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Abstract—Spectrum sensors for cognitive radio are expected
to deploy multiple antennas in order to overcome the noise
uncertainty problem and minimize the effects of small-scale
fading. Despite the requirement that these sensors must detect
wireless microphone (WM) signals, works in the literature have
focused either on general purpose multiantenna detectors, or
single antenna WM detectors. We exploit the spatial structure
and particular properties of WM waveforms to derive four
multiantenna detectors for WM signals with different perfor-
mance/complexity tradeoffs. These detectors are based on the
generalized likelihood ratio test, which is derived under several
signal models exploiting either the fact that the bandwidth of
a WM signal never exceeds 200 kHz, the property that these
signals have a constant magnitude, or both.

The proposed detectors do not require synchronization with
the WM signal and are robust to the noise uncertainty problem as
well as to small-scale fading. Using the simulation guidelines from
the IEEE 802.22 standard, the novel multiantenna WM detectors
are shown to outperform previous schemes, thus demonstrating
the advantages of exploiting spatial correlation along with WM
signal structure.

Index Terms—Communication, communication channels, sig-
nal detection, signal processing.

I. INTRODUCTION

RECENT regulations in the United States allow unlicensed
wireless devices to operate in the broadcast television

spectrum at locations where that spectrum is unused by
authorized services [1]–[3]. These services include, among
others, television broadcast stations and low-power auxiliary
devices such as wireless microphones (WMs). While the
current state of these regulations establishes that unlicensed
users must determine the occupancy of the radio spectrum by
means of a geo-location database, the Federal Communications
Commission (FCC) encourages the development of spectrum
sensing procedures to detect the presence of the incumbent
services, which is expected to improve spectrum efficiency
in the future [2]. Furthermore, the IEEE standard 802.22 [4]
explicitly demands sensing mechanisms for detecting WM
signals.
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The spectrum access scheme described above is commonly
referred to as dynamic spectrum access [5] or, more frequently,
cognitive radio [6], [7], and constitutes an emerging technol-
ogy for vehicular devices (see [8]–[10] and references therein).
In this context we usually refer to the incumbent transmitters
as primary users, whereas the opportunistic devices are known
as the secondary users, which must sense the channel prior to
transmitting and decide, in view of the observations, whether
the primary users are present or not. Decision rules are termed
detectors and can be based on one or more features of the
primary signal and the noise.

One such feature is energy: if we know the noise power,
we can just measure the strength of the received signal
and declare the channel as busy if the measurement is high
relative to the noise power. This simple procedure is termed
energy detection [11] and is optimal in settings without further
knowledge of the signal structure. However, this detector
is unable to detect signals in the low signal-to-noise ratio
(SNR) regime since an accurate knowledge of the noise power
is seldom available in practice [9], [12], [13]. In fact, the
practical interest of this scheme may be limited since the FCC
establishes that any secondary device operating in the TV band
must be able to detect signals at −114 dBm, which means that
the SNR may be as low as −20 dB [12], [14]. This fact has
motivated detectors exploiting other properties of the primary
signal such as spectral flatness, amplitude properties, spatial
correlation, etc. (see [6], [7] and the references therein). De-
tectors not requiring noise power knowledge are characterized
by the fact that they are invariant to scalings [15], [16] and
are termed constant false alarm rate (CFAR) detectors, since
their probability of false alarm does not depend on the noise
power [11]. For the reasons above, using CFAR detectors is
highly convenient from a practical point of view.

In the context of detection of WM signals, both CFAR
and non-CFAR schemes have been proposed in the literature.
Among the CFAR detectors we mention the detector by Xu
et al. [17], which makes a decision based on the ratios of
consecutive singular values of a Hankel matrix containing the
received samples; and the detector by Hassan and Nasr [18],
where the decisions of two statistics are combined, one of
which is CFAR whereas the other is not, and the threshold
is adapted accordingly. Among the non-CFAR detectors we
mention that in [19], where the test statistic is the output of
a matched filter in the autocorrelation domain; the detectors
in [20] and [21], which are, respectively, the maximum of
the standard periodogram and Welch periodogram; and the
detector in [22], which uses the Teager-Kaiser energy operator
to exploit the constant magnitude property of the signal.
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All the detectors above are single-antenna schemes. How-
ever, cognitive radios are expected to deploy multiple antennas
because of their advantages for both communication (since
they provide multiplexing and diversity gains) and spectrum
sensing [12], [23], enabling detectors which are fast, resilient
to small-scale fading and robust to the noise uncertainty
problem discussed above (i.e., CFAR detectors). A number
of multiantenna detectors have been proposed in the past.
Some of them exploit exclusively the spatial structure of the
signal, such as the detector in [24], which only exploits spatial
independence of the noise, and the detector in [10], [23],
[25], which in addition assumes that the signal subspace has
dimension one. Generalizations to signal subspaces of larger
dimension were proposed in [26]. Other schemes exploit both
spatial and temporal structure by assuming that the signal
has a power spectral density (PSD) that is known up to
a scaling [27], [28]. We also mention the ad-hoc detectors
in [14], which exploit the fact that the noise process is
temporally and spatially uncorrelated.

Whereas the above multiantenna schemes could be readily
applied for WM signal detection, none of them fully exploits
the prior information that is available regarding WM signal
structure. To the best of our knowledge, no multiantenna
detectors have been proposed specifically targeting WM sig-
nals. We fill this gap by proposing multiantenna detectors for
WMs which exploit the available a priori knowledge about
the structure of these signals.

In particular, note that in the framework of the IEEE 802.22
standard, a 6 MHz TV channel is scanned for the presence of
TV and WM signals, among others. This motivates acquiring
a 6 MHz-wide channel and applying different detection algo-
rithms for each kind of signals that may be present. Since WM
transmissions are confined to a bandwidth of 200 kHz [22],
[29], [30], it is reasonable to take advantage of the fact that
the signal to be detected has a small bandwidth relative to
the 6 MHz operational bandwidth. In other words, we may
exploit the fact that the signal is bandlimited (BL). Moreover,
regulations dictate that the carrier frequency of WM transmis-
sions must be a multiple of 25 kHz away from the channel
edge [31], meaning that the possible frequency locations of
WM signals are known a priori. Additionally, WM wavefoms
typically employ the analog frequency modulation (FM) [19],
[29], and therefore their complex lowpass equivalent exhibits
a constant magnitude (CM).

We consider these two features, namely the BL and CM
properties, along with spatial information in order to develop
several multiantenna detectors for WMs. These detectors differ
in the amount of prior information they exploit, which provides
the user with different tradeoffs between performance and
complexity. In order to cope with unknown parameters, our
derivations apply the Generalized Likelihood Ratio (GLR)
framework [11], [15] to different signal models. The deter-
ministic approach followed, where the signal term is modeled
as a deterministic unknown parameter [11], [15], [25], results
in robust and general detectors since no assumptions are
made about the statistical distribution of the transmitted signal
or the channel. Moreover, this approach allows gradually
incorporating prior information about WMs while keeping the

problem mathematically tractable. To sum up, this paper is, to
the best of our knowledge, the first one to provide multiantenna
detection rules specifically tailored to detect WM signals.
These rules are robust and general since they do not require
signal or channel statistical information, and trade performance
for complexity.

The detectors derived in this paper generalize those in [10],
[23], [25], [32]–[34] and were especially inspired by the work
in [32], [33]. Moreover, these detectors can also be used in
other settings where BL or CM signals need to be detected.
Examples of CM signals include those modulated with Fre-
quency Shift Keying (FSK), Continuous Phase Modulation
(CPM), Gaussian Minimum Shift Keying (GMSK), which is
employed in the GSM cellular system, etc.

The paper is organized as follows. The problem is for-
mulated in Sec. II, where the deterministic signal model is
presented along with an introduction to the GLR test. We then
derive several detectors that exploit different degrees of prior
information:

• In Sec. III we derive the GLR test for the case where only
the BL property is exploited, resulting in the simplest of
all detectors proposed in the paper. Next, we consider
both the BL property and the spatial rank-1 structure of
the WM signal to derive another GLR detector1.

• In Sec. IV, the CM property is exploited along with the
rank-1 space structure of the WM signal to derive a third
detector.

• The multiantenna GLR test that jointly exploits the BL
and CM properties, along with the spatial structure, is
developed in Sec. V. This detector provides the best
performance since it exploits all prior information, al-
though this is at the expense of the highest computational
complexity.

Some common considerations and implementation issues are
discussed in Sec. VI, and performance is analytically evaluated
in Sec. VII. In Sec. VIII we assess performance using the
simulation guidelines for WMs provided by the IEEE 802.22
working group. Concluding remarks are given in Sec. IX.

Notation: Vectors and matrices are denoted by boldface
lowercase and uppercase letters, respectively. Superscripts
∗, T and H respectively denote conjugate, transpose, and
conjugate transpose. The tilde ˜ is used to denote frequency-
domain variables. The trace and expectation are represented
by Tr (·) and E {·}, respectively. The symbol “?” is used
to denote convolution whereas δ[n] represents the Kronecker
delta function. The `p-norm of a vector is denoted by ||·||p; the
subscript will be usually omitted for the Euclidean (`2) norm.
For a matrix A ∈ Cm×n, the Frobenius norm is defined as
||A||F =

√
Tr (AAH), whereas the operator norm2 induced

by || · ||p on Cn and || · ||q on Cm is denoted by ||A||p,q , i.e.,
||A||p,q = maxx ||Ax||q subject to ||x||p = 1.

1As usual, the terms detector and test will be used interchangeably
throughout the paper.

2Also known in some contexts as dual norm or subordinate norm.
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II. PROBLEM SETTING

A. Signal model

Consider a sensor with M antennas that selects, downcon-
verts and samples some frequency channel at fs samples/s. If
a WM signal x∗[n] is present3, then the n-th sample at the
m-th antenna is given by

ym[n] = x∗[n] ? hm[n] + wm[n], m = 0, 1, . . . ,M − 1,

n = 0, 1, . . . , N − 1,

where N is the number of samples per antenna, hm[n] is the
impulse response of the channel from the primary transmitter
to the m-th antenna, and wm[n] is the noise, which is assumed
zero-mean, circularly symmetric Gaussian, and temporally and
spatially white, i.e., E

{
wm[n]w∗p[q]

}
= σ2δ[m − p]δ[n − q].

Let h[n]
.
= [ h0[n] . . . hM−1[n] ]T and q[n]

.
= x∗[n] ?

h[n] =
∑
k x
∗[n − k]h[k]. Introducing the M × N matrix

Q
.
= [ q[0] . . . q[N − 1] ], we can write Y = Q + W ,

where the (m,n) entries of Y and W are respectively ym[n]
and wm[n].

The problem is to decide on the presence or absence of
the signal x∗[n], thus testing the null hypothesis H0 that
the received signal is noise only, i.e. Y = W , against the
alternative H1 stating that there is both signal and noise, i.e.
Y = Q + W . The transmitted signal x∗[n], the channel
coefficients hm[n] and the noise power σ2 are modeled as
deterministic unknown parameters [11], which will allow us to
gradually introduce the prior information available about x∗[n]
and hm[n]. According to this assumption, the observations
in Y are Gaussian distributed, with E {Y |H0} = 0 and
E {Y |H1} = Q. Let

R̂0
.
=

1

N
Y Y H , R̂1

.
=

1

N
(Y −Q)(Y −Q)H (1)

respectively denote the sample spatial covariance matrices
under H0 and H1. Then the density of the observations under
Hi, i ∈ {0, 1}, is given by

p(Y |Hi) =

[
1

(πσ2)M
exp

[
− 1

σ2
Tr
(
R̂i

)]]N
. (2)

B. Generalized Likelihood Ratio

Due to the presence of unknown parameters, the hypothesis
test for this problem is composite and, consequently, no
detector exists, in general, which is optimal in the Neyman-
Pearson sense for all values of the unknown parameters
(that is, uniformly most powerful) [11], [15]. However, de-
cision schemes with acceptably good detection performance
may be typically found using well-known rules such as the
Generalized Likelihood Ratio (GLR) test [11], [15], [16]. If
L(Y ) denotes the GLR statistic, under this approach we must
decide H1 when L(Y ) > γ and H0 when L(Y ) ≤ γ,
where γ is a threshold set in advance to satisfy a certain
probability of false alarm4. The GLR statistic is the result of
substituting the Maximum Likelihood (ML) estimates of the

3We conjugate the signal component x∗[n] for notational convenience.
4The probability of false alarm (PFA) is defined as the probability of

deciding H1 when H0 is true.

unknown parameters in the likelihood ratio. In our problem,
this operation results in the following statistic:

L(Y )
.
=

max
σ2,Q

p(Y ;σ2,Q |H1)

max
σ2

p(Y ;σ2 |H0)
. (3)

Under either H0 or H1, it is readily found (see e.g. [35,
Lemma 3.2.2]) that the value of σ2 maximizing (2) is

σ̂2
i =

1

M
Tr
(
R̂i

)
, i = 0, 1. (4)

Substituting (4) in (2) yields

p(Y ; σ̂2
i | Hi) =

[
πe · Tr

(
R̂i

)]−MN

.

so that the test statistic in (3) becomes

L(Y ) =

 Tr
(
R̂0

)
min
Q

Tr
(
R̂1(Q)

)

MN

(5)

The rest of the paper addresses the minimization of
Tr
(
R̂1(Q)

)
under several models for Q which incorporate

different degrees of prior information, thus determining the
feasible set of such optimization problems.

III. MULTIANTENNA DETECTION OF BL SIGNALS

Let us assume that the transmitted signal has a known
bandwidth B, measured in radians per sample. In the case
of WM signals, we know that

B =
2π · 200 kHz

fs
. (6)

The central frequency ωc is not known, but it is assumed to
belong in a finite set Ωc of candidate central frequencies. For
WM signals, this set is given by

Ωc =

{
2πfk
fs

, k = 0, 1, . . . , kmax

}
, (7)

where fk
.
= fe + k · 25 kHz for fe the minimum carrier

frequency, which is related to the edge of the TV channel [31].
For the sake of clarity, we start by considering the case where
this set has only one element, i.e., its cardinality |Ωc| equals
one, so that ωc can be regarded as known. The case |Ωc| > 1
will be discussed in Sec. VI-B.

Let us particularize (5) to the BL case by noting that

Tr
(
R̂1(Q)

)
=

1

N

N−1∑
n=0

|| y[n]− q[n] ||2, (8)

where y[n] and q[n] denote, respectively, the n-th column in
Y and Q. By virtue of Parseval’s identity,

Tr
(
R̂1(Q)

)
=

1

N2

N−1∑
k=0

||ỹ(ejωk)− q̃(ejωk)||2, (9)
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where ωk
.
= 2π

N k and the DFT vectors ỹ(ejωk) and q̃(ejωk)
are given by

ỹ(ejωk)
.
=

N−1∑
n=0

y[n]e−jωkn, q̃(ejωk)
.
=

N−1∑
n=0

q[n]e−jωkn.

Let us assume, without loss of generality5, that the frequency
support of x∗[n], and therefore that of q[n] as well, spans the
first B DFT coefficients6 (B = N

2πB). Then (9) can be written
as the sum of two terms as follows:

Tr
(
R̂1(Q)

)
=

1

N2

B−1∑
k=0

||ỹ(ejωk)− q̃(ejωk)||2

+
1

N2

N−1∑
k=B

||ỹ(ejωk)||2. (10)

Note that only the first term in the right-hand side of (10)
depends on Q. The rest of this section is devoted to addressing
the minimization of this term under two scenarios. First, an
arbitrary channel impulse response h[n] is assumed, which
means that the signal term q[n] is unstructured. This will result
in the simplest of the proposed detectors, which only exploits
the BL property. Later, a frequency-flat channel assumption
will lead to a rank-1 spatial structure, resulting in a second
detector with better performance but higher complexity.

A. Arbitrary Channel Structure

Applying Parseval’s identity again to the first term of the
right hand side of (10) results in

1

N2

B−1∑
k=0

||ỹ(ejωk)−q̃(ejωk)||2 =

1

N

N−1∑
n=0

|| yf [n]− x∗[n] ? h[n] ||2, (11)

where yf [n] represents a filtered version of y[n] obtained by
setting to zero all out-of-band DFT coefficients, i.e.,

yf [n]
.
=

1

N

B−1∑
k=0

ỹ(ejωk)ejωkn. (12)

Clearly, expression (11), and consequently (10), are minimized
when yf [n] = x∗[n] ? h[n]. Since no structure about h[n] or
x∗[n] is assumed, it is possible to select their values to satisfy
this condition. For example, take x∗[n] as the impulse response
of an ideal7 bandpass filter with passband B, and then pick
h[n] = yf [n]. Since yf [n] is bandlimited to B, it is clear that

5The reason is that the detection problem is invariant [15] to modulating
the signals received at all antennas by the same complex exponential, which
may have an arbitrary frequency.

6Strictly speaking, the observed signal is only approximately bandlimited,
since we observe a finite number of samples N . Nevertheless, throughout
the paper it is assumed that N is sufficiently large, so that the windowing
effects can be neglected and the signal can be regarded as truly bandlimited.
This is justified by the fact that, in practice, stringent low-SNR detectability
requirements cannot be met with small values of N .

7A rigorous proof can be provided without resorting to ideal filters, but it
is omitted due to space limitations.

this choice results in x∗[n] ? h[n] = x∗[n] ? yf [n] = yf [n].
Consequently, (10) becomes

Tr
(
R̂1(Q)

)
=

1

N2

N−1∑
k=B

||ỹ(ejωk)||2

=
1

N2

N−1∑
k=0

||ỹ(ejωk)||2 − 1

N2

B−1∑
k=0

||ỹ(ejωk)||2,

or, in the time domain,

Tr
(
R̂1(Q̂)

)
=

1

N

N−1∑
n=0

||y[n]||2 − 1

N

N−1∑
n=0

||yf [n]||2. (13)

Similarly to Y and R̂0, one can define

Yf
.
=
[
yf [0] yf [1] · · · yf [N − 1]

]
, (14)

R̂f
0
.
=

1

N
YfY

H
f . (15)

In that case, (13) becomes Tr(R̂1(Q̂)) = Tr(R̂0)− Tr(R̂f
0 ),

so that (5) reduces to

LBL(Y ) =

 Tr
(
R̂0

)
Tr
(
R̂0

)
− Tr

(
R̂f

0

)
MN

. (16)

Since two tests statistics related by a one-to-one transformation
define the same test as long as the decision regions are properly
set [11], [15], testing LBL(Y ) in (16) amounts to testing

TBL(Y ) =
Tr
(
R̂f

0

)
Tr
(
R̂0

) =
||Yf ||2F
||Y ||2F

. (17)

Henceforth we will refer to (17) as the bandlimited detector
(BL), since this is the only property it exploits. Note that it just
measures the ratio of the in-band energy to the total energy.

B. Frequency-Flat Channels

As the WM signal is narrowband relative to the opera-
tional bandwidth, the channel response can be regarded as
frequency-flat. This results in a rank-1 structure for Q, i.e.,
Q = hxH , where h contains the channel coefficients and
xH

.
= [x∗[−n0], x∗[−n0+1], · · · , x∗[N−n0−1]]. This reads

in the frequency domain as q̃(ejωk) = x̃∗(e−jωk)h, where
x̃(ejωk)

.
=
∑N−1
n=0 x[n]e−jωkn. Therefore, optimizing w.r.t. Q

amounts to optimizing w.r.t. x̃(ejωk) and h. We first find the
minimum of

||ỹ(ejωk)− q̃(ejωk)||2 = ||ỹ(ejωk)− x̃∗(e−jωk)h||2 (18)

w.r.t. x̃(ejωk) for each ωk with k = 0,. . . , B − 1. This is a
typical least squares (LS) problem, whose solution is given by

min
x̃(ejωk )

||ỹ(ejωk)− x̃∗(e−jωk)h||2

= ||ỹ(ejωk)||2 − |h
H ỹ(ejωk)|2

||h||2
. (19)
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Substituting (19) in (10) yields

Tr
(
R̂1(h)

)
=

1

N2

N−1∑
k=0

||ỹ(ejωk)||2 − 1

N2

B−1∑
k=0

|hH ỹ(ejωk)|2

||h||2
. (20)

Applying Parseval’s identity results in

Tr
(
R̂1(h)

)
=

1

N

N−1∑
n=0

||y[n]||2 − 1

N

||hHYf ||2

||h||2

= Tr
(
R̂0

)
− h

HR̂f
0h

||h||2
. (21)

The vector h minimizing (21) is given by the principal
eigenvector of R̂f

0 . Hence,

min
h

Tr
(
R̂1(h)

)
= Tr

(
R̂0

)
− λ1

(
R̂f

0

)
, (22)

where λ1(A) denotes the largest eigenvalue of A. Substituting
(22) into (5) yields

LBLFF(Y ) =

 Tr
(
R̂0

)
Tr
(
R̂0

)
− λ1

(
R̂f

0

)
MN

.

For detection purposes, this statistic is equivalent to

TBLFF(Y ) =
λ1

(
R̂f

0

)
Tr
(
R̂0

) =
||Yf ||22,2
||Y ||2F

. (23)

Henceforth, we will refer to the test defined by this statistic
as the Bandlimited Frequency-Flat detector (BLFF). Observe
that (23) reduces to the well-known multiantenna ”λ1/trace”
detector [10], [23], [25] when the signal is not bandlimited,
i.e., when B = N , since in that case the only property this
detector can exploit is the spatial structure.

IV. MULTIANTENNA DETECTION OF CM SIGNALS

In this section we derive the GLR test which only exploits
the CM property of the WM signal. We minimize Tr(R̂1(Q))
assuming that the transmitted signal x[n] has this property,
although it may not be bandlimited. As it turns out, the
existence of the GLR depends on whether the frequency-flat
assumption on the channel applies or not.

A. Arbitrary Channel Structure

From expression (8), it is possible to write

Tr
(
R̂1(Q)

)
=

1

N

N−1∑
n=0

|| y[n]− x∗[n] ? h[n] ||2. (24)

Due again to the fact that no structure is imposed on h[n], it
follows that (24) can be made zero: for example, pick x∗[n]
as any CM signal with no spectral zeros, and choose each
entry of h[n] as the signal whose spectrum equals that of the
corresponding entry of y[n] divided by the spectrum of x?[n].
This results in x∗[n]?h[n] = y[n], so that (24) vanishes. As a
result, the denominator in (5) vanishes and no GLR is defined
for this case. This makes sense, since the CM property of the

transmitted signal, which is the only signal feature that can
be exploited for detection purposes in this case, is wiped out
after passing through a frequency-selective channel.

B. Frequency-Flat Channels

Assume now that the channel is frequency flat. As seen in
Sec. III-B, in that case the matrix Q is rank-1, i.e., Q = hxH .
In order to make explicit the CM property of the transmitted
signal, let us denote it as x(φ)

.
= [ejφ0 ejφ1 . . . ejφN−1 ]T ,

where φ .
= [φ0 φ1 . . . φN−1]T . Note that there is no loss

of generality in assuming unit magnitude, since any scaling
factor can be absorbed by the channel vector h. Then,

Tr
(
R̂1(h,φ)

)
=

1

N
[Tr
(
Y Y H

)
(25)

− 2 Re
{
hHY x(φ)

}
+N ||h||2],

since xH(φ)x(φ) = N . The ML estimate of φ is given by

φ̂ = arg max
φ

Re
{
hHY x(φ)

}
(26)

= arg max
φ

Re

{
N−1∑
n=0

ejφnhHy[n]

}
, (27)

which results in φ̂n = −∠
(
hHy[n]

)
. The optimal value is

therefore
∑
n |hHy[n]| = ||Y Hh||1. Substituting this back

in (25) gives

Tr
(
R̂1(h, φ̂)

)
=

1

N

[
Tr
(
Y Y H

)
− 2||Y Hh||1 +N ||h||2

]
.

(28)

In order to minimize this expression w.r.t. h, write h = ρ · g,
with ρ > 0 and ||g|| = 1. The optimal value of ρ is readily
found to be ρ̂ = 1

N ||Y
Hg||1. Using this expression, the ML

estimate of the spherical component g is seen to be

ĝ = arg max
g
||Y Hg||1 s.t. ||g|| = 1. (29)

The solution to this problem, ||Y H ||2,1
.
= ||Y H ĝ||1 is known

as the operator norm, dual norm, or subordinate norm to the
vector `2- and `1-norms [36]–[39]. An iterative method for
solving this constrained optimization problem is presented in
the Appendix. Substituting this solution produces

Tr
(
R̂1(ĥ, φ̂)

)
=

1

N

[
||Y ||2F −

1

N
||Y H ||22,1

]
. (30)

Finally, using (30) in (5) gives

LCM(Y ) =

[
||Y ||2F

||Y ||2F −
1
N ||Y H ||22,1

]MN

, (31)

which is a monotonically increasing function of the equivalent
test statistic

TCM(Y ) =
||Y H ||22,1
||Y ||2F

. (32)

The detector defined by (32) will be referred to as the CM
detector, since it exploits the CM property. Although it also
exploits the rank-1 structure of the signal term, we will dismiss
this fact in the notation since, as seen in Sec. IV-A, no GLR
detector exists that exploits the CM property for arbitrary
channel structure.
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V. DETECTION OF CM BANDLIMITED SIGNALS

We consider now the complete model capturing the entire
prior knowledge about the WM signal. Regarding the mini-
mization of Tr

(
R̂1(Q)

)
, it can be readily shown, analogously

to Sec. IV-A, that if an arbitrary channel impulse response is
assumed, then the CM constraint on the signal still allows to
make zero the signal term within the frequency support of the
transmitted signal. However, in this case the denominator of
(5) does not vanish because of the contribution of the out-of-
band noise, thus resulting in a well-defined GLR statistic. The
resulting test turns out to be equivalent to the BL detector
in (17). This is consistent with our findings in Sec. IV-A:
since the passage of a CM signal through a frequency selective
channel destroys the CM property at the channel output, it is
reasonable that the corresponding detector cannot exploit such
property. However, the situation is different with frequency-flat
channels, as discussed next.

Let us start by noting that the fact that the signal is ban-
dlimited allows us to write the trace of the sample covariance
matrix again as in (10). However, the optimization w.r.t.
q̃(ejωk) now has to take into account the CM feature, which
is a time-domain property. As we will see, a solution can
be found by confining ourselves to the frequency support of
q̃(ejωk).

As seen in Sec. III-A, for frequency-flat channels it holds
that q̃(ejωk) = x̃∗(e−jωk)h, so that we can rewrite the first
term in the right-hand side of (10) as

1

N2

B−1∑
k=0

||ỹ(ejωk)− q̃(ejωk)||2 (33)

=
1

N2

B−1∑
k=0

||ỹ(ejωk)− x̃∗(e−jωk)h||2.

Now let L .
= N/B. For a signal z[n], let zd[n] denote the

signal obtained by ideally8 bandpass filtering z[n] to the in-
terval [0, 2π/L] followed by a downsampling operation9 with
a factor L (see, e.g., [40]). Then one has z̃(ejω) = L·z̃d(ejωL)
for ω ∈ [0, 2π/L]. It follows that (33) can be written as

1

N2

B−1∑
k=0

||ỹ(ejωk)− q̃(ejωk)||2

=
L2

N2

B−1∑
k=0

||ỹd(ej
2πkL
N )− x̃∗d(e−j

2πkL
N )h||2 (34)

=
1

B

B−1∑
n=0

||yd[n]− x∗d[n]h||2 (35)

= Tr
(
R̂d

1(h,xd)
)
, (36)

where in (35) we have applied Parseval’s identity (note that
the sequences yd[n], xd[n] have length N/L = B), whereas
in (36) we have introduced the matrix

R̂d
1
.
=

1

B

(
Yd − hxHd

) (
Yd − hxHd

)H ∈ CM×M , (37)

8Note that some performance degradation may be expected in practice due
to the usage of non-ideal filters.

9Note that L may not be, in general, an integer number, so that a previous
interpolation step may be required.

with

Yd
.
=
[
yd[0] yd[1] · · · yd[B − 1]

]
∈ CM×B , (38)

xd
.
=
[
xd[0] xd[1] · · · xd[B − 1]

]T ∈ CB . (39)

Note now that minimizing (36) w.r.t. h and xd subject to
the CM constraint on xd (since the decimation operation by
an arbitrary factor preserves the CM property of a signal) is
a problem analogous to that found in Sec. IV-B. Therefore,
the same approach can be applied, resulting in the following
minimum value for (36):

Tr
(
R̂d

1(ĥ, x̂d)
)

=
1

B

[
Tr
(
YdY

H
d

)
− 1

B
||Y H

d ||22,1
]
. (40)

Substituting (40) back in (10) yields

Tr
(
R̂1(Q)

)
=

1

B

[
Tr
(
YdY

H
d

)
− 1

B
||Y H

d ||22,1
]

+
1

N
Tr
(
Y Y H

)
− 1

N
Tr
(
YfY

H
f

)
,

with Yf the filtered data matrix given by (14). Hence, the
expression for the GLR statistic is

LCMBL(Y ) =[
||Y ||2F

L
(
||Yd||2F −

1
B ||Y

H
d ||22,1

)
+ ||Y ||2F − ||Yf ||2F

]MN

(41)

This detector will be referred to as the CM Bandlimited detec-
tor (CMBL), and exploits the whole prior information about
WM signals. Thus, it is expected to offer the best performance
of all the detectors presented in this paper, although it is at the
expense of presenting the highest computational complexity.

VI. REMARKS

A. Interpretation

All the GLRs derived for bandlimited signals in previous
sections have the same general form; namely, all of them can
be written as

L(Y ) =

[
σ̂2

tot

σ̂2
in + σ̂2

out

]MN

, (42)

where σ̂2
tot = Tr(R̂0) is an estimate of the total power of the

observations, whereas σ̂2
in and σ̂2

out are, respectively, estimates
of the in-band and out-of-band noise powers.

An alternative form, which was already used in (17) and
(23), follows from noting that an estimate of the in-band signal
power can be obtained as ŝ2 = σ̂2

tot−(σ̂2
in+σ̂2

out). This allows to
rewrite (42) as L(Y ) =

[
σ2

tot/(σ̂
2
tot − ŝ2)

]MN
, leading to the

equivalent statistic T (Y ) = ŝ2/σ̂2
tot. The proposed detectors

are seen to use different in-band signal power estimates:

• For the BL detector, one has ŝ2 = Tr
(
R̂f

0

)
, i.e., all of

the in-band power is ascribed to the signal component,
so that σ̂2

in = 0.
• For the BLFF detector, one has ŝ2 = λ1

(
R̂f

0

)
, which

is an estimator of the power in the principal eigenspace
of the filtered covariance matrix. The prior information
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being exploited here is the rank-1 property of the signal
subspace.

• For the CMBL detector, inspection of the denomina-
tor in (41) shows that ŝ2 = ‖Yf‖2F − L‖Yd‖2F +
LB−1‖Y H

d ‖22,1. For large N , the energy of the down-
sampled sequence yd[n] relates to that of the filtered
sequence yf [n] as ‖Yd‖2F ≈ 1

L‖Yf‖
2
F [40], and therefore

ŝ2 ≈ LB−1‖Y H
d ‖22,1. This observation suggests the

following modification of the test statistic (41):

LCMBL(Y ) ≈

[
||Y ||2F

||Y ||2F −
L
B ||Y

H
d ||22,1

]MN

, (43)

which, for detection purposes, is equivalent to the statistic

TCMBL(Y ) =
||Y H

d ||22,1
||Y ||2F

. (44)

Clearly, the statistic in (44) has a lower computational
complexity than that in (41). Moreover, empirical results
reveal that this asymptotic (large N ) version of the CMBL
test significantly improves the detection performance with
respect to that of the original formulation (41) and
reduces the influence of the particular choice of the filters.
Note that (44) reduces to (32) when the BL assumption
is dropped, since in that case one has Yd = Y .

B. Dealing with an unknown carrier frequency

In practice, the carrier frequency of the WM signal is not
known and, therefore, using certain GLR detectors involves
maximizing the corresponding statistic w.r.t. this carrier fre-
quency parameter ωc over the set Ωc of candidate values, as
in [19]. From (7), the number of candidate carrier frequencies
|Ωc| in a 6 MHz TV channel is 237. Since |Ωc| has a
dominant impact on the computational complexity of some
of the proposed detectors (see Sec. VI-D), it is convenient to
devise a method to set |Ωc| somewhere in between 0 and 237
to trade performance for complexity.

In this respect, the detectors proposed in this paper present
an important advantage over previous schemes from the litera-
ture, e.g. [19]: since the carrier frequency is not explicitly used
by the detector, it is possible to divide the 6 MHz channel in a
reduced number of overlapping intervals with bandwidth larger
than 200 kHz. This operation reduces |Ωc| and increases the
bandwidth of each segment B, which allows for a significant
reduction in computational complexity in exchange for some
degradation in performance. Interestingly, as will be seen in
Sec. VIII, the loss incurred by this approach is small provided
that the number of subbands is large enough.

We also remark that some of the proposed detectors allow
certain simplifications when performing a series of evaluations
for different central frequencies ωc ∈ Ωc. Consider first the
case of the BL statistic (17), for which one must compute

Tr
(
R̂f

0

)
=

1

N2

N−1∑
k=0

pk(ωc)||ỹ(ej
2πk
N )||2 (45)

for all ωc ∈ Ωc, where pk(ωc) denotes the frequency response
of the bandpass filter, i.e., pk(ωc) = 1 for the B bins centered

at ωc and zero otherwise. Thus, it suffices to compute the
DFT of the observations and then store the squared magnitudes
||ỹ(ej

2πk
N )||2; after that, only B − 1 additions per candidate

central frequency are required.
Regarding the BLFF statistic (23), it is seen that

λ1(R̂f
0 ) must be computed for each ωc. To this

end, let F ∈ CN×N be the Fourier matrix, so that
ũT = uTF is the DFT of the row vector uT . Note that
FHF = FFH = NI . Then Ỹ = Y F is the DFT
of the observations, and one has Yf = 1

N Ỹ P (ωc)F
H ,

where P (ωc)
.
= diag {p0(ωc), p1(ωc), · · · , pN−1(ωc)}.

Therefore R̂f
0 = 1

NYfY
H
f = 1

N2 Ỹ P (ωc)P
H(ωc)Ỹ

H .
Since λ1(R̂f

0 ) = 1
N2λ1(Ỹ P (ωc)P

H(ωc)Ỹ
H) =

1
N2λ1(PH(ωc)Ỹ

H Ỹ P (ωc)), one can compute first the
matrix Ỹ H Ỹ , and then, for each ωc ∈ Ωc, select the suitable
rows and columns and evaluate the largest eigenvalue.

Finally, the CMBL statistic (44) requires the computation of
||Y H

d ||22,1 for each ωc ∈ Ωc. If L = N/B is an integer10, then
Yd can be directly obtained as Yd = YfS = 1

N Ỹ P (ωc)F
HS,

where S ∈ CN×B is a decimation matrix containing the
appropriate set of B columns of the N × N identity matrix.
If L is not an integer, but L = L1/L2 with L1, L2 coprime,
then Yd can still be obtained from Yf by first upsampling by
a factor L2, followed by appropriate bandpass filtering and
finally downsampling by a factor L1. Once Yd is obtained,
the computation of ||Y H

d ||22,1 can be addressed as shown in
the Appendix.

C. Interference from TV stations

It has been assumed so far that the sensed channel is in
one of two possible states: H1: WM signal plus noise or
H0: noise only. The reason is that it was implicitly assumed
that a TV signal detector is applied before the detector for
WMs, the latter being executed only when the former declares
the channel free from TV signals. However, there exists a
potential risk that a TV signal is present when the WM
detector is applied, which would be a consequence of a miss
detection event of the TV detector. It has been observed that
the effects of this TV interference on the performance of the
WM detectors are mixed: depending on the PSD and direction
of arrival of the interference signal, the performance of the
WM detector may be improved or degraded. In any case,
since a miss detection of the TV detector takes place in cases
where the level of the TV signal is well below the background
noise, we expect a small influence of this interference on the
performance of the WM detectors.

D. Computational complexity

According to what was explained in Sec. VI-B, the BL
detector requires the computation of ||ỹ(ej

2πk
N )||2 for k =

0, . . . , N−1. This requires M fast Fourier transforms (FFTs),
with complexity O(MN logN), and the computation of N
squared magnitudes of vectors in CM , which is O(NM).

10This is the typical case, since for WMs in 6 MHz bands, this factor is
L = 6 MHz/200 kHz= 30.
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After that, just a few sums are needed, which means that the
complexity of the BL detector is O(MN logN).

Besides the M FFTs, the BLFF detector requires the
computation of Ỹ

H
Ỹ , which is O(MN2). Then |Ωc| eigen-

values must be computed, for example using the standard
power method with I iterations, resulting in a complexity of
O(I|Ωc|B2). We therefore conclude that the BLFF detector
has complexity O(max(I|Ωc|B2,MN2)), which is higher
than the complexity of the BL detector.

In the case of the CM detector, the complexity is dominated
by that of the computation of ||Y H ||2,1. Using the algorithm
proposed in the Appendix with I iterations, it can be seen that
this operation is O(IM2N).

The number of operations required by the CMBL detector
is the largest one since the computations must be performed
in the time domain. This means that one FFT and |Ωc|
inverse FFTs (IFFTs) are required, resulting in a complexity
of O(|Ωc|MN logN). The execution of the power method
requires, in this case, O(|Ωc|IM2N/B) operations, whereas
further computations may require up to O(M2N). Therefore,
the complexity of the CMBL detector is O(|Ωc|MN logN).

VII. PERFORMANCE ANALYSIS

It is important to evaluate the detection performance of
the tests presented above so that they can be utilized in
practical communication scenarios. Typical characterization of
the performance is given in terms of probability of false alarm
(PFA), probability of detection11 (PD) and receiver operating
characteristics (ROCs) [11]. The first one affects the capacity
of the secondary network whereas the second one determines
the interference introduced to the primary network. The ROC
curve is used to analyze the trade-off between probability of
false alarm and probability of detection. We start by discussing
the detectors for bandlimited signals.

A. BL detector

The exact distribution of the BL detector (17) when |Ωc| =
1 can be obtained as follows. Note from (45) that the BL
statistic can be rewritten as

TBL(Y ) =

∑N−1
k=0 pk||ỹ(ejωk)||2∑N−1

k=0 pk||ỹ(ejωk)||2 +
∑N−1
k=0 (1− pk)||ỹ(ejωk)||2

,

where again pk = 1 if the k-th bin is within the passband, and
zero otherwise. Hence, this test is equivalent to testing for

T ′BL(Y ) =

∑N−1
k=0 pk||ỹ(ejωk)||2∑N−1

k=0 (1− pk)||ỹ(ejωk)||2
(46)

=

∑B−1
k=0 ||ỹ(ejωk)||2∑N−1
k=B ||ỹ(ejωk)||2

, (47)

where in (47) it has been assumed without loss of generality
that the passband comprises bins with indices k = 0, 1, . . . B−

11The probability of detection (PD) is defined as the probability of deciding
H1 when the hypothesis H1 is true.

1. Denote now by w[n] the n-th column of the noise matrix
W , and let

w̃(ejωk)
.
=

N−1∑
n=0

w[n]e−jωkn.

Then (47) can be rewritten as

T ′BL(Y ) =

∑B−1
k=0 ||q̃(ejωk) + w̃(ejωk)||2∑N−1

k=B ||w̃(ejωk)||2,
(48)

since q̃(ejωk) = 0 for k ≥ B. The distribution of (48)
follows by noting that q̃(ejωk) is deterministic whereas
w̃(ejωk) is Gaussian. Hence, the numerator is a scaled non-
central χ2 random variable, whereas the denominator is
central χ2. Thus, N−B

B T ′BL(Y ) is a non-central Snedecor’s
F-distributed random variable with non-centrality parameter
λ = 2

Nσ2

∑
k ||q̃(ejωk)||2 = 2

σ2 Tr
(
QQH

)
and degrees of

freedom ν1 = 2MB and ν2 = 2M(N − B). Obviously, one
has that λ = 0 under H0 and λ > 0 under H1.

Therefore, if Fλ,ν1,ν2(t) denotes the cumulative distribution
function corresponding to the F-distribution, it is clear that,
once a threshold η is fixed, the probability of false alarm will
be given by PFA = 1 − F0,ν1,ν2(η) whereas the probability
of detection will be PD = 1 − Fλ,ν1,ν2(η). Combining both
expressions results in the receiver operating characteristic:
PD = 1 − Fλ,ν1,ν2(F−10,ν1,ν2

(1 − PFA)). These expressions
provide complete characterization of the performance of the
BL detector and allows to set the threshold η in order to attain
any given PFA or PD.

B. BLFF detector

The evaluation of the distribution of the BLFF statistic
turns out to be considerably more involved. Under H0, by
using asymptotic considerations similar to those in [23] we
can approximate Tr

(
R̂0

)
≈ Mσ2 for large N , so that (23)

becomes

TBLFF(Y ) ≈
λ1

(
YfY

H
f

)
MNσ2

=
λ1

(
Y H
f Yf

)
MNσ2

. (49)

The test is thus equivalently defined as that deciding H1 when

MN2 · TBLFF(Y ) =
N

σ2
λ1
(
Y H
f Yf

)
> γ, (50)

for some threshold γ. In order to compute the probability of
false alarm, we note that under H0 the observations Yf are
the result of filtering white noise through a bandpass filter
of bandwidth B. Using the notation introduced in Sec. VI-B,
this means that Yf = 1

NY FPF
H = 1

NWFPFH , or
Y H
f = 1

NFPF
HWH under H0. Therefore, the columns of

Y H
f are independent Gaussian random vectors with zero mean

and covariance matrix σ2

N2FPF
H , and the product Y H

f Yf
follows a complex central Wishart distribution with M degrees
of freedom:

N2

σ2
Y H
f Yf ∼ CW(FPFH ,M). (51)

The density of the largest eigenvalue of this matrix is given
by [41, expression (41)], where we must note that the scale
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matrix FPFH in (51) has two eigenvalues: 1 with multiplicity
B, and 0 with multiplicity N − B. If fBLFF(λ) denotes such
density, the probability of false alarm is given by

PFA = 1−
∫ γ

0

fBLFF(λ)dλ (52)

which enables us to set the threshold γ for a prescribed PFA.
The computation of the probability of detection involves

finding the distribution of the largest eigenvalue of the matrix
Y H
f Yf , which is non-central Wishart distributed under H1.

To the best of our knowledge, no simple means is known
to compute the marginal density of the largest eigenvalue
of non-central correlated complex Wishart matrix where the
eigenvalues of the scale matrix have multiplicity greater than
one (see [42, Sec. 2.1] and references therein, also [41]).
It is therefore more convenient to assess the performance
empirically, as described in Sec. VII-C.

C. CM and CMBL detectors

From (32), (41) and (44) we see that the detectors exploiting
the CM property rely on the (2,1)-subordinate matrix norm of a
correlated Gaussian matrix. To the best of the authors’ knowl-
edge, the distribution of this norm remains an open problem in
statistics/random matrix theory, so that the threshold of these
detectors cannot be determined analytically. However, due to
the invariance to scalings of all the detectors presented in the
paper, the distributions of the corresponding statistics under
H0 are independent of the noise power so that the threshold
required to obtain some target PFA can be computed off-line
by means of Monte Carlo simulations. This procedure is the
one followed in [9], [19]; see also [11] for more details.

VIII. SIMULATION RESULTS

Among the detection schemes that have been proposed in
the literature (see Sec. I), the statistical performance of only
a few of them has been exactly characterized in terms of
analytical expressions. More precisely, most of them have
been analyzed either approximately, asymptotically, or even
heuristically. Notable exceptions include the energy detec-
tor [11] and, in this paper, the BL detector. This means that
comparisons between different schemes should not be carried
out in terms of analytical expressions; instead we must rely
on Monte Carlo simulations. In particular, we analyze the
performance of the proposed and existing tests in the context
of WM signal detection, following the guidelines of the IEEE
802.22 Working Group [29].

A. Simulation Setting

The guidelines in [29] consider six simulation scenarios,
termed test vectors, which are summarized in Table I. The
frequency-modulated analog WM signal x∗(t) is generated
according to

x∗(t) = exp

{
j

(
2πfct+

∆f

fm
sin(2πfmt),

)}
,

where ∆f is the frequency deviation and fm is the modulating
frequency. This signal is then sampled at rate fs resulting in

# Description fm ∆f Fading
1 Outdoor, LOS, Silent 32 5 No
2 Outdoor, LOS, Soft Speaker 3.9 15 No
3 Outdoor, LOS, Loud Speaker 13.4 32.6 No
4 Indoor, NLOS, Silent 32 5 Yes
5 Indoor, NLOS, Soft Speaker 3.9 15 Yes
6 Indoor, NLOS, Loud Speaker 13.4 32.6 Yes

TABLE I: Test vectors employed in WM simulation [29].
Frequency units are kHz in all cases.

x[n] = x(n/fs). A sampling frequency of fs = 6 MHz is used
unless otherwise stated. Zero-mean spatially and temporally
white noise with variance σ2 is added to the signal samples.

Frequency-flat channels are considered in all cases. The
channel is line-of-sight (LOS) for test vectors 1-3, assuming a
uniform linear array (ULA) architecture with half-wavelength
spacing: h = α · [ 1 ejθ ej2θ · · · ej(M−1)θ ]T , where
θ ∼ U(0, π) is a random phase and α2 determines the
power of the signal term. For the test vectors 4-6 vectors,
the channel is non-line-of-sight (NLOS) with Rayleigh fading:
h ∼ CN (0, α2I). The SNR (per antenna) is defined as

SNR =
E
{
|hm|2

}
E {|wm[n]|2}

=
α2

σ2
. (53)

The values of SNR considered are around −20 dB, corre-
sponding to a very demanding scenario for WM detection (see,
e.g., [12], [14]). As simulations reveal, in order to satisfy
typical nominal performance requirements in a 6 MHz channel
using the proposed BL, BLFF or CMBL detectors necessitates
a sensing time in the order of a fraction of millisecond,
depending on several factors such as the number of antennas.

In Sec. VIII-B, we compare the proposed detectors with a
representative part of the detectors existing in the literature.
Results show the advantages of exploiting simultaneously the
WM signal features along with the spatial structure provided
by the use of multiple antennas. Then in Sec. VIII-C we focus
on the novel detectors, illustrating their performance in a wide
variety of scenarios.

B. Comparison with Existing Detectors

We now compare the multiantenna WM detectors proposed
in this paper with some of the most relevant multiantenna
detectors in the literature. The setting considered uses Test
Vector 5 with M = 4 antennas, N = 1024 samples per
antenna (corresponding to an observation time of 0.17 ms)
and central frequency uniformly distributed across Ωc, which
contains the 237 frequencies where a WM may transmit. Fig. 1
shows the ROC of the proposed detectors along with the
sphericity detector (Alamgir et al. [24]), the λ1/trace detector
in [10], [23], [25] (labeled as Besson), and three detectors
by Zeng et al.: Zeng 1 [14, Algorithm 1], Zeng 2 [14,
Algorithm 2] and Zeng 3 [9]. We note that Zeng 1 and Zeng
2 are detectors referred to in the IEEE 802.22 standard as
blind detectors, whereas Zeng 3 is specifically proposed for
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Fig. 1: Test Vector 5, N = 1024, B= 200 kHz, fs = 6 MHz,
Rayleigh Channel, SNR = -20 dB, M = 4.

detection of WM signals12 [4].
We recall that, for a given PFA, detector A is said to perform

better than detector B in a given setting if PD is higher for
detector A than for detector B. In Fig. 1 it is seen that the
three proposed multiantenna WM detectors that exploit the
bandwidth information (BL, BLFF and CMBL) outperform
all of the previous detectors in the literature. On the other
hand, the CM detector is outperformed by Zeng 1 and Zeng 3,
which rely on space-time correlation. This shows that temporal
correlation is more important than the CM property for WM
signal detection.

In order to compare the proposed detectors with existing
single-antenna WM detectors, Fig. 2 depicts PD vs. SNR when
PFA = 0.1 for the BL, BLFF, CM and CMBL detectors
along with the detector by Xu et al. [17], the detector by
ElRamly et al. [21] and the one by Chen et al. [19]. The
threshold of each detector is set to achieve PFA = 0.1. The
advantages of using several antennas are clear: not only is the
PD of the multiantenna detectors better, but also the rate at
which PD increases as the SNR improves13. Among the four
detectors proposed, the performance of the CM detector shows
a significant gap with respect to the other three. This effect
will be further discussed in Sec. VIII-C.

C. Performance of the Proposed Detectors

In order to illustrate independently the impact of each pa-
rameter on the performance of the detectors, in the simulation
experiments here we vary one parameter at a time keeping the
remaining ones fixed. In particular, for the sake of comparison
with other detectors we start assuming that Ωc = {2πfc/fs},
i.e., the only one candidate frequency is the carrier frequency.
Later, we consider the influence of the cardinality of this set
and the technique explained at the beginning of Sec. VI-B.

12Note that, although the detectors by Zeng et al. were proposed in the
IEEE 802.22 standard for single-antenna detection, we are considering the
multiantenna extensions given by the authors. This, together with the fact
that these detectors stem from ad-hoc considerations, explains why in the
multiantenna scenario of Fig. 1, Zeng 3 performs worse than Zeng 1.

13This is related to the well-known concept of diversity in multiantenna
communications [43].

−35 −30 −25 −20 −15 −10
0

0.2

0.4

0.6

0.8

1

SNR [dB]

P
D

 

 

CMBL

BLFF

BL

CM

Xu

Chen

ElRamly

Fig. 2: Test Vector 5, N = 1024, B= 200 kHz, fs = 6 MHz,
Rayleigh Channel, M = 4.

In order to illustrate the benefits of multiantenna detectors,
Fig. 3 shows the influence of the number of antennas M on the
probability of detection for fixed PFA = 0.1 and SNR = −24
dB. With the exception of the CM detector, the proposed
schemes exhibit a significant improvement as M increases,
thus showing that in this setting the BL property is more useful
for detection purposes than the CM property. This effect stems
from the fact that the fractional bandwidth of the WM signal
is small for the sampling rate considered (200 kHz/6 MHz
= 1/30). With larger fractional bandwidths, the advantage
of the BL property over the CM property diminishes. This
is illustrated in Fig. 4, where the probability of detection is
depicted vs. the sampling frequency in the range 200 kHz
≤ fs ≤ 2 MHz for PFA = 0.1. With fixed WM signal
bandwidth (b = 200 kHz), the net effect is the variation
of the fractional bandwidth b/fs. In the extreme case where
fs = 200 kHz the sampled signal ceases to be bandlimited,
and it is observed that the detectors exploiting the CM property
show a better PD than those which do not. In fact, the BL
detector is unable to detect the signal at all since the only
property it exploits is absent in the signal. The performance
of the BLFF at this point is slightly better since it exploits
the spatial correlation. As the sampling rate is increased, the
fractional bandwidth of the signal decreases, and thus the BL
property becomes more relevant. Note that the performance of
the CM detector is not affected by the fractional bandwidth,
as could be expected. In addition, the performance of the
BLFF detector approaches that of CMBL for sufficiently small
fractional bandwidths; in particular, for fs = 30 ·200 kHz = 6
MHz, the performance of both schemes is similar, although the
computational cost of BLFF is considerably lower.

Next we complete the performance evaluation in terms of
the simulation scenarios in Table I. Fig. 5 shows the ROC
curves corresponding to the six test vectors for the BLFF
detector when SNR= −22 dB and the number of antennas
is M = 4. It is observed that the probability of detection does
not meaningfully depend on the parameters of the WM signal
(modulating frequency and frequency deviation). It is the
channel model which essentially determines the performance
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Fig. 3: N = 1024, B= 200 kHz, fs = 6 MHz, Test Vector 5,
Rayleigh Channel, SNR = -24 dB.
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Fig. 4: N = 1024, B= 200 kHz, fs = 200 kHz, Test Vector
5, Rayleigh Channel, SNR = -20 dB, M = 4.

of the detector to a larger extent. This agrees with intuition,
since detecting a signal in the presence of a LOS component
should be easier than when operating under NLOS conditions.
Although not shown for brevity, a similar behavior is observed
for the BL, CM, and CMBL detectors.

To close this section we analyze the tradeoff discussed in
Sec. VI-B by considering multiple candidate carrier frequency
values, i.e., |Ωc| > 1. As pointed out, it is not strictly necessary
to scan the 237 central frequencies using the theoretical
bandwidth of 200 kHz. Instead, we can reduce the number
of candidate frequency intervals by increasing their width. In
the experiment reported in Fig. 6, this approach is followed by
dividing the 6 MHz channel into |Ωc| intervals. Specifically,
for |Ωc| = n intervals, we consider the following candidate
carrier frequency set and bandwidth:

Ω(n)
c =

{
2π

n
k, k = 0, 1, . . . , n− 1

}
, B(n) =

2π

n
. (54)

When the WM signal is present, its carrier frequency is taken
as fc = 0. It is observed in Fig. 6, where PFA was set to
0.1, that the probability of detection stabilizes when |Ωc| is
large enough. This observation allows computational savings
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Fig. 5: N = 1024, B= 200 kHz, fs = 6 MHz, SNR = −22
dB, M = 4, BLFF.
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Fig. 6: N = 1024, B= 200 kHz, fs = 6 MHz, Test Vector 5,
Rayleigh Channel, M = 4.

at a small performance loss, since the complexity of some
of the proposed schemes increases linearly with the number
of candidate frequency intervals. Of course, other choices for
Ω

(n)
c and B(n) different from (54) may be preferable in practice

depending on the desired tradeoff. It is also observed that the
probability of detection slightly decreases after |Ωc| is about
150. This is a consequence of the fact that when the number
of candidate frequencies is too high, the probability that the
actual frequency is erroneously estimated becomes larger.

IX. CONCLUSIONS

The protection of wireless microphone users is a require-
ment for emerging dynamic spectrum access systems operating
in TV white spaces. Whereas no previous WM detector con-
siders the use of multiple antennas, none of the multiantenna
detectors in the literature have been specifically designed for
WM signals. In order to fill this gap we have developed four
GLR-based multiantenna detectors which exploit a number of
WM signal features. The computational load of these detectors
increases with the amount of WM signal structure that they
exploit, and therefore they offer different tradeoffs between
performance and complexity.
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The proposed detectors do not require synchronizing with
the potentially present WM signal, and are robust to the noise
uncertainty problem as well as to small-scale fading due to
the use of multiple antennas. No knowledge of any parame-
ter (channel coefficients, transmitted signal, noise power) is
required. Performance was analyzed theoretically and using
Monte Carlo simulations. The proposed schemes are well
behaved and outperform previous detectors, in particular those
proposed in the IEEE 802.22 standard for WM detection.

APPENDIX
COMPUTATION OF ||Y H ||22,1

Consider the constrained maximization problem (29). The
cost can be written explicitly as

J(g) = ||Y Hg||1 =

N−1∑
n=0

|yH [n]g|

=

N−1∑
n=0

√
gHy[n]yH [n]g. (55)

One must maximize (55) subject to gHg = 1. The correspond-
ing Lagrangian is

L(g, λ)
.
= J(g)− λ

2
(gHg − 1), (56)

where λ is the Lagrange multiplier. Note that the gradient
of the constraint is 2g, which does not vanish on the unit
sphere ||g||2 = 1. It follows that all feasible points are regular,
and any local extremum of the constrained problem must
satisfy the first-order necessary conditions ∇gL(g, λ) = 0,
∇λL(g, λ) = 0, which are readily seen to yield ∇gJ(g) =
λg, gHg = 1. The gradient of J is given by

∇gJ(g) =

N−1∑
n=0

y[n]yH [n]

|yH [n]g|
g = A(g) · g, (57)

where we have introduced the M ×M matrix

A(g)
.
=

N−1∑
n=0

y[n]yH [n]

|yH [n]g|
= Y D−1(g)Y H , (58)

with D(g)
.
= diag

{
|yH [0]g| |yH [1]g| · · · |yH [N − 1]g|

}
.

Note thatA(g) is positive (semi)definite, and that the cost (55)
can be written as J(g) = gHA(g)g.

The first-order necessary conditions read then as

A(g)g = λg, gHg = 1. (59)

Thus we see that at any extremum of the constrained problem,
g must be a unit-norm eigenvector ofA(g). The corresponding
eigenvalue is the attained cost, i.e. J(g) = gHA(g)g =
λ. These conditions do not reveal whether λ corresponds
to the largest, smallest, or an intermediate eigenvalue of
A(g). However, by examining the high SNR case, for which
Y ≈ hxH(φ), one sees that A(g) = Y D−1(g)Y H ≈
[xH(φ)D−1(g)x(φ)]hhH , i.e. a rank-1 matrix, whose eigen-
vector associated to the largest eigenvalue is the true channel
vector h (independently of g). Therefore, it makes sense
to consider numerical methods for the computation of the

TABLE II: Modified Power Method

Set g0 = principal eigenvector of Y Y H

for k = 1 to n iter do
vk = A(gk−1)gk−1

gk =
vk

||vk||
end for
Set ĝ = gn iter

principal eigenvector of a matrix, and then update the matrix
at each iteration by using the eigenvector estimate from the
previous step. For example, the standard power method [37]
can be suitably modified in this manner, see Table II.

A reasonable initializer for any numerical method of this
kind is the eigenvector associated to the largest eigenvalue of
Y Y H , since this is the solution to (29) if we relax the `1-
norm to the `2-norm in the cost function. In addition, since
all elements of x(φ) have unit magnitude, in the high SNR
regime one hasD(g) ≈ |hHg|I , so thatA(g) ≈ 1

|hHg|Y Y
H ,

and thus the eigenvectors of A(g) and Y Y H should lie close
to each other.
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