an imperceptible manner, but the software manipulating the
images (the embedder) will be susceptible of being analyzed and certified.

2. At the decoding side: a serious concern, already raised in [94], is the need for
the application of certain transformations (inversion of a geometrical attack, for
example) to the image under analysis in order to properly detect/decode the
embedded watermark. Moreover, the answer of the watermark detector/decoder
cannot be regarded as 100% reliable. There exist always nonnull false negative
and false positive probabilities, and potential decoding errors.

The above issues are even more critical in the case of medical images, where the
requirements are very restrictive (cf. [180] by the English College of Radiographers).
Obviously, the validity of a scientific method as legal evidence is determined in last
instance by its error rate. Let us consider, for instance, the case of paternity proofs.
Depending on the used method, the false positive probability varies from 0.01% (with
a virtually null false negative rate) up to 1%, being DNA-based methods the most
effective. An error probability of 0.01% is considered, from the legal point of view,
as “beyond any reasonable doubt”. As for watermarking techniques, the theoretical
performance of many of them are around this figure, but the theoretical performance
measures are not always representative of all real scenarios.

In general, judges and lawyers are reluctant to accept as legal evidence new meth-
ods and techniques for which there are no documented legal precedents (let us recall
that the introduction of digital imagery in the courts is relatively new). To be more
precise, according to US laws [48], a legal evidence obtained by scientific means is ad-
missible in court only “if the used techniques are commonly accepted by the scientific
community” (United States vs. Kilgus 1978).2 In this regard it is interesting to note
that, albeit watermarking technologies have experimented great advances during the
last decade, in general they have not been tested at such extent. This being said, it
seems that we still have a long way to go before watermarking technologies gain full
legal acknowledgement. The example considered below may be enlightening in this
sense.

2Actually, a more restrictive requirement was adopted in 1993, known as Daubert (Daubert vs.
Merrell Dow Pharmaceuticals, Inc. 1993).
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1.2.3 An illustrative example: digital signature

A digital signature is a data string which associates a message (in digital form) with
some originating entity (the “signing entity”) [164]. Besides, it guarantees the integrity
of the message and its non-repudiation. The digital signature relies on cryptographic
technology: hash functions (SHA, Secure Hashing Algorithm) and the well known pub-
lic key cryptographic scheme RSA (Rivest-Shamir-Adelman), invented in 1977 [164].
However, the first law on digital signature was not enacted until 1995 in the Utah state
(US), whereas the first European countries in adopting it were Germany and Italy in
1997 [25],[19], even before the first European directive on the subject [24]. In Spain,
for instance, the law on digital signature was not enforced until late 2003 [18].

In general, the massive deployment of a new technology is possible after two fun-
damental steps:

1. Reach of a satisfactory degree of maturity for the considered technology. In the
case of digital signature we have to main blocks: on one hand the hash functions,
whose more sophisticated versions can guarantee negligible collision probabilities;
on the other hand, the RSA scheme which has been proved to be secure for more
than two decades now. These two characteristics have made possible to create
secure digital signatures.

2. A standardization process. The definition, use and implementation of a technol-
ogy must be reflected on internationally recognized standards in order to make
possible its deployment while guaranteing a minimum quality level. In the case
of digital signature, this process began in 1991 [22], dealing with aspects of RSA
and secure systems for electronic transactions, among others.

By translating the above considerations to the watermarking field, it is evident
that we are for the moment immerse in the first stage of the process of adoption of the
technology, working for constructing watermarking systems with provable robustness
and security levels. This is not surprising as watermarking technology is quite recent.
However, despite its short life, watermarking research has evolved enormously. The
next section gives an overview of the major advances that contributed to arrive at this
situation, helping to place this thesis in its proper context.

1.3 Milestones in digital watermarking research

The first digital watermarking and data hiding techniques (devised for digital images
in the early-middle 90s) were ad-hoc algorithms based on elementary image processing
manipulations. During the last years, these technologies have matured considerably.
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Watermarking research no longer pertains solely to the image processing field, but
it has become a complex technology at the crossroads of many technical fields, such
as digital communications, statistics, information theory, optimization (game theory),
perceptual analysis, etc. All these fields have played a fundamental role in the advance
of watermarking technology:

e The contribution of digital communications was in the modeling of watermark-
ing as a classical communications problem, where certain information (the water-
mark) was to be placed in a channel (the host document) by means of a modulator
(the embedder) and recovered by a receiver (the watermark detector). The model
also allowed for the inclusion of attacks to the watermarking schemes, paving the
way to a rigorous analysis of the problem [39].

e The digital communications approach, together with the introduction of the sta-
tistical modeling of the problem, allowed to perform the first rigorous performance
analyses, providing probabilities of false positive/negative in detection applica-
tions [134], and Bit Error Rate (BER) in data hiding applications [195].

e Information theory was crucial in establishing the fundamental limits of the con-
sidered communications problem [66], [175],[176].

e Optimization and game theory made possible the modeling of the watermarking
problem as a game between embedder and attacker. The derivation of optimal
strategies [173] and worst-case attacks [172] for some cases has been possible.

e The perceptual analysis is key to finding the optimal domains of embedding
and the application of perceptual masks that maximize the power of the water-
mark without impairing the perceptual quality of the marked assets [39, Chap-
ter 5],[89],[221].

The first milestone in watermarking research is probably the invention of spread
spectrum embedding by Cox et al. [86], inspired in the well known homonymous tech-
nique in the field of digital communications [42]. Spread spectrum techniques greatly
increased the robustness of the existing watermarks, withstanding lossy compressions
and many intentional removal attacks. However, spread spectrum (as well as the previ-
ous watermarking techniques) were still far from being optimal, since they suffered from
the so-called “host interference”, which is the name given to the serious degradation
of performance due to the interference introduced by the host signal.

The true inflection point in watermarking research came from the realization of wa-
termarking as a problem of communications with side information by Cox et al. [91].
This, together with the rediscovery of the surprising Costa’s result [83] by Chen and
Wornell [62], gave rise to the “side-informed” paradigm. The adaptation of Costa’s
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result (which dates back to 1983) to the watermarking field basically says that, under
certain conditions, the amount of information that can be embedded in a digital content
and successfully recovered by the decoder is not affected by the host interference (even
when the decoder does not have access to the original content) if the embedder prop-
erly exploits the availability of the host signal. The side-informed paradigm led to the
development of new and revolutionary data hiding schemes based on structured code-
books [63],[108] (aka quantization-based methods) and Trellis-based embedding [168],
which significantly outperform the former spread spectrum methods in a wide range
of scenarios. Among the side-informed techniques, the most deeply studied are those
based on quantization, and specially those using lattice quantizers [63],[108],[174]. The
idea was extended to spread spectrum schemes as well, giving raise to hybrid methods
usually known as Spread Transform [63] schemes.

Other remarkable inventions and discoveries in the field have been the following:

e The use of channel coding techniques [196],[76] and resynchronization schemes
[182],[36], inspired by the digital communications field.

e The invention of asymmetric and public key watermarking schemes [120],[110].

e The introduction of zero-knowledge watermark detection [31] and other protocols
for secure implementation of transactional watermarking [163].

e The invariability against certain geometrical attacks, either embedding the infor-
mation in invariant domains [203] or using specific codes for information embed-

ding [197].

e More recently, the proposal and study of universal decoders for coping with geo-
metrical transformations [170], and results on optimal embedding and detection
strategies under limited resources [165],[70].

Despite the tremendous progress done during the last years, watermarking schemes
have been mostly tested against conventional attacks (noise addition, lossy compres-
sion, geometrical transformations, etc.) that do not fully exploit the attacker’s knowl-
edge and resources, in general. However, as recognized in [166, Chapter 6], it is realistic
to assume that next-generation attackers will devise much more sophisticated and chal-
lenging tools for attacking the watermarking schemes, “possibly obtaining information
about the algorithmic steps of the information hiding schemes”, and trying “to find the
secrets, already having a good enough knowledge about the algorithm itself”. A well-
known class of this kind of attacks in the watermarking community are the so-called
oracle attacks [156],[74],[65], which exploit the availability of a watermark detector in
order to extract information about the secret parameters of the watermarking algo-
rithm. Recently, other related attacks based on cryptographic-like weaknesses have



1.4 Summary and thesis objectives 9

shown their potential [41],[121],[61], so they have started to be seriously considered.
The core of the work presented in this thesis is about the analysis of the latter kind of
attacks, which can be cast in the framework of “watermarking security” [61],[71]. The
detailed objectives are explained in the next section.

1.4 Summary and thesis objectives

As mentioned above, the robustness and fundamental communication limits of the
watermarking / data hiding schemes are well studied topics. This thesis is concerned
with the study of another problem in the watermarking field, which has been rarely
addressed in the literature until very recently: watermarking security. Contrary to
classical robustness studies, security is focused on the capabilities of the watermark-
ing schemes for concealing the secret information. By “secret information” we mean
certain information or parameters of the watermarking schemes that are supposed to
remain secret to any unauthorized party, such as the secret keys used in the embed-
ding/decoding process.

The rigorous study of watermarking security is a necessary step towards the devel-
opment of mature watermarking technologies in the future, capable of addressing the
requirements mentioned in Section 1.2. Thus, one of the objectives of this thesis is
to propose a formal model for assessing watermarking security. We are interested in
assessing, according to this model, the security of the two main groups of watermarking
methods introduced above: spread spectrum and quantization-based schemes. We will
check whether these watermarking schemes properly conceal the secret information or
not. If it is not the case, we will quantify how much of the secret information can
be disclosed by an attacker. For those cases that have shown to be not secure, we
will propose practical algorithms for disclosing the secret information, in a cryptana-
lytic fashion. The experimental results will be also used for supporting the conclusions
obtained in the theoretical analysis.

These objectives are addressed in the remaining chapters.

e Chapter 2 motivates the interest in the study of watermarking security, introduces
the fundamental concepts and definitions that will be used throughout this thesis,
and presents the measure for quantifying security. This formal framework has
been published in two conference papers [72],[71], and one journal paper [186].

e Chapter 3 presents a theoretical security analysis of the security of spread spec-
trum methods. The main results reveal fundamental limits and bounds on secu-
rity, providing insight into other properties such as the impact of the embedding
parameters and the tradeoff between robustness and security. Moreover, this work
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formalizes and generalizes the work by other authors. One conference paper has
been published [187], and one journal paper has been submitted [191].

e Chapter 4 studies the security of spread spectrum methods from a practical point
of view, proposing estimators for extracting the secret information. Previous
methods proposed by other authors are theoretically analyzed for the first time.
New estimators, mainly based on the blind equalization paradigm, are proposed,
analyzed and tested in a variety of scenarios, comparing their performance to
that of the previous ones. The results have been included in an internal report
[183] and submitted in a journal paper [191].

e Chapter 5 analyzes, for the first time in the literature, the fundamental security
limits of quantization-based data hiding methods. The implementation consid-
ered for these methods is by means of nested lattice codes, which is the most
widely extended approach. Surprisingly, these methods will be shown to be
highly secure under some circumstances. In the other cases, their security will
be quantified. The obtained results have been published so far in four conference
papers [185],[192],[193],[189], and two journal papers [194],[190].

e Chapter 6 addresses the problem of practical estimation of the secret informa-
tion for data hiding schemes using nested lattice codes. The proposed meth-
ods are based on the set-theoretic estimation paradigm and in tree search al-
gorithms. The obtained results have been published in four conference papers
[185],[192],[193],[189], and two journal papers [194],[190].

e Finally, Chapter 7 summarizes the main conclusions that can be extracted from
this thesis and presents a series of challenges and open topics that deserve further
analysis in the future.

The present thesis is the first one completely devoted to the problem of watermark-
ing security, although the very first one in addressing the problem was Comesana [68].
Much of the work presented here is part of the contribution by the University of Vigo
to the European Network of Excellence in Cryptology (ECRYPT) [105], where wa-
termarking technologies are considered as a fundamental component of digital media
security.

The approach followed in this thesis is not focused on particular watermarking
applications, but it rather looks at the fundamental security properties of the informa-
tion embedding methods. As such, no formal distinction between watermarking and
information hiding terms will be made. One must bear in mind that, although the
approach can be extended to a variety of scenarios, it cannot be directly applied to the
steganography scenario, which falls out of the scope of the present thesis. As a final
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remark, we clarify that no security considerations at the protocol level are done; our
analysis is completely focused on the “physical layer”.
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Introduction




Chapter 2

A formal framework for assessing
watermarking security

In this chapter, the formal model for the study of watermarking security is introduced.
First, Section 2.1 presents the general model for digital data hiding that will used
throughout this thesis. Section 2.2 exposes the motivations for the study of water-
marking security, and provides a a formal formulation of the problem. Section 2.3
poses the need for a fundamental security measure, and justifies the selection of an
information-theoretic measure. The main properties of this measure are addressed in
Section 2.4. Some relevant concepts related to the chosen information-theoretic se-
curity measure are defined on Section 2.5. Finally, Section 2.6 presents the different
scenarios for security assessment that will be considered in this thesis.

2.1 General theoretical model of digital data hiding

The generic model for data hiding followed in this thesis is shown in Figure 2.1.
Essentially, digital data hiding can be modeled as a digital communications problem.
First, the digital content to be marked undergoes a certain transformation that outputs
a collection of coefficients (DCT, DWT, FFT...), which are arranged in N column
vectors of length n, denoted by {xx, ¢ = 1,...,N}. This set of feature vectors will
be termed “host vectors” or “host signals”. The message to be embedded in the host
vectors may be channel coded, yielding the letters {my,k = 1,..., N}, which belong
to a p-ary alphabet M = {0,1,...,p — 1}. The embedder modifies each host vector
Xk, yielding a marked vector y,, that conveys information about the corresponding
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Figure 2.1: Communications model of digital data hiding
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bits per coefficient. In general, any embedding function can be written as

4

where the vector wy, is known as the “watermark” vector. In order to randomize the
embedding function, the latter is made dependent on a secret key, which in Figure 2.1
is represented by the vector 8. The secret key is not directly used by the embedder;
instead, it is previously transformed by means of a certain function #(-) (which can be
a simple pseudorandom generator) that yields the secret parameters to be used in the
embedding function.

Once the marked signal is generated, the inverse feature extraction operation is
applied to the set of marked vectors {y,} in order to construct the marked content.
Thereafter, the content may be subject to attacks, which are usually modeled by means
of a probabilistic channel. These attacks are sometimes mere signal processing oper-
ations applied to the marked assets that can occur during the normal lifecycle of the
latter. In other cases, however, the attacks are performed by malicious users which try
to get some benefit from the attack: removal of the embedded information, reading of

'In the embedding operation, the characteristics of the human perceptual system can be taken into
account in order to minimize the perceptual impact without affecting the robustness of the watermark.
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the hidden data, etc. After the possible attacks have taken place, the attacked con-
tent is presented to the decoder, which after performing the pertinent operations will
produce an estimate {my, k =1,..., N} of the sequence of embedded messages.

In order to analyze the data hiding problem from a theoretical point of view, the
signals involved in the theoretical analysis will be modeled as random variables, which
will be denoted by capital letters. Instatiations of these random variables will be
denoted by lowercase letters. The probability density function of a random variable X

will be denoted by f(x).

The embedding of information in a host signal invariably introduces a certain
amount of distortion. Due to the imperceptibility requirements usually imposed, it
is necessary to quantify the “embedding distortion” in a precise manner. We will
define the average embedding distortion per dimension as

1
Dy 2 = B[[Wil?)

where the operator E [-] denotes mathematical expectation, and ||x|[> £ Y, 27 denotes

the squared Euclidean norm of x. In order to quantify the relative powers between

the host and the watermark, we will introduce the “Document to Watermark Ratio”
(DWR):

LEN1X| 12
DWR £ 101log,, #. (2.2)

Although the DWR is not necessarily the best choice for taking into account the per-
ceptual aspects of the distortion in an accurate manner, it is nonetheless a very useful
measure for assessing different embedding functions from a fair point of view, yet mak-
ing the mathematical formulation of the problem affordable.

In addition to the theoretical model of digital data hiding just presented, we will add
a series of assumptions aimed at simplifying the theoretical analysis in the subsequent
chapters.

1. As for the host vectors {X;,i = 1,...,(}, they will be assumed to be zero mean.
Should this not be true, the mean of the host vectors must be subtracted so
that the theoretical results shown in this thesis will hold. Furthermore, the
different host vectors X; are assumed to be mutually independent and identically
distributed.

2. The messages {My, k = 1,...,l} embedded in different blocks are also assumed
to be mutually independent and equiprobable in M.
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3. Although not strictly necessary, we assume that both the selection of the ex-
tracted coefficients and the partitioning in length-n blocks of the host is public,
i.e. these operations do not depend on any secret parameter of the watermark-
ing/data hiding scheme.

2.2 Motivation and statement of the problem

As mentioned in the previous section, the secret key 6 is an input to some map-
ping function ¥ (-) that outputs the secret parameters of the embedding and decoding
functions. The aim of such parameterization is twofold:

1. it is a way of protecting the digital contents from unauthorized embedding and/or
decoding;

2. it makes the marked contents more robust to attacks.

The latter assertion is easy to see, for instance, in spread-spectrum-based methods:
if the attacker ignores the secret subspace where the watermark lives, the best he
can do is to perform his attack in a “random” direction of the space. However, if
an accurate estimate of the spreading vector is available to the attacker, then he can
put all the attacking power on the estimated subspace, so in that case the advantage
brought about by spreading vanishes. Similar arguments would hold for any method
that performs embedding in a secret subspace or in a secret transform domain [100].
Clearly, when evaluating attacks to data hiding systems it is important to consider
the degree of knowledge about the secret key and about the data hiding scheme being
attacked. Based on that amount of knowledge, the following classification of attacks
to watermarking systems can be introduced.

1. Blind attacks. The attacker just tries to erase/modify the watermark without
taking care of the secret key, even when the watermarking algorithm could be
perfectly known. This is why these attacks are termed “blind”. These are the kind
of attacks traditionally considered in the watermarking literature concerned with
robustness assessment, and they include addition of noise, compression/filtering
attacks, geometric distortions, etc. However, as suggested above, if the attacker
manages to gain some knowledge about the secret key, he could devise more
harmful attacks. In this sense, “blind” attacks represent the most optimistic
scenario for the watermarker.

2. Attacks based on estimation of secret parameters. When the attacker has
knowledge about the data hiding scheme being attacked, he can try to obtain an
estimate of 1(0) before attempting at attacking the system since, as discussed
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above, this estimate can help him in succeeding in his task. Notice that we are
talking about estimation of ¥ (@) instead of @ itself; this is so because even when
1 (60) and the mapping function v (-) are perfectly known, it may not be possible
to recover the secret key 6, since 1(-) is (or should be) designed so as not to
be easily invertible. However, the knowledge of 1(0) is usually enough for the
attacker’s purposes, in general.

3. Tampering attacks. As mentioned above, the observation of the outputs of
the embedder or the decoder only gives information about (@) but not about
0; however, the attacker can try other ways for obtaining such information. For
instance, when the watermark embedder/decoder is part of an electronic device
which is publicly available (such as a DVD player), the attacker can try to tamper
with it in order to disclose the secret key. If the attacker manages to get perfect
knowledge about @, this implies a complete break of the watermarking system
because he could perform the same actions as any authorized user.

It is clear that the first category of attacks just introduced (blind attacks) is con-
cerned with the classical concept of robustness in watermarking and data hiding. The
tampering attacks are also well known in the literature; a possible countermeasure at
a hardware level against these kind of attacks is the use of tamper-proofing devices,
as proposed in [35]. The second category of attacks has been started to being consid-
ered more recently and their importance should not be neglected. There are two basic
scenarios where the attacker may attempt estimation of the secret parameters:

e Through the observation of the outputs of the embedder, i.e. the marked signals
[41],[121]. Similarly to cryptographic scenarios, the watermarker is usually given
his own secret key, that he will use repeatedly for marking images; hence, all
the contents (or at least a large number) marked by the same user will contain
information about the same secret key. Typically, a reliable computation of 1(8)
will require a large number of signals watermarked with the same secret key, but
once an estimate has been obtained it can be used for attacking more contents
of the same user without additional effort.

e Through queries to the watermark decoder [74], [156]. In some cases the attacker
may have access to a watermark decoder in the form of a black box. He can
take advantage of the answers of the decoder to some chosen inputs in order to
disclose information about the secret parameters of the decoding operation, such
as the shape of the detection region. This kind of attacks, which are well known
in the field of cryptography, receive usually the name of “oracle” or “sensitivity”
attacks.



18 A formal framework for assessing watermarking security

Once the attacker has estimated the secret parameters of the embedding and/or
decoding function, he can exploit this knowledge in order to devise powerful attacks
against the data hiding scheme which would not be possible for a “blind” attacker.
The following are some examples:

1. Unauthorized embedding of messages: in copy protection scenarios, for instance,
the attacker may remove the watermark inserted in a certain protected content
and embed later a different message: e.g. he may change the status of a protected
video from ”Copy Never” to ”Copy Once”.

2. Unauthorized decoding of messages embedded in other contents marked with the
same key.

3. Generation of forgeries: in some authentication scenarios, such as the one pro-
posed by Eggers et al. [109], the approach is based on the embedding of a certain
reference message, using a specific secret key. This means that both the secret
message and the secret key remain constant for the contents marked by the same
user, so an attacker with a good estimate of the latter could easily generate a
forgery.

4. Complete watermark removal or “host recovery”: many embedding functions are
invertible if all the embedding parameters are known. This is not surprising, since
the embedding process can be expressed in general as an additive function (cf.
Equation 2.1). If the attacker manages to obtain a good estimate of the secret
parameters of the embedding function, then he could easily estimate the actual
watermark embedded in many cases. Should this be possible, the attacker would
be able to recover the original host signal, completely removing the hidden data.

5. Modification of the marked signal in such a way that the decoded message is
changed with minimum distortion. This could be possible, for instance, after
parameterizing the decoding region with the help of an oracle attack.

The importance of properly concealing the secret parameters of the data hiding
schemes becomes clear from these examples. These considerations motivate a view of
the attacks to data hiding systems from a cryptographic (or better to say, “cryptana-
lytic”) standpoint. The disclosure of the secret key (or the secret parameters) implies,
roughly speaking, a “break” of the system. The term “break” is familiar in the field of
cryptanalysis. Indeed, the similarities between the latter and the considered problem
are numerous, and analogies between both concepts will be frequently made during this
chapter. We formulate below more precisely the problem to be studied in this thesis.
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Figure 2.2: Considered model for security analysis.

2.2.1 Problem formulation

Although the concept of watermarking security is somewhat diffuse and it is still
a matter of discussion, it is commonly accepted that if the secret parameters of the
embedding/decoding function of a certain data hiding scheme can be estimated, then
the scheme cannot be claimed to be secure. In the remainder of this thesis, we will
work with the following definition in mind.

Definition 2.1. Attacks to security are those aimed at obtaining information from the
secret parameters of the embedding and/or decoding functions.

From this definition, it follows that a data hiding scheme is secure if it properly
conceals the secret parameters. Although this definition of security may appear too
restrictive, it poses two clear advantages over previous definitions:

1. it establishes a clear frontier between robustness and security;

2. it allows to model precisely the problem of watermarking security.
The scenario considered in the remainder of this thesis is the depicted in Figure 2.2:

1. The secret key of a certain user, O, is reutilized N, times for marking a set of host
vectors {X}. This is a reasonable assumption, since a user is very unlikely to
change his secret key every time he watermarks a digital item; in fact, depending
on the considered scenario, the value of N, could be fairly large. Due to the
assumptions on the statistical model made in Section 2.1, the marked signals Yy
are all conditionally independent given ¢(G)) ie.

FOY1, Yy, [9(© Hfmw ))- (2:3)
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2. The attacker manages to gather an ensemble of marked blocks { Yy, k=1,..., N,},
which may belong to different host signals, but all of them were marked with the
same secret key ©. Besides, some extra “side information” can be available to
the attacker (see Section 2.6 below). The information at hand for the attacker
will be termed “observations”. From this ensemble of observations, he will try
to extract an estimate of the secret parameters (@) of the embedding function.
We assume that the transformation (-) is deterministic (in the sense that the
same input always yields the same output). This is desirable from the point of
view of the data hider, since a non-deterministic transformation would introduce
an additional source of randomness for the decoder, impairing the communica-
tion. Finally, we further assume that the output of (@) is independent both
from the host signals and the embedded messages.?

3. As stated in Section 2.1, the procedures for extracting the features of the to-be-
marked content and constructing the host vectors are publicly known, so they
can be obviated in the security model. We will further assume that the remain-
der parameters of the embedding function are also publicly known. Hence, the
only secret parameter is the secret key and its transformed version ¢ (®). This
assumption is compliant with Kerckhoffs’ principle [150], well known in the field
of cryptanalysis, which states that the security of a cryptosystem must be based
solely on the secrecy of the secret key.

The problem of watermarking security under these assumptions will be addressed
in this thesis from theoretical and practical points of view. The followed approach
is essentially inspired in the field of cryptanalysis. We are interested in evaluating
whether a certain data hiding scheme properly conceals the secret parameters. If it is
not the case, we are also interested in quantifying how much information about the
secret key leaks from the observations. For those schemes that have shown to not be
secure, we will propose practical algorithms for extracting the information about ¢ (®).
Bear in mind that if the function ¢ (-) is publicly available, the attacker may try to infer
the original secret key with help of the estimate of ¢/(®). However, such an approach
completely pertains to the domain of cryptanalysis, and as such falls out of the scope
of this thesis. The reader must be also aware that we will not deal with the security
analysis of data hiding schemes against oracle attacks.

2Notice that in a more general formulation, 1)(©) could be made dependent of the host signal at
some extent in order to add more diversity to the secret parameterization of the embedding function.
Nevertheless, this strategy poses serious synchronization problems at the decoder side, and as such it
is rarely used.
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2.3 Tools for measuring security

From the definition of security given in Section 2.2.1, it follows that the security
of a watermarking system is directly related to the difficulty in estimating the secret
parameters of the embedding function from the observations at hand. Thus, a natural
question is how can we quantify the hardness of such estimation problem. Let us first
recall the classical criteria for evaluating the security of cryptosystems [206]:

e Computational security. This measure is concerned with the computational
effort needed to break a given cryptosystem. If the best known algorithm for
breaking the system demands a high number of computational resources, the
system is said to be computationally secure. Clearly, this measure is not very
useful as it is impossible to prove that a certain cryptosystem is secure (being
secure against a certain attack does not imply being secure against a different
class of attacks).

e Provable security. This measure consists in reducing the proof of security to
another problem which is well understood and known to be difficult, such as the
factorization of integers in prime numbers or many other combinatorial problems,
which are known to be NP-complete. This definition of security is more useful
than the former because it is possible to quantify the minimum effort needed to
break the system. However, the drawback of this approach is that it is impossible
to prove the security of a given cryptosystem in absolute terms, since the security
proof is always relative to some other problem.

e Unconditional security. A cryptosystem is said to be “unconditionally secure”
if it cannot be broken regardless the computational resources employed by the
attacker.

The above criteria can be readily translated to the data hiding scenario:

e A data hiding system would be computationally secure if the computational com-
plexity of the best known algorithm for extracting the secret parameters of the
embedding function is unaffordable.

e A data hiding system would be said to be provably secure if it is proved that
disclosing the randomization applied to the embedding function is a hard com-
putational problem. The main drawback of this approach is that, unlike for
classical cryptography (which deals with discrete variables), perfect disclosure of
the secret parameters is not needed, but an estimate is usually enough for the
attacker’s purposes.
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e A data hiding system is unconditionally secure if it is impossible to obtain any
information about the secret parameters, regardless the computational effort by
the attacker.

We will focus our approach on the third criterion. We are interested in a measur-
ing tool capable of assessing whether a given embedding function is unconditionally
secure or not. In the latter case, it would be useful if the measure could provide the
amount of information that is leaked to the attacker, without resorting to computa-
tional considerations. Intuitively, a large information leakage would imply that the
system is potentially less secure. In other words, we look for a measure that reveals
the “fundamental” security weaknesses of a given embedding function.® This is why we
resort to the seminal work by Shannon on the theory of secrecy systems [205], where
he proposed the mutual information between the secret key and the cyphertexts for
evaluating the security of cryptosystems. Assuming that both the cyphertexts and the
secret key can be modeled as random variables, let {Cy, k = 1,...,N,} denote a set
of cyphertexts generated with a secret key ®. The mutual information between the
cyphertexts and the secret key is defined as [84]

[(©;C,,...,Cy,) = H(®) — H(®|C,,...,Cy,), (2.4)

where H(-) denotes the entropy function [84]. The first term in the right hand side of
(2.4) is the so-called “a priori” entropy of the secret key, and it represents the total
uncertainty about the key. The second term in the right hand side of (2.4) receives the
name of “equivocation”, and represents the remaining uncertainty or “residual entropy”
about the key after the observation of cyphertexts. The mutual information quantifies
in a precise manner the information leakage about the secret key provided by the ob-
servation of cyphertexts without imposing any restriction to the computational efforts
of the attacker. Based on the equivocation, Shannon defines the “unicity distance” as
the N, for which H(®|Cy,...,Cy,) = 0. Therefore, the unicity distance is the number
of observations needed for the attacker, in average, to reduce his uncertainty about the
secret key to a unique candidate.

The adaptation of Shannon’s measure to the watermarking security framework is
straightforward, but one must be aware of one subtle difference: the paper by Shannon
[205] deals with discrete random variables, whereas watermarking deals usually with
continuous ones; this amounts to replacing the entropies in the computation of the
mutual information by “differential” entropies [84]. Denoting the ith observation by
O;, the mutual information in the data hiding scenario is defined as

1($(©);04,...,0u,) = h((©)) — h(1)(©)|0y, ..., Oy,). (2.5)

3In this thesis we also evaluate the security from a practical point of view, but only with the
purpose of confirming the identified security weaknesses, not with computational security measures in
mind.
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Similarly to (2.4), the first term in the right hand side of (2.5) is the “a priori” entropy
of the secret parameters, and the other term is the equivocation given N, observations.
Note that we measure the mutual information between the observations and the secret
parameters, which are a function of the secret key.

As suggested above, the information-theoretic model of watermarking security cap-
tures the worst case for the watermarker, because it quantifies the total amount of
information about the secret parameters that is provided by each observation. An
interesting question is the gap between theoretical and practical security, since the
complexity of extracting all such information may be unaffordable, in general. In
this sense, the mutual information I(¢(®); Oy, ...,Oy,) must be regarded to as the
“achievable rate” in a hypothetical communications problem, where the information
to be transmitted is ¥(©), and both the host signal and the embedded messages play
the role of interfering channel. In other words, the information-theoretic analysis will
provide a pessimistic bound on security, a bound which is achievable by means of an
infinite computational power, in general. Of course, the watermarker will be interested
in minimizing the achievable rate about the secret key while simultaneously maximiz-
ing I(Y; M|(©)), ie., the achievable rate about the embedded message for a fair
user.* For a given embedding function and embedding distortion, this can be posed
as an optimization problem where the variable to be optimized is the statistical dis-
tribution of the secret key.® The parameters of the embedding function affect both
the security and the robustness of the scheme; their influence and the relation between
security and robustness can be made patent by the representation of I(Y; M|¢(®))
vs. I(¢(©);0q,...,0p), yielding a collection of “achievable regions” similar to those
in classical broadcast channels [84].

The study of security from an information-theoretic point of view requires a statis-
tical modeling of all the variables involved in the problem: the host signals, the secret
key, and the embedded messages. The properties of the equivocation and the mutual
information as security measures are discussed in Section 2.4.

2.3.1 How we arrived at this approach

The formulation of the watermarking security problem presented in this thesis and
the choice of the information-theoretic measure are the results of the research on a
continuously-evolving concept that was addressed by numerous authors during the last
years.

During its infancy, digital watermarking research focused on the study of robustness

41(Y; M|)(®)) denotes the mutual information between the watermarked image Y and the em-
bedded message M when the secret key © is known.

5In this optimization problem, a constraint on the a priori entropy of the secret key must be
imposed in order to avoid a trivial solution, such as a deterministic key.
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against simple attacks such as noise addition, coarse quantization, low pass filtering,
etc. Cox and Linnartz [88] were the first to establish a classification of the attacks
to watermarking systems in “intentional” and “non-intentional” attacks, but without
a clear notion of security yet. The pioneer in proposing a theoretical framework for
security in general watermarking scenarios is probably Mittelholzer [169]. The work
in [169], which is inspired on the work by Cachin [56] in the field of steganography,
already introduces the concepts of equivocation and secrecy borrowed from Shannon’s
approach [205]. Mittelholzer considers the security problem in terms of secrecy of the
embedded messages, but his model does take into account the possible information
leakage about the secret key, and its reuse for marking several objects.

A first attempt at clarifying the meaning of security in watermarking is due to
Kalker [145], who proposed definitions for robustness and security in the watermarking
context; however, these definitions were too broad so as to be adopted in formal frame-
works. As a result, the classification of attacks and the distinction between robustness
and security continued to be matter of study in certain subsequent works such as [121]
and [41]. The work by Furon et al. in [121] meant a great leap in the development
of the theory of watermarking security due to the establishment of an analogy be-
tween watermarking security and cryptography, which had been already suggested by
Hernandez et al. in [133]:

e Asin cryptography, watermarking systems make use of secret keys. According to
Kerckhoffs’ principle [150] in cryptography, if one wants to provide a quantitative
measure of security, all the parameters of the system must be made public, and
the security must rely only on the secret key.

e Attacks to security can be classified according to the amount of information made
available to the attacker, similarly to the Diffie-Hellman classification of attacks
to cryptosystems [101]. This classification decouples at a great extent the study
of security from the specific watermarking application being considered.

e The “security level” of a watermarking system is said to be the effort required
for disclosing the secret key.

In the work by Barni et al. [41], the restriction imposed by the Kerckhoffs’ principle
was relaxed with the aim of providing a wider view of the security problem. Essen-
tially, watermarking is seen as a game with certain rules that determine what is the
information about the watermarking scheme that is publicly available, giving rise to
“fair” and “unfair” attacks depending on whether the attacker exploits only public
information or, on the contrary, tries to access the secret information. Despite being
quite general, the framework introduced in [41] is not easily applicable to real scenarios.
Instead, the key ideas contained in [121] were the basis for the solid work by Cayre et
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al. [61], where the security of a real watermarking scheme was analyzed for the first
time in a quantitative manner by resorting to the “Fisher information” [115],[84] and
the statistical modeling of the watermarking problem.

Shannon’s approach (i.e. using mutual information as security measure) is finally
recovered for watermarking security in [71]. The main difference between [71] and [61]
turns out to be the information leakage measure. The authors of [61] choose the Fisher
Information instead of Shannon’s mutual information by arguing that when the latter is
applied to continuous random variables it makes no sense as a measure of uncertainty
because it can take negative values. However, this is not a reason for discard it as
an information measure, as will become apparent in Section 2.4. Furthermore, the
Fisher Information presents some drawbacks, such as the computation of the Fisher
information needs the existence and differentiability of the log-likelihood function of the
observations given the key, precluding its application to the analysis of some practical
methods (dither modulation data hiding [63], for instance); fortunately, these problems
do not appear when using the mutual information measure. Nonetheless, the work in
[61] constitutes the main reference for the present thesis.

Besides the information-theoretic models already introduced [169],[61],[71] there
have been very few additional attempts at establishing theoretical measures of water-
marking security: in fact, we are only aware of the so-called “computational” security
model proposed in [148], directly inspired in the computational models commonly used
in cryptography (enumerated at the beginning of this section). This model imposes a
complexity constraint to the attacker in the sense that only polynomial time computa-
tions are allowed, and the security is related to the probability of successfully inferring
(after an interaction between watermarker and attacker) which secret key out of two
was used for watermarking a certain object. Nevertheless, as recognized in [148], the
application of the computational model to existing watermarking schemes may be very
difficult, and no results in this direction have been published so far. In contrast, the
information-theoretic model presented in this thesis has been already applied for as-
sessing the security of the two main classes of watermarking methods: spread-spectrum
and quantization-based ones.

For further reference on this topic, the reader may want to check the recent survey
by Furon [119]. Watermarking security under this viewpoint is also briefly addressed
in [174, Section X].

2.4 Fundamental properties of information-theoretic measures

The properties of the security measure used in this thesis are given by those of the
mutual information and differential entropy.



26 A formal framework for assessing watermarking security

The differential entropy is basically a measure of the randomness of a random
variable. The differential entropy of a random variable V with support domain Ry
and pdf f(v) is defined as [84]

h(V) £ - i f(v) -log(f(v))dv = —E [log(f(V))]. (2.6)

The base of the logarithm in the above definition can be arbitrarily chosen. This
choice determines the units of the equivocation and of the mutual information. The
most common choices are base 2 or base e. In this thesis we will work with natural
logarithms (i.e. to the base €), so the equivocations and mutual informations will
be always given in nats. Intuitively, the differential entropy of a continuous random
variable can be interpreted as the logarithm of the volume of its typical set [84, Section
9.2]. Hence, small values of the entropy imply that the outcomes of the considered
random variable are contained with high probability in a small region of space, and
thus the uncertainty is small. A large entropy, on the contrary, means that the values
of the random variable with significative probability are scattered over a large region.
Bear in mind that, as opposed to entropy, the differential entropy can take negative
values (meaning that the volume of the typical set is smaller than unity). In fact, the
differential entropy of a deterministic random variable approaches —oc.

In order to check the properties of the equivocation, we need to recall the concept
of conditional entropy. Let V, A two random variables with pdfs f(v) and f(a),
respectively, and joint pdf f(v,a). Assume also that V and A have support domain
Ry and R 4, respectively. The entropy of V conditioned on A is defined as [84]

h(V]A) :/ h(VIA = a)f(a)da, 2.7)

Ra

where h(V|A = a) is the entropy of V conditioned on a particular realization, a, of
the r.v. A. It is a known result [84] that the conditioning of random variables reduces
entropy. Formally, we say that

h(VIA) < h(V). (2.8)

The conditional entropy above is a measure of the remaining uncertainty about V,
in average, when A is observed. Intuitively, when considering several observations
marked with the same secret key, the entropy of ¢(®) should become smaller with
each observation. Recall that the equivocation has been defined as the a priori entropy
minus the mutual information. The general behavior of the mutual information is
formally stated in Lemma 2.2, which makes use of the result in Lemma 2.1. We first
recall the definition of concavity for a real-valued function f(z).
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Definition 2.2 (Concavity). A function f(z) defined in a real interval [a, b] is said
to be concave if and only if

fOz1+ (1= Nza) > Af(z1) + (1 = A) f(22), V21,22 € [a,b], with A € [0, 1].
If strict inequality holds, then the function is said to be strictly concave.

Lemma 2.1 (Discrete concavity). A discrete function g(n), with n € Z, is (strictly)
concave if and only if Ag(n) is (decreasing) non-increasing, with Ag(n) £ g(n + 1) —

g(n).

Proof: See Appendix A.1. [ |

Lemma 2.2 (Concavity of the mutual information). The mutual information
between (@) and the observations is an increasing, concave function of the number
of observations IN,,.

Proof: See Appendix A.2. [ ]

Therefore, using the definition of equivocation and taking into account the result
of this lemma, it is straightforward to see that the equivocation is a decreasing, convex
function of the number of observations N,.

Another property of the equivocation which makes it particularly useful for mea-
suring security is that it defines a lower bound on the estimation error of the secret
parameters. This is formally expressed in the following lemma.

Definition 2.3 (Variance per dimension of the estimation error). Let Xy de-
note the covariance matrix of the estimation error about the secret parameters. The
variance per dimension of the estimation error is defined as

(2.9)

Lemma 2.3 (Information-theoretic bound on the estimation error). The vari-
ance per dimension of the estimation error can be lower bounded as

1 2
7> e (Ehw(@noh - om) . (2.10)
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Proof: Let us define the estimation error as e £ 1(8)—, where ¢ £ ¢(O4,...,0yp,)
is the estimate of ¢)(0) obtained from the observations. If the covariance matrix of the
estimation error is given by X g, then it is immediate to upper bound its entropy by
[84, Th. 9.6.5]

h(E) < —log ((2me)"|Xg]|) - (2.11)

| —

Furthermore, note that

WE) = h(W(©) — ) > h(1h(©) — |0y, ...,0n,)
= h($(©)|0y,...,0u,), (2.12)

since 1:b is a function of the observations. Thus,

h((®)|0q,...,0p,) < %log((2ﬂe)”|EE|) < glog (27retr<niE)> : (2.13)

where the second inequality follows from the fact that |3 E|% < @ (84, Th. 16.8.4].
Now, using Definition 2.3 and rearranging terms in (2.13), we arrive at the bound
(2.10). -

From (2.10) it can be observed that, in order to achieve an error-free estimate of
the secret parameters, the equivocation must necessarily approach —oo. The lower
bound (2.10) is nothing but the entropy power of ¢(@®) given N, observations [84].
For this bound to be achievable, the estimation error must be Gaussian-distributed,
although this does not necessarily occur in practice. Thus, the lower bound provided by
the equivocation can be regarded as a fundamental bound that provides a pessimistic
estimation of the security of a data hiding scheme. Notice also that the bound (2.10)
is also valid as a bound on the mean-squared error (MSE) per dimension; in this case,
the bound would be achievable if, besides having a Gaussian estimation error, the
considered estimator of ¥ (@) is unbiased.

It is interesting to note that this bound on the estimation error is similar to the
well known Cramér-Rao lower bound [93], which relates the Fisher Information Matrix
(FIM) to the minimum variance 0% achievable by an unbiased estimator:

o2 > tr(FIM(¢(©))™), (2.14)

and has been used in [61] for evaluating the security of additive spread spectrum
watermarking.

2.5 More definitions based on information-theoretic measures

The mutual information and the equivocation are the basis for the definition of
some fundamental concepts on the security of data hiding schemes:
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Perfect secrecy: a watermarking system is said to achieve perfect secrecy (or un-
conditional security) whenever the observations do not provide any information
about the secret parameters, that is,

1(}(©);0y,...,0y) = 0.

The meaning of the perfect secrecy condition, in statistical terms, is that the a
posteriori probability of the observations given (@) is the same as the a priori
probability, i.e.

f(Oh---,ONOW(@)) :f(017'~-7ONo)' (2'15)

In practical terms, perfect secrecy means that all efforts by the attacker for dis-
closing the secret key will be useless, even if he could afford infinite computational
power. Clearly, the construction of watermarking systems complying with this
definition may be an extremely difficult task, or lead to unpractical systems (due
to complexity requirements or length of the key, for instance).

e — N security: a watermarking system is said to be ¢ — N secure if

for a positive constant €. Anyway, one must be careful with the definition of e — N
security and perfect secrecy: maybe the information leakage is small (null), but
this might be due to a small (null) a priori entropy of the secret key; to see this,
consider the extreme case where the secret key is deterministic: in this situation,
the information leakage is null, but in turn the system completely lacks security,
since no secret parameterization takes place. This consideration gives rise to the
notion of “security level”, defined next, as a more convenient measure of security.

~v-security level: for those systems with 7()(©);Oq,...,0p) # 0, the v-security
level is defined as the number of observations N, needed to make

h(1h(©)[01,...,0n,) = h(1(©)) — I(1(©): Oy,...,0n) < 7, (2.17)

where the threshold v (which can be negative) is established according to some
criteria, as discussed below.

Unicity distance: it is defined as the number of observations N, needed to yield
a deterministic key, i.e., h(¢(0)]|O,...,0,) = —oo.In the case of an a priori
deterministic key, the unicity distance would be 0; however, it can approach
oo in a general case, thus making useful the definition of the ~-security level.
Furthermore, many attacks to the robustness can be performed without having
perfect knowledge of ¥)(®); instead, an accurate estimate may be enough for the
attacker’s purposes.
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As mentioned above, it is not possible in general to construct perfectly secure wa-
termarking systems; hence, the question is whether the achievable security levels are
good enough for practical scenarios. The required security level will be determined by
the specific application and the computational power of the attacker; in video water-
marking, for instance, the large number of observations available [103] imposes severe
restrictions in terms of security.

One of the main criticisms [148] to information-theoretic models for watermarking
security is how can they be related to practical security levels, or equivalently, what
should be the criteria for establishing the threshold 7 in Eq. (2.17). From a practical
point of view, the success of an attack based on the estimate of the secret mapping ¢(©)
is closely related to the estimation error attainable by the attacker: the more reliable
the estimate, the easier for the attacker to achieve his goals. Thus, it seems natural to
fix the threshold v in accordance with this estimation error. As discussed in Section 2.4,
the equivocation gives a pessimistic bound on the estimation error attainable by an
attacker. Hence, the definition of y-security level can be readily used for establishing
conservative security levels in the considered data hiding schemes. In this regard, it is
interesting to note that the strong relation between information-theoretic and statistical
measures has been recently reinforced by some works, where exact relations between
mutual information and minimum mean-squared error are established for a variety of
additive channels [124],[125],[181].

2.6 Evaluation scenarios

Under the Kerckhoffs” assumption, all the parameters and details of the data hiding
scheme are known by the attacker, with the exception of the secret key. He must infer
information about the secret key using the observations at hand. However, depending
on the considered scenario, the amount and type of observations available to the at-
tacker may vary. This gives rise to a Diffie-Hellman-like classification [101], which was
applied to the watermarking field for the first time by Furon et al. [121], establishing
the following scenarios:

e Only watermarked content attack, where the attacker has access only to
marked signals, but not to embedder neither decoder. Thus, the inference about
the secret parameters of the embedded must be made relying solely on the marked
signals.

e Watermarked content pair attack, where the the observations are pairs of
marked signals and their corresponding original versions. Here, the attacker has
an extra source of information with respect to the previous scenario.
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e Chosen original content attack, where the observations are pairs of marked
and original signals chosen by the attacker. This situation may correspond, for
example, to an scenario where the attacker has access to a watermark embedder
as a black box.

e Chosen watermarked content attack, where the watermarker has access to
a watermark detector/decoder as a black box. The attacker may feed the de-
coder with a chosen watermarked signal and observe the output in order to gain
knowledge about the secret parameters of the decoder. This kind of attacks are
also known as “oracle attacks” or “sensitivity attacks” [156],[147],[73], already
mentioned in Section 2.2.

This type of classification decouples at a large extent the security analysis from the
specific application. Furthermore, it allows to identify the components of security more
clearly: the embedding method itself, the additional randomness brought about by the
embedded messages, the availability of an embedder/detector as a black box, etc.

In this thesis we will address the problem of watermarking security in the following
classes of scenarios, which are based on the classification proposed in [61].

Known Message Attack (KMA)

The attacker is assumed to have access to watermarked signals and to the messages
embedded in each of those signals. Hence, in this case the security measure is given by

I(Y17 s 7YN07M17 . 7MN07¢(@))

= I(Y1....,Yn 0(©)M, ..., My,)
= W(W(O)) — h(b(®)[Y1,.... Y, My,..., My,), (2.18)

where the second and third equalities follow, respectively, from the definition of mutual
information and by the assumption of independence between the messages and the
secret key (cf. Section 2.2.1). This scenario constitutes the basis for the study of more
involved scenarios and provides the main insight into the security problem, since the
influence of the embedding parameters of the data hiding scheme can be more easily
identified. Furthermore, it is also representative of some practical applications such as
the following;:

1. In the copy protection application, the embedded messages are usually known by
any user. For instance, in copy protection for DVD video [51], the DVD player
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may inform about the usage restrictions on certain DVD disks with messages like
“Copy Never”, “Copy Once”, which were previously embedded in the digital con-
tents. Moreover, due to severe resynchronization issues, watermark embedding
strategies for video applications usually work with a unique secret key which is
reused for marking the video sequences in a frame-by-frame basis. This, together
with the fact of knowing the embedded messages, implies a serious threat to the
security of copy protection applications.

2. Certain watermark detection schemes are adaptations of other schemes originally
devised for data hiding applications. For instance, [157] and [184] propose the
use of lattices for detection. The proposed methods are based on the well-known
lattice DC-DM and ST-DM [63] schemes, respectively, and their adaptation to
detection applications consists basically in limiting the possible transmitted mes-
sages to one representative. Hence, this framework would also fit in the KMA
scenario as described in this thesis.

Watermarked Only Attack (WOA)

WOA models most of the data hiding scenarios of practical interest. The only infor-
mation available to the attacker are the marked signals, without any knowledge of the
embedded messages.

The security measure is given by
(Y1, Y, 0(0)) = h(1(©)) — h(¥(©)[Y1,..., Y,). (2.19)

As can be expected, the information about ¢(®) provided to the attacker in the WOA
scenario never exceeds that in the KMA scenario. We will pay special attention to
quantifying how much information is lost due to the ignorance of the embedded mes-
sages. This loss will be represented by the “loss function”, defined as

S(No) = I(Y1, ..., YN, My, ..., Mn,;9(0)) — I(Y1,...,Yn,;1(0O)). (2.20)

This expression can be further simplified. By using the chain rule for mutual informa-
tions [84, Chapter 2], Eq. (2.19) can be rewritten as

I(Y1,...,Yn,;9(0))

= I(Yl, Ce ,YNO;¢(@>,M1, e 7MNO) — [(Yl,. .. ,YNO;Ml, .. 7MNO|¢(®))
= I(Yb s >YNo;w(@)’Mla s 7MN0) +[(Y17 cee 7YN0;M1a cee 7MN0)
]<Y1a s 7YN0;M17 e 7MN0’77Z)(®)) (221)

The first term of Eq. (2.21) is the mutual information in the KMA scenario. The second
and third terms of (2.21) represent the amount of information that can be learned by an
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attacker and by a user knowing the key, respectively, about the sequence of embedded
messages. Using (2.21), the loss function can be rewritten as

S(N)) = I(Yi,..., Y My, ..., My |0(©)) = I(Yy1,..., Y, M,...,My,)
= H(M,...,My,|Y1,....Yx)— H(M,...,Mx.|Y1,..., Y, (©)),
(2.22)

where the second equality follows from the definition of mutual information. The loss
function, which is always positive, quantifies the information about T that is lost due
to the a priori ignorance of the embedded messages. As can be seen from (2.22), the
loss can be formulated as “the information that (@) provides about the embedded
messages upon observation of marked signals”.

As an illustrative example that fits in the WOA scenario we can mention finger-
printing applications, where a seller embeds identification codes of the buyers in the
digital contents to be sold, with the purpose of enabling their traceability. In this
case, each content contains different embedded information, but all the contents will
have been watermarked with the secret key of the seller. Thus, a possible approach for
the buyers in order to implement a collusion attack (although many other approaches
are possible) is to estimate first the secret key and then to remove the watermark of
each content. In this case, a security analysis could provide an approximate figure of
the observations needed for successfully implementing such collusion attack, giving a
certain advantage to the seller.

Constant Message Attack (CMA)

In some particular instances of the WOA scenario, the actual embedded message is
unknown by the attacker but it can be known to be repeated in a certain set of obser-
vations (marked signals). Clearly, this scenario can be thought of as an intermediate
case between KMA and WOA.

The CMA assumption turns out to hold in many practical applications (the cases
2 and 3 below could be possibly regarded as valid in certain KMA scenarios as well):

1. Data hiding for audio and video. Usually, when marking audio and video
signals, the information is repeatedly embedded in consecutive blocks due to
simplicity of the embedding, resynchronization and granularity issues. We can
find an example in the requirements imposed by DCI [142] to forensic marking
technologies for digital cinema. The DCI specification demands the periodic
insertion in the audio and video contents of information with the place and date
of exhibition. This information must be repeated every few minutes in order to
identify the source of an illegal camcording even if the available fragment is small.
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2. Embedding of pilot signals. In general, watermarking and data hiding schemes

are vulnerable to desynchronization attacks, either in the form of geometrical at-
tacks [218] or temporal shiftings [37]. In order to simplify the resynchronization
task, some authors have proposed the insertion of a reference message as a pilot
signal in the marked contents [218],[107],[108]. This implies that a large amount
of marked signals can contain the same reference message embedded. If the exact
location (i.e. the subset of coefficients) of the pilot signal is known, the attacker
can try to estimate it in order to remove it and fool the watermarking system.

. Authentication. Certain authentication schemes (e.g. [109]), are based on the

embedding of a reference message (which may be derived from the secret key) in
the contents to be protected. The authentication process consists in decoding the
message embedded in the to-be-authenticated content and checking whether it
matches the reference message or not. This implies that the contents marked by
the same user contain the same reference message, similarly to the case of pilot
signals mentioned above.



Chapter 3

Security of Spread spectrum Watermarking:
Theory

In this chapter, the framework introduced in Chapter 2 is used for developing a com-
plete security analysis of spread spectrum methods for data hiding. In spread spectrum
methods, the secret key is mapped to a pseudorandom sequence, which is usually known
as secret “carrier” or "spreading vector’ (both terms will be used without distinction
throughout this thesis). Roughly speaking, watermark embedding is performed by
modulating the secret carrier with the message to be embedded and adding the result
to the original host signal. This way, the watermark is hidden in a secret subspace,
preventing its access or removal by unauthorized users. On the other hand, this makes
that all the signals marked with the same secret key contain the same pseudorandom
pattern, a fact that constitutes a potential security hole.

In this chapter, three well-known data hiding methods are considered: additive
Spread Spectrum [87], attenuated Spread Spectrum [173], and Improved Spread Spec-
trum [161]. Spread spectrum methods continue to be widely used, as many embedding
functions existing nowadays are based on spreading. Thus, the analysis presented
in this chapter is expected to provide useful insights in the identification of security
weaknesses of current spread spectrum schemes and the design of improved ones.

This chapter is organized as follows: Section 3.1 gives an overview of the previous
related works on this topic and outlines the main contributions of this thesis. In Sec-
tion 3.2, the problem to be studied is formalized, recalling the working assumptions and
introducing the notation to be used in this chapter and the next one. Section 3.3 studies
the security of the classical spread spectrum embedding function, whereas Section 3.4
addresses the security when host rejection is considered. In Section 3.5, we provide
bounds for the estimation of the spreading vector based on the information-theoretic
analysis of the previous sections. The conclusions are summarized in Section 3.6.
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3.1 Related work and contributions of this thesis

Our main reference work is the paper by Cayre et al. in [61]. There, the security of
spread spectrum was quantified for the first time using the Fisher information in the

KMA and WOA scenarios (and also under the “Known Original Attack”). The main
conclusions of the analysis presented in [61] are the following:'

e The information leakage is linear with the number of observations N,, i.e. all the
observations provide the same amount of information about the spreading vector.
However, in this chapter we show that the information leakage, using the mutual
information measure, is strictly concave in N,. Though apparently contradictory,
this difference is readily justified by the fact that our measure explicitly considers
the a priori uncertainty (entropy) of the spreading vector. Further comments are
given in Section 3.3.1.

e The difficulty of the estimation depends on the relative powers between host
signal and watermark (i.e. the DWR), in such a way that more embedding
distortion implies a larger information leakage. Similar conclusions are obtained
in this chapter using the mutual information measure.

e Perfect estimation of the spreading sequence is only possible in the KMA scenario;
for the WOA scenario, a sign ambiguity will remain independently of the number
of observations. In this chapter we arrive at the same conclusion by following a
different reasoning than that of [61].

Further contributions of the present thesis to the theoretical analysis of spread
spectrum security are the following:

e The analysis of more general embedding functions, considering for the first time
the tradeoff between robustness and security in this kind of methods from a
theoretical point of view.

e The evaluation of the security in asymptotic conditions.

e The derivation of new bounds on the estimation performance for the attackers.
In [61], the Cramér-Rao lower bound for the estimation of the spreading vector
had been considered. In this chapter, we consider its homologous information-
theoretic bound based on Lemma 2.3, and another bound which specifically ad-
dresses the difficulty of estimating the subspace spanned by the spreading vector.

!Bear in mind that all the assumptions relevant for the analysis are the same in [61] and in this
thesis, so the comparison between [61] and our results is fair.
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Bear in mind that the analysis in [61] considers the existence of several carriers in
the same marked signal, while we focus on a single carrier. The case of several carriers
will be briefly addressed in Section 4.7 in the next chapter. Information-theoretic
measures for the information leakage with several carriers are provided in [71], but
only for one observation.

In a recent paper [59], Cayre et al. further explore the security of spread spectrum
methods from a theoretical point of view. They propose two new embedding functions
named Natural Watermarking (NW) and Circular Watermarking (CW). NW is shown
to achieve perfect secrecy in the WOA scenario using information-theoretic arguments,
although a more intuitive explanation in terms of blind source separation (BSS) theory
[140] is also given. However, the advantage of perfect secrecy of NW comes at the
price of a significant degradation of the robustness with respect to the original spread-
spectrum method. The CW method proposed in the same paper is a generalization of
NW, improving its robustness, although not preserving the perfect secrecy property.
In this thesis we do not address these methods from the theoretical point of view, but
some practical considerations are given in Section 4.7.3 in the next chapter.

3.2 Formal problem statement

In this section, the problem of watermarking security for spread spectrum methods
is formalized. Hereinafter, boldface letters denote column vectors, whereas italicized
letters denote scalar variables. Random variables and their realizations are denoted by
capital and lowercase letters, respectively.

The secret key is transformed into an n-dimensional “spreading vector” or secret
“carrier”, which will be denoted by S = ®(©), and parameterizes the embedding
function. For the family of methods considered in this chapter, the embedding function
can be written as

Y, =X, + (—D)MS+U(X;,8) =X+ W, i=1,...,N,, (3.1)

where M; € M = {0,1} denotes the embedded message that modulates S, and the
function ¥ : R?"*! — R™*! i5 used for host-rejection purposes. The resulting embed-
ding rate of the scheme is R = log(2)/n.

According to the assumptions introduced in Section 2.1, the host signals {X;,i =
1,...,N,} are assumed to be mutually independent. The messages {M;,i =1,..., N,}
embedded in different observations are also assumed to be mutually independent and
equiprobable in M = {0, 1}. Besides, we introduce two additional assumptions:

1. The host vectors X; are ii.d. Gaussian-distributed with zero mean: X, ~
N(0,0%1,), where I,, denotes the identity matrix of size n x n.
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2. The spreading vector is assumed to be Gaussian-distributed and i.i.d: S ~

N(0,021,).

Notice that the Gaussian modeling of the host may be somewhat restrictive. However,
this model allows for a tractable mathematical formulation, yet providing the main
insights into the security of this methods. On the other hand, the i.i.d. assumption
about the host vectors makes the computation of the DWR (Eq. (2.2)) very simple:

B LE[XP]
DWR = 101log,, = 10logy, &,

w

where ¢ £ 0% /D,,, and D,, depends on the particular method considered.

The objective of the attacker is to obtain an estimate of S using the information
contained in the sequence of observations {O;, i = 1,..., N,}, where O; = [Y7, M;]”
in the KMA case,? and O; =Y, in the WOA case.

Other notational conventions widely used in this Chapter are the following: I'(2)
denotes the complete Gamma function. If X ~ N(0,0%1,), then T2 ||X||? follows
a Chi-squared distribution with n degrees of freedom, which is denoted as x*(n,ox).
If X ~ N(v,0%L,), then T" £ ||X||? follows a noncentral Chi-squared, denoted by
X%(n,v,0x). The probability density function (pdf) of a continuous random variable
A is denoted by f(a).

3.2.1 Spread-Spectrum-based embedding

We summarize in this section the embedding functions considered in this chapter
along with their parameters.

Additive Spread Spectrum (add-SS)

Binary add-SS, as proposed by Cox et al. [87], is the most popular and widely studied
watermarking method. No host rejection is performed, so the embedding function is
simply given by

Y, =X, +(-1)MS, fori=1,...,N,. (3.2)

The embedding distortion results simply in D,, = o%.

2The notation [a, b] indicates concatenation of the row vectors a and b.
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Attenuated Spread Spectrum (-SS)

The attenuated spread spectrum technique proposed in [173] consists in attenuating
the host prior to embedding, in order to optimize the power transmission subject to
an MSE distortion constraint (the embedding distortion). The embedding function is
as follows:

Y, =(1—7)-X;+ (=DM .8, fori=1,...,N,, (3.3)

where 0 < v < 1 is a host-rejection parameter. The embedding distortion of this
scheme is given by D,, = y?0c% + 0%. We will refer to this technique in the following as
~v-SS. The parameter v can be adjusted so as to optimize some performance measure,
usually the error probability. Thus, the performance (in terms of robustness) of -SS
is at least as good as that of add-SS, as the latter is just a particular case of -SS for
v =0.

Improved Spread Spectrum (ISS)

ISS [161] is the result of introducing a host-interference-rejection mechanism in add-SS,
fundamentally different from ~-SS in that ISS attenuates the host only in the direction
of embedding, thus saving in embedding distortion and improving the performance of
the latter in terms of robustness. We will consider the linear version of ISS, whose
embedding function is as follows:

X'
Y, :Xi+(—1)M"yS—)\ﬁS, fori=1,...,N,, (3.4)

where 0 < A < 1 is the host-rejection parameter, and v is a parameter for fixing the
embedding distortion. The embedding distortion in ISS can be computed as follows.
For the ith observation and a particular s we have

. XTs ?
EIWiRlS —s) = B H ((—1)% - )\W) s ] — S|+ N0%. (35)
Finally, for a zero-mean Gaussian spreading vector,
1 2 20 A,
Dy = ~EBlllWi|[F] = viog + 0%, (3.6)

which is the same result as for a spreading vector with constant norm equal to no%
(the case originally considered in [161]).
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3.3 Security analysis of Additive Spread Spectrum (add-SS)
3.3.1 KMA scenario

Under the KMA assumptions, the KMA scenario for add-SS can be seen as a simple

additive Gaussian channel:

where X; plays the role of interfering signal and S is the signal to be communicated.
This is a classical communications scenario [84], where the mutual information is given
by the well known expression

2
HYﬁ&Mﬂzlkg(l+£§). (3.7)
2 %
Our problem is different in that we want to compute the information about S provided
by N, channel uses where S remains constant. Thus, it can be regarded as a sort of
communication problem where the information is repetition-coded by means of several
channel uses. This scenario was already considered in [71]. Here we provide a simple,
alternative derivation for the sake of completeness. Moreover, the quantities defined
below will be frequently recalled in the remaining of this chapter.

Let us denote by Sy, the random variable S conditioned on N, observations. From
the embedding function of add-SS, it follows that the components {.S;, i = 1,...,n},
of Sy, are all mutually independent and Gaussian-distributed [199]. Given a particular

realization {Y1 =y,....,Yn,—1 = yn,, My =mi,..., My,_1 = my,}, we have Sy, ~
N (v, J%NO I,), with
o5 Ty (i)
v o= 05 Ty i1, 3.8
N,o% + agﬁ-u Y (38)
> L _0x05 (3.9)
SN, Noo_g +0—§(’ .
where p = [(—=1)™, ..., (=1)™%]", and vy 2 [y, .., yn,) . Since Sy, is ii.d.
Gaussian, its entropy is given by h(Sy,) = %log(Qﬂea%N ), i.e. it does not depend

on the particular realization of the observations. Hence, we can conclude that the
equivocation per dimension is

1 1 o2

“h(SIY1, ..., YN, M, ..., My adass = = log [ 2me——2— . 3.10

n ( | 1 y £ Noo 1 ) No) dd-SS 9 Og( 7T61+N0.§—1> ( )
Now, it is straightforward to see that the information leakage per dimension reads as

1 1
E[(Ylv cee aYNo; S|M17 s 7MNo)add—SS = 5 log (1 + NO : 5_1) : (311)
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Figure 3.1: Equivocation per dimension for add-SS in the KMA scenario.

The information leakage (equivocation) is concave (convex) and strictly increasing (de-
creasing) with N,, and its increasing (decreasing) rate is dependent on the DWR.
Although (3.10) depends on the value of 0%, as we can see in Figure 3.1, for large N,
we have

1 1
ﬁh(SlYl, . ;YNO; Ml, ey MNo>add—SS ~ 5 log (27T60'§(/N0) .

Finally, notice that both (3.10) and (3.11) are independent of n, meaning that the
information leakage about each dimension is independent of the total number of di-
mensions. In other words, the difficulty of estimating each component of S does not
depend on its total length.

Remark 3.1. According to [61], the information leakage about S should be linear in
N,, but (3.11) shows that it is instead logarithmic. Nevertheless, both results are not
contradictory. The reason for obtaining a linear information leakage is that the analysis
in [61] does not consider the random nature of S. This randomness can be readily
accounted for simply by introducing an additional term in the Fisher Information
Matrix, yielding the so-called Total Information Matrix [214], as explained in [68] and
[71].



42 Security of Spread spectrum Watermarking: Theory

3.3.2 WOA scenario

The WOA scenario can be seen as an additive Gaussian channel with an unknown
scaling factor which, according to the binary transmission scheme given in Eq. (3.2)
and the assumption of equiprobable, independent messages stated in Section 3.2, takes
values +1 equiprobably in each channel use. In this case, an exact expression for the
information leakage cannot be obtained, so we derive upper and lower bounds. The
information leakage is rewritten as in (2.21):

I(Y1,...,Yn,:S)

I(Yly-~-;YNO;S);M17-~-7MNO> —I(Yl,...,YNO;Ml,...,MNo’S)
= I(Yl,...,YNO;S‘Ml,...,MNO) +I(Y17-'~7YN0;M17--'7MNO)
- ](Yly‘--aYNo;le--7MN0|S)‘ (312)

The first term of Eq. (3.12) has been already calculated in (3.11). The second and
third terms of (3.12) represent the amount of information that can be learned by an
attacker and by a fair user, respectively, about the sequence of embedded messages.
These quantities are studied in Appendix B.1, resulting in the following upper and
lower bounds to the information leakage per dimension:

1
EI(Yla o3 Y N,: S)add-ss

1 N, o
S 5 108; (1 + No : 5_1) + WI(XND + (—1)MN°VND; MND’VND)
N,
— 21Xy + (=1)MS; My|S), for N, > 2, (3.13)
n

and

1
ﬁj(Yla o3 Y N,: S)add-ss

v

N,
1 1 Qe
—log (14+N,- &Y+ =Y I(X; + (=D)"V,: M|V,
3108 (L4 No 670 40 3 IO+ (C)MVis MIV)
N,
— 21Xy + (-1)MS; M, |S), for N, > 2. (3.14)
n

In the expressions (3.13) and (3.14), X; ~ N(0, (0% + 03 )1,), with 0% given by
(3.9), and V; ~ N(O, %In) The second and third terms of (3.13) and (3.14)

i—1)oi+o%
must be numerically computed by taking into account that

I(Xq+ (=1)MS; My|S)aaass = E [A((=1)"|S|* + X S|S = s)]
1
— EE [log (2%60§(||S||2)} ,
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Figure 3.2: Comparison between the information leakage in KMA and WOA scenarios for add-SS.
Figures 3.2(a) and 3.2(b) show the effect of varying the DWR and n, respectively.

where the expectation is taken over S. Notice that the above upper and lower bounds
differ only in their second term. Nevertheless, they cannot be given in closed-form, so
numerical integration (on a scalar domain) is needed. A comparison between the infor-
mation leakage (per dimension) in KMA and WOA scenarios is shown in Figure 3.2:

e Figure 3.2(a) shows that, when the parameter n is fixed, decreasing the DWR
increases the information leakage in the KMA scenario (recall Eq. (3.11)), and
simultaneously reduces the gap between KMA and WOA.

e Figure 3.2(b) shows the effect of varying the length of the spreading vector, n,
when the DWR is fixed. In this case, we can see that the information leakage of
the KMA scenario is approached as n is increased. Thus, the security level of the
WOA scenario is strongly dependent on the value of n, contrarily to the KMA
scenario.

The asymptotic behavior of the information leakage is formalized in the next theorem.
The “loss function” defined in (2.22) now becomes

6(No)add-SS = I(Yb-'~7YNO;M1>--'aMNO|S)_[(Yla“-;YNO;Ml;“-aMNO)
= H(M,...,My,[Yy,....YN) = H(M,, ..., My, [Y1,....Yn,.S),
(3.15)

Theorem 3.1 (Asymptotics of the loss function for add-SS). The loss function
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for add-SS in the WOA scenario can be upper bounded as

N, n
0(No)ada-ss < log(2) + Z H (%) , (3.16)
=2

where
io%o% + 0%
(i —1)o§ +icko% + 0%’

T, =

and H (-) denotes the binary entropy function. The right hand side of (3.16) is decreas-
ing with n and DWR ™, and the following asymptotic properties hold:

1. For fixed n, lim  0(NV,)adass < log(2).
DW (No)add-ss g(2)

——00

2. For fixed DWR, lim 6(No)add—SS S 10g(2>

n—oo

Proof: See Appendix B.2. [ |

Theorem 3.1 basically states that the ignorance of the embedded messages does
not affect the difficulty of estimating S if either the DWR or the embedding rate R
(recall that R = log(2)/n) are small enough. Although the first case is of virtually null
relevance in practice, the second case is of major importance for practical applications.
When high robustness is sought, the watermark is usually embedded at very low rates
that allow to recover the message with low complexity. In such case a few observations
suffice to obtain an estimate of S that in turn allows accurate recovery of the embedded
message. Nevertheless, it is important to point out, as other researchers realized before
[61] (by means of Blind Source Separation theoretic arguments), that the penalty to
pay for not knowing the messages M; comes in the form of an ambiguity in the sign
of S, independently of n and of the DWR, that cannot be undone if no additional
knowledge about the embedded messages is available. An alternative way for proving
this ambiguity is to show that the a posteriori probability of the spreading vector in
the WOA scenario is independent of its sign. One can easily check that

f(yilS =s0)f(s0) _ f(¥lS = —50)f(—s0)
f(y:) f(y:)
= f<—S0|YZ = yz)? V So € Rn, (317)

f(solYi=1y;)

so the sign ambiguity becomes patent. Notice that (3.17) holds regardless of the sta-
tistical distribution of the host, but it is needed that S be circularly symmetric. In the
information-theoretic analysis, the sign ambiguity is reflected by the factor log(2).
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3.3.3 CMA scenario

The CMA scenario can be seen as a particular case of WOA where the unknown
scaling factor in the Gaussian channel remains constant for N, channel uses and takes
the value +1 equiprobably. For this reason, the asymptotic results of Theorem 3.1
are also applicable to CMA. However, in this case it is much easier to derive the
asymptotic behavior of the loss function. For instance, taking into account that M; =
My, ..., My, = M, with unknown M, it is straightforward to upper bound the loss
function as

0(N,) < log(2)

without any further consideration on the DWR. Moreover, as n — oo, this upper bound
obviously goes to 0. Hence, the impact in security level of not knowing the embedded
message in the CMA scenario is negligible. Nevertheless, it must be noted that the
sign ambiguity mentioned in Section 3.3.2 is also irreducible in the CMA scenario
if no information about the embedded message is available. Nonetheless, either in
CMA or WOA scenarios, the sign ambiguity does not prevent from estimating the one-
dimensional subspace spanned by s, a feature that will be exploited by the practical
estimators in Section 4.

3.4 Spread Spectrum with host rejection

After studying the security properties of add-SS, the influence of the host rejection
mechanisms in the security level is addressed in this section. Two particular methods
are studied: “attenuated spread spectrum” [173] and “improved spread spectrum”
[161].

3.4.1 Attenuated Spread Spectrum (7-SS)

Although the robustness of the optimized «-SS scheme introduced in Section 3.2.1
is better than that of add-SS, its security level can be shown to be always worse for the
same values of DWR and n. In order to provide a fair comparison between both ~-SS
and add-SS, we impose that 0% = 0% (£7' —~?) so as to get D,, = 0% as in add-SS.?
It is easy to see that the results obtained for add-SS can be straightforwardly adapted
to 7-SS replacing 0% by % (£°! —~?) and 0% by (1 — 7)%¢% in the corresponding
expressions. The equivocation for the KMA scenario, for instance, results in

1 1 ox (=411 —7)?
Zh(SIYy ... YN, M, .... My )ygs = —log [ 2 X . (3.1
n ( | 1 y L Npo 1 ; No)’}’ SS 92 0g < 7‘-6(1 — 7)2 —+ No(é_l - ’72) (3 8)

3Note that this condition restricts the value of v to the interval 0 < v < £7!, i.e. in practical
scenarios (with low embedding distortion) v takes values close to 0.
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Figure 3.3: 7-SS for KMA scenario and DWR = 25 dB. Tradeoff robustness-security as a result of
varying v in the interval [0,£71], for N, = 1 (a) and equivocation per dimension (b).

The expression above can be shown to be monotonically decreasing with . The results
for add-SS WOA can be easily generalized as well to v-SS. The most interesting conse-
quence of introducing the parameter v is the existence of a tradeoff between robustness
and security. This tradeoff is illustrated in Figure 3.3(a), which shows the plot of the
information leakage for N, = 1 (in the KMA scenario) vs. the achievable rate for a
fair user. The latter can be computed by numerical integration by taking into account
that

I(Xy+ ()" S Mi[S)yss = E[A((=1)*" S]] + (1 - 7)X;8[S)]
1
— EE [log (2me(1 — 7)*a%[IS|1*)] -
Figure 3.3(a) basically shows that increasing the achievable rate for fair users will
provide more information for attackers interested in estimating S. As can be seen,
the tradeoff is also dependent of n, since this parameter affects the achievable rate.
Figure 3.3(b) shows the equivocation per dimension in the KMA scenario for several

values of the parameter ~, evidencing the degradation of the security level as the host
rejection is increased.

3.4.2 Improved Spread Spectrum (ISS)

For a fair comparison between the ISS scheme and add-SS, the embedding distortion
of the former is fixed to D,, = 0%, which imposes

V= (1—A—25>%. (3.19)
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Since v must be real, the maximum allowable value for A is determined by

A < min{l, /n&1}.

Clearly, A can be made arbitrarily close to 1 by increasing n, thus achieving complete
rejection of the host interference. In general, the parameter \ is tuned so as to optimize
the performance of ISS in terms of error probability. Clearly, ISS with A = 0 is
equivalent to add-SS as described in Section 3.3. We are concerned in this section with
determining the effect on the security level of using A > 0. The study will be carried
out for the KMA scenario, where the information leakage is given by

I(Yla---»YNO;S|M1V--7MNO)ISS = h<Y1a--->YNO|M1a---7MNO)
— W(Yi,..., YN S, M, ..., My,). (3.20)

The second term is easy to compute: given the messages and S = s, the observations
are mutually independent, following a Gaussian distribution

Y,L|S =8, Mz =m; ~~ N((—l)miVS, Es), (321)

with g = E [(Y; — (=1)™ws)T - (Y; — (=1)™iws)] the covariance matrix of the Y,
conditioned on the realization of S and M;. The eigenvalue decomposition of ¥g is
given by = UgAUg, where

(1—MN)%0% 0
0 Ug(In—l

A= , (3.22)
and Ug is a unitary matrix whose first column is collinear to s. That is, the marked
signal Y; can be seen as a signal (—1)MiyS transmitted in a Gaussian channel with
noise correlated with the signal (the statistics of the marked signal are illustrated in
Figure 3.4 for n = 2). It turns out that in ISS not only the mean of the observations
provides information about S, but also the covariance matrix of the noise (here, the
attenuated host). Using (3.21) and (3.22) we can write

No
WY1, .. Yy, |8, My, ..., My,) = > h(Yi|M,;S)
i=1
NO n 2\n 2
= 71og ((2me)™ - (%)™ - (L= N)?). (3.23)
Since the first term of (3.20) is hard to compute analytically, we first formalize the
general behavior of the information leakage in the following theorem for N, = 1.

Theorem 3.2 (Convexity in A of the information leakage for ISS). The informa-
tion leakage in ISS is a convex and increasing function of the host-rejection parameter
A, and for N, =1 it is given by

1 1 AN —2 1
—1(Y1;S|M)1ss = = log (1 + MA=2) + u2§_1) — —log(1 —\). (3.24)
n 2 n n
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\ I~

Figure 3.4: Statistics of the watermarked signal in ISS for n = 2.

Proof: In Appendix B.3, the exact value of the information leakage for N, = 1 is
shown to be given by (3.24). If we compute the first and second derivatives of the in-
formation leakage in terms of A, we find out that the function is convex and increasing

in the interval A € [0, min{1, \/n{=1}]. m

In ISS, the achievable rate depends on the value of \. The optimum A that maxi-
mizes this rate depends on the DWR and the power of the attacking noise (see [161]
for further discussion). This behavior in conjunction with Theorem 3.2 shows that,
similarly to the 7-SS scheme, the host-rejection mechanism of ISS induces a trade-
off between information leakage and achievable rate. This tradeoff is illustrated in
Figure 3.5(a) by plotting 1(Y1;S|M;)/n vs I(Y1; M|S)/n in terms of A, for A €
[0, min{1, \/n&"1}]. It can be noticed the concavity of the curves, which present a
global maximum of the achievable rate for a certain A, (dependent of n). Increasing
A beyond this value has the double (negative) effect of not increasing further the achiev-
able rate but increasing the information leakage. Notice that for A = \/n{~! < 1, from
(3.19) we have v = 0, so I(Y; M;|S) = 0. Even in this case, we can see in Figure 3.5(a)
that the information leakage is not null, due to the dependence of the covariance matrix
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(Xs) on the spreading vector S.4

For the case N, > 1, an upper bound to the information leakage is derived in
Appendix B.4, obtaining

%](Yh oo, YN SIMy, .. My, )iss

<

N[ —

AL =2\ N,v%02 N,
log (1+g) 1+ Y s — —log(1 —\), for N, > 1.
n o2 (1+ A(A72)> n

n

(3.25)

The bound (3.25) on the information leakage produces a lower bound on the equiv-
ocation, which is plotted in Figure 3.5(b) for different values of A\ and compared to
add-SS. We can see that the equivocation decreases as A increases, in accordance with
Theorem 3.2. This bound can be used to derive a conservative security level. Notice
that (3.25) coincides with (3.24) for N, = 1.

Remark 3.2. As expected, for A = 0 (which implies v = 1) the bound (3.25) coincides
with (3.11), the information leakage for add-SS. This is because the hypothesis of
independence used in the bounding of Eq. (B.35) of Appendix B.4 is fulfilled for A\ = 0.

Remark 3.3. For n — oo, (3.25) tends to (3.11), i.e.

!
lim —I(Y1,...,YnN,;S|M, ..., My, )iss

n—oo N

1
= —I(Yl, R ,YNO;S|M1, .. 'aMN(,)add—SSa for A < 1, (326)
n

This means that asymptotically there is no penalty in security level for using host
rejection in one dimension, constituting a major advantage over y-SS. Remember that
the latter performs host rejection in all dimensions, and as such it cannot benefit from
increasing n for concealing the information about S. Nevertheless, we want to remark
that increasing n in ISS has the same effect as for add-SS stated in Theorem 3.1,
namely, that the information leakage in the WOA scenario approaches that of the
KMA scenario when n — oo. This can be easily proved for ISS following similar
guidelines as those of Appendix B.2.

3.5 Bounds on the estimation error

In this section we provide fundamental performance bounds for practical estimators
of the spreading vector. These bounds are based on the information-theoretic results

4Obviously, the shape of these curves will depend on the attacking noise (the regions of Figure 3.5(a)
were obtained in the absence of noise).
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Figure 3.5: ISS for KMA scenario and DWR = 25 dB. Tradeoff robustness-security as a result of

varying A in the interval [0, min{1, v/n&~1}] (a), and lower bound on the equivocation per dimension
for n = 100 (b).

derived in the previous sections. The aim is to translate the equivocation into other
measures that result useful for the evaluation of the security from a practical point of
view. The first bound is concerned with the mean-squared error between the spreading
vector (s) and its estimate (§), and the second one with the normalized correlation
between s and s. The achievability of each bound is also discussed.

3.5.1 Bound on the variance of the estimation error

. . A ~ . . . .
Let us define the estimation error as e = s — s and its variance per dimension as
a tr(= . . .

0% = %, where X is the covariance matrix of e, and tr(Xg) denotes the trace of

¥ g. As shown in Lemma 2.3, we have the following lower bound:

1 2

Hence, the equivocation can be regarded as the exponent of the estimation error lower
bound. Inserting (3.10) into (3.27), for add-SS in the KMA scenario we have

2 2
9s ~ 9%

O'%KMA > w ~ N (3.28)

which is achievable when the estimation error is Gaussian-distributed, and the approx-
imation holds for large N,. This bound coincides with the Cramér-Rao lower bound,
which was calculated in [71] using the Total Information Matrix [214], and with the
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variance of the MMSE estimator [199]. This is not surprising, as the MMSE estimator
is unbiased and its estimation error is Gaussian-distributed, thus fulfilling the condition
for achieving the bound.

A similar bound for the WOA scenario could be obtained by inserting the cor-
responding equivocation into (3.27). Taking into account Theorem 3.1 we find out
that )

. 2 95
A TBwor 2 TN, g
exactly as for KMA. However, we must bear in mind that, contrarily to KMA, the
latter bound is obviously not achievable due to the sign ambiguity in the estimate of
S (recall Sect. 3.3.2). Hence, the best estimate possible (for N, — o0) is S = £S with
probability 1/2 each, which leads to an error variance 20%, the minimum achievable
without knowledge of the embedded messages.

3.5.2 Bound on the normalized correlation

In spread spectrum methods using binary antipodal constellations, exact knowledge
of s is not necessary for performing correct decoding. Usually, decoding is implemented
by means of a cross-correlation operation, estimating the message embedded in y; as
m; = sign{y? -s}. Also, in watermark detection applications based on spread spectrum,
the detector decides on the presence of the watermark upon the angle between y, and
s. In other words, the norm of s is important for the embedding operation (e.g. for
controlling the embedding distortion), but not for detection/decoding. This implies
that the attacker is mainly interested in disclosing the direction of s, which spans the
subspace where the watermark is contained. Thus, it is useful to quantify the difficulty
in estimating the direction of s. The natural performance measure is the normalized
correlation, defined as

AT
A S's

p ETRE = cos(w) € [—-1,1], (3.29)

where w denotes the angle between s and s. The closer to 1 is the value of p, the more
accurate is the estimate of s. The relation between p and the Cramér-Rao lower bound
on the estimation error of S has been pointed out in [61, Sect. V], although not in deep
detail. Here we pursue a bound on p using the equivocation.

Notice that the vector s € R™ can be expressed by means of its norm and an n-
dimensional unit vector collinear to s, i.e. we consider the transformation s — (g, r),
with ¢ = [|s|| and r a unit vector in the direction of s. Thus, we have a coordinate
change R" — R x R™,

Lemma 3.1 (Bound on the normalized correlation). For an unbiased estimator,
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the mean value of the normalized correlation can be bounded from above as
Eleos(Q)] <1 - - 2 h(R|Oy, ..., On.) (3.30)
CoS ——exp| — . )
= Are p n 1 ) No ’
where h(R|Oyq,...,Oyp,) represents the equivocation about R, given NN, observations.

Proof: Let us define the estimation error as d = r — #. From Eq. (3.27), for an
unbiased estimator we have

PUDIE 0], 1y (Zhmion . 0m)) . 63

n n

By the cosine theorem, we have that ||d||* = 2(1 — cos(w)), with w the angle between
r and r. Combining this with (3.31), we arrive at the bound (3.30). n

Lemma 3.1 relates the normalized correlation with the equivocation about R. The
a priori equivocation, h(R), achieves its maximum when R is uniformly distributed
over the surface of the unit-radius hypersphere. Note that this is the case when S
is i.i.d. Gaussian, as we are assuming in this chapter. We are concerned now with
the equivocation about R. First, note that using the coordinate change s — (g, r)
introduced above, the differential entropy of S can be rewritten as

h(S) = h(Q,R) + E[log(J)], (3.32)

where J denotes the Jacobian of the coordinate change and the expectation is taken
over S. This change of coordinates can be seen as a QR factorization [122], s = ¢ - r,
with ¢ € R, r € R", and [|r|| = 1. The Jacobian of this QR factorization is given by
J = Q"1 [99]. Hence, using this result and (3.32), we can lower bound the equivocation
on the embedding direction as

h(R|Oy,...,0p,) > h(S|O4,...,0n,) — h(Q|O1,...,0n,)
— (n—=1)FE[E[log(Q)|O1 =01,...,0n, =o0pn,]], (3.33)

where the inner expectation is taken over (), and the outer expectation is over the
observations. Equality in (3.33) is achieved when the norm and direction of S are
mutually independent. Using (3.33), we will specialize the bound of Lemma 3.1 to
add-SS in the KMA scenario.

Lemma 3.2 (Bound on the equivocation about the normalized correlation).
For add-SS in the KMA scenario, the equivocation about R can be bounded from
below as
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Figure 3.6: Upper bound to the normalized correlation for add-SS. Comparison with practical esti-
mators for KMA with n = 100 (a) and WOA with DWR=25 dB (b).

hR|Y1,..., YN, My,..., My,)
n—1 2me n o2
> | —1 > B

1 ) 202 ((n+1)/2)\° 1 n nN, .\
— élog <n05—1+N‘:€_1( T(n/2) > 1 (—5,5,— 5 § )>, (3.34)

where 1F; denotes the confluent hypergeometric function of the first kind [29], and
I'(+) is the complete Gamma function.

Proof: The first term in the right hand side of (3.33) is given by (3.10). The re-
maining terms, related to the norm of the spreading vector, are upper bounded in
Appendix B.5. The combination of these results yields (3.34). [ |

We have represented in Figure 3.6(a) the upper bound on the normalized correlation
for add-SS resulting from the insertion of (3.34) in (3.30). This theoretical bound is
compared to the result using numerical integration for computing the norm-related
terms, supporting the tightness of the bounds derived in Appendix B.5. For checking
the tightness of the bound on FElcos(2)], we have computed numerically (by Monte
Carlo) the average normalized correlation resulting from applying the MMSE estimator
of S. As can be seen, the bound is loose for small N,, but it becomes tight as N,
is increased. The reason is that the distributions of R and () conditioned on the
observations become approximately independent when /N, is increased and because the
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boundings based on Jensen’s inequality are also asymptotically tight when the variance
of the considered random variable approaches 0.

As seen in Section 3.3.2, when the embedding rate is small enough, the information
that the WOA scenario provides about S approaches that of KMA except for the sign
ambiguity. This ambiguity also arises when evaluating a practical estimator, but we
can get rid of it simply by taking the absolute value of p as performance measure.
Notice that, in this case, we would be evaluating the accuracy in the estimation of the
subspace spanned by s. This performance evaluation is illustrated in Figure 3.6(b),
showing that the accuracy of the subspace estimation in the WOA case tends (as
expected) to that of the KMA as n is increased. The curves for WOA were obtained
empirically with the “PCA estimator”, that will be studied in Section 4.

Remark 3.4. Notice that the theoretical bound in Figure 3.6(b) remains approximately
invariant with n. Moreover, it can be checked that it is approximately independent of
the specific values of g or ox, depending only on £. Thus, it looks more appealing
than the bound derived in Section 3.5.1 for evaluating the security level.

3.6 Conclusions

The security of spread-spectrum-based data hiding methods has been investigated
from a theoretical point of view. Among the theoretical results obtained in this chapter,
we would like to remark the following:

1. The use of Shannon’s mutual information permits to show that the growth of
the information gained by the attacker about the secret carrier is far from being
linear, as had been stated in [61].

2. The use of low embedding rates (i.e. very large n) has a harmful impact in
the security level of WOA scenarios. In limiting cases of zero-rate watermarking,
quite extended for their robustness against blind attacks, the penalty for ignoring
the embedded messages becomes negligible, representing a serious threat to the
security of the system.

3. A tradeoff between security and robustness has been shown to exist in the spread
spectrum methods that perform host rejection. For the schemes studied in this
chapter, which cover a wide range of the spread spectrum schemes considered in
the literature, host rejection can significantly decrease the security level of plain
spread spectrum (add-SS). Nevertheless, different host rejection strategies can
yield very different results: whereas the penalty for the ISS scheme vanishes as
n is increased, the security level of -SS cannot be improved by increasing n.



Chapter 4

Security of Spread Spectrum Watermarking:
Practical algorithms

After the theoretical analysis carried out in Chapter 3, this chapter is devoted to the
evaluation of the security of spread spectrum methods from a more practical point of
view. We will focus on the ISS embedding function, since the attacks devised for it are
applicable to add-SS and ~-SS as well. The purpose of this chapter is twofold: on one
hand, we analyze the approaches previously proposed for tackling the spreading vector
estimation problem, highlighting their limitations; on the other hand, new estimators
for the WOA scenario are proposed and analyzed. The estimation of the spreading
vector is basically defined as an optimization problem, and as such it can be decomposed
on two subproblems:

1. The definition of a suitable cost function, and its analysis.

2. The choice of an appropriate optimization algorithm.

The analysis of the corresponding cost functions is performed under the assumption
of an infinite-length sample (i.e. N, — 00) for showing the asymptotically achievable
performance of an estimator based on such cost function. Although the present analysis
can be extended to more general host distributions, we have focused on i.i.d. Gaussian
hosts in order to keep the derivations more compact and easy to interpret.

This chapter is structured as follows: Section 4.1 summarizes the previous ap-
proaches for the estimation of spreading vectors in spread spectrum modulations. In
Section 4.2, the estimation problem is formulated, and the performance measures in-
troduced. Section 4.3 analyzes the estimators proposed for the WOA scenario in [61].
New estimators for both the KMA and WOA scenarios are proposed in sections 4.4 and
4.5, respectively. The choice of numerical methods for optimizing the cost functions
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defined in these sections is discussed in Section 4.6. In Section 4.7, the performance
of the proposed estimators is experimentally evaluated with real images. Finally, their
application to more general problems is discussed in Section 4.7.3.

4.1 Related work and contributions of this thesis

Attacks to the security of spread-spectrum methods are aimed at estimating the
pseudorandom spreading vector which is derived from the secret key. For the methods
studied in the previous chapter, the correspondence between spreading vector and
watermark is one to one (except for a scaling factor due to the sign of the embedded
message or to the host rejection). A consequence of this correspondence between
watermark and spreading vector is that most attacks previously proposed for watermark
estimation are indeed attacks to security, such as the “Wiener filtering” attack [208] and
the statistical averaging attack [88] (which typically needs a large number of marked
signals to succeed). Related approaches using denoising techniques besides averaging
are discussed in [103]. Another attempt at performing watermark estimation is due
to Mihgak et al. in [167], where the authors estimate the watermark based on the
fact that the components of the watermark vector take discrete values (£A), paying
special attention to the case where these values are repeated in blocks of a certain
length. Under a Gaussian host assumption, the maximum a posteriori (MAP) estimate
of the watermark is computed. The final aim of estimation attacks is to provide the
information necessary to perform a “remodulation” attack [217] in order to remove the
watermark.

The problem of watermark estimation in general scenarios (continuous-valued wa-
termarks, decoding applications) remained unaddressed for some time. A maximum
likelihood watermark estimator (assuming Gaussian-distributed host signals) is pro-
posed in [61] for the add-SS scheme in the KMA scenario, whereas BSS techniques,
namely Principal Component Analysis (PCA) and Independent Component Analysis
(ICA) [140, 141] are used in more involved scenarios. The rationale behind PCA and
ICA-based estimation is that the energy of the watermark is concentrated in one partic-
ular subspace; moreover, the latter takes advantage of non-Gaussianity of the message
distribution and the independence between the embedded messages and the host im-
ages. An extension of this approach (focused on the WOA scenario) is considered in
[60] using ICA jointly with the Expectation-Maximization (EM) algorithm [97] in or-
der to reduce the computational complexity of the attack when the dimensionality of
the spreading vector is very large. It is also pertinent to mention a simultaneous work,
[102], in which the subspace generated by the secret key is estimated with PCA in order
to remove the watermark. A previous work which used ICA to estimate the watermark
signal, although without taking into account security considerations, is given in [104].
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As for the main contributions of this chapter on this topic, they can be summarized
as follows:

e The consideration, for the first time, of host rejection in the analysis of the
practical estimators.

e A theoretical analysis of the estimators proposed in [61]. This analysis clarifies,
for the first time, in which situations (depending on the embedding parameters)
the attacker may expect a successful estimation when employing such estimators.

e The proposal and analysis of new estimators, and their application to practical
scenarios. The main objective is to devise new estimators that work in scenarios
where the approaches studied before fail, constituting this way a wider battery
of methods for performing practical security tests.

4.2 Problem formulation

Hereinafter, for the sake of clarity, the spreading vector used by the watermarker
and which the attacker wants to estimate will be denoted by s;. We will assume, for
simplicity, that sy is of unit norm. Hence, the embedding function that we consider is

y; =X + (=1)™vsy — A(x7sp)so, (4.1)

1
which is equivalent to (3.4) if we use v = (no — \20%)2.

We are interested in obtaining an estimate of the spreading vector sg. Two different
scenarios will be considered:

1. The “Known Message Attack scenario” (KMA), where the message embedded
in each observation is known by the attacker. From the results of Chapter 3,
we know that in this scenario it is possible to achieve a perfect estimate of s;.
The performance of the estimator will be measured in terms of the normalized
correlation: o

_ §s
* 7 Toll - Tisl

i.e. we look for the unit vector sy that minimizes the angle with sg.

e [-1,1], (4.2)

2. The "Watermarked Only Attack’ (WOA), where the embedded messages are not
known. In this scenario it is possible to estimate sy up to a sign ambiguity. In
other words, it is only possible to estimate the subspace spanned by sqg. Thus, the
estimator’s performance will be measured by the absolute value of the normalized
correlation, |p|.
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In order to illustrate the performance of the analyzed methods, we will plot the cost
functions versus p (or |p|) and the DWR. This yields a surface which, according to the
conventional optimization terminology, will be referred to as the “cost surface”.

This estimation problem strongly resembles the problem of linear equalization in
Digital Communications [143], where the objective is to find the linear filter of a given
length that best matches the inverse impulse response of the channel. Usually, this
filter is obtained by optimizing of a suitable cost function that exploits the statistics of
the channel and the underlying modulation scheme. Roughly speaking, the spreading
vector of our problem plays the role of linear filter. In the KMA scenario, the estimator
can exploit the knowledge of the embedded messages, i.e. the latter play the role of
training sequences or pilot signals. The WOA scenario is clearly more related to the
blind equalization paradigm.

4.3 Analysis of previous approaches for the WOA scenario

We analyze the estimation setup proposed in [61], based on Independent Component
Analysis (ICA) and Principal Component Analysis (PCA). ICA and PCA, which are
well known statistical tools for performing blind source separation (BSS) [140], were
applied for the first time in [61] to the watermarking security problem for estimating
spreading vectors in the WOA scenario.

4.3.1 Independent Component Analysis (ICA)

ICA is a well known statistical tool for performing blind source separation. The
idea behind ICA methods is to optimize a cost function that represents the mutual
independence between the separated sources. The intuitive meaning of the negentropy
resembles that of the fourth order cumulant, as both can be interpreted as measures
of distance to the Gaussian distribution. Given a continuous random variable R with
variance 0% and probability density function f(r), its negentropy is defined as

C(R) £ h(R) — h(U), (4.3)

where h(-) denotes differential entropy and U ~ N (0, 0%). For implementing a practical
ICA estimator based on negentropy maximization, the latter must be estimated from
the observed data without knowing its probability density function, in general. The
first negentropy estimators that were proposed were based on approximations of the
differential entropy by means of high order cumulants [77]. In [138], it is shown that
better approximations to the negentropy are of the form

C(R) = E[g(R)] - E[g(U)], (4.4)
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Figure 4.1: Histogram of the projection yI's for n = 300, A = 0.6, and DWR = 21 dB. The projection
in (a) is for a randomly chosen vector s, and the projection in (b) is for s = sg.

where again U ~ N(0,0%) as in (4.3), and g(-) is the so-called “contrast function”,
which in practice can be almost any non-linear smooth function.

ICA is not restricted to the BSS paradigm, but it is often used as a tool for extract-
ing “interesting” components of high-dimensional data, which is precisely the target
pursued here. Indeed, under this point of view, ICA must be seen as a way of perform-
ing Projection Pursuit [137] rather than BSS. Figure 4.1 provides the main intuition
on why the ICA approach should be valid for our problem. Figure 4.1(a) shows the
histogram of the projection y?'s when the vector s is randomly chosen (hence, approx-
imately orthogonal to sy), and Figure 4.1(b) shows the same histogram when s = s;.
In the first case we see that the histogram of the projection strongly resembles a zero-
mean Gaussian. However, in the second case, the histogram strongly diverges from the
Gaussian (actually, it corresponds to a two-sided Gaussian pdf). Thus, deviation from
the Gaussian distribution seems to be a good cost function for performing estimation
of the secret spreading vector.

Among the variety of ICA tools existing in the literature, we will focus on the
approach used in [61] and [44], where the ICA cost function for our problem is defined
as [139]

Jiea(s) = (E [9(Y"s)] - E[g(U)])", (4.5)

where U ~ N(0,var(Y”s)), and g(-) is the so-called “contrast function”. The ICA
estimator results in

So = arg max Jica(s). (4.6)
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Intuitively, (4.6) looks for the unit-norm vector s that maximizes the divergence be-
tween the distribution of g(Y”s) and a Gaussian distribution with the same vari-
ance. The choice of the appropriate contrast function in (4.5) is largely application-
dependent. Nevertheless, in informed applications where the statistical distribution of
the independent components is known, the optimal choice is clearly g(z) = log(f(2)),
where f(z) is the pdf of the independent component to be estimated, since it gives
directly the entropy of Z. The optimality of this choice is also supported by [138] from
the point of view of minimum asymptotic variance of the estimation error. For the
problem we are considering, with an i.i.d. Gaussian host, the pdf of the component to
be estimated is

e = 5 (o (") v (5))

g o
22 v
_ K. _E Neosh (X)) 47
eXp( 20%)“)8 <a) (.7

2

where K’ is a constant, and 0% = (1 — X\)?0%. Hence, the optimal ICA cost function

for our problem results in

Jica(s) = (E [log cosh (U—V%YTS)} — %E [(YTs)?]

v 1 2
— E|l h(— —FE[U?
[ogcos (U%U)] + 20% [U })

_ <E [log cosh (U—”%YTSN ~E {log cosh <O—V%U )])2 o (48)

where the second equality follows because the variance of U equals, by definition,
the variance of Y”s and both are zero-mean (recall that U ~ N(0,var(Y”s)). It
is interesting to note that logcosh is the contrast function recommended in [139] for
general purposes, although the reasoning for arriving there is essentially different. Using
the change of variable a = v/0%, Eq. (4.8) can be rewritten as

JiiRY(s,a) = (E [logcosh(a - Y"s)| — E [log cosh(a - U)])2 ) (4.9)

where the parameter a can be fixed by the user. The notation “blind” is adopted for
emphasizing the fact that, as in [61] and [44], the cost function does not depend on any
parameter to be estimated from the observed data. It is interesting to note that the
choice of the log cosh contrast function coincides with the recommendation in [139] for
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general purpose ICA, although the reasoning for arriving there is essentially different.
The evaluation of (4.9) requires numerical integration. We have

Y's = XTs+v(—1)Mp - A(XTso)p
= X' (s = Mpso) +v(—1)Mp = X"t + v(=1)"p. (4.10)
Assuming an i.i.d. Gaussian host,
YS[M = m ~ N(p(=1)"p, 63 It][2), (4.11)

where
[t]]> = [|s — Apsol[? = 1+ p*(A? = 2)). (4.12)

Therefore, the term Y's in (4.9) is a binary Gaussian mixture,
1
Y's ~ o (Nwp, oxIt]°) + N (=vp, oX[It11%)) (4.13)

with [[t||? given by (4.12), which is coherent with the situation shown in Figure 4.1.
Notice that the cost function depends solely on the value of p, not on the particular
realization of sg.

If we use the approximation logcosh(z) ~ |z|, a tight closed form approximation
of (4.9) becomes

2
2
Jind(s, a) = <\/gal exp (%) + 3 - erf <\/§U ) — %@) : (4.14)
1 1

o1 = aox(1+p*(A2 —2)\))2,
oy = alokx +v2p° + N?pPo% — 2>\p2a§<)%,

8 = avp.

where

Figure 4.2 shows the cost function versus |p| and the DWR for a = 1 and A = 0.5.
For each DWR, the plots have been normalized by the maximum value of the cost
function for ease of comparison. In practice, this normalized cost function has shown
to be virtually insensitive to the chosen value of a. Although J{i%4(s, a) is convex and
its maximum is clearly located at |p| = 1 as desired, this cost function is not well suited
to practical applications where the DWR is moderately high, because of its remarkable
flatness for small p. Due to this flatness, the initial vector must be very close to sg for
assuring convergence when the cost function is to be optimized iteratively. Indeed, in

real experiments the ICA estimator has shown to get stuck most of the times at p ~ 0.
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DWR (dB)

Figure 4.2: Cost surface of blind ICA, for n = 200, A = 0.5, and a = 1.

4.3.2 ICA with pre-whitening

We must notice that the definition of the ICA estimator (4.6) does not consider any
kind of preprocessing of the observations. However, in most ICA implementations, the
observations are whitened before applying the ICA estimator (this is also the case of
[139]). There are several reasons for applying this whitening, being the most important
the fact that this operation reduces the estimation of the whole mixing matrix in the
BSS problem to the estimation of a rotation matrix, and that it brings the problem
to more “controlled” conditions, since the statistics of the problem are unknown, in
general. In our particular problem of carrier estimation there is no justified reason
for whitening the observations. Thus, we are interested in checking its impact in the
performance of the ICA estimator. The new cost function is

Jiehe(s,a) = (E [logcosh(a - Y1s)] — E [log cosh(a - U)])2 : (4.15)

where U ~ N(0,1), and Y2 represents the whitened observations. We consider whiten-
ing through linear Principal Component Analysis (PCA), so Y,, £ PY, where P
denotes the “whitening matrix”. Let us denote by Q the covariance matrix of the
observations. For N, — oo, an eigenvalue decomposition yields Q = VDV, with

vi+ (1= N\)2%0% 0

_ nxn o
V= [S(]?VSO] eR ) D= 0 O'_%( X In—l

, (4.16)
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where Vg, € R ! is a unitary matrix whose columns span the orthogonal comple-
ment of the subspace spanned by sy. Thus, for N, — oo, the whitening matrix can
be written as P = VD 2V, The statistics of YZs can be computed by taking into
account that

Yis = XT(Ps — Aso(si Ps)) + v(—1)"slPs = XTq + v(—1)Ms! Ps. (4.17)
By realizing that sTPs = p(v2 + (1 — A\)%0%) "2, we have
YIS|M = m~ N (—1)"0p(? + (1= Aod)E okl (418)
where

lall* = |[Ps — Aso(sg Ps) || = s" VD™ 'V's + p*(v” + (1 = \)?0%) 7 (A — 2)).

(4.19)
The computation of (4.15), taking into account (4.18) and (4.19), requires again nu-
merical integration. Figure 4.3 compares J4i%(s, a) with JJEw4(s,a).! As can be seen,

Jiite(s, a) is worse than JEGR4(s, a) (for that particular DWR) in practical terms, be-

cause of its remarkable flatness: convergence is only guaranteed for initialization vectors
close to sg. However, it is interesting to note that Jil*(s, a), after being normalized,

is nearly invariant to the embedding parameters and to the free parameter a.

4.3.3 Principal Component Analysis (PCA)

As can be guessed from Figure 4.2(a), Ji414(s, a) becomes a suitable cost function

when the DWR is small. Hence, if some preprocessing for reducing the effective DWR
can be made, then J{%%(s, a) can be used for our estimation purposes. Being probably
aware of this fact, the authors in [61] propose a dimensionality reduction through Prin-
cipal Component Analysis (PCA). This is based on the following rationale: for large
spreading sequences, the variance in the direction of the watermark dominates over the
remaining directions, so for carrier estimation it suffices to keep for the ICA only the
components of the observations in the direction of the eigenvectors with the largest
associated eigenvalues. This reasoning holds in many practical scenarios, especially
in watermark detection applications, where n uses to be in the order of thousands.

However, when considering data hiding applications, the situation may be different.

When a single carrier is being used, the estimator of sy by PCA is simply given by
[61]
So = V]argmax D, ], (4.20)

IThe other plot in Figure 4.3 corresponds to the “informed ICA” estimator, which will be defined
in Section 4.5.1.
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Figure 4.3: Comparison of the ICA cost functions with a = 1, for ISS with n = 200, A = 0.5 and
DWR = 16 dB.

where V[k| denotes the kth column of the matrix V, and D, ; is the ith element in the
diagonal of the matrix D, both defined in (4.16). The performance of this estimator,
which will be referred to as the “PCA estimator”, was already plotted for add-SS (i.e.
with A = 0) in Figure 3.6(b), where we can see that it works remarkably well for not so
large values of n. In order to perform a correct estimate, the variance in the direction
of sy must be larger than in the remaining directions. For the i.i.d. Gaussian host, this
is equivalent to

2+ (1— \)%0% > 0% & DWR < 10log,, (%) (4.21)

as can be seen from (4.16). Note that if the pdf of the host signal is not circular
(i.e. if the covariance matrix is not diagonal), then the condition for ensuring correct
estimation is more restrictive, as one must take into account the directions with the
highest variance. In any case, the watermarker could easily fool the PCA estimator by
properly tuning the embedding parameters n and A so as to reduce the variance in the
embedding direction (possibly loosing some robustness).
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Figure 4.4: Probability density function of the carrier conditioned on one observation for ISS-KMA
with n =2 and A = 0.9.

4.4 New estimator for the KMA scenario

This scenario was considered in [61, Section V.A] for A = 0 under the i.i.d. Gaussian
host assumption, deriving the maximum likelihood (ML) estimator of sy for that case.
Unfortunately, when A > 0, no closed-form expression exists for the ML or MMSE
estimators, even under the Gaussian host assumption (Figure 4.4 shows an example
of the conditional pdf of sy for A = 0.9 and n = 2). For overcoming this problem we
will consider the pdf of the observations when projected onto the subspace defined by
so. Let us define the variables z; £ yrsg, i =1,...,N,. Since the y, are conditionally
independent when the m; are known, we have

No
f((z1, 0 28,) T[S =80) = Ky -exp | =K - Z(Zz — )|, (4.22)
i=1
where K, K, are constants, and u; = v(—1)™so||?, fori = 1,..., N,. It is easy to

show that the ML estimator of sy under the model (4.22) is the solution to the linear
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system AsSy = M, which is expressed as

No 2 No No ~
Zizl Yia Zizl Yi2  Yix - Zizl Yin " Yin So,1
No No 2 No o

Zi:l Yil - Yi2 Zi:1 Yio T Zizl Yin " Yi1 " 50,2
N, N, No .2 3
Zi:l Yi1 " Yin Zi:l Yi2 " Yin - Zizl Yin S0,n

2%71 M - Yia
zi:01 M - Yi2

. (4.23)

fo\i)l Hi - Yin

where y; ; is the jth component of the ith observation. This estimator is easy to
compute by matrix inversion or by numerical methods. However, as a penalty for using
the statistics of the host in the projected domain, we need at least n observations in
order to get a full-rank matrix A. Note that the hypothesized values of v and ||sy|| do
not affect the performance of the estimator, since they would only produce a scaling
of the estimate. This estimator can be thought of as a regressor that tries to estimate
the supporting hyperplane of the scaled observations (—1)"y,, which is given by the
equation vl'sy = v||sg||>. For A\ = 1, all the observations (—1)™y, fall exactly on this
hyperplane. Hence, it is expected that the performance of this estimator is improved
as A approaches 1 (moreover, it is obvious that in this case n — 1 observations would
suffice for obtaining a perfect estimate of sg).

Notice that the validity of this estimator is not necessarily restricted to Gaussian
hosts. It will work for a variety of host distributions, as long as the Central Limit
Theorem (CLT) holds. The reason is that, for moderately large n, Eq. (4.22) is ap-
proximately valid by virtue of the CLT.

4.5 New estimators for the WOA scenario
4.5.1 Informed ICA

We have empirically observed that the drawbacks mentioned in Sect. 4.3.1 for the
blind ICA estimator can be partially overcome if the variance of the random variable
U in Jiid(s,a) is fixed to a proper constant value, instead of varying it according to
the variance of Y's. We term the new cost function Jllgf\(s, a), where “inf” stands for
“informed”. After some experiments, it was found that fixing that value to 0% yields
good results. In order to keep the estimator blind, we compute an estimate of ox from



4.5 New estimators for the WOA scenario 67

I‘
I

I

l
ll

EE/ ===
==\ ==
1\
SN =2 | | ZZ========
54/ / ZZE====ss
wi B W e
== //ﬂﬂﬁﬁﬁ====
—EZ/\ =
0.2 _—//\\ e e e e
0 0.5
28 26

18
16 14 12 Is's |
DWR (dB) 0

Figure 4.5: Cost surface of informed ICA, for n =200, A = 0.5 and a = 1.

the observations. Our estimate of oy is

Gy = (ltr (Q))% - (% iD) % , (4.24)

=1

where Q is the covariance matrix of the observations and D; ; are the diagonal elements
of the matrix of eigenvalues defined in (4.16). The expression of Jfgﬁ(s, a) is still given

by (4.5), with the only difference that U ~ N(0,6%).

Figure 4.5 shows the cost surface of Jitd (s,a) (obtained by means of numerical
integration) under the same conditions as Jiid(s,a) in Figure 4.2. As can be seen,

Jfgﬁ (s,a) is convex for all DWRs except for a small range, and no problems of flatness
for small p appear, so an iterative optimization algorithm can easily reach the maxi-

mum. Although Jligf\(s, a) has shown to be quite sensitive to value of the variance we
fix for U (two examples of the resulting cost surface for underestimation and overesti-

mation of ox are shown in Figure 4.6), it performs reasonably well with real images,
as will be seen in Section 4.7). Similarly to Jid(s, a), the value of a has no noticeable

influence on the normalized cost function.
Informed ICA is also compared with blind ICA and blind ICA with pre-whitening
in Figure 4.3, showing that the first is better behaved.
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4.5.2 Constant Modulus (CM) criterion

According to (4.13), when Y is correlated with a vector s orthogonal to sy (i.e.
with p = 0), the resulting random variable is zero-mean Gaussian with variance c%.

However, when Y is correlated with sy, we have
1
Ylsg ~ 3 (,/\/(1/, (1-— )\)203() +N(—v, (1 - )\)203()) .

Hence, if we take the modulus of Y7s, it should lie (in average) closer to v as s approx-
imates sg. Notice, for instance, that in the particular case of A = 1 the observations
y, fall exactly on two parallel hyperplanes given by vIsy = £v||sg||>. The main idea
behind the CM method is to define a cost function that penalizes the deviations of

IY”'s| from v. A possible cost function is then

Jom(s) = E [((YTS)2 - ,,2)2] = E[(YTs)'] =22 E[(Y's)?] +v". (4.25)

By definition, our CM estimator is essentially equivalent to the methods for blind
equalization based on the constant modulus criterion which are well known in the
literature of Digital Communications [143] and have been extensively studied there.
Nevertheless, the problem setup is different in both cases (e.g. host rejection is not
considered in Communications, and the observations are not necessarily processed in
a block-by-block basis), so a new analysis of the CM cost function for our problem is

justified.

The cost function of the CM estimator is analyzed in Appendix B.6 assuming an
i.i.d. Gaussian host. The cost function results in a fourth order degree polynomial in
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the normalized correlation,

Jou(s) = Jom(p)
= p! (1/4 — 1202 \0% + 6020 %0% + 12X\%0% — 12X\%0% + 3)\4031()
—2p° (V2 — SUE() (1/2 —2\o% + )\203() + 30y — 2v%0% + vt (4.26)

In the particular case of A = 0 (add-SS), Eq. (4.31) admits a clearer expression:

JUnd(s D) vmo = p'vt =202 (V% = 30%) + 30y — 2V%0% + Ut (4.27)
Now let us denote by ppn the value of p for which the global minimum of (4.27) is
achieved. From the attacker’s point of view, it is desirable that |pn:n| is as close to 1
as possible. For v < /30y, the minimum of (4.27) is always achieved for py, = 0.
In turn, for v > /30y, if the attacker wants to achieve || > 7 € [0, 1], then the
condition | )

DWR < 10log,, (—"( ;T )) (4.28)
must hold. This means that for achieving |pmin| > 0.9 the DWR must be below 1 dB
and 18 dB for n = 20 and n = 1000, respectively. Bear in mind that, when optimizing
iteratively the CM cost function, the condition derived above is necessary but not
sufficient, in general, for arriving at the optimum that guarantees |pm| > 7, since
(4.27) is not necessarily monotonically decreasing for |p| € [0, 1].

For A > 0 it is hard to infer from (4.26) the conditions for the successful estimate
of sg, so we will plot the cost surface for different embedding parameters. Figure 4.7
shows the cost surface (4.26) for different values of n. The value of (4.26) has been
normalized for each DWR by the value of its maximum. As can be seen, the cost surface
is not guaranteed to be neither monotonic nor convex for all DWRs. Depending on
the values of n and A, there exists a range of DWRs where the global minimum of
the cost surface may be far from |p| = 1; in the worst cases, the minimum is achieved
for p = 0). Hence, the results of an iterative optimization algorithm will be strongly
dependent on the initialization point. Notice that the shape of the cost surface near
p = 0 is of utmost importance, since random initializations of s will yield s’sq ~ 0
with high probability, so an iterative algorithm will get stuck at p ~ 0 if the cost
surface achieves its minimum at that point. Nevertheless, Figure 4.7 shows that the

cost surface becomes more amenable to be optimized as n and A are increased (keeping
the DWR constant).

Blind CM estimator

In general, the attacker has no a priori information about the embedding parameter
v, so he needs an estimate before applying the CM method. We assume now that the
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attacker manages to obtain an estimate 7 = v + U from the observations at hand. The
new CM cost function, now termed “blind”, is
Jeni!(s,0) =

E[(Y"s)"]| —20* - E[(Y"s)?] + 0
Jom(s) — 2B [(YTs)?] (7 + 2v0) + 0* — V", (4.29)
and the blind CM estimator is defined as

So = arg msin JUind(s ).

(4.30)
By combining the Eq. (4.26) above and (B.72) obtained in Appendix B.6, after
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rearranging terms (4.29) results in

Jeni'(s,0) = Jai(p,v)
= p (V4 — 120°\0% + 602\20% 4+ 12\%0% — 12\30% + 3>\40_§1{)
—2p2 (1/2 — 303( + 2v0 + 172) (1/2 — 2)\03( + )\zai)
+30% — 2%0% + v + 40 + 6207 + wid + 0 — dvpo? — 20%0%.
(4.31)

The only difference between (4.31) and (4.26) is a constant additive factor and the term
2up + p? in the multiplier of p?. Although underestimating the true value of v may
have a harmful effect in the cost function, using 7 > v can even be beneficial for the
attacker. Figure 4.8 shows examples of the cost surface with 7 = 1.5v and 7 = 0.5v. As
can be seen in Figure 4.8(b), the local minima that are apparent in Figure 4.8(a) have
disappeared; the penalty to pay is the general flattening of the cost surface that may
affect the convergence of iterative optimization algorithms. For a truly “blind CM”
estimator we propose to extract o from Q, the covariance matrix of the observations,
as

Ublind = max {(Dzz)%} , (4-32)

where D; ; are the diagonal elements of D, defined in (4.16). The resulting cost surface
of the blind CM estimator is shown in Figure 4.9 for A = 0.5. Notice that for n = 200
there exists a small range of DWRs (around 20 dB) with a local minimum close to
lp| = 0. For those DWRs, an iterative optimization of the cost function would get
stuck at |p| &~ 0 with high probability. However, for the remaining DWRs, the shape
of the cost function is very appealing. Increasing the parameter n (Figure 4.9(b)) has
the effect of increasing the range of DWRs where the function is unimodal (i.e. with
no local minima) and achieves its minimum for |p| = 1. As can be seen, the range
of DWRs with undesired local minima is moved towards higher DWRs. Figure 4.10
depicts the variation of JZi?® with A, showing that increasing A clearly benefits the
attacker using this method.

4.5.3 Average Maximum Likelihood (AML)

Given a sequence of observations {y,,...,yy,}, a candidate vector s, and the se-
quence of messages {my, ..., my,} embedded in each observation, the likelihood of the
cross-correlation between the observations and s is given by

f(zls,m) = K - ﬁexp (— (2 = ”(_1)%)2) , (4.33)
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The average log-likelihood results in

(4.35)

2
Z’L
5
207

N, No
log(f(z|s)) = log(K') + Z log cosh (%) - Z
i=1 z i=1

If we consider Nio log(f(z|s)) for N, — oo, then we can write the AML cost function as

Jauw(s) = E {log cosh (”YQTS)} L g (Y7Ts)?]. (4.36)

oy a 20%
Thus, the AML estimator is given by
Sp = arg max JamL(s). (4.37)

For a i.i.d. Gaussian host, the second term of (4.36) has been already calculated in
Appendix B.6. The first term has to be calculated by numerical integration. The pdf
of Y”'s has been obtained in (4.13). Now, if we define the r.v. A4,, = ULQYT, then

zZ

2(_1ym 2 2|1t ]2
%YTS|M=m~N<”< )" o]l ”), (4.38)
g

2 ]
z Oz Oz

the value of the first term in (4.36) can be readily computed by means of numerical
integration. Figure 4.11 shows the resulting cost surface. As can be seen, the cost
surface is monotonically increasing in |p| for all DWRs. However, as the DWR is
increased the cost surface gets flatter, which constitutes a problem in practical setups.
In general, a practical AML estimator working with high DWRs needs a large number
of observations in order to perform well.
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Deviation from the true parameters: “blind AML”

The application of (4.36) requires in practice the knowledge of v and 0. We assume
that the attacker has estimates of the form ¥ = v + v and 6z = 04 + 6z. The cost
function is now given by

24 1
JamL(s,0,67) = F {log cosh (VA—ZS)} —-—=F [(YTS)2] ) (4.39)
07, 207,

In practice, the effect of varying oz on the cost function has shown to be negligible.
Serious problems may arise when v is underestimated, but the convexity properties of
the cost function seem to remain the same when 7 > v. This suggests that in practical
problems we can resort to the estimate of v given in (4.32) for implementing a blind
AML estimator.

4.5.4 Final remarks

Although the analysis carried out here for the ICA, PCA, CM and AML cost
functions was made considering Gaussian hosts, the conclusions can be extended to
more general host distributions under some mild assumptions. All the cost functions are
based on functionals of the type Y's. Hence, if the components of the observations are
approximately independent, the resulting random variable can be well approximated
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for a wide variety of host distributions by a Gaussian whenever n is sufficiently large, by
virtue of the CLT. This is true, for instance, when the embedding occurs in the DCT
or DWT domains, where the coefficients are distributed according to a Generalized
Gaussian. This latter case is explicitly analyzed in Appendix B.7 for the CM cost
function, supporting the above arguments.

The final remark comes from the links between the theoretical security analysis and
the behavior of the estimators:

1. From Section 3.3.2, it is known that in the WOA scenario large spreading se-
quences provide more information to the attacker than short ones. Thus, it
should be easier for the attacker to perform estimation of sy as n is increased.
This is the case for the PCA estimator, as discussed in Section 4.3.3, and also for
the blind CM estimator, under the light of Figure 4.9.

2. From Section 3.4.2, it is known that increasing A, i.e. increasing the host rejection,
provides more information about sy. This additional information is effectively
translated into an advantage for the blind CM estimator, which is reflected in
its cost function (cf. Figure 4.10). However, the PCA estimator works better for
A = 0, according to (4.21).
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4.6 Practical implementation of the WOA estimators

This section is concerned with the application of the previously proposed estimators
to practical problems. The first difficulty that arises in practice is that the estimators
considered do not admit closed form solutions, so one has to resort to iterative optimiza-
tion algorithms. Another difficulty introduced by practical setups is the availability of
a finite number of samples (observations), so the expectations have to be approximated
by some estimate. If the number of observations is small, then the approximate cost
function may differ significantly from that derived for asymptotic conditions. In our
implementations we make use of the usual sample mean estimator, which simplifies
the computation of the gradients needed by the optimization algorithms. Examples
for the blind CM method and for the AML method are shown in Example 4.1 and
Example 4.2, respectively.

Example 4.1 Cost function of blind CM for a finite number of observations
The cost function for blind CM for a finite set of observations is:

N
N 1 - ~2 2
T) = 3 (9T - 7). (4.40)
0 =1
The partial derivatives of (4.40) are
9JET (s) 4 T2 _ 2\2 T -
T:E;((yks) — %) yrs, i=1,...,n. (4.41)

Let us define the vectors z; € RM*! b € RNox1 as

[yl,ia'-'7yNo,i]Ta 1= 17"'7” (442)

[((les)2 — ﬁ2)2 yis, ..., ((y%os)2 — ﬁ2)2 y]TVOs]T. (4.43)

z;

lI>

b

The gradient of blind CM can be expressed as

4
T—= ~y7h, (4.44)

, 4
VJlind(s) = — [bT[zi, . ,an N

No

where Y € R™ e is the matrix of observations.

In order to optimize the chosen cost function, one can resort to the wide variety of
algorithms available in the literature. The most widely used method in Digital Com-
munications is the stochastic gradient descent [129] that allows to construct lightweight
iterative methods. In the problem of watermarking security, the attackers are not es-
pecially concerned about computational complexity or speed of convergence issues, so



4.6 Practical implementation of the WOA estimators 7

Example 4.2 Cost function of AML for a finite set of observations
The cost function of AML for a finite set of observations is

N, No
wm 1 - v
URHORS ﬁZlOgCOSh (O__QYkS> Z yis). (4.45)
% k=1 Z Z f—

The partial derivatives of (4.45) are

DI (s) v v
= tanh [ —y?. Li=1,...,n 4.46
0s; NOU% p an U% YiS | Yk " ( )

Let us define the vector ¢ € RNo*1 ag

T
= [tanh (%y{s) ,...,tanh <L2y71\;0s)1 . (4.47)
oy o

The gradient of AML can be expressed as

in v T T
V‘]IlglMLd( ) = N o2 [CT[Zla cee 7Z’HH - N. o2 [bT[Zla : 7Z7ZH
oYy oYz
Y
= gz (e =), (4.48)

we choose a different family of optimization methods that, though not very popular in
the Communications field, permits us to extend easily the proposed approach to other
related watermarking scenarios, as we will see in Section 4.7.3.

Recall that our setup is the following: we are interested in estimating a vector sy,
which is supposed to be of unit norm, i.e. s’s = 1. The usual approach is to apply
one of the classical, off-the-shelf optimization methods [179] imposing the unit-norm
restriction. However, those methods have been designed for performing optimization
on Euclidean spaces, i.e. on rectangular coordinates. The correct geometrical setting
for this problem is on the “Stiefel manifold” [106]. The usual definition of a manifold
is as a Haussdorf topological space that looks locally Euclidean [106, 54]. Specifically,
the Stiefel manifold is defined as

Definition 4.1. The Stiefel manifold S(m,n) is the set of all unitary matrices U €

R™*™ and has dimensionality mn — %m(m +1).

For m = 1, which is the case of interest for us, S(m,n) becomes the surface of the
unit sphere in R”. The advantage of optimizing directly on the manifold is that one
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naturally gets rid of the unit-norm constraint in our optimization problem. Thus, our
estimate 8§y can be expressed as a point in S(1,n).

Now, recall that in the WOA scenario it is not possible to estimate the sign of the
vector sg. In fact, the vectors sy and —sq yield the same value for all the cost functions
defined in Section 4.5. Hence, the relevant geometrical object for estimation in the
WOA scenario is the Grassman manifold.

Definition 4.2. The Grassman manifold G(m,n) is the set of all m-dimensional
hyperplanes through the origin of R", and has dimensionality m(n — m). If for
Uy, Uy € §S(m,n) we define the equivalence relation

U, ~ U, if span(U;) = span(U,),

the Grassman manifold results as the quotient space of S(m,n) under this equivalence
relation, and points in the Grassman manifold can be interpreted as m-dimensional
subspaces in R".

In our case (m = 1), G(m,n) is simply the set of one-dimensional spaces that can
be spanned by a n-dimensional vector, so our estimate can be expressed as one point in
G(1,n). In general, optimization on the Grassman manifold can be applied to problems
where, besides the unitary constraint, the cost function J(S) to be optimized fulfills
the condition J(S) = J(SH), for S € R™™ and H € R™ ™ a unitary matrix.>

In general, optimization problems with unitary constraints tend to occur in Signal
Processing applications involving subspaces. Grassman and Stiefel manifolds have a
nice geometrical structure that allows to adapt classical iterative algorithms, such as
Newton and conjugate gradient methods, to these curved spaces [106, 162]. For the
practical implementations used in this thesis we chose a conjugate gradient method
over the Grassman manifold [106]. The algorithm remains essentially equivalent to
a classical conjugate gradient, and the main difference lies on how the gradients and
updates are computed, since we must move through geodesics instead of straight lines.
A complete description of the algorithm can be found in [106, Sect. 3.3].

4.7 Experimental results

4.7.1 Results for the KMA estimator

We compare in terms of performance the estimator proposed in Section 4.4 for
ISS with the estimator proposed in [61], originally devised for add-SS (i.e. ISS with

2Notice that in the WOA scenario we could still carry out the optimization over the Stiefel manifold,
but in this case we would treat s and —s as different points.
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Figure 4.12: Estimation for ISS in the KMA scenario, with DWR = 25 dB, n = 100, and Gaussian
host. Results with the ML estimator devised in [61, Section V] for add-SS (a), and results with the
estimator (4.23) proposed in Section 4.4 (b).

A = 0). We remark here that the latter is the ML estimator of sy when the host is
i.i.d. Gaussian and A = 0. Figure 4.12 shows the estimation results for different values
of A and Gaussian host, for both estimators. As can be seen, the add-SS estimator
(Figure 4.12(a)) achieves its best performance when A = 0. On the contrary, the per-
formance of the ISS estimator (Figure 4.12(b)) is improved as ) increases.®> Actually,
in the limiting case when \ = 1, n observations would suffice to disclose the secret sub-
space, since in that case the observations y, - (—1)™ would lie in the same hyperplane,
as discussed in Section 4.4.

4.7.2 Results for the WOA estimators

The statistical analysis carried out in Section 4.3.1 shows that blind ICA approaches
fail when directly applied to our estimation problem, and this has been shown to
be indeed the case in practice. This is why we focus here on the “blind CM” and
“informed ICA” (using the estimates (4.32) and (4.24, respectively) estimators. We
are also interested in comparing these approaches with the one proposed in [61], which
is based on the PCA estimator discussed in 4.3.3.

Figure 4.13(a) shows the comparison between the PCA and blind CM estimators
for i.i.d. Gaussian host and different values of A. As can be seen, the PCA estimator
achieves its best performance for A = 0, as explained in the previous section, and it

3Recall that, according to Theorem 3.2, the closer to 1 is the value of ), the more information
about sq leaks.
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is below the theoretical upper bound (derived in Section 3.5.2) in all cases. As for
the blind CM estimator, it can be seen that it clearly benefits from increasing . In
general, PCA presents better performance than blind CM for small N,, but this is
not necessarily true as N, is increased. Figure 4.13(b)-(c)-(d) show results obtained
for real images: “man”, “couple”, and “stream & bridge”, available for download in
[23]. All of them have been marked in the DCT domain, using a subset of coefficients
that is assumed to be known by the attacker, and which is the input to the estimators
(thus, depending on the size of the image and the value of n, the maximum allowed N,
is different in each case). This scenario is less favorable for PCA than with the i.i.d.
Gaussian host, because the embedding direction is not guaranteed to have the highest
variance. As can be seen, the blind CM estimator offers in all cases better performance
than the informed ICA. It is also interesting to see that the PCA estimator gets trapped
in the directions of maximum variance that, in general, are far from the direction of
the spreading vector. Furthermore, it can be observed that for PCA the estimation
accuracy can decrease (see Figure 4.13(b),4.13(d)) when the number of observations is
increased. This is due to the fact that the host vectors are not i.i.d., and the directions
of maximum variance depend on the considered region of the image.

4.7.3 Extension to other scenarios

Estimation of several carriers (multibit data hiding)

We consider here the case where several bits of information are embedded in the same
host signal by means of several carriers, a setup that could correspond to scenarios of
multiuser information embedding, for instance. The embedding function for a multibit
ISS system with embedding rate R = = log(N,) can be written as

N N }(TS],C
Y, =X +v) ()M =AY ngsk’ fori=1,...,N,, (4.49)
k=1 k=1

where for simplicity we have considered that the parameters v and A\ are the same for
all carriers. Hence, the secrecy of the system relies on the matrix of secret carriers
S =[s1,...,sn,] € RN,

For this kind of multibit setups, the authors of [61] have already proposed an es-
timator based on PCA and ICA. However, the application of PCA to this scenario
presents the drawbacks noted in Sect. 4.3.3 for single carrier schemes. On the contrary,
the methods for optimization on manifolds introduced above can be effectively adapted
to this scenario. If the carriers are known to be (almost) perfectly orthogonal,® then

4This will be the case in most scenarios as long as the length (n) of the carriers is large enough,
even if they were not generated fulfilling the perfect orthogonality condition.
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the matrix of carriers S is (approximately) unitary. For performing estimation of the
carriers in the multibit scenario we resort to a “deflation” approach which, although
clearly suboptimal,® yields good performance at reasonably low complexity. The de-
flation approach is described in Algorithm 4.1, and basically consists in estimating
the carriers one by one, properly orthogonalizing the observations by means of the
Gram-Schmidt procedure.

Algorithm 4.1 Deflation approach for estimating the secret spreading vectors

1. Initialize the matrix of observations OW = [y, ... YN
2. Fori=1,..., N,

(a) Compute an estimate §; by applying the estimator of Section 4.6 on O,

(b) Orthogonalize the observations by means of the Gram-Schmidt procedure:
O+ = 00 — 5,((0MTs)). (4.50)

3. The final estimate is S = [S1,..-,8N,]-

Regardless of the followed estimation procedure, there is an ambiguity in the order
of the estimated carriers which is inherent to the multibit scenario and cannot be
undone, as noted in [61]. Figure 4.14(a) shows the estimation results when “man”
is marked with 3 different carriers, after removing the ambiguity in the order of the
estimated carriers. As can be seen, the blind CM estimator outperforms the PCA-ICA
estimator in this scenario.

Circular modulations

Some authors have proposed several variations of the spread spectrum embedding func-
tion with the aim of improving its security. In [44], the circular watermarking method
was proposed as a slight variation of the multibit ISS. In order to make more difficult
the estimation of the carriers, an additional random sequence is used for getting the
marked signal sphered. According to [44], the embedding function of the circular

5 A presumably better approach would be to perform optimization directly in the Stiefel manifold
for estimating the whole set of carriers at once, although this path will not be pursued in this thesis.
Of course, a suitable cost function must be defined for such problem.

6 Actually, this is equivalent to use a non-deterministic transformation 1(6) every time a signal is
marked.
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version of ISS reads as

AL Y xTg
Y =X +v ) (—D)Mispd — Ay
k=1 k=1

[Isl[?

Sk, fori=1,..., N,, (4.51)

where d = [dy, ..., dy,] is a vector uniformly distributed in the unit sphere. Although
this randomization effectively conceals the secret carriers, it has the drawback of im-
pairing the communication between embedder and decoder, since the latter ignores the
randomization sequence d, which is changed for each marked vector. Furthermore, this
modulation does not conceal properly the embedding subspace, so an attacker can take
advantage of this fact for removing the watermark with low distortion, if he manages
to disclose this subspace. For this purpose one can think of a generalized CM cost
function, that in fact can be interpreted as a Constant Norm criterion (CN) [123], for
exploiting the structure of the embedding subspace:

Jona(S,v) = E [(HYTsW - zﬂNb)Q} . (4.52)

For measuring the performance of the CN estimator we resort to the “chordal
distance” 78], which is the natural measure of distance between two subspaces spanned
by unitary matrices P and Q. The chordal distance is usually defined in terms of the
“principal angles” 6, ..., 0x, € [0,7/2] between P and Q, which in turn are defined as

cos #; = maxmaxp’q, 4.53
aX mAX P g (4.53)

where p and q are the columns of P and Q, respectively. This way, the chordal distance
can be computed as

d.(P,Q) = (i sin? ei) 2 : (4.54)

i=1
A more compact definition of the chordal distance is by means of the “projection
matrices” PP and QQ7 as follows:

4P, Q) = —[IPP" - QQ” |1, (4.55)

where || - || denotes the Frobenius norm for matrices. The chordal distance achieves
its maximum, /N, when the two subspaces are perfectly orthogonal, and it equals
0 when both matrices generate the same subspace. Notice that for optimizing (4.52)
we can resort to the Grassman manifold, since the norm is invariant to rotations.
Figure 4.14(b) shows the performance comparison between the CN and PCA estimators
applied to “man” with N, = 2, n = 200 and A = 0.7. As we can see, CN performs
significantly better than PCA.
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4.8 Conclusions

We have analyzed the previously proposed ICA and PCA estimators [61]. Al-
though these estimators have shown their good performance in practical scenarios (see
e.g. [61],[44]), we have highlighted their limitations, showing that they can be fooled
by appropriately choosing the embedding parameters. As for the new estimators pro-
posed in this chapter (informed ICA and blind CM), the statistical analysis performed
in Section 4.5 showed that they also present some drawbacks when facing certain com-
binations of embedding parameters. However, they have proved to work in a number
of scenarios where the previous approaches have failed, as seen in Section 4.7. The
combination of new and previous methods provides a wider battery of estimators for
performing practical security tests that work for most practical situations.

These results show that it is dangerous to draw conclusions about the security of a
particular data hiding scheme using the results obtained with a particular estimator.
If this estimator is far from being optimal, then the security level of the method under
study could be largely overestimated. In this sense, the role of the information-theoretic
security analysis is necessary for providing the fundamental limits of watermarking
security.

Finally, we want to note that with the chosen optimization algorithm, computa-
tional problems may appear if the size of the spreading vector (n) is very large. In this
case, one should look for other optimization methods more suitable for “large scale”
problems.
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Figure 4.13: Performance comparison of blind CM, informed ICA and PCA for Gaussian hosts and
real images. Results averaged over 100 realizations of the spreading vector in each case.
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Figure 4.14: Performance of blind CM and blind CN in multicarrier setups. In (a) we have the
performance of “blind CM” for “man” marked with multibit ISS, N, = 3, n = 200, A = 0.8 and
DWR=17dBs. In (b) we have the performance of the “blind CN” and PCA estimators for “man”
marked with “circular ISS”, N, = 2, n = 200, and A = 0.7. Results averaged over 100 realizations of
the spreading vector.
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Chapter 5

Security of Lattice-Based Data Hiding:
Theory

The security of spread spectrum methods has been addressed in chapters 3 and 4. In
this chapter we study from a theoretical point of view the security of another important
group of data hiding schemes: quantization-based methods using structured codebooks,
proposed by Chen and Wornell [63] with the name of “Quantization Index Modulation”
(QIM). The specific implementation of QIM considered in this thesis is by means of
nested lattice codes [174], which encompasses most of the proposed QIM formulations
so far, and it will be referred to as “lattice data hiding”. In the literature it is also usual
to find the nomenclature DC-DM, where DC-DM stands for “Distortion Compensation
- Dither Modulation” [63]. Other related family of quantization-based methods is
Spread Transform - Dither Modulation (ST-DM) [63],[108], which combines certain
characteristics of spread spectrum and QIM methods, although it is not specifically
addressed in this thesis.

Lattice data hiding methods have been widely studied during the last years. These
methods are the most significant representatives of the so-called “side-information”
paradigm for data hiding, which was mainly inspired by Costa’s result [83]. Much of
the interest in lattice data hiding schemes comes from the fact that they have been
shown to provide a practical, manageable construction for approaching the capacity
limit predicted by Costa [112]. Despite this interest, however, the security offered by
this kind of methods has not been properly addressed so far; the existing results are
more focused on practical approaches [61, Section V-D],[45],[46].

This chapter is organized as follows: Section 5.1 introduces the theoretical model
for the study of lattice data hiding methods and their security. Section 5.2 studies the
security in the KMA and CMA scenarios, characterizing the influence of the embedding
parameters. The security in the WOA scenario is addressed in Section 5.3, putting
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special emphasis in the comparison between KMA and WOA, and in the possibility of
achieving perfect secrecy. In Section 5.4, the security of lattice data hiding schemes is
linked to that of Costa’s set-up [83]. Finally, in Section 5.5 the main conclusions are
summarized and some remarks are given.

The main notational conventions followed throughout this chapter are the following:
random variables and their occurrences are denoted by capital and lowercase letters,
respectively; boldface letters denote column vectors, whereas scalar variables are rep-
resented in non-boldface characters. Calligraphic letters are reserved for sets. The
volume of a bounded set X € R" is denoted by vol(X), whereas the cardinality of a
discrete set C with a countable number of elements is denoted by |C|. The indicator
function, denoted by ¥5(-) and defined as

1, zeB
d5(z) = { 0, otherwise, (5-1)

will be widely used throughout the text. The expectation of a function ¢(X) over
X is denoted by E[p(X)]. The p-ary alphabet that represents the messages to be
transmitted is defined as M = {0,1,...,p — 1}. The “messsage space”, defined as
MNe & M x ... x M, represents the p™° possible message sequences that can be
formed with such an alphabet in N, channel uses. The sequences in M?™ can be
arranged using any arbitrary ordering (their value in base p, for instance), not relevant
for our analysis. The notation m®*) = [m¥, ... m% ] will be used for indexing the kth

sequence in MNe,

5.1 Theoretical model of lattice-based data hiding

This section introduces the mathematical model for lattice data hiding and the
lattice constructions used in the paper. As this introduction is not intended to be
exhaustive, the interested reader is referred to [82] for a comprehensive description of
lattices, and to [174] for a more complete description of lattice codes for data hiding.

5.1.1 Lattices and nested lattice codes

We introduce in this section a series of concepts about lattices and nested lattice
codes necessary for the security analysis.

Algebraically, a lattice A is defined as a discrete subgroup of R™ endowed with the
natural addition operation. A lattice in n-dimensional space can be generated by any
integer combination of a set of n linearly independent basis vectors {vy,...,v,}, which
form the “generating matrix” of A, defined as

M2 [vy,...,v,] (5.2)
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Hence, any point v € A can be written as
u=M"z, forz € Z". (5.3)

Every lattice has an associated nearest neighbor lattice quantizer which maps any
vector x € R™ to the nearest lattice point of A, and is defined as

Qa(x) = arg min{[x —ull}, (5:4)
where || - || denotes the Euclidean norm. Ties in (5.4) can be broken arbitrarily but

systematically. The fundamental Voronoi region of A, a concept that will be frequently
recalled in this paper, is defined as

V(A) £ {x € R": Qx(x) = 0}, (5.5)

and corresponds to the n-dimensional polytope wherein all points are quantized to 0.
The union of all the lattice points along with the properly translated Voronoi regions
tessellates R", i.e.

R"=A+V(A). (5.6)
This, together with (5.4), implies that any point x € R" can be uniquely written as
x = Qr(x) + €, (5.7)

where e € V(A). The volume of a lattice A is defined as the volume of its Voronoi
region, and it is computed as

vol(V(A)) = / dx = det M, (5.8)
V(A)
where M is the generating matrix defined in (5.2). We will also define the modulo-A
reduction of a vector x € R" as
x mod A £ x — Q) (x),

and the modulo-A reduced vector will be denoted by x. Notice that X € V(A), and it
can be regarded as the quantization error resulting from the quantization operation.

Other important parameters of lattices that will be used in this chapter are the

following:

e Second order moment per dimension:

o 1y [xlPdx

P@) = n VOI(V(A)) 7 (5.9)

which measures the MSE distortion incurred when using A as a quantizer.
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e Normalized second order moment:

2 PWY - (5.10)

c4) vol(V(A))=

which measures the goodness of A for quantization in MSE terms.

e The “covering radius” of the lattice A:

r.(A) £ min{r : V(A) C B(0,7)}. (5.11)

The application of lattices to data hiding is based on the concept of “lattice parti-
tioning.” Given a certain lattice A, we can define a sublattice A" which is a subset of
the points in A (i.e. A’ C A) and is itself a lattice. The set {u+ A’}, with u € A, is
known as a coset of A’. Due to the periodic structure of lattices, there exist infinite u
that yield the same coset. The vector u with the smallest Euclidean norm is termed
a “coset leader.” From the definitions of lattice and Voronoi region, it follows that
the coset leaders always belong to V(A’). The set of all cosets of A’ with respect to
A is called the “partition” of A induced by A’, and it carries a group structure with

the natural addition operation. It can be proved that the number of different cosets is
» vol(v(a))

vol(v(a))
the lattice A, i.e. Ui;é d, + A" = A, where d;, denotes the coset leaders.

given by the so-called “nesting ratio = p. The union of the p cosets yields

A nested lattice code is defined by two parameters: a shaping (coarse) lattice A and
a fine lattice Ay such that A C Ay. The pair (A, Ay) defines a partition which in turn
yields a set of p coset leaders or codewords C, = {d;, k € M}. Each letter k € M
is mapped to one coset leader d; € C,, and thus to the kth coset of A. Although the
mapping between elements of M and C can be arbitrary, we will assume that the letter
0 corresponds to dyg = 0. Nested lattice codes can be constructed in a number of ways.
Although most results in this chapter are quite general, we focus in some cases on two
particular constructions, given their importance: the self-similar lattice construction
[116] and the so-called “Construction A” [82],[111].

In the self-similar construction, the nested code is obtained as follows:!

1. Define a positive integer p% € N, where n is the dimensionality of A.

2. Compute the fine lattice as A = p’%A. It follows that the lattice A is a sublattice
vol(v(a))

volviayy — P and an embedding rate R =

of Ay, resulting in a nesting ratio

log(p)/n.

More general self-similar partitions consider also rotations of A [79], but we will restrict our
attention to those obtained through scaling.
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Figure 5.1: Nested lattice codes of rate R = log(9)/2 with hexagonal shaping lattice, obtained by
means of self-similar construction (a) and with Construction A (b). The Voronoi regions of Ay and A
are represented by thin and thick lines, respectively.

3. Obtain the set of coset leaders C, as Ay N V(A).

In Construction A, the nested lattice code is completely specified by a “generating
vector” and the lattice A. It is summarized as follows:

1. Define a positive integer p and a generating vector g € Z, where Z, = {0,1,...,p—
1}. Compute the codebook Q = {c € Zy:c=k-g modp, k€ M}, which is
contained in the hypercube [0, p)". Then, construct the lattice ' = p~1Q + Z".

2. Define the generating matrix G € R™" (where each column is a basis vector)
of the coarse (shaping) lattice A. Apply the linear transformation Ay = GA'.

It immediately follows that A is a sublattice of Ay and the nesting ratio is
vol(v(a))

ol = P resulting in a coding rate R = log(p)/n.

3. The set of coset leaders C, is given by A;NV(A), or equivalently, p"'GQ mod A.
Notice that the mapping between the letters of the alphabet and the coset leaders
follows directly from the construction procedure.

The advantage of Construction A over the self-similar construction is that it allows
to build codes of arbitrary rate (without the restriction p% € N). Moreover, if p is
chosen as a prime number and A is a good lattice for MSE quantization, then good
(asymptotic) properties of the code are ensured [111].
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Examples of 2-dimensional nested lattice codes are shown in Figure 5.1, using a
hexagonal shaping lattice and p = 9. For Construction A, the generating vector g =
[1,2]7 was chosen. In both cases, the lattice points belonging to the same coset are
represented by the same symbol. Notice that (as in Figure 5.1(a)) a coset leader may
fall exactly in the frontier between several quantization cells.

5.1.2 Embedding and decoding

The mathematical model for lattice data hiding is shown in Figure 5.2. First, the
host signal is partitioned into non-overlapping blocks X, of length n. The message
to be embedded may undergo channel coding, yielding the symbols M € M. In our
setup, the messages embedded in different blocks are assumed to be equiprobable in
M and mutually independent, unless otherwise stated. © represents the secret key,
shared between embedder and decoder. The parameter T = (@) is a n-dimensional
vector, termed “secret dither,” which is used to randomize the embedding and decoding
functions. This vector plays the role of secret key. In the lattice DC-DM scheme, each
letter M, is embedded in one block X} by means of a randomized lattice quantizer as
shown in Figure 5.2. First, using T, M} and A (the shaping lattice), the coset Uy, T =
A+dy;, +T is obtained, where dyy, is the coset leader associated to M. Thereafter, the
block X}, is quantized to the nearest point in Uy, T and the resulting quantization error
is computed. Finally, this quantization error is scaled by the “distortion compensation
parameter” « € [0, 1], and added back to X in order to obtain the marked block Y.
Mathematically, this is expressed as

Afk,T<

where Qy,, (X) is a nearest-neighbor quantizer whose centroids are distributed ac-
k>

cording to Uy, . Taking into account that Qx1p(x) = Qa(x — p) + p, the embedding

function (5.12) is usually implemented in practice by means of a “dithered” lattice
quantizer as follows:

Y5, = Xj + a(Qa(Xp —dpy, — T) — X, + dpy, + T). (5.13)

Notice that Eq. (5.13) is equivalent to (5.12) and to the embedder depicted in Figure 5.2.
The distortion caused by the embedding process can be computed by resorting to the
usual assumption (a.k.a. “flat-host assumption”) that the variance of the components
of Xy is sufficiently large, in such a way that the host distribution is uniform inside
each quantization cell. Thus, from (5.13), the embedding distortion per dimension in
a mean-squared-error sense results in

1
D, = EE 11Xk = Yi|[?] = a*P(A), (5.14)
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Figure 5.2: Block diagram showing the lattice data hiding model. The parameter T is the secret
dither.

where P(A) denotes the second-order moment per dimension of the Voronoi region of

A, defined in Eq. (5.9).2

The most popular decoders are those termed “lattice decoders”, where the em-
bedded message is estimated by choosing the coset which is closest to the received
(attacked) vector Zy = ¥(Y}), where ¥(-) represents the transformation applied by the
attacker to Y. Hence, the lattice decoder can be mathematically formulated as

1, = min {1Qa (%1 — dyy = T) — Z,+ d,, + T} (5.15)
where || - || denotes the Euclidean norm. Bear in mind that the decoder needs the

correct realization of T for successful performance. Traditionally, the attacker designs
the function 9J(-) without taking into account the secret dither T. In this thesis,
however, the attacker focuses his strategy on T, as explained below.

5.1.3 Problem formulation

It is assumed that the attacker manages to gather an ensemble of marked blocks
{Yy, k=1,...,N,}, which may belong to different host signals, but all of them were

2Thanks to the flat-host assumption, the analysis of lattice data hiding methods is independent of
the actual host statistics.



94 Security of Lattice-Based Data Hiding: Theory

marked with the same secret key, and hence with the same secret dither vector T.
Under the assumptions of Chapter 2, the attacker knows the embedding parameters
being used, i.e. A, C,, and o, whereas he ignores the host blocks X}, the embedded
symbols My, and T. The objective of the attacker is to estimate this secret dither T.
The first step performed by the attacker is the modulo reduction of the marked blocks
as Y, 2 Y, mod A. Under the flat-host assumption introduced above (Sect. 5.1.2),
such modulo reduction does not imply any loss of information for the attacker, as
discussed in [188]. Note that (5.13) can be rewritten as

where Uy, £ X, — dy, — T and N, 2 Uy, — Qa(Uy). Thus, the modulo-A reduced
observations seen by the attacker are given by

Y = (dy, + T+ (1—a)N;) mod A. (5.17)

From (5.17), it becomes clear that the secret dither T is concealed by the transmitted
message M and by the host-interference N,. The parameter o controls the amount of
host-interference or “self-noise”, thus affecting the robustness of the lattice data hiding
scheme. However, from a security standpoint, one can take benefit of the randomness
introduced by the self-noise for achieving good secrecy and complicating the attacker’s
task, as will be seen in Section 5.3.1. As for the secret dither T, its statistical distri-
bution will be fixed later according to the result of Lemma 5.2, in order to maximize
the equivocation.

The statistical distribution of the observations seen by the attacker can be easily
identified by recalling the flat-host assumption, which makes N, uniformly distributed
in V(A). Hence, it follows from (5.17) that

p(x) = f(Filme =0,£ =0) = (vol(Z(A)))™"+ dzn)(x)
_J l(Z2(0) 7, x€ 2(A)
N { 0, otherwise, (5.18)
with Z(A) £ (1 — a)V(A). Using again the flat-host assumption,
f(Filme, t) = (¥4 — dm, =t mod A). (5.19)

Hence, f(y4lt) = 2320, Lo f(Filmu. t), and f(3,,) = [ f(Filt) f(t)dt.

5.2 Theoretical analysis of the KMA

When a sequence of marked signals {Y1,..., Yy, } and their associated messages
{My, ..., My,} are observed, the information leakage about T is calculated as

I(Yy,....YN, T|My,...,My,) = h(T) = h(T|Y1,....,Yn, M, ..., My,), (5.20)
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where we have made use of the mutual independence between T and the embedded
messages, also assumed to be mutually independent. Recall that the second term in
the right hand side of (5.20) represents the equivocation about T, which measures the
remaining ignorance about the secret dither. Thus, the appropriate distribution for
T should be chosen in order to maximize the equivocation. To this end, let us first
introduce the next definition:

Definition 5.1. The “feasible region” of the secret dither is defined as the support of
its conditional pdf after N, observations.

The next property will be widely used throughout the text.

Property 5.1. The feasible region is bounded by
No

Sx, 2 (D,
i=1

where

D; £ (y;,—dm, — Z(A)) mod A, i=1,...,N,. (5.21)

Proof: Application of Bayes’ rule yields

SV YN, ma, . my[t) - f(E)
JFi- YN, M-, my,)
S yw,ma, - me,, t) - f(E)
fis s ¥n,Ima, . ma,)

f(t‘yla-"ayN,,amla"'amNo) =

, (5.22)

where y, € (d,, +t + Z(A)) mod A, i =1,..., N,. Notice that each random variable
Y, is a function of the triple (X;, M;, T), and the host samples X; in our model are
mutually independent. This means that the observations {Y;} are conditionally inde-
pendent given the dither; hence, Eq. (5.22) can be rewritten as

f@IYy, - YN, M, my,)

- f(t) - Hf\iﬁ (yilma, t)
B f(yl""’yNo‘mb'"amNo) (523)

f(ylv"‘7}~’No|m1""7mNo) 7 '

where (5.24) follows from the flat-host assumption. By recalling Eq. (5.19), it is clear
that each term in the numerator of (5.24) is nonzero iff (y, — d,,, —t) mod A € Z(A),
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or equivalently, iff t € D;, with D; given by (5.21). Hence, it is clear that the feasible
region of t is contained in ﬂf\i’l D;, independently of the distribution of T. ]

Consider now the following definition.

Definition 5.2. A set S is said to be modulo-A convex if there exists r such that
S — Qa+r(S) is convex.

The notion of modulo-A convexity is key to our analysis, due to the next property.

Property 5.2. For a > 0.5, the feasible region Sy, is always a modulo-A convex set.

Proof: Let us define
Vi2 (Y, —dy,—T) modA (5.25)
and D, £ vV, — Z(A), fori =1,...,N,. By recalling (5.17), it is clear that V; ~

U(Z(A)). If a > 0.5, then V; +r € V(A), ¥V r € Z(A). Hence, D; C V(A), and
obviously (), D; C V(A). Since Dj, i = 1,...,N,, are convex sets, their intersection
is also a convex set. Taking into account that D; = (T + D)) mod A, the property

follows. ]

The use of @ < 0.5 may lead to non-convex feasible regions, as illustrated in
Figure 5.3(b), where the feasible region for the dither is composed of three differ-
ent modulo-A sets. However, as can be seen in the proof of Property 5.2, under the
assumption of a > 0.5 it is possible to find a shifted version of the problem such that
the feasible region is always modulo-A convex, according to Definition 5.2. This prop-
erty permits us to drop out the modulo operation from the expressions of the feasible
regions. Bear in mind that the entropy is invariant to translations, so this simplifica-
tion does not change the results. In the remainder of this chapter we will work under
the assumption of o > 0.5.

The next result shows that perfect estimation of the secret dither in the KMA
scenario is always possible.

Lemma 5.1 (Asymptotic convergence of the feasible region). If the secret

dither takes the value t, then Sy, converges almost surely to t as N, — oc.

Proof: See Appendix C.1. [ |

Although estimation of the secret dither is possible, different choices of the statis-
tical distribution of T will yield very different security levels. The maximization of the
security level is the subject of the next result.
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Figure 5.3: Illustration of a non-connected feasible region for two observations using small a. In
(a), the solid lines are the Voronoi regions of A, and the feasible regions for the centroids defined
by each observation are the shaded ones. The figure depicted in (b) is the modulo-A reduction of
the intersection between the shaded regions in (a), showing three resulting modulo-A convex regions
(illustrated with different shadings).

Lemma 5.2 (Maximization of the equivocation). The equivocation for any N, >
1 is maximized for T ~ U(V(A)), yielding a conditional pdf uniformly distributed in
SNO, that is

(VO] (SND))il , te SNO

f(t|Y17'"7YNO7m17‘--7mNO) - { 0 otherwise. (526)

Proof: By the definition of residual entropy, we have
MTIY 1, ..., Y, My, ..., My,) = E[MT|31, .., ¥n s ma,)l, (5.27)

where the expectation is taken over the joint pdf f(y,,...,¥n,,m1,...,mn,). Since
the feasible region of the dither is bounded by Sy, its entropy will be maximized when
the dither is uniformly distributed in Sy, i.e,

MTIY 1, ..., Y, My, ..., My,) = —Eog(T|§1,.,Tn, M1, .-, mn,)]
< FEllog(vol(Sn,))]- (5.28)

Since the denominator of (5.24) does not depend on t, then the choice T ~ U(V(A))
suffices for achieving such distribution, and hence equality in (5.28). n
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The optimal distribution resulting from Lemma 5.2 also brings additional desirable
properties: it provides statistical independence between the self-noise and the host
signal [204], and most important, it does not prevent from achieving capacity in the
Gaussian channel in the asymptotic set-up (n — oo) [112]. Hence, the choice of
T ~ U(V(A)) is “good” from the robustness and security points of view, and this will
be the chosen distribution in the remaining of this chapter unless otherwise stated.
Hence, by combining Property 5.1 and Lemma 5.2, the residual entropy results in

h(T|Y17 s 7?1\707 M17 ) MNo) = E[log(VOI(SNo))]J (529)

where the expectation is taken over the joint pdf of the observations. In case of one
observation (N, = 1) we have

h(T|Y 1, My) = log(vol(Z(A))) = log((1 — a)"vol(V(A))), (5.30)
and the information leakage is given by
[(Y1; T|My) = b(T) — h(T|Y1, My) = —nlog(1 — ) (5.31)

for all a € [0, 1], independently of the specific lattice chosen for embedding. This
result clearly shows a trade-off between security and achievable rate: theoretical anal-
yses [108], [112] show that, in AWGN channels, the value of a must approach 1 for
maximizing the achievable rate in the high-SNR region. However, from (5.30) we have
that lim,_; h(T|Y1, M;) = —o00, meaning that one observation suffices to get a perfect
estimate of the secret dither. The intuitive interpretation is easy: for o =~ 1, one obser-
vation is enough for pinpointing the exact location of one centroid of the lattice; given
the structure imposed to the codebook, this observation provides all the information
about T.

If N, > 1, the security level of the lattice data hiding scheme is very much dependent
of the chosen lattice when o < 1, as will be seen in the subsequent sections. Now we
will try to shed some light on two fundamental questions:

1. Given n, what is the best lattice (if any) in terms of security?

2. Does an increase of n improve the security level?

In order to provide a fair comparison between different lattices, they are scaled so as
to present the same embedding distortion. For computing the residual entropy, the ex-
pectation in (5.29) must be taken over f(y,,...,¥n,, M1, .., my,), but the conditional
pdf of T, given by (5.26), does not depend on the specific sequence of messages embed-
ded, as long as the latter is known; this implies that, for the expectations, the message
sequence can be assumed to be deterministic. Since it is not always possible to obtain
closed-form expressions for the information leakage (even for low-dimensional lattices),
we must resort in general to Monte Carlo integration and bounding techniques.
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5.2.1 Equivocation for the cubic lattice

For the scaled cubic lattice®> AZ"™ = (xy,...,1,), ¥; € AZ it is possible to obtain a
closed-form expression for the residual entropy. From Eq. (5.29), the residual entropy
is given by the expectation of the log-volume of the feasible region for the dither. Since
the latter for the cubic lattice is always a hyperrectangle, using Property 5.2 we can
write

Ellog(vol(Sn,))] = Z Ellog(Wy)] = n - Ellog(W)], (5.32)

k=1

where Wy, is the random variable that measures the length of the feasible interval in
the k-th dimension, and the last equality follows because the quantization step is the
same for all dimensions. The random variable W is given by

W = vol([ (Vi — 1)), (5.33)

with V; a random variable uniformly distributed in
T2 [-(1-a)A/2,(1—a)A/2).

Hence, the problem is reduced to a scalar subproblem consisting in computing F[log(1V)],
i.e., the residual entropy in one dimension. The final expression of the residual entropy
per dimension is expressed in the following theorem, which is proven in Appendix C.2.

Theorem 5.1 (Equivocation for the cubic lattices). The equivocation per dimen-
sion for the cubic lattice is given by

I0(TY1,..., Yy, Mi,..., My,)
= log((1 —a)A) — Hy, +1

1 —
= log(v12D,) — Hy, + 1+ log (—a) , for a > 0.5, (5.34)
o

where
No
1
A
HNo: E -
L~
=1

is the N,th harmonic number [17], D,, is the embedding distortion according to (5.14),
and we have taken into account that D, = aP(A) = aA?/12.

3We consider the same quantization step in each dimension, although the results can be straight-
forwardly extended to a more general case.
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5.2.2 Numerical computation of the equivocation

When the analytical evaluation of (5.29) becomes intractable we resort to Monte
Carlo integration. The fact that the feasible region is reduced with each new observa-
tion makes necessary an additional task of computing a tight region of integration so
as to preserve the accuracy of the Monte Carlo method (as will be seen in step 3 of the
algorithm outlined below). In order to give a comparison between different standard
lattices, we consider the root lattices and their duals (the best known lattice quantizers
for n < 8), namely A, (hexagonal lattice), D3, Dy = D}, Ds, FE7, Eg = E§. For their
definition and properties, see [82], [81]. All these lattices are scaled so as to present the
same embedding distortion per dimension as the cubic lattice AZ" with A = 1, that
is, D, = 1/12. The scaling factor A to be applied to any lattice can be obtained as

Al (G(A)l -vol(V(A)>—%) | (5.35)

(NI

12

where G(A) denotes the normalized second order moment per dimension of A. The
procedure followed for the Monte Carlo simulations is briefly outlined in Algorithm 5.1.

After performing the corresponding numerical optimizations, the results of Monte
Carlo integration indicate that the lattice A’ that maximizes the residual entropy
for each n is that with the best mean-squared quantization properties. This can be
formally expressed as

A} = arg min G(A)
AeLy (5.36)
subject to P(A) = constant

where £,, is the set of root lattices of dimensionality n < 8. Notice that A} maximizes
vol(V(A)) for given n and P(A), and consequently A’ has the highest a priori entropy in
L, due to the uniformity of T. For illustration purposes, Figure 5.4 gives a comparison
between the residual entropy per dimension using the cubic lattice and that using some
of the root lattices. Although we do not claim that the above result holds for the whole
set of lattices with arbitrary n, at least it suggests that the security level of a lattice
data hiding scheme can be improved by increasing n and choosing the lattice A with the
lowest G(A). This leads us to conjecture that a hypothetical spherically-shaped Voronoi
region will provide an upper bound to the residual entropy, since the sphere is the region
of R™ with the smallest normalized second order moment. This is indeed so for the
set of lattices considered in our experiments: as an example, the result obtained with
the 8-dimensional sphere (also obtained through Monte Carlo) is plotted in Figure 5.4.
Unfortunately, the space can not be tessellated with spherical regions (except for n =
1), so it is not possible to construct “spherical” lattice quantizers; nevertheless, as it
was shown in [222], as n increases there exist lattices whose normalized second order
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Algorithm 5.1 Numerical computation of the equivocation for a generic lattice

1. We assume without loss of generality that t = 0. Hence, a sequence of N,
observed vectors uniformly distributed in (1—a)AV(A), with A such that P(A) =
1/12, is generated.

2. V(A) is outer bounded by a hypercube whose edge length is twice the covering
radius [82] of A. This gives an outer bound to D; (Eq. (5.21)), which is used to
compute an outer approximation Sy, of the feasible region.

3. The feasible region resulting from the previous step (which is a hyperrectangle)
is shrunk along each dimension so as to tightly bound the true feasible region
Sy,. This is accomplished by means of a bisection algorithm which looks for the
tightest limits of the outer bounding hyperrectangle in each dimension. The need
for this step is justified by the fact that, for large N,, the ratio vol(Sy, )/vol(Sx,)
becomes too large, affecting the accuracy of Monte Carlo integration.

4. A large number of points uniformly distributed in the hyperrectangle of the pre-
vious step is generated. For each of these points, it is checked whether it belongs
to ﬂf\f:ol D;; if so, the considered point belongs to Sy,. Finally, the log-volume of
Sn, is computed by Monte Carlo integration, and the residual entropy is obtained
by averaging the log-volume over a large number of realizations. In steps 3) and
4), fast quantizing algorithms [80] are used.

moment tend to that of a sphere.* The security of lattice DC-DM using this type of
lattices is studied in the next section.

5.2.3 Bounds and asymptotics on the equivocation for “good” lattices

Throughout this section, we will make use of two assumptions:

1. a > 0.5;

2. we are using A*, the optimal (in an MSE sense) n-dimensional lattice quantizer.

As discussed in the proof of Property 5.2, Assumption 1 makes the modulo operation
transparent for the computation of the entropy, since this is invariant to translations.
Making use of the chain rule for mutual informations [84] we can write

4Moreover, this is a necessary condition for the lattices in order to achieve the channel capacity in
the lattice DC-DM scheme [112].
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Figure 5.4: Equivocation per dimension for different lattices. All plots for the root lattices (but for
the cubic one, which is theoretical) were obtained through Monte Carlo integration. The asymptotic
limit corresponds to Eq. (5.41). The embedding distortion in all cases is Dy, = a?/12, with a = 0.5.

I(Yq, ..., YN, T|My,..., My,)

= ](?1, T|M1) + [(?2, e >YNO; T|Y1, Ml, ey MN0>

= ](Yh T|Ml> + ‘[<Y27 R 7YN0; T/‘M27 ) MNo)? (537)
where T' ~ U((1 — «)V(A?)) is the dither conditioned on the first observation (as it

follows from Property 5.1 and Lemma 5.2). Thus, each new observation conditioned
on Y; and M, can be written as®

Y, =Z+T +dn, i=2,...,N, (5.38)

where Z; £ (1 — a)(X; — Qa:(X;)) is the self-noise term, with the same statistical
distribution as T’, and hence with second moment per dimension (1 —«)?P(A%). From
Eq. (5.37), it can be seen that the following equality holds:

MT|Yqy,... .Yy, M, ..., My,)=hT|Ys,....Yn, My, ..., My,), for N, > 2,
(5.39)

5As discussed before, the residual entropy in the KMA scenario does not depend on the specific
message sequence as long as this is known, so we consider d,,,, = 0V i = 1,..., N,, without loss of
generality for the remaining of this section and in the corresponding appendices.
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so we can use the second term of (5.37) for obtaining a lower bound on the equivocation
per dimension, as shown in Appendix C.3:

0T Y, ..., YN, Mo, ..., My,) >

% log (282;) - (NOQ_ D log (2meP(A})) — %log(No) +log(1 — ). (5.40)

This lower bound is loose for small n, but the next result demonstrates its asymptotic
tightness.

Theorem 5.2 (Asymptotic equivocation for good lattices). In the limit when
n — oo, using the optimum lattice quantizer A, the equivocation per dimension in
lattice DC-DM is given by

1 - .
lim —A(T'|Ys,.... YN, Ms, ..., My,)

n—oo M,

1 1 1
=3 log(2meD,,) — 3 log(N,) + log (_oz) , for N, > 2, (5.41)
a
where D, is the embedding distortion per dimension (5.14).

Proof: See Appendix C.4. [ |

Notice that when n — oo, (5.40) coincides with (5.41), because G(A}) — 1/2re.
The first term in (5.41) accounts for the relation between the embedding distortion and
the a priori entropy of the secret dither. The second term tells us how the equivoca-
tion decreases with N,, and the third term shows the dependence with the distortion
compensation parameter «, which basically introduces a constant shift in the equiv-
ocation curve (recall that for a = 1, the residual entropy is —oo for N, > 1). The
asymptotic value of the equivocation is plotted in Figure 5.4 for reference, showing the
gap with the root lattices studied before. The above theorem is the formal statement
of a more intuitive result: the Voronoi region of A* tends to a sphere, and in turn the
uniform distribution in V(A}) tends asymptotically to a Gaussian distribution (in the
normalized entropy sense) [222]; hence, roughly speaking, each modulo-A reduced ob-
servation (Eq. (5.38)) becomes closer to a Gaussian distribution with variance D,,/a?,
whose mean is given by the secret dither (also with the same statistical distribution).
This interpretation brings more insight in the comparison of the theoretical security
between lattice DC-DM and additive spread spectrum methods, whose embedding
function is given by Eq. (3.2). Notice that the resemblance between this embedding
function and (5.38) implies similar security properties for both methods. Considering
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Figure 5.5: Comparison, in terms of equivocation per dimension, between lattice DC-DM and additive
spread spectrum. « = 0.7 for DC-DM.

that X; ~ N(0,0% -I,) and S ~ NV (0, 0% - I,), it was shown in Section 3.3.1 that

1 1 1 D,
—h(S|Y1,...,Yn,, My,...,My,) = s log (27eD,,) — - log | 1 + No— |,  (5.42)
n 2 2 %

where now D,, = o%. It can be readily seen that the decrease in the equivocation for
additive spread spectrum is determined by the ratio 0% /0%, which is usually very small
due to imperceptibility constraints. Instead, for the lattice data hiding scheme after
the modulo-A reduction, the power of both the watermark and the host interference
are the same, i.e., (1 — @)?P(A}); this explains the term }log(N,) in (5.41) and the
rapid decrease of the equivocation, compared to that of (5.42).

Figure 5.5 shows a comparison between lattice DC-DM and additive spread spec-
trum for different values of embedding distortion, parameterized by the DWR.

5.2.4 Bounds on the estimation error

We resort here to the lower bound on the estimation error provided by Lemma 2.3.
Let 0% denote the variance per dimension of the estimation error defined in Section 2.4.
Substituting Eq. (5.41) into (2.10), we arrive at the following bound for n — oo and
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the optimal lattice quantizer:

(1 —a)?P(A)
N, ’

o > (5.43)
The above bound is attained using the simple averaging estimator, but taking into
account that the observations must be properly shifted in order to avoid problems with
the modulo-A reduction; thus, if we define

then the optimal dither estimator for A*, n — oo, is given by

N,
A - 1 =
tav = (yl — dm1 + ﬁo ZE 1 VZ> mod A. (545)

The achievability of (5.43) follows from the fact that, for A, the self-noise and the
secret dither follow asymptotically a Gaussian distribution as n — oo. Thus, this
result about the estimation error can be compared to the estimation error for the cubic
lattice; since we are interested in computing the behavior for large N,, we make use of
the approximation

HNU ~ log(No) + v,

JAN

which is asymptotically tight for large N,, with Hy, = EN" 1 the harmonic number

=1 4

and 7 the Euler-Mascheroni constant [17], defined as v £ limy, .o Hy, — log(N,). In
this case we have, using (5.34)

0% > - exp(2(log((1 - a)A) - Hy, +1))

2me
1
~ 5 exp(2 (log((1 — @)A) ~ log(N,) + 1 - 7))
1 (1—a)?A?
= o1 N2 ) (5.46)

Thus, the variance per dimension approximately decreases with the inverse of the
squared number of observations.

In order to illustrate the tightness of this bound, it will be compared with the exact
error variance of the optimal dither estimator. For the cubic lattice, dither estimation
may be carried out independently for each component without loss of optimality. It is
a well known result that the optimal dither estimator in a mean-squared error sense
is given by the mean value of the dither conditioned on the N, observations: in our
case, the ith component of the dither is uniformly distributed in an interval [zq, xs);
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hence, the optimal estimate is ¢ = (x1 4+ x2)/2, and the variance per dimension of the
estimation error is

- 1
oy =E[(T —1)?] = var(T) = o E[W?], (5.47)
where w = |zy — x1| is the width of the feasible interval, and the expectation is taken
over the joint pdf of the observations. Actually, this expectation may be computed by

replacing log(w) by w? in Eq. (C.3) of Appendix C.2, resulting in

(1 —a)?A?

1
- bmara 5.48
2 243N, + N2’ (5.48)

o} =
which for large N, is dominated by the term N?, differing from the right hand side of
(5.46) only in a constant multiplying factor. Note that due to the approximation of
Hy, used in (5.46), the latter is a lower bound only for N, > 2; nevertheless, making
use of the exact expression for Hy,, the right hand side of (5.46) can be shown to be
always lower than (5.48).

5.2.5 Constant Message Attack (CMA)

The discussion about the KMA case given above can be easily extended in order
to consider the CMA scenario. The easiest way of addressing this scenario is to regard
it as a collection of several KMA problems. When the message embedded is unknown
but unchanged for the whole sequence of observations, the conditional pdf of the dither
after IV, observations can be expressed as

—_

p—

f@Y, - YN, M., m), (5.49)
0

f(t|}~’17 cee 75’N07m) =

D=

3
]

where m stands for the constant message, and p denotes the size of the alphabet. This
means that the feasible region Sf,j‘“‘ for the dither in the CMA case is simply the
union of the feasible regions of p KMA problems. Formally,

|M|-1
S = | (Sn, +dn), (5.50)
m=0
with Sy, defined in Property 5.1. Using the result of Lemma 5.1, it follows that the
the different regions that constitute Sﬁj‘/[ 4 become disjoint for sufficiently large N,. In
such case, the residual entropy is again maximized if T ~ U(V(A)) is chosen, but it is
not necessarily the optimal distribution for all N,. Due to (5.49), the residual entropy
can be upper bounded as

h‘(T‘?la s 7YN07 CMA) < h(T’?la s 7?]\/0’ M1> RN MNo) + 10g<|./\/l’), (551)
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resulting in a lower bound to the information leakage. Equality in (5.51) is achieved
when the regions Sy, + d,, are disjoint, which means that, as N, increases, the bound
will be asymptotically tight. However, if the value of « is above a certain threshold
(which depends on the lattice partition) such regions are always disjoint, and the bound
is reached for all N,; this is the case, for instance, when a@ > ar = 1— %, for self-similar
partitions [174], [112].

Although the gap between KMA and CMA in terms of equivocation is small, the
CMA scenario introduces an ambiguity that makes impossible the perfect estimate of
the secret dither. This ambiguity will be formally stated in Lemma 5.4 and further
discussed in Section 5.3.2.

5.3 Theoretical security analysis of WOA

The amount of information that leaks from the observations is quantified by means
of the mutual information I(Yy,...,Yy,; T). Recall that, according to (2.21), this
mutual information can be rewritten in a more illustrative manner as

[(?1,...,?1\[0;’1‘)

= I(Y17---7YNO;T|M17---7MNO)_’_I(Yla---,YNo;Mla---;MNO)
I(Y1,...,Yn,: M,...,My,|T). (5.52)

The first term in the right hand side of (5.52) is the information leakage for KMA, which
was studied in Sect 5.2. The third term in the right hand side of (5.52) represents the
achievable rate for a fair user, i.e. knowing the secret dither T, whereas the second term
is the rate achievable by unfair users (which is not null, in general) that do not know
T. In this section we consider, first, the possibility of achieving perfect secrecy about
T. Thereafter, we study the asymptotic behavior of the information leakage about
T in other situations where perfect secrecy is not achieved, and finally we analyze a
practical lattice data hiding scheme.

The concept of feasible region, defined in Section 5.2, will be often recalled for
proving several results in the WOA scenario. However, this time it is necessary to
generalize the definition of feasible region to account for any possible embedded message
(since the true embedded message is a priori unknown). Therefore, in this section we
will take into account the next definition.

Definition 5.3. The feasible region for a sequence of observations {y,,k =1,..., N, }
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and a message sequence m®) | k=1,... pMe, is defined as
No
Sn,(m®) & (\D;(m}), (5.53)
j=1
Di(mh) £ (y,- d,; — Z(A)) mod A. (5.54)

5.3.1 Theoretical and practical perfect secrecy
If the lattice data hiding scheme fulfills the condition

I(Yl,...,YNo;T> = h(Y17"')?NO)_h(?17"'7?N0|T)
MT) — h(T|Yy,...,Yy,) =0, VN, (5.55)

then it is said to provide “perfect secrecy”, meaning that no information about T can
be obtained from the observations, no matter the computational effort employed by
the attacker. Under the assumption that T ~ U(V(A)), it is elementary to prove that
Y, is uniformly distributed over V(A). Hence, the closer is the distribution of Y
conditioned on T to the uniform over V(A), the more secure is the scheme. Once the
shaping lattice is fixed, the two free parameters for tuning such distribution are the set
of coset leaders C, and the parameter a. The possibility of achieving perfect secrecy
is considered below in Lemma 5.3 and Proposition 5.1. We recall that the messages
embedded in different observations are assumed to be independent.

Lemma 5.3 (Asymptotic perfect secrecy). Consider a sequence of nested lattice
codes (A, Cy) such that r.(Ay) — 0 as p — oo. If a < 1, this sequence of lattice codes
asymptotically achieves perfect secrecy as p — oo, and the statistical distribution of
Y, conditioned on T uniformly converges to the uniform over V(A), ¥V k=1,..., N,.

Proof: See Appendix C.5.5 [ ]

For the lattice codes considered in Lemma 5.3, the information leakage is reduced
as the size of the alphabet is increased, since the distribution of Y} is uniformly con-
vergent. Bear in mind that if the condition r.(Ay) — 0 does not hold (i.e. if the coset
leaders do not properly “cover” the whole Voronoi region of A), the resulting code does
not necessarily offer good secrecy, even for high embedding rates (see sections 5.3.3 and
5.3.4, which deal with a lattice repetition code). It must be observed that an infinite

6The condition o < 1 imposed in Lemma 5.3 comes from the necessity of having a continuous,
Riemann integrable pdf for our proof to be valid. The case a = 1, for which f(y,|t) becomes a
probability mass function, cannot be dealt with using the arguments of Appendix C.5.
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alphabet size is not affordable in practice. However, this choice of alphabet is used in
[112] for showing that a nested lattice code asymptotically achieves the capacity of the
modulo-lattice Gaussian channel. Thus, Lemma 5.3 shows, in conjunction with [112],
that simultaneous maximization of robustness and security is theoretically (asymptot-
ically) possible. Finally, we would like to remark that the result of asymptotic perfect
secrecy holds for any distribution of the secret dither T, not necessarily the uniform
over V(A) (cf. Appendix C.5). In the next proposition, a nested code achieving perfect
secrecy and realizable in practice is proposed.

Proposition 5.1 (Achievable perfect secrecy). Any self-similar lattice code of rate
R = log(p)/n and distortion compensation parameter o = 1 — p_% achieves perfect
secrecy. In that case Y, conditioned on T is uniform over V(A), Vk=1,..., N,.

Proof: Similarly to the proof of Lemma 5.3, the proof of perfect secrecy can be
reduced to showing that the resulting scheme fulfills the condition I(Y; T) = h(Y1) —
h(Y1|T) = 0.

For a = 1 —p~w, we have Z(A) = p~=V(A) = V(A;), so the pdf defined in (5.18)
is given by

p(x) =p- (vol(V(A)) ™" dvay) (%)
Hence, under the assumption of equiprobable symbols we can write

121

fFIT=t) = ]—)Zwb?l—t—di mod A)
i=0

= (vol(V(A))! z_: dvap(yr —t—d; mod A). (5.56)

Taking into account that self-similar partitions fulfill the next “covering property”:

@(V(Af) —t—d;) mod A =V(A), ﬁ(V(Af) —t—d;) modA=0, (5.57)

it follows that for every y, € V(A) there exists exactly one d; such that (y, —t — d;)
mod A € V(Ay). Hence, (5.56) becomes

f|T=t) = vy, eV, (5.58)

1
vol(V(A))
and h(Y|T = t) = log(vol(V(A))). Since the entropy of a continuous random variable
with bounded support is upper bounded by the log-volume of its support set, we can
write

h(Y1|T =t) < h(Y,) < log(vol(V(A))).
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Thus, we have h(Y1) = h(Y1|T) = log(vol(V(A))), resulting in a null information
leakage, and Y is necessarily uniform over V(A) regardless the distribution of T. m

Some important remarks to this result are given below.

Remark 5.1. The proof of perfect secrecy in Proposition 5.1 relies on the lattice code
itself rather than on the statistical distribution of T. Actually, the result holds for
any distribution of the secret dither T. However, it must be taken into account that
the value of o that provides perfect secrecy can be conflicting with other requirements
(e.g. error probability), so it is important to properly choose the distribution of T for
maximizing the security when perfect secrecy cannot be attained. This distribution
has been shown in [194] to be the uniform over V(A), which yields Y also uniform

over V(A).

Remark 5.2. It is possible to show that for ap = 1 — kp_%, k = 1,...,p% — 1, the
condition of perfect secrecy still holds. However, for k£ > 1 there are overlaps between
adjacent symbols that produce nonzero error probability even in the absence of noise.
This makes necessary the use of channel coding (i.e. error correcting codes) to recover
the embedded message reliably, thus breaking the hypothesis of independence between
messages embedded in different blocks. As a result, perfect secrecy about T cannot
be assured. To see this, consider a simple example with 2 observations {Yl,?g},
where the embedding parameters fulfill the conditions for perfect secrecy stated in
Proposition 5.1. The mutual information between observations and secret dither is
written as

I(Y1,Y5|T) = I(Yy; T) + I(Yo; T|Y), (5.59)

whereas the rightmost term of (5.59) can be written as I(Ya; T|Y1) = h(Yo|Y,) —
h(Y5|Y 1, T). Given only Y, no information about T is leaked, so h(Y2| Y1) = h(Ys).
Given T, we have that Yl and Yg are independent because M, My are independent.
Hence, h(Y5|Y1, T) = h(Y,|T), resulting I(Yy; T|Y;) = I(Y,; T) = 0. Now, consider
the case where M, M, are not independent. Given only Y7, no information about T
nor M is obtained, so we have h(Y3|Y;) = h(Y,) again. However, given Y; and T,
information about M; is leaked. Since M, is dependent on M, we have h(?lel, T) <
h(Y5|T), resulting 1(Y; T|Y1) > 0.

Remark 5.3. The proof of the proposition resorts to the flat-host assumption to show
null information leakage. This means that, in practice, small information leakages may
exist due to the finite variance of the host signal, which causes the host distribution
to not be strictly uniform in each quantization cell. However, this information leakage
seems to be hardly exploitable in practical attacks.

Remark 5.4. Perfect secrecy about T does not necessarily mean perfect secrecy about
the embedded messages. Using (5.52), the rate for the attacker under the condition of
perfect secrecy is given by



5.3 Theoretical security analysis of WOA 111

I(?l,...7YNO;M1,...,MNO>
=I(Yy,...,Yn; My, ..., My,|T) = I(Yy,...,Yn,; T|M, ..., My,). (5.60)

This “unfair” rate is studied in Section 5.3.3 for the repetition coding lattice scheme.

5.3.2 Asymptotic analysis and comparison with KMA

When perfect secrecy is not attained, a closed-form expression for the information
leakage cannot be given, in general. We are interested here in studying the general
behavior of the information leakage for large N, and comparing it with the KMA
scenario.

The next lemma shows that without the knowledge of T there exists an irreducible
ambiguity in the estimation of the embedded message sequence.

Lemma 5.4 (Equivalence classes in the message space). Given N, observations,
consider the a priori message space M™e where all the message sequences are assumed
to be a priori equiprobable. For m™, m® € MM let us define the equivalence relation

m(l) ~ m@) if [de, e ,de ]
1 No
=[(d,1 +d;) mod A,....(dy1 +d;) mod A, for some j € M. (5.61)

Each equivalence class is composed of p elements, and the sequences belonging to the
same equivalence class have all the same a posteriori probability.

Proof: By the additive structure of Ay, the operation d; = (dj + d;) mod A,
with [, k,j € M, defines a bijective mapping d, — d;. Then, for a message sequence

m® = [m},...,m} ], the operation

[(dy: +d;) mod A, ..., (dmleO +d;) mod A

yields p different sequences of length N, when j is varied from 0 to p — 1. Thus,
each equivalence class as defined in (5.61) is composed of p elements. The a posteriori
probability of a message sequence is derived in Appendix C.6. For a sequence m» ¢
MPNe | combining equations (C.56) and (C.60) of Appendix C.6 we arrive at

PrmW|y,,...,yy,) = Pr(dy,.. dpy 1,0, 5n,)

_ vol(Sy, (m™")) ~ Pr(m®)
= (vol(Z(A)))Ne - vol(V(A))  f(¥4,--- ’yNO)- (5.62)
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Now, let us define Sy, (m™)) = szol(ka—dmi —u—2(A)) mod A, with u an arbitrary
vector constant for all k. Clearly,

~

Sn,(m™") = (Sy,(m™) —u) mod A,

SO

vol(Sy, (m™M)) = vol(Sy, (m™M)).
Hence, if u = d;, then

[(dp: +u) mod A, ..., (dm}vo +u) mod A]

= [(dm% + dj) mod A, ..., (dm}v + dj) mod A] = [dm%, e ,dm?\[ ],
and it follows that vol(Sy,(m®M)) = vol(Sy,(m®)). Inserting this result in (5.62)
and recalling that the message sequences are assumed to be a priori equiprobable, the
lemma follows. L]

By virtue of Lemma 5.4, if the messages embedded in different blocks are mutually
independent, then the attacker can aspire (at most) at reducing the uncertainty about
the embedded message sequence to a set of p equiprobable sequences. The following
theorem states how this ambiguity affects the information leakage about T for large
N,.

Let us denote by L the elements of M with nonnull probability, given y, and t.
Note that for any nested lattice code there exists a value g such that for a > oy we
can assure Z(A) C V(Ay), so |Lx| = 1, i.e. error-free decoding is guaranteed in the
absence of noise. Obviously, ag > 0.5 in any case, although it will depend on the lattice
code, in general.

Theorem 5.3 (Asymptotics of the loss function for lattice data hiding). For
any nested lattice code, if v is chosen such that Z(A) C V(Ay), then

1 1
lim —0(N,) = —log(p) = R,
n

No—oco N

where 0(N,) is the loss function defined in (2.20).

Proof: See Appendix C.7. |

The result of Theorem 5.3 has two main implications:
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1. For low embedding rates (i.e. low R) the information per dimension that leaks
about T is approximately the same as if the attacker knew the embedded mes-
sages. This case is highly relevant in practice, since in practical scenarios the
watermarker usually resorts to low embedding rates that allow to recover the
embedded message without the use of complex channel coding schemes.

2. As shown in Appendix C.7, when N, — oo, the feasible regions associated to the
only message sequences with nonnull probability converge to p different vectors of
the form (t —d;) mod A, j € M, which are equiprobable. Thus, unambiguous
estimation of the secret dither vector is not possible in the WOA scenario. It is
interesting to note that this ambiguity also holds in the CMA scenario, which
was addressed in Section 5.2.5.

The values of a for which Theorem 5.3 holds guarantee that no decoding errors occur
in the absence of noise. However, in some cases it is advantageous to choose smaller
values of «, e.g. when a certain degree of attacking noise is expected [112],[108]. In
such cases, |£j| may be larger than 1, giving rise to several sequences with nonnull
probability, complicating the analysis of the loss function. However, for lattice codes
obtained through Construction A, the equivalence classes of Lemma 5.4 present a
simple structure. The equivalence relation (5.61) can be expressed as

mY ~m® if m® = (m® +;5.1) mod p, for some j € M, (5.63)

where 1 denotes the vector with its components equal to 1, and the modulo operation
is applied componentwise. The proof follows from Lemma 5.4 simply by observing that
(di +d;) mod A = d(k+j) mod p for Construction A. Using this result, a lower bound
for the loss function is derived in Lemma 5.5 below.

Lemma 5.5 (Bound on the loss function for Construction A). If « is such
that |Lg| < (ﬂ , Vk=1,...,N,, then, for any nested lattice code obtained through
Construction A, the asymptotic loss per dimension between the information leakage in

KMA and WOA, given by limy, .o ~g(N,)), is bounded from below by R.

Proof: See Appendix C.8. [ ]

The achievability of this lower bound is discussed in Section 5.3.3 for the repetition
coding lattice scheme.

Remark 5.5. If the messages conveyed by different observations were not independent,
the residual uncertainty expressed in Theorem 5.3 and Lemma 5.5 would be further
reduced. This is the case, for instance, when a channel code is applied, since it could
provide the attacker with information about the a priori probabilities of each message
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sequence. This consideration is important when high robustness against noise is sought
or when « is small, since the use of channel codes is mandatory in these cases for
lowering the decoding error probability.

5.3.3 Theoretical results for cubic shaping lattices with repetition coding

Lattice data hiding with repetition coding using scalar quantizers, also known as
Scalar Costa Scheme (SCS) with repetition coding [108], is one of the most popular
schemes for lattice data hiding. Redundant embedding of the information is performed
by repeatedly embedding the same message in n different host samples, using a pair
of scalar lattices A = AZ, Ay = AZ/p, which yield V(A) = [-A/2,A/2), and d), =
(Ak/p) mod A, k=0,...,p—1. For a n-dimensional host vector Xy, the embedding
function (5.13) is particularized to

Yii=Xpi +a(Qa(Xpi —du, — T3) — Xpi +du, +15), i =1,...,n, (5.64)

where the subindex 7 indicates the ith component of the n-dimensional vector. This
simple coding scheme, which results in a code of rate R = log(p)/n, is equivalent to a
code obtained through Construction A with g = [1,...,1]7 and A = AZ". Bear in mind
that, due to the redundant embedding of the message, the repetition scheme provides
the attacker with more information about the embedded message than a scheme where
n independent scalar embeddings are performed in parallel. Thus, one can intuitively
realize that the repetition scheme analyzed here is less secure than the simple SCS.
Figure 5.6 shows two examples of lattice repetition codes for n = 2. Although the
robustness of this data hiding code has been analyzed in depth in [75], here we are
interested in analyzing its security properties.

In order to obtain the information leakage, we rewrite the third term of Eq. (5.52)
as

I(Yy,....Y N, My, ..., My,|T)
= H(Ml,...,MNO)—H~(M1,...,MNolYl,...,YNO,T)
= N, - (log(p) — H(M[Y 1, T)). (5.65)
In turn, the second term in the right hand side of (5.52) can be expressed as
I(Yy,..., YN My, ..., My,) =N, - log(p) — H(M,,...,My,|Y1,...,Yn,).

By combining the two above equations with the information leakage for cubic lattices
in the KMA scenario (cf. Sect. 5.2.1), the information leakage per dimension reads as

1, < - N, N 1 . .
SI(Y1 Yy ) = CHOLYLT) — —H(My, . My, [Ya,.. V)
No 1
+ > = —log(l—a), N,>2 a>05. (5.66)

- 7
=2
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Figure 5.6: Illustration of repetition codes with n = 2 and A = 1. Figure (a) represents a code with
p = 2, where dots and squares represent the cosets for m = 0 and m = 1, respectively, and the fine
lattice Ay is the well-known “checkerboard lattice” [82]. Figure (b) represents a code with p = 3.
Notice that the coset leaders fall in the main diagonal of the Voronoi region.

Eq. (5.66) does not admit a closed-form expression, although it is possible to accurately
obtain the entropies of interest in a numerical manner.

Computation of the achievable rate for fair users

The first term in the right hand side of (5.66) represents the uncertainty about the
embedded message when the secret dither is known. Under the flat-host assumption,
we can write

H@LW¢Ty:meYbT:m:JﬂHmﬂwizﬁTzoﬂ, (5.67)

where the expectation is taken over Y;. The a posteriori probability of a certain
message m is given by

Pr(ml|y,t = 0)

_ S =0): Prlm) __Pr(m) 1T 40 1, =)

f(ylt =0) fylt=0) 5

p—1
h—OII@ dm) mMA%&m@eLM@+ZMerdM,@6&
k=0
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where g;, i = 1,...,n, are the components of y. From (5.68), we can see that the feasi-
ble messages (i.e. with non-null probability) are those whose coset leader is contained
in the interval given by (;_,(9; — dm — Z(A) mod A), and that the feasible messages
are equiprobable. Given the symmetry of the pdf of g;|t; = 0, we can write

H(M,|Y,,T=0)=E , for a > 0.5, (5.69)

log (ij Sr((A-k/p) mod A>>

where ¢y (-) is the indicator function defined in Eq. (5.1), and
HE [lrllax {Z;} — (1 —a)A/2, min {Z;}+(1 - a)A/Q) ,

with Z; ~ U((1 — a)[-A/2,A/2)).” Hence, the expectation in (5.69) is taken over Z;.
This expectation is obtained numerically by Monte Carlo integration.

Computation of the achievable rate for unfair users

The second term in the right hand side of (5.66) is given by

1 - - i
B [HOMy, . My, [Y1 =91, Yy, = yNO)] , (5.70)

where the expectation is taken over the observations. The a posteriori probability
distribution of the message sequences can be obtained by combining the equations

(C.56) and (C.60) of Appendix C.6. For a message sequence m™ = [mkF, ... m} |,

Pr(m’f,...,mfvo|yl,...,yNo)
Vi, Y Imb, o mk ol(Sy, (mF, ... ,mk
— Pr(m’f, o ,m’f\,o) . f(5 YN"| 1 NO) _Y (S, (my No)). (5.71)

No ~ ~ . No .
211‘0:1 f(YD e ayNoa m(l)) Z?:l VOI(SNO (m(l)))

For a > 0.5, the feasible regions involved in the calculation of (5.71) are always modulo-
A convex hypercubes [194], and as such they can be easily computed componentwise.
The entropy (5.70) is obtained by Monte Carlo, computing the probability of the all the
message sequences in a large set of realizations of Y.,...,Y ~,- Notice that, although
the cardinality of the message space grows exponentially with N,, only the message
sequences with non-null probability need to be taken into account, making the problem
computationally feasible.

"Hence, in the case of repetition coding the problem of computing H(M1|X~f1, T) can be seen as
the dual of the problem of computing h(T|Y1,...,Yn,, My,..., My,) for a scalar lattice, which was
addressed in Section 5.2.1.
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5.3.4 Numerical results

The results shown in this section support some of the conclusions drawn in sec-
tions 5.3.1 and 5.3.2. Figure 5.7 illustrates the information leakage about T for the
repetition code and provides a comparison with the results obtained for the KMA sce-
nario. Figure 5.7(a) shows the negative impact on the security level of increasing the
dimensionality whilst keeping constant the size of the alphabet. Figure 5.7(b) shows
the security improvement brought about by the increase of the alphabet size, although
this improvement is not very significant. Finally, notice in both Figure 5.7(a) and
Figure 5.7(b) that the loss between the information leakage for KMA and WOA tends
asymptotically to a constant. For the case of Figure 5.7(a), Theorem 5.3 holds, so the
asymptotic value of the loss is actually log(p)/n. In Figure 5.7(b), Theorem 5.3 holds
only for p = 2, although for larger values of p (for which Lemma 5.5 holds) the loss
can still be seen to be approximately log(2)/n. The loss is more deeply considered in
the next paragraph.

Figure 5.8 shows the loss function defined in (2.22) for two instances of the lattice
repetition code with different parameters. The code considered in Figure 5.8(a) is for
n = 1 and p = 2, which is equivalent to binary SCS [108], the simplest lattice code.
The marked signal observed by the attacker is (recall Eq. (5.17))

Vi = (dpy, + T+ (1 —a)N;,) mod A,

where Nj, is uniform over the interval [—A/2, A/2), with variance (1 — a)?A?/12. For
this code, the equivocation for a fair user is always 0 in a noiseless scenario whenever
a > 0.5 [108]. Thus, in this case the loss function is equivalent to the equivocation
about the embedded messages for the attacker, i.e. H(My,..., My,[Y1,....,Yny,). It
can be seen that the loss tends in all cases to log(2) as N, is increased, as stated
in Theorem 5.3, except in the case a = 0.5, where the loss increases indefinitely.
The explanation for this behavior is simple: according to the scheme proposed in
Proposition 5.1, the combination n = 1, p = 2 and a = 0.5 provides perfect secrecy
about T, so the secret dither cannot be disclosed, and consequently the embedded
message sequence cannot be reliably estimated. However, as mentioned in Remark 4 of
Sect. 5.3.1, perfect secrecy about T does not imply perfect secrecy about the message.
In fact, if perfect secrecy about the message were achieved, then the loss should increase
linearly in N,, but we can check in Figure 5.8(a) that it is far from being the case.
Finally, Figure 5.8(b) shows the loss for a repetition code with p =8, n = 10. Bear in
mind that this code provides error-free decoding only if « > 1 — 1/8. It can be seen
that for values of « sufficiently large, the bound given in Lemma 5.5 (log(8)/10 ~ 0.21
nats) is tight. However, for smaller values of «, the loss becomes slightly larger.
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Figure 5.7: Information leakage per dimension for DC-DM with repetition coding. Impact of the
repetition rate (a), and impact of the alphabet size (b).

5.4 Comparison: lattice data hiding vs. Costa

For the lattice data hiding scheme analyzed in Section 5.1, the entropy of the
codebook is rather limited due to the codeboook structure and the chosen form of
randomization, negatively affecting security. Lattice data hiding schemes are deeply
connected with the theoretical construction developed by Costa [83]. However, the
codebook in the latter is totally different, since it is random by definition. The main
purpose of this brief comparison is to quantify how much can be gained in terms
of security by using a codebook with these characteristics. The theoretical security
analysis for Costa’s scheme is due to Comesana [68] so its details will not be included
here.

In the following, U denotes the codebook of Costa’s construction. This codebook is
randomly generated, so it plays the role of secret parameter of the embedding function
to be estimated by the attacker. In Costa’s scheme, for the KMA case and N, = 1, it
can be shown that

(5.72)

MUY, M) _h@) 1, Dyt 0k
n on 2 %8 (1—a)20% )’

where 0% and D,, stand for host and watermark power, respectively, and h(U) denotes
the differential entropy of the codebook, given by

h(U) = g|b{| log [2me(D,, + a’0%)] .

Eq. (5.72) depends on the ratio A = 0% /D,, which quantifies the embedding distortion,
whereas |U/| depends both on A and on the ration D,, /0%, where 0% is the channel noise.
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Figure 5.8: Loss per dimension between KMA and WOA for DC-DM with repetition coding.

Interestingly, if we make A — oo (which corresponds to a low embedding distortion
regime), the information leakage for Costa tends to —nlog(l — «), exactly as for the
lattice scheme (see Eq. (5.31)). Actually, the information leakage in lattice data hiding
also depends on A, and in fact it is possible to compute this dependency numerically,
by means of numerical integration. In Figure 5.9(a), the information leakage for Costa
and scalar DC-DM (i.e., SCS) is shown. It is remarkable the striking similarity in the
behavior of both schemes. Furthermore, it can be seen that the asymptotic analysis
(DWR— o0) performed in this chapter for lattice data hiding is in good agreement
with the numerical results for the range of embedding distortions of practical interest.

Nevertheless, when the comparison between Costa and the lattice scheme is made
in terms of residual entropy, the similarities disappear (see Figure 5.9(b)): whereas
for the lattice scheme the entropy of the codebook is bounded by log(vol(V(A))), the
residual entropy in Costa’s scheme is unbounded when A\ — oo. The last fact is a
consequence of the codebook construction in Costa, where all codewords are mutually
independent and its number increases with A. This constitutes the main advantage, in
terms of security, of the random codebook scheme over the lattice scheme that relies
solely on dithering. For lattice data hiding, the number of codewords follow a similar
dependence with A, but every codeword just depends on A, the corresponding coset
representative, and the secret dither.

On the other hand, for the WOA case, and assuming that the watermarker is
transmitting information at the maximum reliable rate allowed by the channel, we
have for Costa’s scheme (with N, = 1)

(Y ;U) _ I(Y;U|M) _ I(Y; MU)
n B n n

. (5.73)
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Figure 5.9: Comparison of the security provided by Costa’s scheme and lattice DC-DM, in terms of
mutual information (a), and residual entropy (b) per dimension. WNR £ log;o(Dy/0%).

This result is clearly related to those given in (5.51) and Theorem 5.3 for the lattice data
hiding scheme. Here, we can see that the uncertainty about the codebook increases
exactly in the same quantity as the reliable transmission rate.

5.5 Conclusions

The main conclusion to be drawn from this chapter is that lattice data hiding
schemes relying only on secret dithering are vulnerable to security attacks both in the
KMA and CMA scenarios, and also in the WOA scenario if the embedding parameters
are not properly chosen.

Other important conclusions are summarized below:

1. The security is largely dependent on the distortion compensation parameter a.
Values of a close to 1 make the scheme extremely vulnerable to security attacks.
However, in the WOA scenario it is possible to make the scheme highly secure
by choosing the appropriate value of o and an appropriate lattice code, as stated
in Proposition 5.1. This implies the existence of a trade-off between security and
achievable rate in information transmission.

2. It has been shown in Section 5.2.2 that the embedding lattice plays an important
role in the security of the lattice data hiding scheme. The security level can be
increased by increasing the dimensionality of the embedding lattice and choosing
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that lattice with the best mean-squared error quantization properties, although
the gain for small n is rather limited. The best security level achievable for lattice
data hiding is conjectured to be given by those lattices whose Voronoi cells are
the closest (in the normalized second order moment sense) to hyperspheres.®

3. When the embedding distortion is sufficiently small (as it is the case in scenarios
of practical interest) the information leakage is virtually independent of the DWR,
contrarily to spread-spectrum methods.

4. Although it has been shown that it is theoretically possible to achieve perfect
secrecy, the security level of many practical scenarios (i.e., simple shaping lat-
tices, low embedding rates, etc.) can be fairly low. Asymptotic values for the
equivocation and the variance of the estimation error have been obtained, ex-
plaining the fundamental gap between the security of lattice data hiding schemes
and spread spectrum methods (without host rejection). The security level of the
lattice data hiding schemes has been found to be fairly lower than for spread
spectrum methods. The main reason for this gap lies in the host-rejecting nature
of the lattice data hiding scheme.

5. One obvious strategy for minimizing security risks is to reuse the secret key as
few times as possible, but this may introduce serious synchronization problems.
Another strategy is to look for more secure forms of randomization® or choosing
the embedding parameters that maximize the security. In general, the informa-
tion leakage about the secret dither can be reduced by increasing the embedding
rate or decreasing «, but this solution demands for more powerful error correcting
codes (ECC) if one wants to guarantee reliable transmission. A possible draw-
back, as noted in this chapter, is that the use of ECCs may introduce statistical
dependence between different observations that could be exploited by an attacker,
particularly for simple ECCs. The complexity of exploiting the information leak-
age provided by ECCs deserves further study in the future.

6. The comparison given in Section 5.4 shows that the security weaknesses of lattice
data hiding are not inherent to side-informed schemes, but they are due to the
fact that the randomness of the codeboook in the lattice methods analyzed here
relies solely on secret dithering.

8The reader interested in a detailed discussion about lattices is referred to the classical text by
Conway and Sloane [82].

9Note that virtually all implementations of lattice data hiding proposed use the dithering random-
ization.
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Chapter 6

Security of Lattice-Based Data Hiding:
Practical algorithms

After the theoretical analysis carried out in Chapter 5, this chapter shows how the
information about the secret dither provided by the observations can be extracted
and used in practical scenarios, proposing a reversibility attack based on the estimated
dither. An estimation algorithm for the KMA and CMA scenarios is proposed. This al-
gorithm is the core of another estimation algorithm proposed for the WOA case. These
estimation algorithms work with any arbitrary nested lattice code, and are applicable
to high embedding rate scenarios.

The previous works about practical security evaluations of quantization-based meth-
ods are focused on ST-DM methods [63],[108]. Contrarily to spread-spectrum, for this
kind of methods the watermark depends both on the secret key and the host signal;
thus, a simple watermark estimation does not necessarily provide information about
the secret key. However, in ST-DM methods, the aim of the attacker is also to disclose
a secret subspace, which is precisely where quantization takes place. The estimation
tools that have been proposed for attacking ST-DM schemes [61],[46] are PCA and ICA,
as for spread spectrum systems. Particularly, the good performance of ICA-based es-
timators was shown in [46], where a large ensemble of natural images marked with the
same secret key are taken as input to the ICA algorithm, which outputs an estimate
of the spreading vector. This estimate is used in a subsequent stage for attacking the
robustness of the ST-DM scheme, and the results are compared to other attacks that
do not exploit the estimate of the spreading vector at hand. More recently, a practical
security analysis of trellis-based watermarking methods has been presented in [45]. The
attack to the security of these methods is based on the fact that trellis-based embed-
ding creates clusters that identify the codewords (pseudorandom patterns) which are
derived from the secret key. An estimator based on the K-means algorithm [159] is
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proposed, showing good performance in many practical cases. Finally, the estimated
codewords are used for changing the embedded message with low distortion.

The estimation algorithms considered in this chapter are devised for the lattice
data hiding model described in Chapter 5, so ST-DM and Trellis-based schemes are
out of scope. The chapter is structured as follows: Section 6.1 presents the estimation
algorithm for the KMA and CMA scenarios. The estimator for the WOA scenario
is addressed in Section 6.2. Sections 6.3 and 6.4 show the performance evaluation of
the proposed estimators for KMA and WOA, respectively. In the latter section, a
“reversibility attack” or “host recovery” (cf. Section 2.2) based on the dither estimate
is proposed and implemented. In Section 6.5, the extension of the estimation framework
proposed in this chapter to more general scenarios is discussed. The conclusions are
summarized in Section 6.6. The reader must be aware that the final purpose of this
chapter is not to propose optimal estimation algorithms for all cases, but rather to
show that the security weaknesses noticed in Chapter 5 are exploitable in practice with
reasonable complexity.

6.1 Dither estimation in the KMA scenario

The theoretical analysis carried out in the previous sections, besides quantifying the
information leakage about the secret dither, gives important hints about how to perform
dither estimation. Indeed, the information-theoretic formulation given in Section 5.1 is
closely related to the theory of “set-membership estimation” (SME), aka “set-theoretic
estimation” [96], [67], which is widely known in the field of Automatic Control and
in certain Signal Processing areas, such as image recovery.! In the set-membership
formulation of a problem with solution space =, the ith observation o; is associated
to a certain subset F; € = that contains all estimates which are “consistent” with
that observation. Formally, we say that z € = is consistent with the observation o;
if ¢£(z) = 1, where ¢ (z) denotes the indicator function, and N, is the number
of available observations. The subset F of estimates which are consistent with all
the available information is the so-called “feasible solution set” and it is given by
F = ﬂfi”l F;; finally, a set-membership estimate consists in choosing any point z € F.

In the dither estimation problem, the solution space of interest is R™. We will
deal for now only with the KMA scenario, deferring until Section 6.1.3 the (minor)
modifications needed to cope with the CMA case. Thus, the indicator function of
interest for KMA is given by

1, VAS Dz
¢r.(2) = { 0, otherwise (6.1)

nterestingly, the set-membership framework has been previously applied to watermark embedding
in speech signals [126].
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so F; = D; and F = Sy, with D; and Sy, defined in Property 5.1. Moreover, if
T ~ U(V(A)), which is the worst case for the attacker, the set-membership estimator
becomes the maximum likelihood dither estimator. Although intuitively simple, such
estimator may not be practical, since exact computation of the solution sets may be
computationally prohibitive, because of the increasing number of vertices in Sy, for
N, > 1. Nevertheless, the attacker may not be interested in obtaining the exact Sy,,
but instead be satisfied with an accurate approximation of the feasible solution set.
Algorithms that are suitable for performing such approximation are discussed in this
section.

According to Property 5.2, the assumption a > 0.5 allows us to consider the feasible
region as a modulo-A convex set. Furthermore, if we shift all observations by —y,+d,,,,
then the modulo operation is transparent, so the feasible regions for each observation
(Eq. (5.21)) can be now simplified to?

Di=v;+(1—a)VA), i=1,...,N,, (6.2)

with v; defined in (5.44), rendering the problem convex, since the feasible solution
sets (which are in fact polytopes) result from the intersection of convex sets. Some
guidelines about how to modify the algorithms in order to work with a < 0.5 will be
given in Section 6.5.

The Voronoi region of any lattice can be described in a variety of ways; for our
purposes the most appropriate description is by means of the bounding hyperplanes
corresponding to its facets. In the following we assume that, for a Voronoi cell V(A)
with n facets, we know:

1. a vector ¢, which is outward-pointing normal to the k-th facet;

2. a point zg on the k-th facet.

Taking into account each of the modified observations v;, we have

Di={zcR": ¢l (z—204) < p Vi, k=1,....,np5;i=1,...,N,}. (6.3)

6.1.1 Inner polytope algorithm

The set of modified observations {V;} together with Eq. (6.3) define an ensemble
of linear inequalities, which in turn describe a polytope in n-dimensional space [92].
Hence, the feasible solution set can be expressed as

Sn,={z€R": pz< v+ Przop, k=1,....,np5i=1,...,N,}. (6.4)

2Obviously, the offset —y; — d,,,, must be removed from the final estimate.
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We are interested in computing an approximation of the feasible region. For such an
approximation to be valid, it must outer bound Sy, (as tightly as possible), since we
do not want to discard any point in Sy, a priori, and it is also desirable that the
approximate region is easy to describe. Then, a reasonable choice is to search for the
ellipsoid of minimum volume that contains Sy, (formally known as the Léwner-John
ellipsoid of Sy, [55]). Unfortunately, the problem of finding the ellipsoid of interest is
ill-posed (indeed, it has been shown to be an NP-complete problem) [178], but on the
other hand, the problem of finding the maximum volume ellipsoid contained in the
polytope defined by a set of linear inequalities is well-posed. Moreover, if we scale
such ellipsoid by a factor of n around its center (n is the dimensionality of the lattice),
then the resulting ellipsoid is guaranteed to bound Sy, [55]. An ellipsoid £(0,P) in
Euclidean space is defined by its center 8 and a symmetric positive definite matrix P
such that

EO,P)={zcR":|(z— 0P '(z—0) <1} = {P1/2r+ 0:||r|| < 1} . (65)

The computation of 6 and P for the maximum volume ellipsoid contained in Sy, can
be written as a convex minimization problem with second order cone constraints [55]:

(6,P) = argmin log det(P~%/?)
o.P

subject to ||PY2¢y || < ¢fV; + P20, — D10, (6.6)
Vk:L...,nf; izl,...,No.

This problem can be recast as a “semidefinite problem” [215] where a linear function
is minimized subject to Linear Matrix Inequality (LMI) constraints; this kind of opti-
mization problems can be efficiently solved by means of interior-point methods [178].
As will be checked in Section 6.4, this approach yields tight approximations to Sy,
but it presents an obvious drawback: the potential complexity of the minimization
problem arising from the huge number of constraints imposed by large n and N,. The
scheme presented in the next section reduces the complexity by means of an iterative
approach.

6.1.2 Optimal Volume Ellipsoid (OVE) [64]

This is a classical SME algorithm that was originally devised for estimation in noisy
AR models:

Yk = Zejyk—j +u = 0Ty +
j=1

where ¢, = (Yr_1,--- ,yk_n)T are the n past observations, 8 = (6, ... ,On)T is the
vector of parameters to be estimated, and w; is the noise term, whose absolute value
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is assumed to be bounded by ;. For the k-th observation, the feasible solution set F
is given by all points in R™ that are “consistent” with the observation, i.e.

Fro={zcR": |y — 2" .| < i} (6.7)
Equation (6.7) defines a region of R delimited by two parallel hyperplanes:
Hiyy={z€R":2"¢, =ye —n}, Hip={z2€R":2" ¢ = yp + 1},

which encloses the true parameter vector 6. The series of solution sets is then con-
structed iteratively as Sy = ﬂle Fi, k=1,...,N,. In order to avoid the costly com-
putation of the exact {Sy.}, the solution sets are approximately described by means of
bounding ellipsoids.

This algorithm can be straightforwardly applied to our problem by slightly mod-
ifying the description of the feasible region given in (6.3): in our case, we need to
parameterize D; as the intersection of a finite number of parallel hyperplanes. Assum-
ing that the Voronoi cell of the considered lattice is composed of n; pairwise parallel

facets (see Figure 6.1(a)),® the feasible solution set for the i-th observation can be

ny/2

specified by a matrix ®,,,,, /2, and a vector Vnyj2x1 such that D; = ﬂjzl Fi;, where

Fij={z€cR": \viquj — qusjy <}, (6.8)

being ¢, the j-th column of ®, and ~; = q’)]Tzo,k is the j-th element of «v. Hence, the
series of solution sets is given by

k k ng/2
Se=(\Di=([) Fijs k=1,..., N, (6.9)
i=1 i=1 j=1

The computation of the (k + 1)-th solution set amounts to obtaining an ellipsoid
E (ék-l-la f’kH) D& (ék, f’k) N D;.. Such ellipsoid is iteratively computed following Al-
gorithm 6.1. This way, in Step 2 of Algorithm 6.1 we are intersecting iteratively one
ellipsoid with one set Fy ;, as is depicted in Figure 6.1(b). Clearly, we are interested in
finding the ellipsoid with minimum volume that contains such intersection, i.e.
(i1, Bj,) = arg In%l vol(&(c,B))
c

, (6.10)
subject to &£(c;, B;) N Frip1 C E(c, B).

which is precisely the minimization problem addressed in the OVE algorithm [64],

whose analytic solution reads as

7:Bi®; * B;o; -TBz'
Ciy1 = Ci+ —91511/27 Bii=0; (Bi - O'i%> ;

(67 Big;) ®; Bio;

3Should this not be true, the problem can still be recast in a similar manner by adding some
additional hyperplanes.

(6.11)




128 Security of Lattice-Based Data Hiding: Practical algorithms

Algorithm 6.1 Iterative computation of the bounding ellipsoid

1. Initialization: &(cg, Bo) = £(Ox, Py)
2. Compute 5(Ci+17Bi+1) 2 E(Ci, Bz) N fk,i+17 1= 0, Ce ,7’Lf/2 —1

3. Finally, make &(0y11, Pis1) = E(cn, /2. B, o)

updated ellipsoid

initial ellipsoid

(b)

Figure 6.1: (a) Voronoi region of the hexagonal lattice delimited by three pairs of parallel hyperplanes.
(b) Intersection between an ellipsoid and a pair of hyperplanes.

where 7;, 0;, §; are variables that depend on the observation vy, the current ellipsoid
E(c;, B;) and Fy ;11 (details about their calculation can be found in [64]), and finally ¢;
is the i-th column of matrix ®. Figure 6.2 illustrates the series of bounding ellipsoids
obtained in 2-dimensional problem with a hexagonal shaping lattice.

The algorithm just described is obviously optimal in one dimension, since the el-
lipsoids are simply real intervals. Another interesting feature of this approach, and
common to many other iterative SME algorithms, is that further refinements on the
solution set are possible by recirculating the observed data, i.e., by feeding to the sys-
tem the same set of observations repeatedly (as if they were stored in a circular buffer).
This is possible because the resulting bounding ellipsoid in the ith iteration depends on
both the (i — 1)th bounding ellipsoid and the ith observation. This important feature
provides performance similar to that of the above “inner polytope” algorithm, as will
be checked in Section 6.4.
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Figure 6.2: Series of bounding ellipsoids, with the true dither vector indicated by a cross.

6.1.3 Dither estimation in the CMA scenario

The CMA scenario implies minor changes to the estimation algorithms proposed
above for the KMA case. An estimator can be implemented following the steps detailed
in Algorithm 6.2.

6.2 A practical dither estimator for the WOA scenario

A practical dither estimator for the WOA scenario is proposed in this section. The
core of the estimation procedure is the estimator devised in Sect. 6.1. Throughout this
section, the secret dither will be again assumed to be uniformly distributed in V(A).

6.2.1 Joint Bayesian and set-membership estimation for the WOA scenario

The ML estimate of the secret dither in the WOA scenario can be expressed as
tyr = arg max f(y,,... Y, | T=1)
tev(n)
po

= arg max Y f(¥y,...,¥n,, mP|T =t). (6.12)
tev(n) 1
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Algorithm 6.2 Dither estimation in the CMA scenario

1. Assume that the sequence of observations is marked with message m € M.

2. Perform estimation as in the KMA scenario.

3. Once S'No has been obtained, compute the approximate feasible region SA']%WA as

in Eq. (5.50).

4. Provided that T ~ U(V(A)), two possible cases may arise after performing Step
3

e The resulting feasible regions (S’ ~N, + d,,) overlap; then, according to
Eq. (5.49), the probability of finding the dither in their intersection is higher
than in the remaining regions.

e The regions do not overlap; then, the dither is equally likely in any of the
feasible regions.

Estimation based on Eq. (6.12) is impractical due to the number of summation terms,
which is exponentially increasing with the number of observations. In order to keep
an affordable complexity for the estimation algorithm we resort to the usual “Viterbi
approximation”, where the summation in (6.12) is approximated by the value of the
maximum term. This way, approximate ML estimation of the dither amounts to es-
timating the most probable message sequence, and then performing dither estimation
as in Sect. 6.1 using the estimate of the embedded message. Mathematically, it can be
written as

t =arg max f(§,,....¥n ,m(l%)|t), with k = arg max  f(¥,,...,yx /m®).
tevn) ° k=1,...,pNo °

(6.13)

At this point we recall that the a priori path space M™e is divided in equivalence classes
(with p elements each) defined by the relation (5.61). Since the paths belonging to the
same equivalence class have the same a posteriori probability (according to Lemma 5.4),
the path m® in (6.13) is not unique. In order to get rid of this ambiguity, we will
reduce the search space to one representative per equivalence class. At the same time,
this strategy reduces the cardinality of the search space by a factor p. Notice that this
complexity reduction does not imply any loss in performance, since the whole set of
feasible paths can be recovered from the set of equivalence classes.

It is important to clarify that the two-stage estimator just defined is suboptimal,
in general, since its performance is subject to the correct estimate of the embedded
message. However, if « fulfills the condition imposed in Theorem 5.3, then no loss



6.2 A practical dither estimator for the WOA scenario 131

of optimality is incurred for large N,. The reason is that for sufficiently large N,
there exist only p equiprobable feasible message sequences (which belong to the same
equivalence class), as explained in the proof of the theorem. Since we are restricting
the search to one representative per equivalence class, it is clear that the summation
(6.12) will equal the value of the maximum term.

Hereinafter, we will use the term “path” for denoting each message sequence m®*)

[mf,...,m%& ], k =1,...,p". From Appendix C.6, we know that the a posteriori
probability of the observations given m®*) is given by

N o ) — vol(Sy, (m*))
3w ) = R ol (V)

(6.14)

The only term of (6.14) that depends on the hypothesized path is Sy, (m®)). This
implies that, in practical terms, the most probable paths are those with the largest
feasible region. Hence, we can define the “score” of the path m®*) as

AMm®) £ vol(Sy, (m*))). (6.15)

which can be used to compare the probabilities of different paths as long as they have
the same length. It follows that, given N, observations, the ML estimate of the most
probable path is simply given by m®) where k = arg max )\(m(k)). The search for the

most probable path can be carried out by means of a tree search where each branch of
the tree represents a hypothesized path with an associated score. For saving compu-
tational resources, the outer bound introduced in Section 6.1.1 and a “beam search”
strategy [136, Chapt. 12] will be applied during the tree search. The steps of the pro-
posed dither estimation algorithm are summarized in Algorithm 6.3 (page 144). The
input data are the observations {y,, ¢ = 1...,N,} and the parameters of the nested
lattice code.

Remark 6.1. Through the variation of the “beam factor” 3, defined in Algorithm 6.3,
one can control the tradeoff between computational complexity and accuracy. If 3 =1,
only the most probable path is retained in each iteration of Algorithm 6.3. Hence,
complexity reaches its minimum for § = 1, but the probability of missing the correct
path may be very high. As f is increased, the number of surviving paths per iteration
increases, in general. In the case § — oo, all the paths are retained in each iteration,
making the complexity unaffordable, in general, but reducing to 0 the probability of
missing the correct path. The impact of varying 3 is shown in Sect. 6.4.1. Notice that
[ does not limit the absolute number of paths to be considered in each iteration. This
is why the parameter K, is also introduced in Step 2.c of Algorithm 6.3, for limiting
the complexity in absolute terms.
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Remark 6.2. It is possible that Step 2.c of Algorithm 6.3 results in K; = 0. If this is the
case, then it means that the true path has been discarded at some previous iteration
of the algorithm due to too restrictive beam factors § and/or K,4,. If this happens,
Algorithm 6.3 must be restarted after increasing the values of the beam factors.

Remark 6.3. The outer bounding of the feasible regions may impact negatively the
estimator performance, due to the introduction of spurious paths and variation of the
scores.

Remark 6.4. When the shaping lattice V(A) is cubic, the feasible regions are hyper-
rectangles. In such case, they can be easily computed componentwise, since they are
simply defined by n real segments. Thus, there is no need to apply the inner polytope
algorithm when the shaping lattice is cubic.

The computation of all the outer bounding ellipsoids in Step 2.b of Algorithm 6.3
is the most time-consuming task of the estimation algorithm. Clearly, this step can be
sped up if we can use a fast algorithm to discard the “unfeasible” paths. Formally, a
certain path m®, k=1,..., pMe, is said to be “unfeasible” or “inconsistent” with the
observations if the associated feasible region Sy, (m®) is an empty set; otherwise, the
path is said to be “feasible” or “consistent”. That is, the unfeasible paths are those
that yield a null score (i.e. null a posteriori probability), so it is not worth keeping
them for the next iteration. Thus, Step 2.b of Algorithm 6.3 is broken down in two
steps: Step 2.b.i, that checks the feasibility of the candidate paths, and Step 2.b.ii,
which is the same as the original 2.b of Algorithm 6.3, but computing only the feasible
region of the feasible paths.

For the i—1 first observations, we have the pairs {m®, &_;(m®), k=1,... K;_1}.
In order to check the feasibility of a certain candidate path m®! k=1,... K, ;, | =
0,...,p — 1, we need to check whether the intersection &_,(m®) (M D;(l) is empty or
not. To this end, we have used an algorithm based on the OVE algorithm proposed in
[64], which is described in Algorithm 6.4 in page 145.

6.3 Experimental results for the KMA scenario

This section provides a comparison of the practical performance for the different
estimators proposed in Section 6.1, considering only the KMA scenario. The optimiza-
tion problems involving LMIs were solved using the optimization packages YALMIP
[158] and SeDuMi [207] for Matlab®, and the set of observations {¥,} was generated ac-
cording to the distribution given in (5.19). As for the theoretical part, we will consider
here some of the so-called “root lattices” and their duals, introduced in Section 5.2.2.
The Voronoi regions of these lattices are described in [81], from which we derived all
the parameters needed for implementing our attack. For illustration purposes, some
examples are given in the next subsection.
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Figure 6.3: Performance comparison for the hexagonal lattice (KMA, a = 0.5).

6.3.1 Parameters of the estimation algorithms

We will consider here some of the so-called “root lattices” and their duals, intro-
duced in Section 5.2.2. The first step is to obtain the equations of the hyperplanes that
define their Voronoi regions, which are described in [81]. This is simple for the root
lattices, since their facets are the hyperplanes bisecting the vectors that join the origin
to the lattice points of minimal norm, i.e. the nearest neighbors of 0. This procedure
is illustrated in Example 6.1.

The Voronoi region of the dual of the root lattices cannot be obtained so easily.
For instance, lattices D} can be written as the union of two cosets of a cubic lattice,
and as such their Voronoi region is given by the intersection between a hypercube and
a generalized octahedron, both in n-dimensional space. Example 6.2 considers the
particular case of the lattice D} for illustration purposes.

6.3.2 Results

We provide two different measures of performance of the proposed estimators:

1. The first one is based on the volume of the estimated feasible regions. The volume
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Figure 6.4: Performance comparison for the lattice D (KMA, o = 0.5).

of the kth ellipsoid reads as
vol(E(By, Py)) = (det P)Y2 - V,(1), (6.22)

where V,,(1) stands for the volume of the n-dimensional sphere of unit radius.
When T ~ U(V(A)), all points in the interior of the estimated feasible region Sy,
have the same probability of being the true dither vector ty, so it is immediate to
estimate the residual entropy of the dither as log(vol(Sy,)). The average value of
this “empirical” residual entropy is computed over a large number of realizations.
The performance of each method is quantified by the gap between this measure
and the theoretical result of Section 5.2.2.

2. The second measure of performance is the MSE per dimension, i.e. ||t — t||,
where t has been taken as the center of the resulting ellipsoid. Note that, as long
as this center is close to the center of masses of Sy, the resulting estimator will be
close to the MMSE estimator (i.e., the conditional mean estimator). Again, the
plots represent this squared error averaged over a large number of observations.

In the experiments, the embedding distortion was fixed to D,, = o*/12, with o =
0.5. Figures 6.3, 6.4 and 6.5 show the performance (in terms of the equivocation) of the
different estimators when the embedding lattices are the hexagonal, D} and FEg [82],
respectively. Although the inner polytope algorithm provides the best performance, it
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Figure 6.5: Performance comparison for the Gosset lattice (Fg) (KMA, a = 0.5).

can be observed that the property of recirculation allows to compensate for the loss
of optimality of the OVE algorithm. The performance gain is remarkable for the first
recirculations, but marginal above a certain number, as can be seen in Figure 6.5.
Notice also that the number of recirculations must be increased with n in order to
match the performance of the inner polytope algorithm. Figure 6.4 shows the results
obtained with the lattice Dj. Finally, the plots in Figure 6.6 show the empirical mean
squared error per dimension obtained with each method. The lower bound given by
Eq. (2.10) is plotted for comparison, showing the good performance of both methods.
Interestingly, the OVE algorithm seems to perform better than the inner polytope
in terms of mean squared error. The performance of the averaging estimator is also
plotted for reference; such estimator is optimal for n — oo and A}, as discussed in
Section 5.2.4, but for small n it is clearly far from being so.

6.3.3 Complexity issues

One can find in the literature of set-membership estimation approaches that offer
better performance than the ellipsoidal approximations, by computing the exact so-
lution sets [67],[220]. Nevertheless, they may be very computationally demanding in
large-scale problems. Instead, the algorithms considered in this chapter have proved
to be efficient in giving approximate solutions for several hundreds of observations.
For the optimization problem in (6.6), it has been shown that the number of itera-
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Figure 6.6: Mean squared error per dimension of the dither estimate, for the hexagonal lattice (a)
and Gosset lattice Eg (b), for KMA and o = 0.5.

tions needed to solve the problem (by means of interior-point methods) does not grow
faster than a polynomial of the problem size [215].> Most of the computational cost
of each iteration lies in the least-squares problem (of the same size as the original
problem) that must be solved, whose number of iterations is again polynomial with
the problem size. However, in practice it is possible to exploit the problem structure
(sparsity, for instance) so as to reduce complexity: in our case, for example, there is a
potentially large number of redundant constraints that can be removed for alleviating
the computational burden. For high-dimensional lattices it is also possible to simplify
the problem description (albeit resulting in looser estimates) by approximating the
considered Voronoi region by another simpler polytope that bounds V(A).

For the OVE algorithm, the number of arithmetic operations (scalar sums and
products) carried out in each iteration is O(n?). Also, in the OVE algorithm we perform
exactly N, - "2—f -n, iterations, where N, is the number of observations, ny is the number
of facets of the Voronoi cell (equivalently, the number of linear inequalities specifying
the problem), and n, is the number of recirculations of the data. The term ny will
largely depend on the considered lattice, in general, and n, will be determined by the
required accuracy, giving a degree of freedom to the attacker. Finally, it is interesting
to note that OVE-like algorithms automatically get rid of redundant constraints, using
only those pairs of hyperplanes that produce an update on the solution set.

5The size of an optimization problem is commonly understood as the dimensionality of a vector
whose components are the coefficients of the analytical expressions for the constraints and the objective
variables.
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6.4 Experimental results for the WOA scenario

This section presents the results of applying Algorithm 6.3 over some practical lat-
tice data hiding schemes in the WOA scenario. The experiments have been carried out
under the following assumptions: the host signals follow an i.i.d. Gaussian distribution
with zero mean and variance 0% = 10, the DWR is 30 dB in all cases, and the embed-
ded messages are equiprobable and independent. In order to assess the performance
of the dither estimator without ambiguities (due to the result of Lemma 5.4), it is
assumed that the message conveyed by the first observation corresponds to the symbol
0. The parameter K,,,, of Algorithm 6.3 has been set to 250 in all cases.

6.4.1 Tradeoff complexity-accuracy

One interesting performance measure is the resulting probability of decoding error
when the decoder uses the dither estimate, instead of the true dither vector. If this
measure is represented in terms of the “beam factor” () of Algorithm 6.3, then the
tradeoff between complexity and accuracy becomes patent. This tradeoff is illustrated
in Figure 6.7(a) for a cubic shaping lattice and repetition coding (see Section 5.3.3) with
n = 10 and p = 6. Using dither estimates obtained with N, = 100 observations, the
numerically computed symbol error rate (SER) is shown in Figure 6.7(a) for different
values of a. For reference, Figure 6.7(a) also shows in dashed lines the SER obtained
by a fair decoder, i.e. knowing the true dither signal. As can be seen, the SER is
always decreased as ( is increased, achieving the same decoding performance as the
fair decoder in the cases of @« = 0.6 and a = 0.7. However, for a = 0.5, the SER of
the unfair decoder is slightly larger. The reason is that in this case the probability of
deciding a wrong dither is not negligible even for high j3.

The average number of surviving paths in the tree search is plotted in Figure 6.7(b)
for illustrating the complexity of the search procedure. In this regard, it can be seen
that even in a difficult case as p = 10 with o = 0.6, the tree search can still be
performed with low complexity.

6.4.2 Estimation error

Now we measure the performance of the estimator in terms of the mean squared
error (MSE) per dimension between the dither estimate and the actual dither vector.
Three different shaping lattices have been considered. In all cases, a beam factor g = 45
dB has been used.

Figure 6.8 shows the results obtained for a scheme using a cubic shaping lattice in
10 dimensions and repetition coding with e = 0.6. It can be seen that for p = 4 it is
still possible to attain the same accuracy as in the KMA scenario, whereas for p = 7
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Figure 6.7: Estimation results for a cubic lattice with repetition coding, with n = 10 and DWR = 30
dB. Figure (a) shows the symbol error rate for a dither estimated with N, = 100 observations versus
the beam factor 8 in dB, for p = 6. Figure (b) shows the average number of surviving paths in the
tree search (for 8 = 45) with a = 0.6 and different embedding rates.

and p = 10 a significant degradation of the MSE is observed. This degradation is a
consequence of the fact that, as p is increased, the probability of correctly retrieving
the embedded path decreases when « is kept constant (even knowing the true value
of the dither).% In the experiments, the probability of choosing an incorrect path has
been found to be around 0.05 and 0.1 for p = 7 and p = 10, respectively.

Figure 6.9(a) shows the results obtained for a hexagonal shaping lattice and o = 0.7.
Notice that, although « is higher than in the former case, the maximum embedding
rate considered now is substantially larger (5 log,(9) bits vs. 15 log,(10) bits). Similarly
as above, we can see that increasing p degrades the MSE: for p = 4 it is still possible to
achieve the same accuracy as in the KMA scenario, but for p = 4 the MSE is increased,
and for p = 9 the MSE is not reduced with NN,. Finally, Figure 6.9(b) shows the results
obtained for the Eg shaping lattice [82], the best lattice quantizer in 8 dimensions. It
can be seen that in this case, even with large alphabets (e.g. p = 12), the estimator
achieves its optimal performance. For obtaining the results of Figure 6.9, the lattice
codes have been obtained by Construction A, in the estimation procedure we have
resorted to the inner polytope algorithm in order to compute the approximate feasible
regions.

6Recall that, due to the Viterbi approximation, the performance of the estimator is degraded when
the embedded message cannot be correctly decoded, as explained in 6.2.1.
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Figure 6.8: MSE per dimension in the dither estimation obtained for different embedding rates and
a = 0.6.

6.4.3 Reversibility attack

An accurate dither estimate (subjected to an unknown modulo-A shift, as the one
obtained here) allows to implement a number of harmful attacks. As an illustrative
example, we present here a reversibility attack, consisting in producing an estimate of
the original host signal. In the context of lattice-data hiding methods, our attack is
based on the fact that the embedding function is reversible whenever a@ < 1 and we
know both T and the embedded message. Using our dither and path estimates t and
m®*) | the host vector estimate corresponding to the ith marked block is computed as”

(0%

%=y — ——(Qaly; —d, i —t) = x; +d ; +1). (6.23)

1 -«
It is interesting to notice that the ambiguity in the estimated message does not affect
negatively the host estimation whenever the estimated path m®) belongs to the equiv-
alence class (by (5.61)) of the actual embedded path. The reason is that the dither
estimate associated to any path in [m] yields the same fine lattice Ay, and thus it is
valid for performing a successful reversibility attack. This can be readily seen if we

realize that the dither estimates associated to the equivalence class of m®) given by
(6.16), differ only in the term dy, and that Ay = Ay — dy, for k € M.

"The same reversibility function had been proposed in [108] in the context of scalar lattices.



140 Security of Lattice-Based Data Hiding: Practical algorithms

mean squared error per dimension
mean squared error per dimension

Figure 6.9: MSE per dimension for o = 0.7 and different embedding rates. Results for n = 2 and
n = 8 using hexagonal (a) and Es (b) shaping lattices, respectively. DWR = 30 dB in both cases.

Figure 6.10 shows the result of implementing the proposed reversibility attack on
a real marked image. The parameters of the watermarking algorithm are A = Fj,
a = 0.7, p = 10, and the coset leaders were obtained through Construction A. The
watermark is embedded in the low frequency coefficients of 8 x 8 non-overlapping DCT
blocks, resulting in a PSNR after embedding of 38.2 dB. The resulting host estimate,
using only the message and dither estimates from the first 50 DCT blocks, is shown
in Figure 6.10(b) and presents a PSNR of approximately 56 dB. If the estimated host
is quantized back to integers, then PSNR — oo, meaning that the host has been
estimated perfectly.

6.5 Application to other scenarios

In this section we discuss the application of the proposed estimation algorithms to
other related but more involved scenarios.

1. a < 0.5: Our analysis and algorithms were restricted to the case o > 0.5. For the
case a < 0.5 the theoretical analysis gets more intricate, since the feasible region
Sy, may be composed of multiple modulo-A convex sets (cf. Figure 5.3). The
difficulty of the estimation is also greatly increased, since it would be necessary
to apply several estimators in parallel, one for each possible convex set. In such
case, other set-membership approaches suited to non-convex solution sets may
perform better [67].

2. Spread Transform - Dither Modulation (ST-DM) [63]: lattice data hiding schemes
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Figure 6.10: Tllustration of a reversibility attack based on dither estimate according to Eq. (6.23).
Image marked using A = Fg, a = 0.7, p = 10 and PSNR = 38.2 dB (a), and estimate of the original
image with PSNR = 55.9 dB (b).

may be applied in conjunction with spread transform in low-rate data hiding ap-
plications. In that kind of schemes, lattice quantization takes place in a secret
projected domain, parameterized by certain projection matrix, and secret dither-
ing can still be used in the projected domain for improving the security of the
scheme. The ignorance of the projection matrix invalidates the direct application
of the estimation algorithms proposed here; however, recent works [61], [46] have
shown that Independent Component Analysis (ICA) may be used for estimat-
ing the projection matrix. Thus, if ICA is successful, dither estimators may be
applied in a second step.

3. Permutations: the security of a lattice DC-DM scheme may be improved by
applying secret permutations to the host vectors. This introduces an additional
degree of uncertainty that invalidates the direct application of the estimators
proposed in this chapter. However, if the same permutation is used in multiple
marked blocks, it is still possible to exploit the information leakage, as shown in
the next example: assume that the host is partitioned in [ length-n vectors x;,
1=1,...,1, and these vectors are arranged in an n x [ matrix X. Given a secret
permutation matrix P, the columns of the new matrix X' = PX are marked
using the lattice data hiding scheme described in Chapter 5, yielding a marked
matrix Y’'. Later on, the inverse permutation is applied to Y’, obtaining Y, and
its rows are the observations that are made available to the attacker. Depending
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on the symmetry properties of the embedding lattice, two possible cases arise:

(a) The lattice is symmetric to permutations of its components. This happens,
for instance, to the cubic and “checkerboard” (aka “quincunx”) lattices in
2 dimensions [174], [82]. If this is the case, then the attacker can run the
dither estimation algorithm disregarding the actual permutation, obtaining
an estimate of the permuted dither. It is easy to see that this permuted
estimate allows the same attacks as those discussed in Section 2.2, as long as
the permutation and the secret dither are the same in the attacked contents.

(b) The lattice is not symmetric to permutations. The main consequence is that
the feasible regions for the dither are different under each permutation, and
this can be exploited to detect inconsistent arrangements in the components
of the observations, i.e., those arrangements that produce an empty feasible
region cannot be correct. Some experiments performed with the OVE al-
gorithm and the hexagonal lattice have shown that, using 10 recirculations,
an average of 32 observations are needed to successfully detect inconsistent
arrangements of the components. Using the inner polytope algorithm it is
also possible to check for inconsistencies: one just needs to run the “fea-
sibility test” to check whether all constraints in the optimization problem
can be simultaneously satisfied or not. If not, the considered arrangement
is inconsistent.

6.6 Conclusions

1.

In Section 6.4 we have shown the strong link between the information-theoretic
and set-membership estimation frameworks, applying the latter for the first time
to attacks in the data hiding scenario. The estimator devised for the KMA
scenario can be naturally extended to the WOA scenario with the help of a
Viterbi-like estimator for the most likely embedded message.

. The security weaknesses of the data hiding schemes studied in Chapter 5 have

been shown to be exploitable in practice with affordable complexity, yielding
accurate dither estimates and allowing to obtain host estimates with high fidelity.

Set-membership estimators are the optimal estimators for the dither estimation
problem when T ~ U(V(A)). However, in order to perform an attack with man-
ageable complexity, it is necessary to do some approximations and simplifications
that cause a loss of optimality (approximations with ellipsoids, for example, or
with the Viterbi algorithm). Only in simple cases, such as embedding with cubic
lattices, it is possible to achieve optimal estimator performance with low com-
plexity. In other cases (as for the root lattices considered in Section 6.3), the
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gap with the optimal dither estimator is still very close to the theoretical limit.
However, as the complexity of the shaping lattice is increased, it seems that the
gap with the optimal estimator will also be greatly increased if one wants to keep
the complexity of the estimator within reasonable terms.
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Algorithm 6.3 Secret dither estimation in the WOA scenario

1. Initialization: m® = 0, D;(m®W) = (1 — a)V(A), K; = 1, with K, denoting the
number of feasible paths for the first observation (1 in our case).

2. Fori=2,...,N,

(a)

(b)

Let {m® &k =1,...,K; 1} be the set of feasible paths for the i — 1 first
observations. Construct a set of candidate paths as {m®*) £ m® [], k=
17~~;Ki—17 ZZO,,p—].}

Compute the ellipsoids &m®)) O &;(m*)) using v,(m") = (3, —
d oo — y,) mod A, r = 1,...,i, where mgk’l) denotes the rth element

of m*D,

Compute the score A(m*!) of each path as vol(&;(m®V)). Arrange the
paths in order of descending score as m™), ... m®%i-1)  Compute now
K; & max, ¢+1, subject to the constraint A(m™®)/A(m@) < 3, =1,...,p-
K;1 < Ky4,. The parameters 8 > 0, Ko € Nt are termed “beam

factors”. The set of K; < K4, “surviving paths” for the next iteration is
{m® . mE-D}

3. Let m™ be the path with the highest score resulting from Step 2 of Algorithm 6.3,
and let t;, defined as the center of &y, (m™), the dither estimate associated to
m™ (recall that this choice minimizes the mean squared error of the estimate
[194]). The p paths belonging to the equivalence class [m()] can be computed
according to (5.61), and the p corresponding dither estimates are given by

te = (t1 —dp+y,) mod A, ke M. (6.16)

Note that y; is added in order to cancel the offset introduced in Step 2b of
Algorithm 6.3.
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Algorithm 6.4 Checking of unfeasible paths

According to [194, Sect. IV], assume the feasible region for the ith observation can be
specified by a matrix ® € R™"/2 and a vector v € R"/2! such that D;(m!"™") =
ﬂyi? Fi ;j, where

Fij={zeR": |{7i(m£k’1))T¢j - zT¢j| <5}, (6.17)

being ¢; the jth column of @, v; = q_’)JTzo,j is the jth element of ~, and 2z, ; is a vector

in the jth facet of Z(A). For k=1,...,K;,;and [ =0,...,p — 1,
1. Compute

- (k1) T
vilm; ) + 7 — @; Ci— j .

N TP,

where P;_; and c;_; are the positive-definite matrix and center defining the
ellipsoid &_1(m®).

2. If n; ¢ [—1,1 + 2¢;], for some j = 1,...,ns/2, then the hypothesized path m(®*
is unfeasible. Otherwise, the path is declared as feasible.*
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Example 6.1 Parameters for the hexagonal lattice
Consider the standard hexagonal lattice whose generator matrix is [82]:

M= 0y ang |

A2 VBAS2 (6.19)

where A is the scaling factor for adjusting the embedding distortion. This lattice has 6
vectors of minimal norm that define a regular polytope bounded by 6 pairwise parallel
hyperplanes (see Figure 6.1(a)). Let ¢, be the vector corresponding to the k-th facet,
the feasible region can be defined as

1
Sn, = {zGR" L prz < g{)k\?’z+§H¢kH2}, k=1,...,np;i=1,...,N,, (6.20)

which is a particular case of Eq. (6.4) with zq s, = %d)k For applying the SME algorithm,
we need matrix ® and vector v (see Eq. (6.8)). It is straightforward to see that, for
the considered generator matrix,

d—A-(1—a)- {0 V3/2 \/3/2]’

1 1/2 —1/2 (A (1—a)?-(1,1,1)7(6.21)

1
)

Example 6.2 Parameters for the lattice D}

For Dj, the faces of the hypercube are given by the hyperplanes bisecting all per-
mutations of the vector (+1,0,0,0). On the other hand, the faces of the generalized
octahedron are given by the hyperplanes bisector to %(il,il,il,il). Thus, the
resulting Voronoi region has 24 pairwise parallel facets.




Chapter 7

Conclusions

In this thesis we have tried to provide an exhaustive analysis of watermarking security.
The problem has been cast in an information-theoretic framework whose usefulness
has been proved by its application to practical watermarking schemes in three differ-
ent scenarios: KMA, CMA, and WOA. Our work shows the need for complementary
security analyses, both from theoretical and practical points of view:

e The theoretical analysis must use precise measures in order to reveal the fun-
damental security weaknesses and establish bounds on security. Our measure
based on Shannon’s mutual information and equivocation, introduced in Chap-
ter 2, has proved to be very useful for revealing the security properties of a given
embedding method (cf. chapters 3 and 5) and deriving fundamental bounds on
the estimation of the secret parameters.

e As the theoretical analysis does not show how to exploit the information leakage
about the secret keys, a practical analysis is necessary for demonstrating that the
security weaknesses highlighted in the theoretical part indeed pose a threat. We
have done so in chapters 4 and 6.

e On the other hand, the security must not be solely evaluated from a practical
point of view, because it may lead to overestimating the actual security of the
watermarking scheme under study.

We have studied the two main groups of watermarking methods: spread spectrum
and quantization-based ones. In some cases, similar conclusions can be drawn for both
methods:

1. A tradeoff between robustness and security has been identified. In general, the
choice of the embedding parameters that maximize the robustness against con-
ventional attacks leads to reveal more information about the secret key. In this
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regard, one must bear in mind that the analyzed embedding methods had not
been originally designed from a security standpoint.

2. The gap of the information leakage between KMA and WOA scenarios (and
CMA) has been shown to be negligible in many cases if the embedding rate is
sufficiently small. As practical scenarios usually demand small embedding rates, a
consequence is that the security level of the studied methods may be, in practice,
fairly low.

3. Theoretically, some fundamental ambiguities have been shown to exist in the
secret key estimation for both methods in the WOA scenario. These ambigui-
ties prevent from perfect estimation of the secret key, no matter the number of
observations available. Nevertheless, they do not prevent from devising harmful
attacks, as already discussed in the corresponding chapters.

Regarding the security of lattice data hiding techniques, randomized via secret
dithering, we have obtained some interesting findings:

1. Lattice data hiding schemes possess some desirable security properties: by adjust-
ing the embedding parameters (the nested code and the distortion compensation
parameters), they can achieve perfect secrecy in the WOA scenario, meaning
that no information about the secret dither is leaked from the observation of
watermarked signals. The price to pay comes in the form of a possible penalty
in robustness.

2. In most practical cases, the security level of lattice data hiding schemes is low,
since a small number of observations is enough for obtaining an accurate dither
estimate. This is mainly due to their host-rejection properties and highly struc-
tured codebook.

3. The security level of the lattice data hiding scheme can be increased by increasing
the dimensionality of the nested lattice code and properly choosing the shaping
lattice. The optimal lattices seem to be those with the smallest normalized
second order moment, which is also desirable from the robustness point of view.
The main drawback of using these high-dimensional lattices is in the inherent
embedding/decoding complexity (especially, the latter one), which grows non-
linearly with the number of dimensions. This illustrates the existence of a tradeoff
between complexity and security.

As for spread spectrum modulations, whose security relies on the secrecy of the
spreading vector, we can make the following remarks:
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1. The methods analyzed in this thesis do not provide perfect secrecy in any in-
stance. Nevertheless, due the high host interference, the security level of the
spread spectrum embedding function is, in general, larger than that of lattice
data hiding (see discussion in Section 5.2.3). We know it is possible to design
perfectly secure spread spectrum modulations, but at the cost of impairing ro-
bustness (cf. the Natural Watermarking technique in [59]). This shows, once
again, a tradeoff between robustness and security.

2. While the ICA and PCA approaches proposed by other authors are very useful
for attacking spread spectrum systems from the security point of view, we have
shown that such techniques are not always the best choice from the attacker’s
point of view. Their success depends very much on the operating conditions (the
DWR, the length of the spreading vector, and the host rejection parameter) and
on the statistical distribution of the host signals. We have presented a more
general methodology for the practical security evaluation of spread spectrum
schemes, based on 1) the definition and analysis of suitable cost functions, and
2) the optimization of such cost functions.

From the results shown in this thesis, one can infer that if the condition of perfect
secrecy is not fulfilled, watermarking systems are in general “easy” to break, especially
if robustness (low embedding rates) is a requirement. As mentioned in [85], secret
keys in watermarking are “weaker” than in cryptography, meaning that the attacker
does not need to perfectly disclose the key, but a rough estimate is sometimes enough
for his purposes. This weakness is, in part, due to the continuous nature of the secret
parameters to be estimated, and also to the relatively small size of the secret parameter

space:!

e In lattice data hiding schemes, the codebook is highly structured, which is highly
desirable for keeping a low embedding and decoding complexity. The drawback
is that in such case there is no room for high entropy: the maximum entropy of
the codebook in the nested lattice scheme is limited to the entropy of a uniform
r.v. over V(A), whose volume is limited due to the small distortion constraint.

e In the case of spread spectrum methods, the attacker can restrict his search to a
vector in the surface of an n-dimensional hypersphere. The number of degrees of
freedom of such vector is n — 1. Hence, the complexity of the problem increases
linearly with the dimensionality of the embedding function.

'Note that when dealing with continuous parameters, it makes more sense to talk about the volume
of the secret parameter space rather than its cardinality.
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It is likely that, in the future, the development of watermarking research keeps on
being driven by robustness requirements, as it has been up to now. However, under the
light of the results presented in this thesis we believe it is wise to have in mind security
considerations whenever the watermarking systems have to face hostile environments.

7.1 Future research lines

The work carried out in this thesis leaves a number of open questions which are
worth addressing in the future. In the first place, we can enumerate a number of
problems closely related to the security analysis:

1. In this thesis we have studied the security both from information-theoretic and
practical points of view. The information-theoretic measure only accounts for
attackers with unlimited computational resources. On the other hand, the prac-
tical security analysis only provides the security level obtained with the proposed
estimation algorithms. In some cases, we have compared the theoretical bounds
(which are pessimistic, in general) with the performance of the practical estima-
tors, but we do not know yet how to compute the gap between theoretical and
practical security levels as a function of the allowed computational complexity.
This claims for the introduction of complexity theory in the field of watermarking
security, which would lead to the obtention of provable security levels (in analogy
with the provable security of cryptographic systems).

2. We have proved the existence of a fundamental tradeoff between security and
robustness for spread spectrum and lattice data hiding methods. This tradeoff
appears to be inherent to any watermarking scheme that performs host rejection
or demands high robustness, but a proper unifying framework would be necessary
in order to study this problem with a higher perspective.

3. We have studied the security of the most popular spread spectrum methods.
Other spread spectrum techniques recently proposed, with the aim of improving
the security of these methods, have been already analyzed [59]. However, the
analysis of other spread spectrum schemes [165], [70] which are likely to receive
a lot of attention in the future is still pending.

4. A theoretical study of the security of hybrid methods such as ST-DM [63],[108]
and Trellis-based methods [168], which were not covered in this thesis, is advisable
in order to get more insight into the security properties of the different side-
informed embedding methods.

5. The effect of channel coding techniques in the security level must be addressed.
When no channel coding across different host blocks takes place, the message
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sequences can be considered to be a priori equiprobable. Otherwise, the attacker
could exploit the a priori probability of each message sequence, simplifying the
estimation of the secret parameters and thus reducing the security level.

6. In parallel to the design of new watermarking schemes with improved security
properties, the design of countermeasures against security attacks must be also
taken into account. Key management solutions are the most immediate coun-
termeasures: since the security holes come from the availability of many obser-
vations marked with the same secret key, an obvious countermeasure is to limit
the number of times a certain secret key can be reused. Several solutions based
on host-dependent key generation functions have been proposed [135],[117],[155].
However, re-synchronization at the decoder side becomes a major issue when
using host-dependent keys.

7. It is possible to study new forms of randomization for the existing watermarking
schemes. For instance, the security of lattice data hiding schemes would be cer-
tainly improved by means of non-structured codebooks ([113],[69]) which, albeit
strongly based on the nested lattice construction, introduce additional degrees of
freedom that increase the entropy of the codebook and probably render the esti-
mation more difficult. These codes could be seen as an intermediate step between
Costa’s construction (cf. Section 5.4) and the pure nested lattice construction.
By varying the degree of additional randomness in the lattice code, one could
balance the tradeoff between embedding/decoding complexity and security. An-
other possibility for lattice data hiding schemes is to apply a secret rotation to
the embedding lattice [172]. The presumable advantage of this approach over
the former is that it still keeps the structure of the codebook, which is highly
desirable from the implementation point of view, whilst increasing its entropy (an
n X n rotation matrix introduces n(n — 1)/2 degrees of freedom). Further possi-
bilities include the use of permutations (applicable to any watermarking scheme)
or other combinatorial approaches, which could significantly increase the size of
the secret parameter space.

The framework for watermarking security presented in this thesis must be regarded
as a first step towards a more complete analysis. It is necessary to extend this frame-
work to more general scenarios:

1. Extension to steganography scenarios: traditionally, a steganographic scheme has
been considered secure if it is impossible for an eavesdropper to distinguish “inno-
cent” cover messages from stego-messages. Security in steganography under this
viewpoint has been addressed by a number of authors, like Zollner et al. [223],
Petitcolas et al. [198], or Cachin [57] from an information-theoretic perspective,
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and by Katzenbeisser et al. [149] resorting to more practical, computational con-
siderations. However, an aspect which is usually absent from these formulations
is the fact that the secret key used in the communication process is likely to be
repeated in the stego-messages generated by the same user. This gives raise to
the following considerations:

(a) An active eavesdropper, after detecting a series of stego-messages, can try
to estimate the secret key in order to impair the communication process or
to recover the hidden message.

(b) The repetition of the secret key in several stego-messages introduces mem-
ory (in the form of redundancy) in the communication channel, a fact that
could be exploited for improving the detectability performance of the eaves-
dropper.

Extension to oracle attacks: currently, the security of a watermarking system
where decoders/detectors are publicly available is roughly quantified by the diffi-
culty of describing the detection/decoding region. The security measures are too
empirical, mainly based on the difficulty of breaking the system with a particular
algorithm. In this cases, no fundamental measure exists for comparing in fair
terms the security of different watermarking systems.

Extension to global security: this thesis only covers security in the “physical
layer”. As we have seen, the disclosure of the secret parameters gives access to
the raw embedded bits (possibly with some ambiguities). Although this can be
enough for impairing the communication very efficiently, it may not be sufficient
for reading the actual embedded message if, for instance, a cryptographic layer is
placed upon the watermarking channel (the physical layer) [85]. Thus, a global
security analysis of a watermarking system should account for attacks at the
protocol level and even side-channel attacks, which may be very important in
practical systems. As in any cryptographic system, the security level is always
given by that of the weakest link in the chain.
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Appendix A

A.1 Proof of Lemma 2.1

The proof follows directly from the definition of concavity, by taking into account
that g(-) can take only integer arguments. The function g(n) is concave if and only if

g(Any + (1 = N)ng) > Ag(n1) + (1 = N)g(na), (A1)

for all ny,ny € Z and X € [0, 1] such that Any + (1 — A\)ny € Z. Let us assume, without
loss of generality, that n; < ny = ny + k. Hence, the valid values for Any + (1 — A\)ng
are given by

>\in1+(l—)\i)n2:n1—|—7;, Withizo,...,k‘, <A2)
where \; = %=, Substituting into Eq. (A.1) and operating, we get the following
equivalent condition for concavity:
N k—1 i
g(ny +1) = ~g(m) + 2 - g(m + k), (A-3)
which in turn can be rewritten as
i—1 . k-1
. [/ .
D_Ag(m+5) =1 ) Aglni+ ). (A4)
Jj=0 j=0
Eq. (A.4) must hold for all £ > 4; in particular, for £ = 2 we have
1
Agln) 2 5(Ag(n) + Ag(m + 1)), (A.5)
which implies that
Ag(n) > Ag(n+1) Vn. (A.6)

For proving sufficiency, assume now that Ag(n) > Ag(n+1) for all n. If this condition
holds, then it is easy to see that the partial averages satisfy the following inequality:

i—1 k-1
1 1
1 Nl . |
- ;0 Ag(ni +j) > k ;o Ag(ny + j), (A7)

which is tantamount to (A.4).
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A.2 Proof of Lemma 2.2
To see that the mutual information is always increasing, consider the function
AI(N) = I(Oy,...,Ox11;1(8)) — I(Oy,...., Ox: ¥(©)), (A.8)

which is nothing but the average information about t that is gained with the (N 4+ 1)th
observation. Such function is easily seen to be always non-negative:

AT(N) = h((©)O1,. .-, Ox) — h(t(®)[Os, ..., O 1) > 0. (A.9)
where (A.9) follows from the fact that conditioning reduces entropy [84].

By Lemma 2.1, the mutual information will be (strictly) concave iff AI(N) is (de-
creasing) non-increasing. By the definition of mutual information, we have

I(Oq,...,0n;9(©)) = h(Oy,...,0pn) — h(Oq, ..., On[¥(©)). (A.10)
Using (A.10) we can write

AI(N+1) = I(Oy,...,On42;9%(0)) — I(Oy,...,0n.1;%(0))
— h(Oy,...,0n4) — h(O1, ..., Onpa|t(©))
— h(Oy,...,0n41) +h(O1,...,Onu|0(O)). (A.11)

By the chain rule for entropies [84, Sect 9.6], it follows that
h(017 R ON+2) - h<017 ) ON+1) + h(ON+2|017 ) ON+1)' (A12)
Likewise, it is straightforward to see that

h(O1, ..., Ons2lth(©)) = (O, ...,0n1|¥(©)) + h(Oni2|O1, ..., Onyr, V(O)).
(A.13)

Hence, by combining (A.12) and (A.13), AI(N + 1) can be rewritten as

AI(N+1) = h(On2|O1,...,0n11) — A(Opn42|O1,...,0n41,0(0O))
= h(On+2|01,...,On11) — M(On12[¥(0)), (A.14)

where the last equality follows from the conditional independence of the observations
given 1(©). Using similar reasonings, it can be seen that

AI(N) = h(Ox s O, .. Ox) — (O 1:(©)). (A1)
Since the O; are i.i.d, h(On12|t(©)) = h(On11]|Y(O)), so we finally have that
AI(N +1)— AI(N) = h(Opn42|01,...,0n41) — hH(On41]O1, ..., 0On) < 0. (A.16)

This concludes the proof of the lemma.



Appendix B

B.1 Bounds on the information leakage in the WOA scenario
for add-SS

For obtaining the bounds to the information leakage, we will resort to the expression
given by (3.12). Since its first term has been already computed in (3.11), we will focus
on the remaining terms. For a fair user with perfect knowledge of S, the observations
are all mutually independent. Hence, the third term can be rewritten as

I(Y1, ..., Y, s My, oo, My, [S)adass = No - I(Y1; M|S). (B.1)

For computing (B.1) we take advantage of the fact that the statistic Y S is a sufficient
statistic for decoding M; when S is known by the decoder [199]. Thus, we have

I(Y1; My[S) = I(YTS; My|S) = h(YTS|S) — h(YTS|M,,S)
= W(Y]SIS) - 5 (los(2neck) + Ellog(ISIP)).  (B2)

where we have used that Y] S|M; = my,S = s ~ N(||s||*(—=1)™, ||s||?¢%). For the
term h(Y7'S|S) we must take into account that

1
YiS[S =s ~ 5 (W(ls|* lIsPo%) + N(=lIs]* lIs[*o%)) -

and that h(Y7{S|S) = E [h(Y]S|S =s)], where the expectation is taken over S. The
computation of the expectations in (B.2) requires numerical integration, taking into
account that [|S||> ~ x?(n,0s). The second term of (3.12) is the only one that remains
to be addressed. Notice that
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I(Yh s 7YNO; Mla s 7MNo)add—SS

= N,-H(M;)—H(M,...,Mn,|Y1,...,Yn,)

o

No
= No-H(M)) =Y H(M|Yy,..., Yy, M., M)
i=1
< N, -H(M)— No-H(My,[Yq,....,Yn,, My, ..., My,_1) (B.3)
No . I(YNO; MNO’Yla e ,YNO_l, Ml, ey MNo—l)a (B4)

where the inequality (B.3) follows from the fact that conditioning reduces entropy
[84]. Conditioned on a particular realization of the observations, we have that Yy, =
Xy, + (=1)M~o .Sy with Sy, ; a random variable that follows the distribution of
S conditioned on the N, — 1 past observations,! i.e. Sy, ~ N (v, U%erln), with v and

a%N ., given by (3.8) and (3.9), respectively. Hence, considering a random variable
N ~ N (0,03  1,), and noticing that (—1)"~ N is identically distributed to N, then

we can write
Y, = X, + (~1)M5(N 4 v) = Xy, + (—1)0, (B.5)
where Xy, £ Xy, + N ~ N(0, (6% + Ug—,er)In). Clearly, this implies that
I(Yn,; M| Y1, oo, YN, My, ..., My, —1)adaass = I(Yn,; My,|V,), (B.6)

where the components of V, are the realizations of (3.8). Since u’y® is zero-mean

1ok
Gaussian with variance (N, —1)- (0% +(N,—1)c%), then Vi, ~ N (O, %IO
Hence, (B.6) becomes

(YN, Mn,| Y1, YN, 1, My, .o, My, —1)add-ss

= I(Yy,Vn,: My,|Vy,)
= h(YIJJ;TOVNol-VNo) - h(Y%OVNo‘MNo7 VND)

1
= WY VIVa) - B | glog (2me(ok + o3 )IVlF) | D

where we have used again the fact that Y%DV ~, is a sufficient statistic for decoding
(see [199]). Notice that the first term in the right hand side of (B.2) and (B.7) must
be computed by means of numerical integration. Finally, combining (3.12) with (3.11),
(B.1), (B.2), (B.4) and (B.7) we arrive at (3.13), the final expression of the upper
bound.

I This is due to the unconditional independence between the hosts and messages of different obser-
vations.
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A lower bound on the mutual information can be obtained by taking into account
that

I(Yq,....,YN,; My, ..., MN,)add-ss

No
= Y I(Y5 M, ... My, [Yy,..., Yiy)
=1

N, N,
= Z ZI(Y“ Mj’Yl, e ;Yi—ly Ml, ceey Mj—l)
i=1 j=1
No
> > I Mi|Yy,. . Y, My, M), (B.8)
=2
Note that each term of (B.8) was already computed in (B.7). The final expression of
the lower bound is given in (3.14).

B.2 Proof of Theorem 3.1

An straightforward upper bound to the loss function is given by
6(No>add-SS S NO 10g(2) — I(Yl, Ce ,YNO; Ml, ey MNO>- (Bg)

Using the lower bound (B.8) for the second term in the right hand side of (B.9) and
recalling that the loss function is always non-negative, the latter can be bounded as

No
N,log(2) = > I(Y 35 Mi|Vi) > 6(No)aaass > 0, for N, > 2, (B.10)
=2
where Y, = X; + (=1)MV;, Vi ~ N(0, 5025 1,), and X, ~ N(0, (0% + 0% )LL)
S X =
with 0% given by (3.9). The first term in the right hand side of (B.10) can be
rewritten as I(Y,; M;|V;) = H(M;) — H(M;|Y;, V;). By inserting this expression into
(B.10), we obtain

No
log(2) + Y H(Mi|Y;, Vi) > 6(N,)aaass > 0, (B.11)
=2

Now we focus on the second term in the right hand side of (B.11). Using Fano’s
inequality [84], the conditional entropy of M; can be bounded from above as

H(M;|Y;, Vi) < H(P|V;) + Fe - log(|IM] — 1), (B.12)
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where P,|V; denotes the probability of decoding error conditioned on V. In our case
(|M|=2), ineq. (B.12) is reduced to

H(M,[Y,, V) < H(B|V)), (B.13)

where H(P.) is the binary entropy function [84], i.e. H(P.) = P.log(P.) + (1 —
P.)log(1 — P.). Hence, (B.10) is rewritten as

No
l0g(2) + Y H(P.[V;) > 6(N,)adass > 0, (B.14)
=2

For computing the error probability we define the scalar random variable Z; £ Yl-TVi,
which is a sufficient statistic for the decoding of M;. The statistic of Z; conditioned on
Vi =V; is

1
ZiVi=vi~ 5 (N (<Ivill (% + 03 )il )
+ N (Il (0% + 03 )IvilE) ) (B.15)

Eq. (B.13) holds for any decoder, and in particular for a decoder based on sign-decision.
For the latter, Pe’Vz' = PI‘{Z,L > OIMZ = 17VZ = Vi} = PI'{ZZ < OlMZ = _17VZ = Vi}~
Obviously, from (B.15), we have

1
12

(0% + 03,

where Q(z) £ % Iy e "/2dt denotes the Gaussian Q-function, and T; £ [|V,|> ~
(i—1)od
(i—1)oi+o%

upper bound the error probability (B.16) as

x*(n,ov,), with of, = . Using the well known Chernoff bound [200], we can

1 —t;
Pr{Z > 0|M; = 1,V; = v;} < = U B.17
r{ ’ V} 2€Xp (2(0'3("‘0'%11)) ( )

Since H(P,) is increasing in P, € [0,0.5], (B.17) can be used to upper bound H(P.|V; =

v;). Hence,
1 -1
H|-exp| 75—
2 2(0% + O’Si_l)

1 —1;
< H <§E exp <—2(0§<+‘7?§*i_1>>]) ; (B.18)

H(Pelvz) E

IN
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where the second inequality follows from Jensen’s inequality [84]. The expectation
above can be computed by taking into account the pdf of the Chi-square distribution
[200]:

—T;
E |:6Xp <2(U§(+02§.1))‘|

= (o7 2571 T(n/2)) " /OOO exp (—t

2 2 2
ox 05 toy,

)

371t B.19
207, (0% + 0% ) ’ ( )

2 2 2
g (oae ag
X+ Si—1+ v;

Identifying k = and using the variable change r = tk, the integral in

2 2
Ux+‘7§

(B.19) can be written as

i—1

/ exp (—tk) -t2 dt = k™2 / exp(=r)r2 tdr = k72 - T (n/2). (B.20)
0 0

Substituting successively into (B.19) and (B.18) we arrive at

2 2 2 z
1 oy + 0% 2
H(PIV) < H (5 ( AR ) 2q (T—> . (B.21)

2 2 2
oy + I3, + oy,

By combining (B.21) with (B.14), (3.16) is obtained. Now, the asymptotic results of
Theorem 3.1 follow easily:

1. For proving the first result, we rewrite the term 7; in (B.21), after some algebraic
manipulations, as

ic30% + o4 1
e (1—1) ff 2 )2(+ T (i-)ok - (B.22)
{ 05 tiogox +0x 14 o0
SYX X

In the limit, we have lim, .o H (%Tl%> = lim,, .o H <%7‘Z%> = 0fori > 2.

Hence,

j <
DWlPlbrilfoo O(No)ada-ss < log(2).

This proves the first asymptotic result of Theorem 3.1.
2. The term 7; in (B.21) is strictly smaller than 1; hence, (B.21) decreases with n,

n

in such a way that lim,,_,., H (%Tf> = 0. Thus,

lim 0(N,)adass < log(2).

n—oo

Since 6(N,)addss > 0, according to (B.14), we have proved the second asymptotic
result of Theorem 3.1.
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B.3 Proof of Eq. (3.24) in Theorem 3.2

For computing the information leakage for ISS, we first need to prove the following
lemma.

Lemma B.1 (Gaussianity of the marked signal in ISS). For the ISS embedding
function, Y; conditioned on the embedded message M; is i.i.d. Gaussian.

Proof: For N, = 1, Y; is the sum of an i.i.d. Gaussian (S) and another Gaussian
whose covariance matrix depends on S. Noticing that the sum of Gaussian random
variables is Gaussian, we have that Y; is Gaussian. If a Gaussian random variable is
circularly symmetric, then it is i.i.d. Thus, it remains to be proved that the pdf of Y
is circularly symmetric, i.e. that its pdf is invariant under rotations, or equivalently,
fly|IM =0) = f(Hy|M = 0), for H € R"" any unitary matrix.

In the following we drop the subindex ¢ from the notation for simplicity, and we
assume that the embedded message is m = 0 without loss of generality. The pdf of y
conditioned on s is

L L T'vil(y —us
18 =M =0) = i ren (5l v By ) (B2

and the pdf f(Hy|M = 0) is calculated as

fHEy[M=0) = [ f(Hy|S=sM=0) f(s)ds

Rn

= K[ exp (—% ((Hy —us)TSS (Hy — vs) + ”;H;)) ds, (B.24)

R US

where K is a constant (notice, from Eq. (3.22), that |Xg| does not depend on s). The
first term of the exponent in (B.24) can be rewritten as

(Hy —vs)'Sg!(Hy —vs) = y'H'Sg5'Hy — 2us’ £5'Hy + 1% g 's
= y'H'S'Hy — 2vs" HH" ©g'Hy
+ v’"HH S 'HH s
= (y—vH"s)'(H'SsH) '(y —vH"s), (B.25)

where the second equality follows because HH” = I,,. By realizing that ||s||?> = ||[H s||?
(or equivalently, that f(s) is circularly symmetric), we can write
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f(Hy|M = 0)
= f(y[H'S =H"s, M = 0) - f(H"s)ds
Rn
T
= K [ exp (—1 ((y —vH"s)'(H"SsH) (y — vH''s) + M)) ds
R™ 2 20%
— K exp (_1 ((y o VS/)Tzfl( o VS/) + ”S/H2)) dsl
Rn 2 o Y 20‘%«
= fly[M =0), (B.26)

where for the third equality we have used the change of variable s’ = H”'s (notice that
the Jacobian of this change of variable is 1). This concludes the proof of the lemma. =

By Lemma B.1, the entropy of Y; conditioned on M; is

1
MY, 1) = 5 (g log(2mea?.) + glog(zm—;)) , (B.27)
with o, and o3, the variance of the components of Y; conditioned on M; = 0 and

M; =1, respectively. Let Y}; be the ith component of the jth observation,

T
Y},i = XjJ‘ + (—].)]V[JI/SZ - A ||S]||2SZ, for i = 1, o, n. (B28)

Since the components of X; are zero-mean, it is easy to see that E[Y;;|M; = m;] = 0.
Thus, the variance of Yj; conditioned on M; is given by

S\
E[Y2My=m)] = 0%+ —230% (||S||) L E

IS[1*

<ng>25;]

S\’
= oy +v%0% — 2 0% - E ( 2)

NEa
X (E (i)] |
* E[% (s1) (i) D (8.29)

We need to compute the second and fourth order statistics of S;/[|S||. For a vector
S isotropically distributed (i.e., with its probability density function invariant under

S
rotations), the random variable defined as S’ £ STl - r is uniformly distributed on
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the surface of the n-dimensional sphere of radius r. Notice that the Gaussian vector
with i.i.d. components, which is the case of interest for us, is indeed isotropically
distributed. The marginal probability density function of one component S. can be
computed by integrating the probability density function of S’ over the surface of the
(n — 1)-dimensional sphere with radius rv/1 — (s}/r)?, yielding?

£(s) = r.\/;(?(%_l) (1— (‘9—)2)_ Vi=1,...,n; s e -r], (B.30)

r

where I'(-) denotes the complete Gamma function. Due to the symmetry of the pdf,
it is easy to see that E[S]] = 0, and the moment generating function [ (s})? f(s};)ds]
yields E[(S))?] = r?/n and E[(S!)%] = 3r*/(2n+ n?). For computing the other statistic
involved in (B.29), the joint pdf f(s},s}), i # j must be calculated. Conditioned on
S! = s}, the remaining components of S’ are uniformly distributed over the surface
of a (n — 1)-dimensional sphere of radius r; = ry/1 — (s}/r)?. Hence, the conditional
marginal pdf of 57 is given by

f(s515; = 1)

- 1—(‘(5—3’)2 N V=1 L J# s sy € [-rim]. (B.31)
o ym T (552) T s Vy=1...,n5#F 1 s; €=, (B

After some algebraic simplifications, we arrive at the following expression for the joint

pdf:
oy (s 2)%( (s 2)%
n—2 " (1 E - () . (B.32)

f(SQaS;-) = o ()2 + (89)2 — 2

Now we can calculate
BUSH" ()= [ [ (0t () (st (B33

finding out that Sj and S} are uncorrelated, but E[(S])* - (Sj)?] = r*/(2n + n?). Sub-
stituting in (B.29) with » = 1, which is the case of interest for us, we obtain

2
2 _ _ 2 2 2 0x 2 2 3 n—1
E[Y;72|M]—mj] = O'X+I/ 05—2)\?4—)\ O'X(2n+n2+2n+n2>
AN —2
= O'g( +V2U§+U§(%. (B34)

2A similar calculus is performed in [42, Chapter 14.3.1] for obtaining the marginal pdf of the
uniform inside the n-dimensional sphere.
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Since (B.34) is independent of the actual value of M;, it follows that (B.27) is given by
AN—2
h(Y | M;) = glog (27T6 (ai + V2o + 0?{%)) ‘

Finally, combining this result with (3.23) for N, = 1 and rearranging terms, we arrive
at (3.24).

B.4 Upper bound to the entropy of the observations in the
KMA scenario for ISS

An upper bound to the entropy of the observations can be derived as follows:

o

WY1, YN My, My,) <> h(Yig,... YaalMy, ..., My,) (B.35)

n

<y %E [log ((27re)No|2Yi|>} . (B.36)

=1

where ZY denotes the covariance matrix of Yy,,..., Yy, |M1 =mq,..., My, = my,,
and the expectation is taken over all possible reahzatlons of the messages sequences. It
can be seen that, for a particular realization , the off-diagonal terms of the covariance
matrix are given by

EYZ(j, ]f) = F [YL@ . Yk,i|M1 =mq,.. .,MN - mNo] == (—1)m]+mkV [52]

o

= (=1t el # k. (B.37)

The diagonal terms have been already calculated in (B.34). As can be seen, the co-
variance matrix 3y is of the form

P+C (—1)mtm2C .. (=)™t
—1 m2+m1c P + C ... -1 m2+mNOC'
Yy, = =1) : : . =) : ; (B.38)
(_1)mN0+m10 (_1)mN0+m20 ... P + C
with C' = 1262, and P = 02 (1 + 222 Taking into account that multiplying a row

or a column of a matrix by a scalar mu1t1phes the determinant by that scalar, it is not
difficult to show that the determinant of the above matrix is equal to P (1 + N}‘;C),
independently of the actual values of m;. We can insert this result in Eq. (B.36),
arriving at
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Y1, YN | M, ... My,

<

|3

_2 No N 2 2
log | (27e)Ne(a%)Ne (HW—)) 14 of 95 . (B.39)
n o2 <1+ A(/\*2)>
X n

This result is finally combined with (3.23) for obtaining (3.25).

B.5 Upper bounds to the conditional entropy and the log-
expectation of the norm

In the KMA scenario, the conditional pdf of the spreading vector follows a nonzero-
mean Gaussian N (v, a%N ), where v and Jg—,N are given by (3.8) and (3.9), respectively.
The bounds derived in this appendix are based on the fact that the norm of a nonzero-
mean Gaussian follows a noncentral Chi-square distribution. For the sake of notational

clarity, let us define the random variable T' ~ x"(n, v, T8y, )-

We will first derive the bound for the log-expectation of the norm. We can write

1 1 1
E [log (T%)] = §E [log(T)] < ilog(E[T]) =3 log (na%N + ||V||2> : (B.40)
where the upper bound follows from Jensen’s inequality [84]. Since V.~ N <0, %In) ,
o¥s X
the third term of (3.33) can be bounded from above as follows:
(n—1)FE [Elog(Q)|0O1 =o04,...,0x, = on,]]
(n—1)
< S5 E |log(no, +IIVIP)]
(n—1) N,od 1
< 5 log na%NO + nm =3 log(nog), (B.41)

where we have applied again Jensen’s inequality. An upper bound to the second term of
(3.33) is now derived. First, note that h(T2) < 3 log(2me - var(T'2)). For the variance,
we have [200, Chapter 2]

) = B[T] - BT

= nog, +IvII®

i [Iv[® ) Cl(n + 1)/2) et [P\
- (\@Usmexp (‘202_ ) T(n/2) 1F1< 2 72202 )) (B.42)

SNo o

N[

var(T

where 1 Fi(a; 3;x) denotes the confluent hypergeometric function of the first kind [29].
Hence, the second term of (3.33) can be upper bounded as
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hQIY1,.... Yy, My,...,My,)

4
Nyog

1 1 ,
S 5 10g(27r6) + 5 log (nagNo + nm

(o)

2
h4lE n+1 n [|[V|]?
£ VP g I B.43
(eXp< 202 )\ T2 2202 ) (B-43)

Using the Kummer transformation [29, Chapter 13], the expectation in (B.43) can be
written as

2 2
V|2 n+1 n |[V]? 1L n |[V]?
o G T W 11 R e T '
QO'SN 2 2 20§N 2' 927 ZO'S,N

(B44)

20 2

73 No

Now, consider the integral representation of the hypergeometric function [29]

B (—%;g;—z) :F("T*E)(%F)(—l) /01 (1 — 1) d (BAD)

2

We want to prove that the function ;F) ( 255 —2)2 is convex in z. Using Leibniz’s
rule [29, Chapter 3], we take the second derivative of the squared integral in (B.45),
obtaining

>2

52 <fo e 3 (1—1)"2

— 2[(/01 e a1l — )T dt>2
+ (/01 a1 — )T dt) (/01 (1 — )T dt)] (B.46)

Eq. (B.46) is easily seen to be positive for all z, since all the integrands are positive.

Thus, {F; ( 335 —z)2 is convex in z. This implies that we can lower bound (B.44)
using Jensen'’s inequality as
2

2 NU’4

1 V2 1 n0752

E | R __.E._H H > R __,ﬁ._ NooZ+o%
2a 27 205N - 27 27 QUS.N

1 n nN,o 2
= (|- = ——=25) B.4
(-5 -1 (B.47
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Combining (B.43), (B.44), and (B.47), we obtain
h(Q‘Ylﬂ s 7YN07 Mlu ceey MNO>

1
< 5 log(2me)

+ Liog <na§— 20% (F((n+1)/2)>21F1( L, nN°§‘1)2>.(B.48)

2 1+ NE1\ T(n/2) 22T

Finally, combining (3.10), (B.41), (B.48), and simplifying terms, the lower bound (3.34)
follows.

B.6 Analysis of the blind CM cost function

Taking into account that both s and sy are of unit norm, the first term of (4.25)
can be computed as

E[(Y"s)'] = E [(XTS Fu(—1)Mp - )\(XTso)p)4] (B.49)

= E[(X"s)'] +602p°E [(X"s)’] +v*p" ( )

+61°Xp"E [(X"s0)?] + X'p'E [(XT'sp)"] (B.51)

—4\pE [(X"s)*(X"s0)] (B.52)

—120%p°F [(X"s)(X"s9)] (B.53)

FONE [(X9) (X 8] (B.51)

~ DB [(XT9)(X o). (B.55)

By recalling that X is i.i.d. Gaussian, it follows that E [(X"s)*| = E [(X"s¢)*] = 30%,
and E [(Y"s)?] = E[(Y"so)?] = 0%. Similarly, for the expectation in (B.53) we have

E[(X"s)(X"sy)] =s"E [XX"] 59 = o%p. (B.56)

Hence, computation of the terms (B.50), (B.51) and (B.53) is straightforward. The
remaining terms require more involvement:

e For the expectation in the term (B.52), we first expand the terms of the correla-
tion as follows

B [(X"s)} (X s)] = Z Z Y EXiX;XiXpsisisesom] . (B.5T)

We consider now the non-null terms of (B.57):
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(i=j=k=m)
Z E[X]] s?s0; = 30% Z 5250 (B.58)
(i =j) # (k=m)
Z Z E [XfX,ﬂ s?sksmk = 0% Z Z s?sksoyk (B.59)
i kA i kA
(i=k)# (G =m)
Z Z E [z}27] s7sj50; = 0x Z Z 7850, (B.60)
i g i g
(i=m) # (j =Fk)
ox Z Z s35:80, (B.61)
i i

Combining the above expressions, rearranging terms and using the fact that
n
> (z) SOILED o
i=1 k#i i=1
Eq. (B.57) can be rewritten as

E [(XTS)B(XTSO)} = 30% Z 8350, + 30y (p — Z s?so,i>
i=1

=1

= 3poy. (B.62)

e The computation of the statistic in (B.55) is analogous to that of (B.52). It can
be shown that

E[(X"s)*(X"so)] = 3pok. (B.63)

e For computing the statistic in (B.54), we expand again the correlations

B [(X"s)*(X"s0)?] Z Z Z Z E X X; X1 X550 kS0m] - (B.64)

The non-null terms of (B.57) are:

(i=j=k=m)

ZE [X}] 3301—30)(23 St (B.65)
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(i =) # (k=m)
ox Z Z S350 1 (B.66)
i ki
(i =k)# (j=m)
0'5; Z Z $i5j50,i50,5 (B67)
1 jFi
(i=m)# (7 =h)
O';L( Z Z Si8j807i807j (B68)
1 j#i

Now, taking into account that

n
2 2 _ 2 2 2.2
Z 5 (Z SO,kz) = S S04 SiS0,i

3
3

i=1 ki =1 k=1 i=1
n
= IsIPllsol* = > s7sf (B.69)
i=1
n n
Z 8iS0,i <Z SjSO,j> = p’ - Z 5?5(2),1‘» (B.70)
i=1 i i=1

and combining the above terms, we can rewrite (B.64) as

BSOS = 3ok (1203 )
i=1 =1

= ox(1+2p%). (B.71)

By combining all the terms computed above, we can arrive at the final expression for
the fourth order moment of the correlation between the observations and the estimate,
i.e Eq. (B.49). The calculation of the second order moment is easier:

E[(Y"s))] = E [(sz Fu(—1)Mp - A(XTso)pﬂ
= E[(X"s)’] + %" + Np*E [(X"s)?]
— 20pE [(X"s)(X"s0)]
= ox + 17+ NpPok — 2\pP0%. (B.72)
Finally, by combining all the statistics obtained above, we can arrive at the expres-
sion of the cost function (4.25)

Jom(s) = Jom(p) = p* (v — 1202X0% + 61°N 0% + 120%0% — 12X%0% + 3A'0Y)
—2p” (V¥ = 30%) (V* — 2Xo% + N20%) 4 30 — 2P0k + % (B.73)
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B.7 Cost function of the blind CM method for Generalized
Gaussian hosts

We assume that the components of the host signal follow a zero-mean Gener-
alized Gaussian distribution with shape parameter ¢ and variance o%, i.e. X; ~
GG(c,0%) ,i = 1,...,n. Following similar calculations to those in Appendix B.6,
the CM cost function for a GG host can be shown to be given by

Jom(s,s0, ) = p (1/4 — 1202 M0% 4+ 602 \20% + 120205 — 120305 + 3M\*oy

Mo k(e Z 502> — 4p* N0 k(c) Z sisgyi
i=1
—2p° ((V2 —30%) (V¥ = 2Xo% + No%) — 3X0xk(c )Z s?sgﬂ»)

=1

—4pAayk(c) Z 3504 + 30y — 20%0% + vt + oxk(c) Z st, (B.74)
i=1 ;

where k(c) 2 %

with parameter c. Notice that for x(c) = 0 and ¢ = 2 (i.e. for a Gaussian host), the
expression above is reduced to (B.73). Intuitively, the behavior of CM for any GG host
should approach the behavior for a Gaussian host as n grows, because the sum of GGs
tends asymptotically to a Gaussian distribution. As one can see, Eq. (B.74) depends
on the actual realizations of s and sy, not only on their cross-correlation p, as happened
with (B.73). However, taking the expectation of Jenm (s, so, ¢) over sy and taking into
account that, for unit norm s, F[S{] = 3/(2n + n?), E[S?] = 1/n and E[SF] = 0 for
odd k (cf. Appendix B.3),

— 3 is the kurtosis excess (72 in the notation of [29]) for a GG

ElJom(s, So,c)] = p <u4 — 120%M0% + 602\ 20% + 12020 — 12005 + 3Moy

A n
+Mok(c )Zn " n2>

1
—2p° ((l/2 —30%) (V¥ = 2Xo% + N0%) — 3N?0xk(c)— )
n
+30% — 2v%0% + vt + o k(c) Z st (B.75)

If we take the limit of the above expression when n — oo, we arrive at

n

lim E [Jem(s, So, )] = Jem(p) + o%r(c) > st (B.76)

n—00 -
=1
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where Jom(p) is given by (B.73). Also for large n, >, s? will be close to zero unless s
is very close to any of the vectors of the canonical basis of R™. Hence, when the number
of dimensions is very large, the cost function of CM is, in average, nearly independent
of the shape parameter ¢ and CM behaves approximately as for a Gaussian host.



Appendix C

C.1 Proof of Lemma 5.1

Assume that the secret dither, which is fixed for all k, takes the value t. The
random variable defined as V £ (?k —djz) mod A is uniformly distributed over
(t+ Z(A)) mod A. For o > 0.5, the feasible region Sy, is a modulo-A convex set.
For any lattice A, Z(A) can be upper bounded by B(0, (1 — a)r.(A)), where r.(A) is
the covering radius of A defined in (5.11), and B(c, r) denotes the n-dimensional closed
hypersphere of radius r centered in c. Therefore,

S C ﬁ B(Vi, (1 —a)re(A)) mod A.

The intersection between two hyperspheres of radius r» becomes arbitrarily small as
the distance between the centers of both spheres approaches 2r. In the limit, their
intersection is the unique point equidistant to the two centers. This means that the
feasible region Sy, converges to t if the maximum distance between the modulo-A
reduced observations V}, approaches 2(1 — a)r.(A). For this condition to hold, at least
one observation V; must be arbitrarily close to a certain vertex a of (t4+2(A)) mod A,
and at least another observation Vj, with j # ¢, must be arbitrarily close to another
vertex b at distance 2(1 — a)r.(A). Intuitively, the probability of finding such a pair
of observations goes to 1 almost surely as N, — oc.

Let us define the random variable Dy, £ max{dy,(a),dn,(b)}, with iy, (a) =
miny, |a — V| and dy,(b) = ming |b — V;|. Formally, we want to show that Dy, ~> 0,
which is equivalent to show that for all € > 0

Pr (th |Dy,| > e) = 0. (C.1)

0o—00

In order to prove almost sure convergence, it is sufficient to prove that the sum
> n.—1 Pr(|Dn,| > €) is finite. In such case, almost sure convergence follows by virtue
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Figure C.1: Geometrical interpretation of the variables involved in the proof of Lemma 5.1. The value
(1 — a)re(A) is the covering radius of Z(A). The regions of Z(A) within distance € of the vertices of
interest, a and b, are shaded.

of the Borel-Cantelli lemma [114]. The probability of interest can be obtained as

Pr(|Dn,| >€¢) = Pr(Dy, >¢€)=Pr ((5No(a) > eU(SNo(b) > 6)
Pr(0n,(a) > €) + Pr (dn,(b) > €)

No No
m((ﬁa—VM>{)+m<(Nb—VH>%
k=1 k=1

_ mQa—vH>QM+P%m—VM>QM (C.2)

IA

The probabilities in (C.2) can be easily computed by taking into account the geometri-
cal interpretation provided by Figure C.1, using an hexagonal lattice as example. For
the first probability in the right hand side of (C.2) we have

vol(Z(A)) — vol(B(a,e) N Z(A))
vol(Z(A))

B vol(B(a,e) N Z(A))

= — VOI(Z(A)) = 1—Pa(€)7

Pr <|a—\~7k| > e) =

with 0 < pa(e) < 1. Following a similar calculation for the other term involved in
(C.2), we can write

Pr(|Dy,| > €) < (1= pa(e)™ + (1 — pp (€)™,



C.2 Proof of Theorem 5.1 193

and consequently

Y Pr(IDy,| > ) < 1/pale) +1/pp(e) < cc.

Since the above sum is finite, the result (C.1) follows as a consequence of the Borel-
Cantelli lemma, thus proving Lemma C.1.

C.2 Proof of Theorem 5.1
Here we compute the mean value of (5.33). It can be seen that
W =2u+min{Vi,..., Vy,} —max{Vi,...,Vy,}.
Hence, W = 2u + X, where X is the random variable defined as
X 2 min{V;,...,Vy,} — max{Vi,...,Vy,},

where x € (—2u, 0], so the pdf of W is fy(w) = fx(w —2u). This allows us to rewrite
the problem as

Bllog(W)] = [ logtuw) - fw w)i. (C.3)

First, let us see how the pdf of X can be computed. For having X = =z, it should
be min{...} = ¢ and max{...} = ¢t — x; this is so when 0; = ¢, 9; = t — x, and
t <o <t—ux for k={1,...,N,}\ {i,5}, but taking into account that there are
infinite values of ¢ that yield X = x. Hence, the pdf of X reads as

pta

fx(x) = No(N, — 1)/ for@) - fr,(t —2) - (Prob{t < V; <t —z})N~2dt, (C.4)

—p

where the factor N,(N, — 1) comes from the number of different orderings of the
minimum and the maximum in vector (01, ..., 0y, ); since all observations are 1.i.d., we
can simply multiply the integral by this factor. When V; ~ U(—pu, 1), computation of

(C.4) in this case is straightforward and yields
(<)

fX(x) = NO(NO - 1) ’ W

(1 —a)A + (C.5)

for p = (1 — a)A/2. Thus, we must solve the following integral:

No(N, —

Ellog(W)] = 2 1>/0M(2u—w)N"2wlog(w)dw, (C.6)
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where = (1 — a)A/2. Integration by parts must be recursively applied to (C.6). We
define

u® 2u—w)? = du=—(N,—2)2u—w)"dw, (C.7)
2

dv 2 wlog(w)dw = v= % <log(w) - —> , (C.8)

hence,

/O2u(2M —w)NPwlog(w)dw = (2p—w)No?. % (log(w) B %)

Integration by parts can be successively applied to the resulting integrals by using
variables u and dv analogous to those of (C.7) and (C.8), arriving at a summation with

N, — 1 terms. For the k-th term, k =1,..., N, — 1, we must compute an integral of
the form
k+2
/wkH (log(w) — bg_1) dw = o (log(w) — by), (C.10)
where
1 T+be 1+ (k+1) bp
== = =1,...,N, — 2. A1
bO 27 bk k+2 ’ k ) ) (C )

The expression with all the terms in the summation reads as

2p w2 1 2p
/ 2u — w)NPwlog(w)dw = (2u —w)No? . — (log(w) - —)
; 2 21,
No—2 2u
Y @u— ) (log(w) — b) e
k=1 0
(C.12)
where by, are given by (C.11), and
1 N,—1—k
6025; Ck:Ck_l'W,kzl,...,No—2. (013)

It can be seen that all the terms in (C.12) are null but the last one; hence, the value
of the integral results in

AM@u—MM2wbgme= (2™ - (log(21) — by, ») - cx, 2. (C.14)
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Notice that

(N, —2)! 1
_ p— p— .1
No=2 = TN N,(N, — 1) (C.15)
and
T+bp g+ (k+1) by 1
= =b._ — =1...,.N,—2 1
bk k—|—2 bk 1+k+27k 9 y4Vo ) (C 6)

thus by,—o = —1 + Zi\i’l % = Hy, — 1, where Hy, is known as the N,-th “harmonic
number”. Hence, the value of (C.14) can be succinctly expressed as

/0 H(Z,u —w)N2wlog(w)dw = (log(2u) — Hy, +1) - ]\Q((2NM70)]E)1) (C.17)

Finally, by plugging (C.17) into (C.6) with u = (1 — «)A/2, we arrive at
Eflog(W)] =log (1 — a)A — Hy, + 1. (C.18)

C.3 Lower bound on the equivocation

By the definition of mutual information, we have

](Yg,...,?NO;TI|M2,...,MNO) = h(?g,...,YNJMQ,...,MNO)
No
— > (YT, M). (C.19)
1=2

The first term of (C.19) can be bounded from above as [84]
WMYo .. . YN |My, ..., My) = hZy+T,... Zyn +T)

< > h(Zip+T),.... Zin, +T)), (C20)
i=1

where Z; ; is the i-th component of Z;, and T/ denotes the i-th component of T. Since
the host signals X; and the secret dither T are mutually independent, it follows that
Z,; ; and T are independent. Hence, we can write

R 2 Cov(Zip+T,,...,Zin, +T]) =Rz, + Ry, (C.21)

where Ry, £ Cov(Z;s, ..., Zin,), and Ryy £ Cov(T}, ..., T}). Furthermore, it follows
from Assumption 2 that the self-noise is white [222] with variance per dimension (1 —
«)?P(A%). Hence, by considering that Z; ; are mutually independent for all j, we have

11 ... 1
Rz = (1—a)*P(A}) -1Iy,_1, RTi/:(l—a)QP(A;‘Z)- oo, (C22)
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for i =1,...,n. This allows us to bound Eq. (C.20) as [84, Th. 9.6.5]:

~ ~ n
h(Y27"'7YNo‘M27"'7MNo> < §lOg ((27T6>N071|R’)
- glog ((2me(1 —a)2P(A%)N"" - N,) . (C.23)
The equivocation or residual entropy is
M| Yo, ..., YN, My, ..., My,)) =h(T) = I(Yy,...,Yn,; T'|Ms,..., My,),(C.24)

hence, using (C.19) and (C.23), Eq. (C.24) can be lower bounded as

No
W'Y . . Yy, My, My,) > R(T')+> h(Y,|T, M)

=2

— Mlog ((2re(1 — @ PV, (C.25)

Taking into account that h(Y;|T’, M;) = h(T') = h(T)+nlog(l — a), and rearranging
terms, we finally arrive at the following lower bound to the equivocation per dimension:

(T Y., YN, Mo, ..., My,)

M) 1

> N, —5log ((2meP (ML)~ - N,) +log(1 — o), (C.26)

and after substituting 2h(T) = < log(vol(V(A}))) = 1 log (Z&fg), we obtain Eq. (5.40).

C.4 Proof of Theorem 5.2

In order to arrive at Eq. (5.41), we start from the expression

1 ~ ~ h(T
—h(T'|Y2, ..., YN, My, ..., My,) = NOQ—{—Nolog(l—a)
n n

1 - N
= WY Y Mo, M), (C.27)

which can be straightforwardly obtained by following the reasoning in Appendix C.3.
First, we note that for the sequence of optimum lattice quantizers A* we have [222]

lim MT) = %log(ZweP(AZ)). (C.28)

n—oo n
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On the other hand, we want to prove that the following relation holds:

1, - - 1
lim _h(Y17"‘7YNO—1|M1)"'7MNO—1) = lim —h(Z1+T/,...,ZNo_1—|—T/)
n—oo M n—oo 1
1
= 3 log ((2me(1 — a)* - P(AL)N"' - N,),

(C.29)

with Z;, T" independent and uniformly distributed in (1 — a)V(A%), being V(A*) the
Voronoi cell of A} with second moment per dimension P(A’). Notice that we have
rearranged the observation indices from 1 to N, — 1, for the sake of clarity. We will
prove this result by making use of two lemmas.

Lemma C.1. Let Z, TV be two independent random variables uniformly distributed
n (1 —a)V(A:). We have that

Z+ T
lim M

n—oo

_ %log (2me(1 — a)2P(A)-2) . (C.30)

Proof: The entropy power inequality [84] states that
ei@+T) 5 An@) 4 AnT, (C.31)

Furthermore, we know that [222]

Z T 1
lim z) = lim MT) = —log (2me(1 — @)’ P(A})), (C.32)
n—oo n n—oo n 2
so we can write
lim enh(Z) +€nh(T) - 9. 6log(27re(1704)2P(A;;))
= 2me(l —a)’P(A}) -2 = enh(U (C.33)
with U ~ N (0,2(1 — «)?P(A%) - 1,). Thus, from Eq. (C.31) we have that
h(U 1
lim h(Z +T') > Q =3 log(2me(1 — a)*P(AY) - 2), (C.34)
n—oo 1 n

and we know from Eq. (C.23) that
/

h(Z +T") < 1

n -2

for all n. Hence, by combining (C.34) and (C.35) the lemma follows. u

log (2me(1 — a)*P(A}) - 2) (C.35)
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Lemma C.2. For Z;, T' uniformly distributed in (1 — a)V(A%), the following result
holds

iy, oo 20(Zyy + T2y + T, ... 21+ T') =

%log (271'6(1 —a)?P(AY) - m_—i—l) , form > 1. (C.36)
m

Proof: We will prove the result by induction. Since it was proven for m = 1 in
Lemma C.1, we will show now that it is true for m = ¢, assuming that it holds for
m < i—1. Making use of the entropy power inequality and the convexity of log(e” + ¢)
in z [49], we can write

2 ’
SW(Zi+ T2y + T, 2y +T) > log (080 4 a2t T 2T
n

(C.37)

By using the chain rule for entropies, it can be shown that the following equivocation
can be written as
i—1
WT|Zioa+ T, 2o+ T) = i-h(Z) =Y h(Zj+T|Zi+ T, Z+T),
7j=1

(C.38)

and making use of the inductive hypothesis we have that

lim nh(T’|ZZ 1+ T2+ T = %log (2me(1 — a)*P(AL))
1
- —Zlog (27T€ (1 —a)*P(A) - J+ )
J

= Llog (27re =a) P(AZ)) . (C.39)

i
Thus, if we take limits in (C.37) we arrive at the following bound:

1

1 1
lim —h(Zl + T/‘Zz;l + T/, Z1 + T ) > —1lo og <27T€(1 — CY)2P<A:L) ! +

[\

n—oo N

) (C.40)

Note that from the bounding given in (C.23) and the inductive hypothesis it follows
that

1+ 1

1 1
hl’Il —h(Zl —f- T/|Zi_1 —f- T', Z1 + T/)
7

v 5 log <27r6(1 —a)?P(A}) - ) . (C.41)
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Hence, by combining (C.40) and (C.41), the lemma follows. n

Now, using the chain rule for differential entropies we can write

No—1

1 1
“h(Zy+ T, Ly +T) ==Y h(Zi+ T2+ T, 2+ T), (CA2)
n n i1

and taking the limit when n — oo, by virtue of Lemma C.2, we arrive at the result
given in (C.29). Finally, by combining (C.27), (C.28) and (C.29) we can conclude that

1 ) . 1 1
lim —h(T'|Ya,...,YnN,, M, ..., My,) = 5 log(2meP(A})) — 3 log(N,) + log(1 — ),
n—oo 1
which is the desired result. If we identify now P(A}) = D,,/a?, then Theorem 5.2
follows.

C.5 Proof of Lemma 5.3

First, one must realize that if the assumption of independence between embedded
messages holds, then null information leakage for one observation implies perfect se-
crecy for all N,. Thus, the proof of perfect secrecy can be reduced to show that the
condition I(Y;T) = h(Y,) — h(Y,|T) = 0 is fulfilled.

With a little abuse of notation, in this appendix we will denote the pdf of y,
conditioned on t by f,(¥,|t), for making clear the dependence with p, the alphabet
size. We will first consider the term h(Y;|T). Due to the flat-host assumption, we
have h(Y1|T) = h(Y|T = t) for any t. Hence, we need to calculate

lim A(Y4|T = t) = — lim fo(y118) log(fp(¥11t))dy. (C.43)
P Py
Computation of the integral in (C.43) is unaffordable. However, by virtue of the
bounded convergence theorem [202, Chapt. 4], integral sign and limit can be inter-
changed if the integrand converges pointwise and

|fo(31]8) Log(f,(7:[t))] < 9(31) ¥ p, (C.44)

where ¢(y;) is any function such that fV(A) lg(¥1)|dy,; < oo. In our case it suffices to
choose a constant function g(y;) = vol(Z(A)) tlog(vol(Z(A))™!) V y; € V(A). The
integral of |g(y,)| for this choice is finite, since a < 1 by assumption. Thus, (C.43) can
be computed as

p—00

i AT =) = = [l G0 B30 (€49
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We turn, for the moment, our attention to the computation of the limit of the
conditioned pdf. The pdf of y, conditioned on t is given by

[r(yilt) = %i o(y; —t—d; mod A)
= m i oy, —t—d; mod A)-vol(V(Ay)), (C.46)

where the second equality follows from the definition of nesting ratio (cf. Sect. 5.1.1).
By recalling the definition of the function ¢(x) in (5.18), Eq. (C.46) can be further
rewritten as

B0 = R St 1t mod &)l () (C4D

where Z(A) = (1 — «)V(A). Let us analyze the sum in (C.47). Each term is given by

1, fordy € (y, —t—2(A)) mod A

ozn)(y1 —t —di mod A) = { 0, elsewhere (C.48)

Hence, the sum 7"} ¢z5) (¥, — t — d mod A) is equivalent to counting the points
d; € D, that fall inside the region (y, —t — Z(A)) mod A. Let us denote by F the
subset of points of D, for which the indicator function (C.48) is nonnull. The set F
induces a partition (according to Ay) of the region (y; —t — Z(A) mod A. Since each
term in the sum is multiplied by vol(V(Ay)), the result is an approximation of the
volume of —Z(A) (which is equal to Z(A) up to a set of measure zero), i.e.

[y

=

(bZ(A) (S’l —t— dk mod A) . VOl(V(Af)) = VOl(Z(A)) + E(p), (049)

>
I

where e(p) represents the discrepancy between vol(Z(A)) and the value of the sum,
which comes from the points of F close to the boundary of Z(A). Recall that, by
definition of covering radius (cf. Eq. (5.11)),

V() € B(0,r.(Af)), (C.50)

where B(0,7.(Ay)) is the n-dimensional closed ball of radius r.(Af). Hence, if r.(Af) —
0 as p — o0, the term &(p) goes to 0 as well, and we have the definition of n-dimensional
Riemann integral:!

'Notice that the volume of Z(A) can be computed by means of a Riemann integral, because for
a < 1, Z(A) is compact, and it is the linear (and invertible) image of a n-dimensional hypercube.
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p—1

lim D ¢z (I —t — di mod A) - vol(V(A))
k=0

_ / dd = vol(Z(A)), ¥ §, € V(A). (C.51)
Z(A)
Finally, by substituting (C.51) into (C.47) we arrive at
1
1i yilt) = —————, Vy A). 52

Furthermore, from the properties of the Riemann sum, it follows that V ¢ > 0 there
exists py such that, for p > py,

|5 (F116) = vol(V(A)™H)| < eV 3, € V(A). (C.53)

Thus, we have proved that f,(y,]t) is uniformly convergent [202] with limit vol(V(A))™!,

Vy, e VA).

In order to compute the limit in (C.45), we observe that the function zlog(z)
is continuous in [0, Q)], with finite @, so it is uniformly continuous on that interval.
Therefore, (C.45) can be computed as
lim (Y, T=t) = —/ vol(V(A)) ' log(vol(V(A))tdy,

V(A)

= log(vol(V(A))). (C.54)

As for the other term involved in the mutual information, h(Y;), we know that the
entropy of a continuous random variable with bounded support can be upper bounded
by the log-volume of its support set. Thus, we can write

R(Y,IT) < h(¥y) < log(vol(V(A))). (C.55)

Since lim,, o h(Y1|T) = log(vol(V(A))) it is immediate, by (C.54) and (C.55), that
lim, o h(Y1) = log(vol(V(A))), fulfilling the condition of perfect secrecy regardless
the distribution of T, and Lemma 5.3 follows.

C.6 A posteriori probability of the message sequences

In order to compute the a posteriori probability of a message sequence m() =

(mf,...,mk,) (hereinafter, a “path”), this probability is first rewritten using Bayes’
rule:
Pr(mi i, [§ F) = f¥1 YN Imi, . omiy) - Pr(md, ... mly)
P > P No - — = .
1> ) N, 1> ) f(yla--wYNO)

(C.56)
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We will focus on the probability a posteriori of the observations, which can be written
as

f(jfl,...,ijo|m§,...,m§Vo)
:/ f(yl,...,yNo\mg,...,mﬁvo,t)-f(t)dt
V(A)
_ /V(A) FFalmi ) - FFraee s T 2l i, 1) - f(£)dE, (C.57)

where the second equality follows from the mutual independence between the observa-
tions when the secret dither t is known. Eq. (C.57) can be rewritten as

f(jfl,...,ijo|m§,...,m§V0)
= [y, ,S’No—1|mia e ’m§v0—1> X

) f(yNo|m§\fo7 t) ’ f<t|571, s 7S,No—17 mih e Jmé\/ofl)dt‘ (058)
%

If the same procedure is applied recursively to the leftmost term in the right hand side
of (C.58), we arrive at the following factorization for the a posteriori probability:

f(yla' . 75’N0|mzia' s 7mZ]‘Vo)
No
= Hf(yk|mzlv s 7m§cﬁ5’1’ s 75’]671)
k=1

No
= TL [ S S5 it (©59)
k=1"V®)

In order to compute each factor of (C.59), we recall the flat-host assumption, which
implies that f(¥./mj,t) = ¢(¥, — d,: —t mod A). Thus, each factor of (C.59) can
be seen as a circular convolution over V(A). Furthermore, under the assumption that
T ~ U(V(A)), we have that the conditional pdf of the dither is given by Eq. (5.26).
By combining (5.18) and (5.26), it can be seen that the integrand of the kth factor in
Eq. (C.59) is

vol(Sg_1 (m®))~!
vol(Z(A))
0, otherwise.

, for t € S;_1(m") such that (y, — d,; —t) mod A€ Z(A)

The condition on t in the equation above is equivalent to t € Sj,_;(m®) such that t €
(¥ — dmg — Z(A)) mod A, so each factor in (C.59) is proportional to the volume of
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S(m®) = S, (m®) N Dy(mi). Finally, Eq. (C.59) can be succinctly expressed as

f(yy,--- ,SfNo|m’i, . ,mﬁ\,o)
ﬁ vol(S(mé, ..., mi))
vol(Z(A)) - vol(Sk—1(m},...,mi )’

fory,,...,¥n, € Sn, (m®)

k=1
0, otherwise
vol(Sy, (mi, ..., mb )) N N .
o ) ) o ()
= { GOl ZA)) oAy O Vi I, € S (m) (C.60)
0, otherwise

C.7 Proof of Theorem 5.3

As shown in Eq. (C.56) and (C.60) from App. C.6, the a posteriori probability of a
message sequence is nonnull only if its feasible region is not an empty set. Using the
definition of feasible region (cf. (5.53) and (5.54)), we can state that a certain message
sequence m has nonnull a posteriori probability if

No

(3 — dps — Z(A)) mod A #£0. (C.61)

k=1

We say that the sequences fulfilling the above condition are “feasible” given the set of
observations. The proof of the theorem is based on the concept of feasibility.

First, let us denote by m™ the message sequence embedded in the observations. We
will arrange, without loss of generality, the message space M™e in two disjoint subsets:

{m(i), i=1,...,p}, which will represent the sequences in the equivalence class of m®,
and {m® i =p+1,...,p"}, which will represent the remaining sequences in M™°.
For the sake of clarity, the proof will be conducted in 4 steps.

Step 1)

In this step we will show that all the sequences in the equivalent class of m() are
feasible.

Notice that from Eq. (5.17), taking into account that Ny is uniformly distributed
over V(A), we can write

(¥ —dpg) mod A€ (Z(A)+t+d, —dy,) modA, forallk=1,...,N,,

m

or equivalently,

(t+d, —d,;) mod A€ (y,—dy: —Z(A)) modA, forallk=1,...,N,. (C.62)
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By Lemma 5.4, for ¢ = 1,...,p, and for all k£, we have d,, = =(d,, 1+ d;) mod A, for
some fixed [ € M. Hence, (t +d,,;1 —d,;) mod A = (t—dl) modA for all k =

m

1,..., N,. Substituting in (C.62), we ’ obtain
(t—d) mod A€ (y,—dp; —2(A) mod A, forallk=1,..., N, (C.63)

This proves that, for the message sequences belonging to the equivalence class of m(
the intersection (C.61) is always non-empty, since at least the point (t —d;) mod A is
contained in the intersection.

Step 2)

In this step we prove that the feasible regions of the message sequences that belong
to the equivalence class of m» asymptotically converge to (t —d;) mod A, [ € M.

As shown in Lemma 5.4, the feasible region for the sequences in the equivalence
class of m® only differ in their centers: for i = 1,...,p, Sy,(m®) = (Sy,(mW) — d,)
mod A. On the other hand, from Lemma 5.1 we know that the feasible region in the
KMA case converges almost surely to t as N, — oo. Combining these results with the
result of Step 1), it follows that the feasible regions of the sequences in the equivalence
class of m") converge to (t —d;) mod A, I € M, as N, — oc.

Step 3)

Now we consider the sequences not belonging to the equivalence class of m™. We
will prove that these sequences are all unfeasible for sufficiently large N,.

Among the elements of this set of sequences, consider a sequence m) which, for
some i = 1,...,p, equals m® for all k but for a certain k = ky. Consider the feasible
region of this sequence, which is given by

Sw,m®) = [ @ —d,; —Z(A) modA | ((yko ~d,; —Z(A)) mod A)
k\ ko
= M |He. (C.64)

For all k\ ko, (¢t +d,2 —d,,;) mod A = (t —d,), for some fixed I € M. Hence,
using the result of Step 2),

For k = ko, (t + dp: — dpe ) = (t — d), with ¢ # . Therefore, (t —d.) mod A € H,.

Since Z(A) C V(Af) by assumptmn then (t —d;) mod A, with ¢ # [, cannot belong
to Hy. Thus,

lim Sy,(mY) = lim H,(|H. = (C.66)

Ny—00 Ny—o00
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This shows that the sequences that do not belong to the equivalence class of m
cannot contain in their feasible region any of the points (t —d;) mod A, | € M, when
N, — oo. It only remains to be proved that these points are the only feasible regions
when N, — oo. This is a consequence of the next result.

Claim: Consider any point z € V(A) such that z # (t —d;) mod A, | € M. For
any such point, the probability of observing one y, such that z does not belong to any
of the regions (y, —d; — Z(A)) mod A, i € M, goes to 1 as N, — 0.

Sketch of the proof: For fixed t, the support of the observations is R £ Ui (t +
d; + Z(A)) mod A. Note that R does not cover the whole Voronoi region V(A), since
Z(A) € V(A;) by assumption. Let us denote by R the complement of R in V(A). If
z € R, then it suffices to observe y, = (t+d;) mod A, for some [ € M. On the other
hand, if z € R, then it suffices to observe ¥, = (t +d; —e) mod A, for some | € M,
where e is the shortest norm vector such that (z +e) mod A € R. Since for fixed t
the observations are uniformly distributed over R, the probability of observing such

Y goes to 1 as N, — oo. [ ]

Therefore, any sequence not belonging to the equivalence class of m) is unfeasible
for N, — o0.

Step 4)

The three previous steps have shown that the only message sequences in M™e that
have nonnull probability when N, — oo are those belonging to the equivalence class
of m(®. We know, by Lemma 5.4, that all these sequences are equiprobable. Hence, if
the attacker has enough computational power for checking an exponentially increasing
number of intersections, then his uncertainty about the embedded message sequence
becomes log(p) for N, — oo, and the theorem follows.

C.8 Proof of Lemma 5.5

The proof consists in showing that the right hand side of (2.22) is lower bounded
by log(p) when N, — oo, i.e.

lim H(My,...,My|Y1,....Yn,)—H(M,...,My,|Y1,....,Yn,, T) > log(p).

Ny—o00
(C.67)
For the sake of clarity, the proof will be conducted in three steps.
Step 1)
Let us denote by LYo = £ x L5 x ... x Ly, the set of feasible message sequences for

a fair (knowing T') user, given NN, observations. In order to obtain the elements of £,
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consider the a posteriori probability of a certain message m,

Pr(m)
fFe) 7

By recalling the definition of ¢(x) in (5.18), Eq. (C.68) shows that m € £; iff d,,
belongs to (y; —t — Z(A)) mod A, and that all the elements of £; are equiprobable
(see example in Figure C.3). Thus, £N° is composed of |£Ne| = []X°, |£;| equiprobable
message sequences.? Furthermore, note that |£"°| does not depend on the particular
realization of t. Hence, the entropy of the embedded message sequence for the fair
user, given a particular realization of the observations, is

Pr(mly,;, t) = ((y, —dsm —t) mod A). (C.68)

H(Mla"'7MNo|yl7"'a$’No7t) = H(M17" MNo’yla"'?yNat:())

= log(|£"|) Zlog |L:]). (C.69)

Step 2)
Let us denote by P™Ne the set of feasible message sequences when T is not known in
advance. Lemma 5.4 tells us that P™° contains, at least, the sequences of £M° plus all
the sequences that fulfill the equivalence relation (5.63) with those of L. Taking into
account the particular form of the equivalence classes for Construction A (see (5.63)),
we can write PNe O KMo, where

|LNe| p—1 '
Ko & U U @4 . 1) mod p, with m® e £,

=1 5=0

Notice that all the elements of K are equiprobable. Thus, the equivocation about the
embedded message for an unfair user and a particular realization of the observations
can be bounded from below as

H(My, . My 31, ) > log(KY]). (C.70)
The cardinality of KX¥° depends on the number of equivalence classes in £™° as

Ko = p - |GM], (C.71)

where GM° is the quotient space under the equivalence relation (5.63), i.e. GNo £

LNe/ ~. The determination of |GN°| is the subject of the next lemma.

2Notice that in the case of a = 0, we have £; = M V i equiprobably, i.e. null communication rate.
When « > 0, a positive communication rate is always achievable.
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Figure C.2: Illustration of the region (y, —t— Z(A)) mod A for the lattice code of Figure 5.1(a) with
a = 0.5. Notice that 3 different messages are feasible in this case.

Lemma C.3 (Cardinality of the quotient space). For £ with |£;| < [5], Vi=
1,...,N,, consider the equivalence relation defined in (5.63) and the quotient space
under this equivalence relation, GV = £Ne/ ~. The cardinality of the quotient space

is given by
No [/ N, k—1
9% 1= ( 11 12 ]10e] - 1)) . (C.72)
k=1 \i=k+1  i=1
Proof:
Let us assume, without loss of generality, that £; = {0,...,|£;| — 1}. The num-

ber of equivalence classes can be obtained in closed form by taking into account the
geometrical structure that the equivalence relation (5.63) defines in M™Me, which is
illustrated in Figure C.3 for N, = 2, p = 5, [£4] = |£2] = 3. The 25 dots in the
shaded area represent M™Ye. The nine circled dots in the lower left corner represent
LMo whereas the remaining circled dots are identical modulo p to £Y°. The elements
of £Ne that belong to the same equivalence class fall in the same diagonal (taking into
account the modulo-p reduction). Thus, the number of equivalence classes is deter-
mined by the number of different diagonals in M®™° that hit the points in £M. As in
the figure, under the condition [£;] < [§], V@ = 1,..., N,, this number is given by
the number of elements of £Y° contained in the N,-dimensional hyperplanes defined by
{m; =0, i=1,...,N,}. In other words, it is the number of sequences in £¥> which
contain zeros in any of their coordinates. A simple calculus reveals that |G| is given
by Eq. (C.72).
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Figure C.3: Geometrical interpretation of the equivalence classes involved in the proof of Lemma C.3
for N, = 2, £; = Ly = {0,1,2}, and p = 5. The circled dots represent £M° and its modulo-p
equivalent sequences according to (5.63). The points falling on the same diagonal line belong to the
same equivalence class.

n
Step 3)
By combining (C.69) and (C.70), we have
i} ~ _ i ||
H(M,,...,My,|yy,--..¥n,) — HMy, ..., My,|¥y,- -, YN, t =0) > log v )
(C.73)

If |£;| < [8]Vi=1,...,N,, using (C.71) and the result of Lemma C.3 we can write

Ww) ( g™ S [ (L — 1)
log ( = log|(p- =log|p- L
| LN | L] g; T15, 1£i]

= log(p) + log (1 - l_D[ (‘ﬁ{i—k_ll)> . (C.74)

k=1

The values of |£y| above depend on each particular realization of the observations.
Thus, in order to obtain the bound to (2.22) we need to average (C.74) over the
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observations:

g(N,) > log(p)+E

o7 (16 =
10g<1‘,}1< ] 1))]
> log(p) +log (1- (1- [p/217)™). (C.75)

where for the second inequality we have set |L| = [£], V k, in the computation of the
expectation. Lemma 5.5 follows by realizing that the right hand side of (C.75) goes to
log(p) for N, — oc.





