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Abstract—The performance of existing moments-based non-
data-aided (NDA) estimators of signal-to-noise ratio (SNR) in
digital communication systems substantially degrades with multi-
level constellations. We propose a novel moments-based approach
that is amenable to practical implementation and significantly
improves on previous estimators of this class. This approach is
based on a linear combination of ratios of certain even-order
moments, which allow the derivation of NDA SNR estimators
without requiring memory-costly look-up tables. The weights of
the linear combination can be tuned according to the constellation
and the SNR operation range. As particular case we develop an
eighth-order statistics (EOS) based estimator, showing in detail
the statistical analysis that leads to the weight optimization pro-
cedure. The EOS-based estimators yield improved performance
for multilevel constellations, especially for those with two and
three amplitude levels. Monte Carlo simulations validate the new
approach in a wide SNR range.

Index Terms—SNR estimation, Moments-based estimation,
Blind estimation, Higher-Order Statistics.

I. INTRODUCTION

Estimation of the signal-to-noise ratio (SNR) at the receiver

side is an important task in existing and emerging commu-

nication systems, as many of them require SNR knowledge

in order to achieve different goals, such as power control or

adaptive coding and modulation [1], [2], and soft decoding [3].

Whereas SNR estimation is a relatively easy task with simple

modulation formats such as quadrature phase-shift keying

(QPSK), the increasing complexity of the modulation schemes

used in modern systems poses significant challenges to current

methods.

Existing SNR estimators can be classified according to a

number of criteria. Data-aided (DA) estimators can be used

when the receiver has knowledge of the transmitted symbols,

in contrast to non-data-aided (NDA) estimators, which do

not require such knowledge. DA estimators can be used in

Decision-Directed (DD) mode by substituting the true trans-

mitted symbols by the outputs of the decoder. Under a different

classification, I/Q-based estimators make use of both the in-

phase and quadrature components of the received signal, and

Copyright c© 2009 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

The authors are with the Department of Signal Theory and
Communications, University of Vigo, 36310 Vigo, Spain (e-mail:
{malvarez,valcarce,mosquera}@gts.tsc.uvigo.es).

This work was supported by the European Commission through the IST
Programme under Contract IST-027393 SatNEx-II and by the Spanish Gov-
ernment under projects SPROACTIVE (ref. TEC2007-68094-C02-01/TCM)
and COMONSENS (CONSOLIDER-INGENIO 2010 CSD2008-00010).

thus require coherent detection; in contrast, envelope-based

(EVB) estimators only make use of the received signal mag-

nitude, and thus can be applied even if the carrier phase has not

been completely acquired. This is important in applications in

which the SNR must be estimated even if its value is so low as

to preclude accurate synchronization and decoding. Concern-

ing the sampling rate of the received signal, most estimators

operate on baud-sampled data, although several estimators for

oversampled data are also available [4], [5]. Most approaches

focus on the single-input single-output (SISO) channel with

additive white Gaussian noise (AWGN) and (quasi)static flat

fading [4], [6]–[16], although [17] and [18] address the

static frequency selective channel and time-varying flat fading

channel cases respectively. SNR estimators for multiantenna

receivers have also been recently proposed in [19], [20].

This paper addresses the SNR estimation problem under

the AWGN SISO channel model. This applies either to single

carrier systems or to multicarrier systems in which the SNR

is to be estimated at each carrier. The maximum likelihood

(ML) approach has been previously applied in this context,

for both constant modulus (CM) [4], [6], [7], [11], [18], [21]

and multilevel constellations [12] (I/Q-based), [13] (EVB).

Although ML estimators provide good statistical performance,

they tend to be computationally intensive. This motivates the

development of simpler, suboptimal approaches such as those

based on the moments of the envelope of the received signal,

here referred to as Mn (n is the order). These methods belong

to the class of NDA EVB estimators, requiring neither accu-

rate carrier recovery, nor knowledge of the transmitted sym-

bols. This flexibility, together with implementation simplicity,

makes these estimators attractive for practical applications.

Early examples of moments-based methods are two estima-

tors originally proposed for CM constellations [8], [9] built re-

spectively upon the first- and second-order moments (M1M2),

and the second- and fourth-order moments (M2M4). More

recently, [10] proposed a family of estimators for multilevel

constellations based on pairs of moments, containing M1M2

and M2M4 as particular cases. As it turns out, the performance

of M1M2 and M2M4 is close to the Cramer-Rao Bound (CRB)

for CM constellations [4], [8]. However, this is not so for

multilevel constellations, for which the estimation variance

considerably departs from the CRB as the SNR increases [10].

Recent efforts have been made in order to improve the

quality of moments-based SNR estimators in these challenging

settings. In [15], the observations are partitioned in different

subsets corresponding to symbols of equal modulus, and

then M2M4 is applied to one of these subsets. Although the
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resulting performance is good for sufficiently high SNR, it

degrades substantially for low SNR due to errors in the parti-

tion step. Alternatively, a sixth-order statistics-based estimator

(henceforth referred to as M6) was proposed in [14] which

makes use of M2, M4 and M6, with a significant performance

improvement over M2M4 for multilevel constellations at inter-

mediate and high SNR. In addition, a scalar parameter allows

to tune the estimator to any particular constellation. The use of

higher-order statistics has also been considered in other related

contexts, such as modulation classification (see [22], [23] and

the survey in [24]).

The results from [14] suggest that further improvements

could be expected if higher-order moments are allowed in the

construction of the estimator. With this in mind, this paper

investigates general higher-order approaches for the moments-

based SNR estimation problem. The main contributions are as

follows:

• In Section II we identify a novel family of estimators

based on quotients of even-order moments which features

an interesting property: all estimators in this family can

be implemented via direct or iterative computations, thus

avoiding the need for lookup tables.

• In Section III we propose a general estimator built upon

a linear combination of members of the previous family,

which generalizes the sixth-order approach of [14] to

any (even) order. The weights of the linear combination

can be tuned to each particular constellation and nominal

SNR operation range.

• To illustrate the potential of this method, in Section IV

we develop a statistical analysis of the particular case

in which moments of up to eighth order are allowed,

whereas Section V presents two criteria for weight opti-

mization. These approaches can be readily generalized to

higher-order moments.

• As a result, we provide an eighth-order estimator with

rather competitive performance for non-CM constella-

tions, especially for two- and three-level constellations,

as shown in Section VI.

II. MOMENTS-BASED SNR ESTIMATION

A. Signal Model

We assume a quasistatic flat-fading channel model, with the

symbol-rate samples at the matched filter output given by

rk =
√
Sxk + nk, k = 1, . . . ,K, (1)

where xk are the complex-valued transmitted symbols,
√
S

is the unknown channel gain, and nk are complex circular

i.i.d. Gaussian noise samples with unknown variance N . The

symbols are i.i.d., drawn from a constellation which is known

to the receiver and has I different amplitudes, being Ri and

Pi, respectively, the i-th amplitude and its associated proba-

bility (i = 1, . . . , I). The constellation moments are denoted

cp
.
= E {|xk|p} =

∑I
i=1 PiR

p
i . Without loss of generality, an

energy-normalized constellation is assumed, i.e., c2 = 1.

Moments-based SNR estimation stems from the approach

known as method of moments [25]. In our case, the goal is to

find a function of the sample moments of the envelope,

M̂p
.
=

1

K

K
∑

k=1

|rk|p, (2)

from which an estimate of the SNR ρ
.
= S/N or the

normalized SNR z
.
= ρ/(1 + ρ) can be derived1. M̂p is

a consistent, unbiased estimator of the true moment of the

envelope, given by2 [10], [26]:

Mp
.
= E {|rk|p}

= N
p

2

I
∑

i=1

PiΓ
(p

2
+ 1
)

e−ρR2

i
1F1

(p

2
+ 1; 1; ρR2

i

)

, (3)

with Γ(·) the gamma function and 1F1(·; ·; ·) the confluent

hypergeometric function. For p even, (3) can be seen to admit

a simpler form which depends only on the even constellation

moments up to order p and the two unknowns ρ, N [14], [27]:

M2n = Nn
n
∑

m=0

(n!)2

(n−m)!(m!)2
c2mρm. (4)

Note that (4) is a polynomial in ρ, and that in (3) and (4) the

noise power N appears as a multiplicative factor. This latter

fact allows to obtain pure functions of ρ through quotients of

moments in which N vanishes. For example, [10] proposes

the family of functions

fk,l(ρ)
.
=

M l
k

Mk
l

, for k 6= l. (5)

An SNR estimate can be then obtained from the sample

moments by inversion of fk,l:

ρ̂k,l = f−1
k,l

(

M̂ l
k

M̂k
l

)

. (6)

In [10] the authors state that fk,l in (5) is monotonic3.

This property is a requirement for any function f(ρ) from

whose inverse an estimator is to be derived. The M1M2 and

M2M4 estimators are obtained for (k, l) = (2, 1) and (4, 2)
respectively.

B. A New Family of NDA Moments-Based Estimators

The analytical inversion of fk,l is intractable in general, as

one may expect from the complexity of (3) (an exception is

the M2M4 estimate, which admits a closed-form expression).

In such cases one must resort to precomputed look-up tables

(LUTs), as in [8], [10] for the M1M2 estimator. Although

LUTs are computationally efficient, their storage requirements,

which are proportional to the desired accuracy, become an

issue in hardware implementations with small memory space.

1z ∈ (0, 1) is a one-to-one transformation of ρ ∈ (0,∞), so that for
estimation purposes it is equivalent to derive an estimator of z and then undo
the transformation to find ρ.

2There is typographical error in Eqs. (3) and (4) of [10]. The complex noise
power is defined therein as N = 2σ2, but the factor 2 does not appear in the
expression of the moments.

3Although no proof is provided in [10], monotonicity holds for all constel-
lations and all pairs (k, l) we have tested. Moreover, we have observed that
fk,l is monotone decreasing when k > l, and increasing when k < l.
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This motivates the search for SNR estimators which do not

rely on LUTs.

Consider the following family of functions built upon even-

order moments:

f(ρ)
.
=

(

U
∏

i=1

Mpi

2ni

)

/

MQ
2 , ni, pi ∈ N, (7)

where Q =
∑U

i=1 nipi in order to ensure that the quotient (7)

does not depend on N . We refer to 2Q as the statistical order

of (7). We assume that M2 does not appear in the numerator

(i.e., ni > 1 for all i). Note that (7) can be written in terms

of the functions fk,l from (6) as f(ρ) =
∏U

i=1 f
pi/2
2ni,2

(ρ), so

it inherits decreasing monotonicity from the fk,l family (since

2ni > 2 and pi > 0). In addition, this function exhibits the

following property, whose proof is given in the Appendix:

Property 1: The quotient f(ρ) as defined in (7) boils down

to a polynomial in z of degree Q:

f(ρ) =

Q
∑

k=0

Fk z
k .
= F (z). (8)

Moreover, the coefficient F1 in (8) is always zero.

Now, one can construct SNR estimators by equating F (ẑ) to

the sample-moments version of (7), i.e.,

F (ẑ) =

(

U
∏

i=1

M̂pi

2ni

)

/

M̂Q
2 , (9)

and then solving for ẑ in (0, 1). Monotonicity of f(ρ)
guarantees uniqueness of the solution. This procedure is in

fact a polynomial root-finding problem, which may well be

implemented by means of LUTs. Nevertheless, other less

memory-costly choices are possible. On one hand, there exist

standard direct algebraic solutions for the roots of polynomials

of degree 4 or less (2Q ≤ 8); on the other hand, iterative

polynomial root-finding algorithms can be used, regardless of

the order.

The popular M2M4 estimator is a particular case of the

family (7): it is a function of M4/M
2
2 , which by Property 1

reduces to F (z) = (c4−2)z2+2. The estimate is hence given

by the positive root of F (ẑ) = M̂4/M̂
2
2 :

ẑ =

√

M̂4/M̂2
2 − 2

c4 − 2
. (10)

The quotient M4/M
2
2 is the lowest-order (2Q = 4) member

of this family. The next members, in growing statistical order,

are M6/M
3
2 (2Q = 6), M2

4 /M
4
2 and M8/M

4
2 , (2Q = 8),

M6M4/M
5
2 and M10/M

5
2 (2Q = 10), and so on.

III. A NEW MOMENTS-BASED ESTIMATOR

The desirable property of quotients of moments of the

form (7) is that they can be reduced to a polynomial in

z, so that estimator implementation becomes computationally

simple. This applies as well to any linear combination of these

quotients. This fact has been exploited in [14], where the linear

combination f(ρ) = M6/M
3
2 − bM4/M

2
2 yields a sixth-order

statistics-based estimate with improved behavior for multilevel

constellations, as the weight b can be adjusted depending

on the constellation. The good results in terms of variance

attained by this estimator suggest that further improvements

could be obtained by allowing higher-order quotients from the

family (7) in the linear combination. Two questions arise at this

point. First, how should the quotients featuring in the linear

combination be selected? And second, once these quotients

are somehow chosen, how should one select the weights?

Regarding the first question, there is no straightforward

recipe for this “basis selection” problem. In practice, imple-

mentation complexity and finite precision effects would favor

the selection of lower-order moments. On the other hand,

including higher-order terms may be beneficial in terms of

estimation bias and/or variance. Therefore, a tradeoff must be

reached balancing these two conflicting goals. As for how to

adjust the weights, it is sensible to optimize them in terms

of statistical performance. This issue will be discussed in

Section V.

Since the fourth- and sixth-order combinations have been

already analyzed in [10] and [14] respectively, henceforth we

focus on the weighted linear combination of all quotients up

to order eight (EOS stands for eighth-order statistics):

fEOS(ρ)
.
= β

M4

M2
2

+ γ
M6

M3
2

+ δ
M2

4

M4
2

+ ǫ
M8

M4
2

, (11)

for some weights α = [β γ δ ǫ]T ∈ R
4. Note

that fEOS(ρ) includes as particular cases M2M4 (by setting

β 6= 0, γ = δ = ǫ = 0) and M6 (β = −b, γ = 1, and

δ = ǫ = 0). For further reference we also define the vector

m
.
= [M2 M4 M6 M8]

T ∈ R
4 containing the true moments

appearing in (11), and the function hEOS(m)
.
= fEOS(ρ)

considered from taking m as the independent variable in (11).

After applying the variable change ρ = z/(1 − z), one

arrives at

FEOS(z) = F4 z
4 + F3 z

3 + F2 z
2 + F0 (12a)

= z2(F4 z
2 + F3 z + F2) + F0, (12b)

where the coefficients Fk are linear in the weights, and are

given by

F4 = δ(c4 − 2)2 + ǫ[72(c4 − 1)− 16c6 + c8], (13a)

F3 = (γ + 16ǫ)(12− 9c4 + c6), (13b)

F2 = (β + 9γ + 4δ + 72ǫ)(c4 − 2), (13c)

F0 = 2(β + 3γ + 2δ + 12ǫ). (13d)

The estimator is found by solving for ẑ in

FEOS(ẑ) = β
M̂4

M̂2
2

+ γ
M̂6

M̂3
2

+ δ
M̂2

4

M̂4
2

+ ǫ
M̂8

M̂4
2

= hEOS(m̂), (14)

where m̂
.
= [M̂2 M̂4 M̂6 M̂8]

T ∈ R
4 is the vector of sample

moments. This amounts to finding the roots of the quartic

polynomial FEOS(ẑ)−hEOS(m̂), in which only the independent

term F0 − hEOS(m̂) depends on the observations. The roots

of quartic polynomials can be algebraically found, although

the procedure is somewhat intricate (see e.g. [28, pp.18-19]).
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Alternatively, one can resort to root-finding algorithms. For

example, (12b) suggests the following iterative rule:

ẑ(0) = 1, ẑ(n+1) =

√

hEOS(m̂)− F0

F4(ẑ(n))2 + F3 ẑ(n) + F2
. (15)

Note that the polynomial FEOS(z) − hEOS(m) should have a

unique root in (0, 1), i.e., fEOS(ρ) should be monotonic. Given

that the roots depend on the constellation moments cp as well

as on the weights α, one might ask whether conditions on α

can be given ensuring monotonicity of fEOS(ρ); the answer to

this question is not trivial. In the next sections we show how

α can be optimized in terms of statistical performance, for a

given constellation and SNR operation range. Let us advance

that the optimal weights seem to yield monotonic functions

fEOS(ρ) in the majority of tested cases, with some exceptions

to be discussed in Sections V and VI.

To close this section, let us remark that this EOS approach

can be readily generalized to higher-order linear combinations

of the form similar to (11). The presence of statistics of tenth

or greater order will lead to polynomials F (z) of degree 5

or greater. In such cases, direct computation of the root is not

possible, but a root-finding rule of the form (15) always exists,

since F1 = 0 by Property 1.

IV. STATISTICAL ANALYSIS

Next we present a small-error analysis to obtain approxi-

mate expressions for the variance and bias of the EOS-based

estimate introduced in Section III. Our goal is to expose the

dependence of these performance measures with the weight

vector α, in order to address weight optimization in Section V.

We note that the analytical approach of this section can

be readily generalized to estimators based on higher-order

quotients of the form (7).

A. Variance

From (14), the estimator is given by ẑ = F−1
EOS(hEOS(m̂))

.
=

g(m̂) and ρ̂ = ẑ/(1− ẑ) = g(m̂)/(1−g(m̂))
.
= t(m̂), where

g is implicitly given by FEOS(g) − hEOS(m̂) = 0. Following

a standard procedure (see e.g. [25, Sec. 9.5]) we consider a

first-order Taylor expansion of the estimator ρ̂ about m̂ = m,

which yields the approximation ρ̂ ≈ ρ + vT(m̂ − m), with

v
.
= ∇t|m̂=m. Therefore,

Var {ρ̂} ≈ vTCv, (16)

with C the covariance matrix of m̂, whose elements are given

by [C]ij = (M2(i+j) −M2iM2j)/K, i, j ∈ {1, 2, 3, 4}. The

computation of (16) is outlined in the Appendix; eventually,

one arrives at

Var {ρ̂} ≈ 1

K

A(Var)(ρ)

B(Var)(ρ)
=

1

K

∑10
n=0 A

(Var)
n ρn

∑6
n=2 B

(Var)
n ρn

, (17)

with A(Var)(ρ)
.
=

∑10
n=0 A

(Var)
n ρn and B(Var)(ρ)

.
=

∑6
n=2 B

(Var)
n ρn. The coefficients of the former polynomials

turn out to be quadratic in α:

A(Var)
n = αTA(Var)

n α ⇒ A(Var)(ρ) = αTA(Var)(ρ)α, (18)

B(Var)
n = αTB(Var)

n α ⇒ B(Var)(ρ) = αTB(Var)(ρ)α, (19)

where the 4 × 4 matrices A(Var)
n , B(Var)

n are functions of the

constellation moments only, and A(Var)(ρ) =
∑10

n=0 A
(Var)
n ρn,

B(Var)(ρ) =
∑6

n=2 B
(Var)
n ρn. Note that (17) predicts that the

variance is O(ρ4) at high SNR, similarly to previous results

for other estimators based on quotients of moments [10], [14].

The matrices in (18) and (19) exhibit interesting properties

regardless of the constellation, which we summarize next for

further reference. The proofs can be found in the Appendix.

Property 2: The 4 × 4 matrix A(Var)(ρ) has rank not ex-

ceeding three.

Property 3: The 4×4 matrix A
(Var)
10 has rank not exceeding

three. In addition, rank
(

A
(Var)
10

)

≤ min{3, I − 1} (recall that

I is the number of amplitude levels of the constellation).

Property 4: The 4 × 4 matrix B(Var)(ρ) is of the form

B(Var)(ρ) = b(Var)(ρ)(b(Var)(ρ))T for some 4×1 nonzero vector

b(Var)(ρ), and therefore its rank is one.

Property 5: The 4×4 matrix B
(Var)
6 is of the form B

(Var)
6 =

b
(Var)
6 (b(Var)

6 )T for some 4 × 1 nonzero vector b
(Var)
6 , and

therefore its rank is one.

B. Bias

In order to obtain an approximation for the estimation bias,

we use a a second-order Taylor expansion of ρ̂ about m̂ = m:

ρ̂ ≈ ρ+vT(m̂−m)+ 1
2 (m̂−m)TH(m̂−m), where H is the

Hessian matrix of t(m̂) evaluated at m̂ = m. Straightforward

algebra yields the approximation

Bias {ρ̂} ≈ 1

2
Tr {HC} . (20)

After a few steps, as outlined in the Appendix, one finds

Bias {ρ̂} ≈ 1

K
L(ρ) + J(ρ) Var {ρ̂} (21a)

=
1

K

A(L)(ρ)

B(L)(ρ)
+

A(J)(ρ)

B(L)(ρ)

1

K

A(Var)(ρ)

B(Var)(ρ)
(21b)

=
1

K

∑12
n=0 A

(Bias)
n ρn

∑9
n=3 B

(Bias)
n ρn

=
1

K

A(Bias)(ρ)

B(Bias)(ρ)
, (21c)

where L(ρ)
.
= A(L)(ρ)/B(L)(ρ), with A(L)(ρ) =

∑6
n=0 A

(L)
n ρn, B(L)(ρ) =

∑4
n=1 B

(L)
n ρn, and J(ρ)

.
=

A(J)(ρ)/B(L)(ρ), with A(J)(ρ) =
∑3

n=0 A
(J)
n ρn (note that

L(ρ) and J(ρ) share the same denominator). Furthermore, the

former polynomials and their coefficients are linear in α:

A(L)
n = αTa(L)

n ⇒ A(L)(ρ) = αTa(L)(ρ), (22)

B(L)
n = αTb(L)

n ⇒ B(L)(ρ) = αTb(L)(ρ), (23)

A(J)
n = αTa(J)

n ⇒ A(J)(ρ) = αTa(J)(ρ), (24)

where the 4× 1 vectors a
(L)
n , b

(L)
n , a

(J)
n are functions of the

constellation moments only, and a(L)(ρ) =
∑6

n=0 a
(L)
n ρn,

b(L)(ρ) =
∑4

n=1 b
(L)
n ρn, a(J)(ρ) =

∑3
n=0 a

(J)
n ρn. There-

fore, A(Bias) and B(Bias) are cubic in α. Note that, at high SNR,

L(ρ) is O(ρ2) whereas J(ρ) is O(ρ−1), so (21) predicts that

the bias is O(ρ3) at high SNR.
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C. MSE

Recalling that the minimum square error (MSE) of an

estimator is given by MSE {ρ̂} = Var {ρ̂} + Bias2{ρ̂}, and

using (17) and (21), it is found that

MSE {ρ̂} ≈ 1

K

∑10
n=0 A

(Var)
n ρn

∑6
n=2 B

(Var)
n ρn

+
1

K2

(

∑12
n=0 A

(Bias)
n ρn

∑9
n=3 B

(Bias)
n ρn

)2

.

(25)

Therefore the MSE is the sum of two terms, the first of which

(the variance) is O(ρ4) at high SNR and inversely proportional

to K, and the second one (the squared bias) is O(ρ6) at high

SNR and inversely proportional to K2. The dependence of the

second term of (25) with α is thus of sixth order.

V. WEIGHT OPTIMIZATION

We focus now on the selection of the weight vector α.

Note that the four weights in α only provide in fact three

degrees of freedom, since the solutions to (14) are invariant

to scalings in α. This is further emphasized by the fact that

the approximations (17) and (21) for the variance and the bias

are also invariant under this operation. In general, the number

of degrees of freedom in this kind of estimators equals the

number of quotients of moments in the linear combination

minus one; for instance, M6 has one degree of freedom,

whereas M2M4 has none. We present two weight selection

procedures, according to two different optimization criteria.

Ideally, one would like to obtain an unbiased estimator with

variance close to the theoretical limit dictated by the Cramér-

Rao Bound (CRB). This cannot be achieved with the limited

degrees of freedom available, and therefore one should settle

for a less ambitious goal. The question that arises then is how

to trade off bias and variance, and where (i.e., in which SNR

operating region).

For example, in [14] the only free parameter in M6 was

optimized to yield minimum variance in the high SNR region.

This approach can be generalized to the case in which several

degrees of freedom are available, taking the bias into account

as well; we refer to this criterion as “C1”. Yet other approaches

are possible. For instance, systems using adaptive coding and

modulation commonly use each particular constellation within

a limited SNR range (see e.g. [29]). It seems then reasonable to

optimize the performance for some nominal SNR within that

range, with the hope that the estimator will still perform well

in a neighborhood of this nominal value. We will refer to this

criterion as “C2”. Note that either C1 or C2 could reasonably

be applied to any estimator derived from a linear combination

of the form of (11).

A. Criterion C1: Weight optimization for high SNR

Asymptotically as ρ → ∞, all polynomial divisions

A(·)(ρ)/B(·)(ρ) in (17) and (21) can be accurately approxi-

mated by the first few terms of the quotient polynomial:

Var {ρ̂} ≈ 1

K

A(Var)(ρ)

B(Var)(ρ)

.
=

1

K
C(ρ)

≈ 1

K

(

C4 ρ
4 + C3 ρ

3 + C2 ρ
2 + C1 ρ+ C0

)

, (26)

L(ρ) ≈ L2 ρ
2 + L1 ρ+ L0, (27)

J(ρ) ≈ J−1 ρ
−1 + J−2 ρ

−2 + J−3 ρ
−3. (28)

It makes sense now to use the available degrees of freedom to

minimize (or, if possible, cancel) the magnitude of the highest-

order coefficients of the variance and the terms of the bias.4

As for the bias, see (21a), it seems convenient to separately

minimize L(ρ), J(ρ) and the variance. In this regard, it must

be noted that J−1 = A
(J)
3 /B

(L)
4 = 2 independently of α and

the constellation. This suggests that the minimization efforts

should focus on L(ρ) and the variance. Regarding L(ρ), its

highest-order coefficient is given by

L2 =
A

(L)
6

B
(L)
4

=
αTa

(L)
6

αTb
(L)
4

. (29)

Observe that unless a
(L)
6 and b

(L)
4 are collinear (which is not

the case with typical constellations), (29) can be made zero.

Thus, we propose the general principle for weight optimization

in the high SNR region:

Criterion C1: Spend one degree of freedom in α to achieve

L2 = 0. Spend the remaining degrees of freedom in order to

minimize C4. If C4 can be made zero and there are degrees

of freedom to spare, then proceed to minimize C3, and so

on.

With this approach, L(ρ) becomes O(ρ). Note that

αTa
(L)
6 = 0 implies that α = Fᾱ for some 3 × 1 vector

ᾱ, where F is a 4 × 3 matrix satisfying FTF = I and

FTa
(L)
6 = 0. The columns of F can be selected as the three

eigenvectors associated to the three nonzero eigenvalues of the

projection matrix

W
.
= I − a

(L)
6 (a

(L)
6 )T

||a(L)
6 ||2

. (30)

Now, the highest-order coefficient of the variance is given by

[cf. (17)–(19) and Property 5]

C4 =
A(Var)

10

B(Var)
6

=
αTA

(Var)
10 α

αTb
(Var)
6 (b(Var)

6 )Tα
. (31)

Thus, for α = F ᾱ, C4 becomes

C4 =
ᾱTPᾱ

ᾱTqqTᾱ
(32)

where P
.
= FTA

(Var)
10 F and q

.
= FTb

(Var)
6 . Note that (32)

is a generalized Rayleigh quotient with a rank-one denomi-

nator matrix. It can be checked that the solution ᾱ⋆ to the

minimization of (32) (subject to ᾱTq 6= 0) is as follows:

4Alternatively, one could attempt to minimize the highest-order coefficients
of the high-SNR approximation of the MSE. We do not follow this approach,
however, in view of the sixth-order dependence with the weights of some of
the terms in (25).
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• If P is invertible, then ᾱ⋆ = P−1q. The minimized value

of C4 is strictly positive.

• If P is singular and rank ([P q]) = rank (P ), then there

exist infinitely many solutions, but all of them yield the

same minimized value of C4, which again is strictly

positive. One of these solutions is ᾱ⋆ = P#q, where

P# denotes the pseudoinverse of P .

• If P is singular and rank ([P q]) > rank (P ), then C4

can be made zero. The solutions can be given in terms

of the Singular Value Decomposition (SVD) of P :

P =
[

U V
]

[

Σ

0

] [

UT

V T

]

, (33)

where Σ is positive definite, and U , V have orthonormal

columns. Then all the vectors ᾱ⋆ such that Pᾱ⋆ = 0 and

ᾱT
⋆ q 6= 0 are given (up to a scaling) by

ᾱ⋆ = V V Tq + V V T

(

I − qqT

||V Tq||2
)

V s, (34)

where s is arbitrary.

Let r
.
= rank

(

A
(Var)
10

)

, and note that rank (P ) ≤ r.

Although in general rank (P ) could be strictly smaller than r,

for all constellations tested it holds that rank (P ) = r. Also,

recall that r ≤ min{3, I−1} by Property 3. These facts imply

that, depending on the number I of amplitude levels in the

constellation, one has the following:

• If I = 1 (CM constellations), then C4 is automatically

zero.

• If I = 2, then C4 can be made zero spending just one

degree of freedom.

• If I = 3, then C4 can be made zero spending two degrees

of freedom.

• If I > 3, then C4 cannot be made zero.

Thus, estimation performance is expected to degrade as the

number of levels in the constellation increases. More details

are given on each specific case (in terms of I) in Section VI.

For reference, Table I lists the optimal weights α⋆ = F ᾱ⋆

under Criterion C1 for a number of practical multilevel con-

stellations.5

Criterion C1 provides valid estimators for almost all prac-

tical constellations, in the sense that the resulting function

fEOS(ρ) in (11) is monotonic; the performance obtained is good

in the medium to high SNR range. The only exception we have

found is the 16-QAM (Quadrature Amplitude Modulation)

constellation, for which the weights provided by Criterion C1

cause the MSE to exhibit a sharp peak at ρ ≈ 19 dB (the

denominators αT
⋆ b

(Var)(ρ) and αT
⋆ b

(L)(ρ) become zero for this

SNR value). Thus, Criterion C1 is not well suited to 16-QAM.

5The Mathematica and MATLAB code used to derive these optimal weights
is available online at [30].

TABLE I
OPTIMAL WEIGHTS (ǫ = 1) UNDER CRITERION C1. APSK

CONSTELLATIONS ARE AS DEFINED IN [29] FOR THE SPECIFIED CODE

RATES

Constellation I β γ δ

16-APSK (2/3) 2 5.9396 −2.8400 −1.4325

16-APSK (3/4) 2 6.0768 −2.8769 −1.4572

16-APSK (4/5) 2 6.1331 −2.8918 −1.4676

16-APSK (5/6) 2 6.1637 −2.8999 −1.4734

16-APSK (8/9) 2 6.2306 −2.9173 −1.4860

16-APSK (9/10) 2 6.2522 −2.9229 −1.4901

32-APSK (3/4) 3 12.3187 −3.8576 −2.7445

32-APSK (4/5) 3 12.0919 −3.8541 −2.7024

32-APSK (5/6) 3 11.9647 −3.8527 −2.6762

32-APSK (8/9) 3 11.6972 −3.8501 −2.6102

32-APSK (9/10) 3 11.6684 −3.8498 −2.6027

16-QAM 3 9.9411 −5.28 −0.2807

32-QAM 5 10.2400 −3.8552 −2.1227

64-QAM 9 10.7991 −4.3509 −1.8525

128-QAM 16 10.7081 −4.1297 −2.0170

256-QAM 32 10.4846 −4.4251 −1.6505

B. Criterion C2: Weight optimization for a nominal SNR value

Considering a target SNR ρ0 and using Property 4, one can

write (21) and (17) as

Bias {ρ̂}|ρ=ρ0
≈ 1

K
L(ρ0) + J(ρ0) Var {ρ̂}|ρ=ρ0

(35)

=
1

K

αTa(L)(ρ0)

αTb(L)(ρ0)

+
αTa(J)(ρ0)

αTb(L)(ρ0)
Var {ρ̂}|ρ=ρ0

, (36)

Var {ρ̂}|ρ=ρ0
≈ 1

K

αTA(Var)(ρ0)α

αT b(Var)(ρ0) [b(Var)(ρ0)]T α
. (37)

Therefore, it is natural to consider the following way of

selecting the weights:

Criterion C2: Given a target SNR value ρ0, minimize the

approximate variance (37) in terms of α, under the constraint

that L(ρ0) in (35) be zero.

This criterion amounts to minimizing a generalized

Rayleigh quotient with a rank-one denominator matrix, subject

to a linear constraint. This is analogous to the case encountered

for Criterion C1. The only difference is that now the objective

function (37) cannot be made zero, as it corresponds with the

estimator variance (and not just one coefficient in its Taylor

series expansion). Therefore, the solution is given (up to a

scaling) by

α⋆(ρ0) = F
(

FTA(Var)(ρ0)F
)−1

FTb(Var)(ρ0), (38)

where the columns of the 4×3 matrix F are now given by the

three eigenvectors associated to the three nonzero eigenvalues

of

W = I − a(L)(ρ0)[a
(L)(ρ0)]

T

||a(L)(ρ0)||2
. (39)

This SNR-dependent solution α⋆(ρ0) proves in most cases

competitive within a few dBs about ρ0. Nevertheless, one must

evaluate its performance in the entire SNR range for each

particular constellation and target SNR, as α⋆(ρ0) could yield
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an invalid estimator in some SNR interval (i.e. fEOS(ρ) in (11)

could turn out to be non-monotonic). Of all constellations

tested, only the 16-APSK (Amplitude and Phase Shift Keying)

family suffers from this problem, but only within some limited

SNR intervals, as shown in the next section.

Note that in (35)-(36) the factor J(ρ0) has the same form as

L(ρ0), and therefore, in contrast to Criterion C1, it could be

made zero using one degree of freedom in α. This suggests an

alternative criterion, in which one of the degrees of freedom

used for minimizing the variance under Criterion C2 would

be used instead for canceling J(ρ0) (and therefore completely

canceling the bias at ρ0). However, the solutions provided by

this alternative criterion turn out to be problematic in practice

(fEOS(ρ) is not monotonic for most constellations; sharp peaks

appear in bias and variance at certain SNRs), and hence it will

not be further considered here.

VI. PERFORMANCE RESULTS

The performance of the proposed estimators depends

strongly on the number of levels of the constellation. Next

we discuss the results achieved with criteria C1 and C2 with

respect to existing estimates of the same kind: M2M4 and

M6. We show results for the dependence of the bias with

the SNR, and the dependence of the SNR-normalized MSE

with the SNR and the samples size K. The SNR-normalized

MSE is defined as NMSE {ρ̂} .
= MSE {ρ̂} /ρ2. The NDA-

EVB CRB (numerically evaluated as in [16]) is provided as

benchmark. Analytical results are completed with empirical

results obtained through simulations, in which each point was

averaged over 10 000 realizations.

A. CM constellations

CM constellations (for which cp = 1, for all p) constitute a

special case, as it turns out that A
(L)
6 = 0 whereas A

(L)
5 6= 0

(with B
(L)
4 6= 0), and that A(Var)

10 = A(Var)
9 = 0 whereas

A(Var)
8 6= 0 (with B(Var)

6 6= 0). Therefore, the bias and variance

are respectively linear and quadratic in ρ for general α.

Interestingly, the highest-order coefficients of L(ρ) and of the

variance turn out to be independent of α: A
(L)
5 /B

(L)
4 = 1

and A(Var)
8 /B(Var)

6 = 2. It makes sense then to use a mod-

ified version of Criterion C1, focusing for example on the

lowest-order coefficient of the variance A(Var)
0 /B(Var)

2 , which

dominates in the region of low SNR. This term is minimized

for α⋆ = [β 0 δ 0]T, where β and δ cannot be both

zero; the attained variance is Var {ρ̂} ≈ (2ρ4 +8ρ3 +10ρ2 +
6ρ+1)/(Kρ2), independently of β and δ, and coincides with

that of the M2M4 estimator for CM constellations [10]. The

predicted MSE turns out to remain quite close to the CRB

throughout the entire SNR range.

B. Two-level constellations

When I = 2, application of Criterion C1 with the available

degrees of freedom results in L2 = C4 = C3 = 0. In this case,

it is possible to obtain closed-form expressions for the optimal

weights in terms of the probabilities p = P1, 1− p = P2, and

the ring ratio w = R2/R1:

β =
(1 + w2)

[p2 − (1− p)2w4]
2 ·
[

3w6 + w4

+ 3p2(1 + w2)(1 + w4)− 2p(3w6 + 2w4 + w2)
]

· ǫ,

γ = − 2(1 + w2)

p+ (1− p)w2
· ǫ,

δ = − p+ (1− p)w4

[p− (1− p)w2]
2 · ǫ, ǫ 6= 0.

As a result, Criterion C1 achieves O(ρ2) in the variance and

the MSE, which is the lowest possible order as dictated by

the CRB [16]. In contrast, the variances of M6 and M2M4 are

respectively O(ρ3) and O(ρ4), and their respective MSEs are

O(ρ4) and O(ρ6).
Figs. 1a and 1b show the bias and the NMSE vs. the

SNR (for K = 1000 samples) for one of the 16-APSK

constellations specified in [29] (P1 = 1/4, P2 = 3/4,

R2/R1 = 3.15). The bias under Criterion C1 remains small,

and the improvement in NMSE at high SNR is evident. Still,

the gap to the CRB is not negligible. Note that for ρ < 22 dB,

M6 achieves a slightly lower NMSE than Criterion C1, but its

performance quickly degrades beyond this point.

Results for Criterion C2 with ρ0 = 20 dB are also displayed

in Fig. 1b, showing that this is in fact a good strategy in the

vicinity of ρ0 (it outperforms the rest of estimators between

15 and 22 dB), but also for ρ < ρ0, where its NMSE is never

larger than that provided by Criterion C1 (this seems to hold

regardless of the value of ρ0). From a designer’s perspective,

setting the target SNR ρ0 near the upper limit of the SNR

operation range seems an appropriate choice.

For reference, Fig. 1b also shows the “genie-aided” NMSE

curve, obtained by choosing the optimal α⋆(ρ) under Criterion

C2 for each ρ. This gives a lower bound on the NMSE

for the proposed eighth-order estimator. Note that the genie-

aided curve approaches the CRB as the SNR increases. Hence,

within this region, the estimator designed under Criterion C2

is near optimal at the target SNR. In the low SNR region

(below 5 dB), M2M4 attains the genie-aided curve; however,

neither M2M4, nor M6, nor Criterion C1 can reach genie-

aided performance above 5 dB. In general, good agreement is

observed between theory and simulations.

As mentioned in Section V-B, Criterion C2 may yield

invalid estimators for certain values of ρ0. For the 16-APSK

constellation of Fig. 1b, this happens for ρ0 between 5 and

15 dB. In this case one could fall back on some suboptimal

solution, e.g., use the valid C2 estimator for ρ0 = 15 dB,

which offers good performance (not shown in Fig. 1) in this

SNR interval.

Fig. 1c shows the variation of the NMSE with the number

of observed samples K, for SNR = 20 dB. It is seen that, for

all estimators, the empirical results agree with the predicted

theoretical values as long as the corresponding NMSE is

sufficiently small (which is an indicator of the accuracy of

the Taylor series approximation used to obtain the theoretical

expressions). Note that the new EOS estimators outperform

the M2M4 and M6 schemes in the sense that they can achieve
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Fig. 1. Theoretical (lines) and empirical (markers) performance of the
proposed estimator in terms of (a) bias vs. SNR, (b) NMSE vs. SNR,, and (c)
NMSE vs. K for a 16-APSK with ring ratio R2/R1 = 3.15. Markers are
as follows: △ for M2M4, ▽ for M6, � for C1, ◦ for C2 with ρ0 = 20 dB,
and ∗ for C2 genie-aided.
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Fig. 2. Theoretical (lines) and empirical (markers) performance of the
proposed estimator in terms of (a) bias vs. SNR, (b) NMSE vs. SNR,
and (c) NMSE vs. K for a 32-APSK with ring ratios R2/R1 = 2.84,
R3/R1 = 5.27. Markers are as follows: △ for M2M4, ▽ for M6, � for
C1, ◦ for C2 with ρ0 = 20 dB, and ∗ for C2 genie-aided.

the same NMSE with significantly fewer samples. This holds

true also for other SNR values.

C. Three-level constellations

For I = 3, application of Criterion C1 with the available

degrees of freedom results in L2 = C4 = 0. The result-

ing variance and MSE are respectively O(ρ3) and O(ρ4),
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a remarkable improvement over M2M4 and M6, which are

both O(ρ4) (variance) and O(ρ6) (MSE). This can be seen

in Figs. 2a and 2b, which display the bias, and the NMSE

vs. the SNR (for K = 1000 samples) for one of the 32-

APSK constellation specified in [29] (P1 = 1/4, P2 = 3/8,

P3 = 1/2, R2/R1 = 2.84, R3/R1 = 5.27). Good agreement

is observed between theory and simulations. M6 and Criterion

C2 with ρ0 = 20 dB remain close to the genie-aided case

between 5 and 10 dB, and between 12 and 21 dB, respectively.

Note that the genie-aided curve does not approach the CRB

in this case. Fig. 3c displays the dependence of the NMSE

with K (for SNR = 20 dB). As observed for 16-APSK, the

theoretical analysis proves useful for sufficiently small NMSE,

and the EOS estimators outperform M2M4 and M6 in terms

of K.

As mentioned in Section V-A, Criterion C1 fails to provide

a good estimator for the 16-QAM constellation, see Fig. 3. The

estimator designed under Criterion C1 is severely biased above

14 dB, and below that SNR its NMSE is outperformed by those

of M2M4 and M6 (observe also the peak in the theoretical

NMSE at about 19 dB). From Figs. 3b and 3c it is seen that

M6 almost achieves genie-aided performance above 10 dB,

which suggests that the EOS approach is not advantageous

for 16-QAM. Comparison with Fig. 2 shows that the best

NMSEs obtained at intermediate-to-high SNR for 16-QAM

are substantially higher than those obtained for 32-APSK, for

all moments-based methods. Thus, the arrangement of signal

points for 16-QAM seems to be particularly challenging to

this class of estimators.

D. Constellations with more than three levels

For I ≥ 4, application of Criterion C1 with the available

degrees of freedom results in L2 = 0 and C4 > 0. The

resulting variance and MSE are therefore O(ρ4) and O(ρ6),
respectively. Nevertheless, this approach is still useful, as

shown in Fig. 4, which shows the results obtained with 32-

QAM (I = 5). In terms of NMSE, (Fig. 4b, K = 1000
samples), Criterion C1 clearly improves over M2M4 and M6

in the high SNR region. M2M4 achieves close-to-genie-aided

performance below 6 dB, whereas M6 takes over between 7

and 13 dB. For higher SNR, criteria C1 and C2 (ρ0 = 20 dB),

which show almost identical performance, are the most com-

petitive. The results in terms of K (Fig. 4c) confirm the same

trend observed for 16-APSK and 32-APSK.

The behavior for other QAM constellations with more

than three levels is similar to that of Fig. 4. We must note

that the performance improvement obtained with eighth-order

estimators at high SNR is observed to be greater for cross-

QAM constellations (32-, 128-QAM) than for square QAMs

(64-, 256-QAM).

VII. CONCLUSIONS

Due to its simplicity, moments-based SNR estimation is

an attractive choice, which until recently proved competitive

only for constant modulus constellations. Recent efforts tried

to extend its application to higher-order modulations under

different approaches. One of them is to include higher-order
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Fig. 3. Theoretical (lines) and empirical (markers) performance of the
proposed estimator in terms of (a) bias vs. SNR, (b) NMSE vs. SNR, and (c)
NMSE vs. K for 16-QAM. Markers are as follows: △ for M2M4, ▽ for M6,
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Fig. 4. Theoretical (lines) and empirical (markers) performance of the
proposed estimator in terms of (a) bias vs. SNR, (b) NMSE vs. SNR, and (c)
NMSE vs. K for 32-QAM. Markers are as follows: △ for M2M4, ▽ for M6,
� for C1, ◦ for C2 with ρ0 = 20 dB, and ∗ for C2 genie-aided.

statistics in the computation of the estimates. We developed an

SNR estimator based on eighth-order statistics, which can be

efficiently implemented without look-up tables. The estimator

is built upon a linear combination of quotients of moments,

whose weights can be tuned according to the constellation and

the SNR operation range. Two weight optimization criteria

are proposed, which yield good estimators with improved

performance over existing methods, particularly for two- and

three-level constellations. Possible extensions of the proposed

estimator to higher orders (e.g. extending the linear combina-

tion with tenth-order statistics) would presumably bring further

performance improvements. The analysis and optimization of

such extensions can be carried out using the approach that was

applied here to the eighth-order estimator.
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APPENDIX

Here we provide the proofs of the results given in the

paper. Supporting Mathematica code for some of the algebraic

derivations is available online at [30].

A. Proof of Property 1

Recalling (4), it is possible to write the numerator and

denominator of (7) as

U
∏

i=1

Mpi

2ni
= NQD(ρ), (40)

MQ
2 = NQ(1 + ρ)Q, (41)

with D(ρ) a polynomial of degree Q. As expected, the ratio

of (40) to (41) does not depend on N . Now, applying the

change of variable ρ = z/(1 − z), one has ρm/(1 + ρ)Q =
zm(1− z)Q−m, for m = 0, 1, . . . , Q, which shows that

f(ρ) =

Q
∑

m=0

Dm zm(1− z)Q−m = F (z) (42)

is a polynomial of degree Q in z. We note that this property

holds also for any linear combination of quotients of the

form of (7). We will prove now that F1, the coefficient in

z of F (z) = f(ρ), is always zero. Since f(ρ) is a product

of terms of the form M2n/M
n
2 , it suffices to show that

any such term is a polynomial in z with zero first-order

coefficient. To see this, note from (4) and ρ = z/(1 − z)

that M2n/M
n
2 =

∑n
m=0 G

(n)
m zm(1 − z)n−m, where G

(n)
m

.
=

c2m(n!)2/[(n−m)!(m!)2]. Since zm(1−z)n−m = zm− (n−
m)zm+1+ · · · , it follows that the coefficient in z of M2n/M

n
2

is G
(n)
1 −nG

(n)
0 = n(n!)c2−n(n!)c0 = 0, since c0 = c2 = 1.
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B. Computation of the variance (17)

From the definitions of t(m̂), g(m̂) and hEOS(m̂) we have

∇t =
∇g

(1− g)2
, (43)

∇g =
∇hEOS

F ′

EOS(g)
=

∇hEOS

4F4 g3 + 3F3 g2 + 2F2 g
. (44)

∇hEOS can be readily computed from (11), obtaining

∇hEOS =
1

M̂5
2

R̂α, (45)

R̂
.
=











−2M̂4M̂
2
2 −3M̂6M̂2 −4M̂2

4 −4M̂8

M̂3
2 0 2M̂4M̂2 0

0 M̂2
2 0 0

0 0 0 M̂2











. (46)

Now, noting that g|m̂=m = z = ρ/(1 + ρ), the evaluation

of (43)–(46) at m̂ = m yields

v =
1

N5

Rα

X(ρ)
, (47)

where R
.
= R̂|m̂=m. The polynomial X(ρ)

.
= X3 ρ

3 +
X2 ρ

2 + X1 ρ is linear in α: we can write X3
.
= 4F4 +

3F3 + 2F2 = αTx3, X2
.
= 3F3 + 4F2 = αTx2, and

X1
.
= 2F2 = αTx1, where the 4 × 1 vectors x1, x2, x3

depend on the constellation moments only. Upon defining

x(ρ)
.
=
∑3

n=1 xn ρ
n, one has that X(ρ) = αTx(ρ), and

the approximation of the variance can be written as

vTCv =
1

N10

αTRTCRα

αTx(ρ)[x(ρ)]Tα
. (48)

Observe that [C]ij = (M2(i+j) − M2iM2j)/K has the form

of (40) for Q = i+j, and that the elements of the i-th row of R

have the form of (40) as well, with Q = 5− i, (i = 1, 2, 3, 4).

It is then possible to show that all the nonzero elements of

RTCR are of the form of (40) with Q = 10. With this,

the factor N10 in (48) cancels out and (17) follows by simply

identifying A(Var)(ρ) = K/N10 αTRTCRα, and B(Var)(ρ) =
X2(ρ) = αTx(ρ)[x(ρ)]Tα, which are polynomials in ρ of

degrees 10 and 6 respectively.

C. Proofs of Properties 2–5

That B(Var)(ρ) has rank one (Property 4) is evident

from (48), if we identify x(ρ)[x(ρ)]T with B(Var)(ρ) of (37)

[and therefore x(ρ) = b(Var)(ρ)]. Similarly, identifying b
(Var)
6

with x3, so that B
(Var)
6 = x3x

T
3 , then Property 5 follows.

In order to prove that A(Var)(ρ) is rank deficient (Prop-

erty 2), we note that R has rank 3 since its first and

third columns are linearly dependent, see (45). It follows

that rank
(

A(Var)(ρ)
)

= rank
(

RTCR
)

≤ 3 for all ρ. The

first part of Property 3 immediately follows by noting that

A
(Var)
10 = limρ→∞ A(Var)(ρ)/ρ10. Finally, for constellations

with I = 1, 2 or 3 amplitude levels, it is straightforward (but

rather tedious) to explicitly compute A
(Var)
10 , as well as to check

that its rank does not exceed 0, 1, and 2, respectively.

D. Computation of the bias (21)

The Hessian matrix of t(m̂), ∇2t, can be readily computed

from (43)–(45) as

∇2t =
1

(1− g)2F ′

EOS(g)
∇2h

+
2F ′

EOS(g)− (1− g)F ′′

EOS(g)

(1− g)3[F ′

EOS(g)]
2

∇h (∇h)T (49)

=
1

(1− g)2F ′

EOS(g)

1

M̂6
2

Ŷ + Jt(g)∇t (∇t)T, (50)

where

Jt(g)
.
=

(1− g) [2F ′

EOS(g)− (1− g)F ′′

EOS(g)]

F ′

EOS(g)
, (51)

and Ŷ is a 4 × 4 symmetric matrix whose only nonzero

elements are given by

[Ŷ ]11
.
= 6βM̂4M̂

2
2 + 12γM̂6M̂2 + 20(δM̂2

4 + ǫM̂8) (52a)

[Ŷ ]12 = [Ŷ ]21
.
= −2βM̂3

2 − 8δ M̂4M̂2 (52b)

[Ŷ ]13 = [Ŷ ]31
.
= −3γM̂2

2 (52c)

[Ŷ ]14 = [Ŷ ]41
.
= −4ǫM̂2 (52d)

[Ŷ ]22
.
= 2δM̂2

2 (52e)

The evaluation of (50) at m̂ = m yields

H
.
= ∇2t|m̂=m =

1

N6

1

(1 + ρ)X(ρ)
Y + 2J(ρ) vvT, (53)

where Y = Ŷ |m̂=m, X(ρ) has been defined in Section B of

this Appendix, and J(ρ)
.
= 1

2Jt(
ρ

1+ρ ). Regarding the first term

of (53), its denominator is clearly linear in α: (1+ ρ)X(ρ) =
αT[(1+ ρ)x(ρ)], from where we can identify b(L)(ρ) of (23)

as

b(L)(ρ) = (1 + ρ)x(ρ) = (1 + ρ)b(Var)(ρ). (54)

Regarding the factor J(ρ) in second term of (53), it is readily

seen to be of the form J(ρ) = A(J)(ρ)/[(1 + ρ)X(ρ)] =

[αTa(J)(ρ)]/[αTb(L)(ρ)], where A(J)(ρ)
.
=
∑3

n=0 A
(J)
n ρn =

αTa(J)(ρ), and a(J)(ρ) depends on ρ and the constellation

moments.

Recalling the approximation (20), simple algebra shows that

1

2
Tr {H C} =

1

2

Tr {Y C}
N6 (1 + ρ)X(ρ)

+ J(ρ)vTCv, (55)

where the second term turns out to be proportional to the

approximation for the variance (16). Using (17)-(19) and (54)

we can write the second term of (55) as a quotient of cubic

forms in α:

J(ρ) vTCv =
1

K

αTa(J)(ρ)αTA(Var)(ρ)α

(1 + ρ)[αTb(Var)(ρ)]3
. (56)

As for the computation of the first term of (55), which amounts

to L(ρ) in (21a), observe that the nonzero [Y ]ij have the form

of (40) with Q = 6− (i+ j). We are eventually interested in

the elements of the diagonal of HC, which are given by

[HC]ii =

∑4
j=1 [Y ]ij [C]ji

N6(1 + ρ)X(ρ)
, (57)
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for i = 1, 2, 3, 4. All terms
(

[Y ]ij [C]ji
)

have then

the form of (40) with Q = 6. Clearly, N6 cancels

out in (57), so that the first term in (21) follows if

we identify L(ρ) = A(L)(ρ)/B(L)(ρ), where A(L)(ρ) =
K
∑4

i=1

∑4
j=1 [Y ]ij [C]ji /(2N

6) and B(L)(ρ) = (1 +

ρ)X(ρ). Besides, A(L)(ρ) can be readily seen to be linear

in α, since it is a linear combination of the elements of Y ,

which are themselves linear in α [cf. (50)]; this allows to write

A(L)(ρ) =
∑6

n=0 A
(L)
n ρn = αTa(L)(ρ) as in (22), for some

a(L)(ρ) =
∑6

n=0 a
(L)
n ρn, in which a

(L)
n depends only on the

constellation moments for all n.
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[16] W. Gappmair, R. López-Valcarce, and C. Mosquera, “Cramer-Rao
lower bound and EM algorithm for envelope-based SNR estimation of
nonconstant modulus constellations,” IEEE Trans. Commun., vol. 57,
no. 6, pp. 1622–1627, June 2009.
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