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Abstract

Camera fingerprints based on sensor PhotoResponse Non-Uniformity (PRNU) have gained broad
popularity in forensic applications due to their ability to univocally identify the camera that captured
a certain image. The fingerprint of a given sensor is extracted through some estimation method that
requires a few images known to be taken with such sensor. In this paper, we show that the
fingerprints extracted in this way leak a considerable amount of information from those images used
in the estimation, thus constituting a potential threat to privacy. We propose to quantify the leakage
via two measures: one based on the Mutual Information, and another based on the output of a
membership inference test. Experiments with practical fingerprint estimators on a real-world image
dataset confirm the validity of our measures and highlight the seriousness of the leakage and the
importance of implementing techniques to mitigate it. Some of these techniques are presented and
briefly discussed.
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1 Introduction

The PhotoResponse Non-Uniformity (PRNU) is a multiplicative spatial pattern that is present in every

picture taken with a CCD/CMOS imaging device and acts as a unique fingerprint for the sensor itself

[1]. The PRNU is due to manufacturing imperfections that cause sensor elements to have minute area

differences and thus capture different amounts of energy even under a perfectly uniform light field. The

uniqueness of the PRNU has already led to a number of applications in multimedia forensics, both to

solve camera identification/attribution problems using images [2] or stabilized videos [3], and to detect

inconsistencies that reflect intentional manipulations [4].

Since the PRNU is a very weak signal, its extraction requires the availability of a number (often

dozens) of images known to be taken with the camera under analysis. Although several extraction

algorithms (both model- and data-driven) exist [1], [5], all of them perform some sort of averaging across

the residuals obtained by denoising the available images. The most prevalent method [1] performs a

further normalization to take into account the multiplicative nature of the PRNU.

Unfortunately, both the ease with which the PRNU can be extracted and the existence of relatively

good theoretical models that explain its contribution lead to attacks that are similar in intention to

digital forgery attacks in cryptography: the so-called PRNU copy attack plants the fingerprint from a

desired camera in an image taken by a different device with the purpose of incriminating someone or

merely undermining the credibility of PRNU-based forensics [6].

While the PRNU copy attack can be considered a threat to trust, in this paper we identify risks to

privacy by showing that there is substantial information leakage into the PRNU from the images used

for its estimation. The existence of this leakage has been already indirectly exploited in the so-called
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triangle test [7], which is a countermeasure against the copy attack that in order to detect the forgery

relies on the high correlation between the PRNU estimate with any of the image residuals used in the

estimation. However, to the best of our knowledge, our work, together with its companion paper [8],

constitutes the first attempt at quantifying such leakage by proposing two measures: one based on the

mutual information, and another based on the success rate of a membership inference test.

To this end, we provide a detailed derivation of a lower bound for the Mutual Information between a

given image and the PRNU, as well as two membership inference tests based on the Neyman-Pearson

criterion and the normalized correlation coefficient, respectively. Although we do not explicitly try to

recover traces of the images used to extract the PRNU, we show that the leakage is large enough to

consider the possibility of recovery a serious threat. In this sense, we remark that images involved in

criminal investigations are often of extremely sensitive nature, like in cases involving child abuse and

other sexually-oriented crimes, so the mere existence of this leakage calls for the implementation of

effective protection mechanisms of the camera fingerprints that ensure privacy is preserved at all times

during investigations.

While in an ideal scenario the PRNU of a device can be extracted from flat-field images (e.g., of

a cloudy sky or a white wall) in practice this is only feasible when there is access to the camera

under investigation. In this scenario, where the estimated PRNU practically leaks little information

(as trivially shown by our theory), different law enforcement agencies (LEAs) may share the estimated

fingerprints for cross-searching in databases with no privacy risks. However, there is a growing number

of investigations where no access to the device is feasible and the PRNU must be estimated from

images “in the wild”. Cases include images retrieved from hard drives, social networks, and criminal

networks in the Dark web. As an example, we discuss the following two cases.

Case 1: During the course of an investigation, police from country A (LEA A) have seized a hard drive

containing images from unknown sources involving child abuse. As metadata has been wiped off, LEA

A uses some PRNU clustering software to find that the images come from three different cameras, for

which the corresponding PRNUs can be extracted. After analyzing the contents of one of the clusters,

it is found that some of the pictures taken by camera #1 have been shot in country B. LEA A would

like to verify if the police of country B (LEA B) have other images from camera #1 or even the device.

Exchanging the highly-sensitive pictures with LEA B is dismissed for privacy reasons; alternatively,

LEA A sends the estimated PRNU on the belief that it entails no privacy infringement. This is rooted

in the fact that law enforcement agencies are accustomed to sharing hashes in order to search for

cross-matches in databases with images of child exploitation. However, as our work shows, contrary to

robust hashes, PRNUs may leak considerable amounts of information that should be treated as private

as it may identify the victims.

Case 2: Members of a gang have been exchanging pictures over the Dark Web. Some of them involving

the gang leader (and third persons) have been taken by the same camera (itself unavailable), as

confirmed by the PRNU. The police would be interested in crawling the social networks in search of

other pictures captured by the same device. Due to their very limited computational resources, and

convinced that nothing can be inferred from an estimated PRNU, the police outsource the search to a

web crawling company. However, the leakage from the PRNU allows the company to infer information

about people, places and objects contained in the images acquired by the police. In particular, from

the PRNU it is possible to read a car license plate.

As our paper concludes, sharing of PRNU fingerprints should be done only after carefully assessing

the risks and considering all the possible remedies, some of which are evaluated and discussed in this

paper.

As already pointed out and formalized in [8], existing techniques in the literature can mitigate the

contextual residues of images on the PRNU. Examples are: 1) compression schemes and binarization
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[9–12], which are originally conceived to reduce the computational burden in the estimation process and

limit the required storage of the resulting fingerprint; 2) the application of linear filters, as high pass

filters (both fixed [13–15] and trainable [16]) and convolutional neural networks for feature extraction

[17], which were found to be useful to enforce neural nets to work with noise residuals [5] in both forgery

detection [13, 18] and camera attribution [19], and 3) the use of more powerful denoising schemes than

the wavelet denoiser. In the present paper, we take a step further in this direction, analyzing empirically

the effects of JPEG compression and the use of more powerful denoising schemes, as BM3D [20]. Despite

the relative effectiveness of those solutions, we believe that working with encrypted data at all times

[21], although yet not entirely practical due to the large amount of computations needed, is the most

promising venue in terms of privacy preservation.

Our main contributions in this paper can be summarized as follows.

• We derive a model for the fingerprint estimator in terms of the true PRNU and the estimation

noise. This model becomes crucial in our two approaches to quantifying the leakage, and is also

assumed (but not derived) in [8].

• We take a step to model and bound the information leakage in camera fingerprints as the PRNU,

based on a waterfilling information theoretic approach.

• We propose a membership inference test, which allows to identify the images in a dataset that

were used to estimate a given PRNU.

• We propose and test empirically some methods to reduce the leakage in practice.

• We confirm that information leakage is a serious privacy threat that should be properly assessed

before sharing camera fingerprints.

• We show that the discovered leakage could be potentially used to detect PRNU copy attacks

without resorting to the original images (as is done in the triangle test), since the extracted

PRNU will have an underlying structure that will not match that of the host image.

The rest of the paper is organized as follows: in Sect. 2 we review the basic principles of PRNU

extraction; in Sect. 3 we propose two metrics to quantify the leakage; Sect. 4 hints at the potential of

our discovery to counter injection-based attacks; Sect. 5 briefly discusses several approaches to mitigate

the leakage; Sect. 6 contains the results of experiments carried on images taken with popular cameras,

and, finally, Sect. 7 presents our conclusions.

1.1 Notation

Matrices, written in boldface font, represent luminance images. All are assumed to be of size M ×N .

The pixel in position (m,n) of image X is referred to as X[m,n]. Given two matrices, X and Y, its

Hadamard product Z = X ◦ Y is such that Z[m,n] = X[m,n] · Y [m,n], for all m = 1, . . . ,M and

n = 1, . . . , N . The Frobenius cross-product of X and Y is defined as 〈X,Y〉F
.
= tr

(
X>Y

)
, where

tr(·) denotes trace and T transpose. The all-one matrix is denoted by 1. Random variables are written

in capital letters, e.g., X, while realizations are in lowercase, e.g., x. Given two random variables X,Y ,

X → Y means that X converges to Y in probability.

2 Preliminaries

In this paper, we will use the prevalent simplified sensor output model presented in [1] in matrix form:

Y
.
= (1 + K) ◦X + N, (1)

where Y is the output of the sensor, K is the multiplicative PRNU term, X is the noise-free image

and N collects all the non-multiplicative noise sources.
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Figure 1 Block diagram of the ML PRNU estimation process from a set of L images {Y(i)
o }Li=1 considered in this paper,

jointly with the different variables involved in the process. For each block, all the possible operations are highlighted in
red. The deleaking strategy block may not be used in some experiments.

This PRNU term can be estimated from a set of L images {Y(i)}Li=1 coming from the same sensor,

as shown in Fig. 1 (no deleaking strategy is used in the conventional estimator). Firstly, the noise-free

image X(i) is estimated using a denoising filter,[1] and this estimate X̂(i) is used to obtain a residual

W(i) .
= Y(i) − X̂(i). Under the assumption of N(i) being composed by i.i.d. samples of a Gaussian

process, the Maximum Likelihood (ML) estimator of K reduces to:

K̂ =

(
L∑
i=1

W(i) ◦ X̂(i)

)
/ R, (2)

where R
.
=
∑L
i=1 X̂(i) ◦ X̂(i), and the division is point-wise. Often, the result of this estimation contains

non-unique traces left by color interpolation, compression or other systematic errors, that are removed

by post-processing (e.g., zero-meaning and Wiener filtering in the full-DFT domain). Ideally, this

PRNU will be a zero-mean white Gaussian process with variance σ2
k, independent of the location

within the matrix.

Unfortunately, the denoising process will not perform perfectly. In fact, the denoised image can be

more accurately modeled as:

X̂(i) =
(
X(i) −∆(i)

)
+
(
1−Ω(i)

)
◦K ◦X(i), (3)

where ∆(i) takes into account the traces of the noise-free image that are left out by the denoising and(
1−Ω(i)

)
models the fraction of the PRNU-dependent component that passes through the denoiser.

Then, when subtracted to Y(i) and applied to the estimator, we have:

K̂ =

∑L
i=1

(
Ω(i) ◦K ◦X(i) + ∆(i) + N(i)

)
◦ X̂(i)

R
. (4)

Then, it is easy to show that (4) can be expressed as

K̂ = Ω ◦K + Nk, (5)

where Ω
.
=
(∑L

i=1 Ω(i) ◦ X̂(i) ◦X(i)
)
/ R is a function of the used images, which takes into account

the amount of PRNU removed in the denoising process, and Nk is estimation noise that depends on

[1]In most of the experiments carried out in this paper, we have used the popular wavelet-based denoiser presented in
[22]. Denoising always includes zero-meaning and Wiener filtering in the full-DFT domain, following the approach in [1].



Fernández-Menduiña and Pérez-González Page 5 of 18

Figure 2 An example of the PRNU leakage problem, where both text and the shape of the elements in the image are
preserved in the estimated PRNU. (Left) Sample image containing textual and graphical information; (Right) PRNU
extracted from 24 dark images and the image in the left, all coming from the same camera.

both {∆(i) ◦ X̂(i)}Li=1 and {N(i) ◦ X̂(i)}Li=1, which in turn convey contextual information about the

images. Experiments reported in [23] show that Nk can be well-modeled by an independent Gaussian

process with variance at the (k, l)th position denoted by γ2[k, l] .

Fig. 2 illustrates a rather extreme case of leakage in which the PRNU of a Xiaomi MI5S smartphone

camera is estimated from 25 DNG (uncompressed) images: the one on the left panel plus 24 additional

dark images. As becomes evident, there is a lot of information leaking from the first image into the

estimated PRNU. Although by no means this experiment describes a realistic case, it does expose that

such alarming leaks may well occur in smaller areas of the image. A more down-to-earth example is

shown in Fig. 3, where the PRNU has been estimated with L = 25 images taken with a Nikon D3200

camera (see description of the database in the experimental part), and it visibly contains traces (with

semantic meaning) of four images shown in the upper part which were used in the estimation. The

bottom panels represent log(1+1/γ2[l, k]), when the local variance γ2[l, k] of K̂ is estimated through a

9×9 window. The division by γ2[l, k] has the purpose of emphasizing the areas with low local variance

whereas the logarithm simply enhances the contrast for visualization purposes. Notice that despite the

use of the more sophisticated denoising algorithm BM3D [20] (bottom-right panel) as compared to the

wavelet-based denoising [22] (bottom-left panel), the leakage is still very conspicuous.

A more systematic approach to quantifying those leaks is presented in the next section.

3 Quantifying the leakage

In this section we discuss the two proposed measures to quantify the leakage into the PRNU estimate

of the images used for the estimation.

3.1 Information-theoretic Leakage

The first measure is based on the Mutual Information of the set of images used for the estimation

{Y(i)}Li=1 and the estimated PRNU K̂, i.e., I({Y(i)}Li=1, K̂). Since Nk is a function of {Y(i)}Li=1, we

can resort to the data processing inequality to show that I({Y(i)}Li=1, K̂) ≥ I(Nk, K̂). The right hand

side is considerably simpler to manage and produces a lower bound on the leakage.

The main difficulty for the calculation of I(Nk, K̂) is the lack of a complete statistical characterization

for Ω. It has been proven by Ihara [24] that given a Gaussian process X with covariance Kx and a
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Figure 3 Several images taken with the NikonD3200 camera from the dataset. Bottom panels: emphasized local variance
of the corresponding estimated PRNU computed using a window of size 9× 9, (left): extraction using the wavelet
denoiser, (right): extraction using the BM3D denoiser.

noise process Z with covariance Kz, then the mutual information of X and X+Z is minimized when Z

is Gaussian with covariance Kz. Therefore, for a given covariance matrix of Ω◦K, assuming that such

process is Gaussian-distributed with the same covariance will produce a lower bound on the mutual

information. Now, since K is assumed to be white, its covariance matrix is σ2
kIMN×MN . Hence, the

covariance of Ω ◦K will be an MN ×MN diagonal matrix with elements ω2[k, l]σ2
k. Then, the lower-

bounding scenario corresponds to MN ×MN parallel channels, in which the ’desired’ signal (i.e., Nk)

is transmitted on each subchannel with power γ2[l, k] and there is an additive Gaussian ’disturbance’

(corresponding to Ω ◦K) with power ω2[k, l]σ2
k.

Unfortunately, determining ω2[k, l]σ2
k turns out to be a difficult problem because even for moderate

L, the term Nk dominates Ω ◦K in (5). One might think of using flat-field images for this purpose, as

in this case the contribution of Nk would be negligible sooner as L increases. However, this path is not

advisable because with flat-field images the contribution of Ω would be lost. Therefore, we must content
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ourselves with estimating the trace of the covariance matrix of Ω ◦K, given by P
.
= σ2

k

∑
l,j ω

2[l, j],

and then use it to produce a further lower bound on the mutual information. The value P can be

seen as the total disturbance power budget that can be split among the different parallel channels in

order to minimize the mutual information. Notice that this represents a worst case because in practice

σ2
kω

2[l, j] will deviate at each position (k, l) from such power distribution and the actual leakage will

be larger.

The mutual information in this case can be obtained through the use of Lagrange multipliers, which

give the following lower bound in nats [25]:

I(Nk, K̂) ≥ 1

2

∑
l,j

log

(
1 +

2√
1 + 4/(µ · γ2[l, j])− 1

)
.
= I−, (6)

where µ is the solution to the equation

1

2

∑
k,l

γ2[l, j](
√

1 + 4/(µ · γ2[l, j])− 1) = P. (7)

To estimate P , we propose to randomly split the set {Y(i)}Li=1 into two subsets and estimate K from

each. Let K̂1, K̂2 be those estimates. Then, P can be estimated as P̂ = 〈K̂1, K̂2〉F . A better estimate

can be obtained by repeating several times the splitting of {Y(i)}Li=1 and averaging the resulting values

of P̂ .

In [8] we propose a procedure for the exact computation of the mutual information, based on injecting

synthetic signals that serve as pilots for the estimation of Ω. Unfortunately, the fact discussed above

that Nk dominates Ω ◦K requires synthesizing a huge number of signals which make the procedure

rather impractical. However, through experiments reported in [8] we were able to show that the lower

bound provided here is tight for real-world images, in the sense that it is very close to its true value

and, as we have seen, its computation much more affordable. Thus, even though we cannot claim that

the lower bound presented here is always a fine approximation to the the leakage, it is reasonable to

employ it to draw conclusions, especially so when comparing scenarios in which only one subsystem or

parameter is changed.

We remark here that the leakage that we have quantified through a lower bound corresponds to the

complete set of images {Y(i)}Li=1 used for estimating K̂. This means that we are not quantifying the

leakage of a specific image, say, Y(j), j ∈ {1, · · · , L}. Such problem, which is more difficult due to the

remaining images acting as a sort of interference, will be the subject of a future work.

From the mutual information formulas above it is interesting to reason about the gain produced by

increasing L, which is a possible mitigation strategy. Let us assume that for a certain L = L0 the lower

bound in (6) is I−0 and is achieved when µ = µ0 in (7). Now, suppose that we double L to 2L0; we are

interested in learning by how much the lower bound decreases. First, note that if γ20 [l, j] denotes the

power in the (l, j)th subchannel for L0, then one would expect that when L is doubled, such power is

approximately halved, i.e., γ2[l, j] = γ20 [l, j]/2. This is due to the fact that γ2[l, j] is the variance of

the estimation noise Nk, that is expected to go to zero as 1/L. Now, for small γ20 [l, j], for all l, j, Eq.

(7) is approximately solved as

µ0 ≈

(∑
l,j γ0[l, j]

)2
(

1
2

∑
l,j γ

2
0 [l, j] + P

)2 , (8)
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and the lower bound in nats approximately becomes

I−0 ≈
1

2

∑
l,j

log (1 +
√
µ0 · γ0[l, j]) . (9)

If we assume that now γ[l, j] = γ0[l, j]/
√

2 for all k, l, it is immediate to prove that the approximate

solution µ to (7) satisfies µ0/2 ≤ µ ≤ 2µ0, where the lower bound is achieved when P → ∞ and the

upper bound when P = 0. Plugging the current γ[l, j] and µ into the approximation for the lower

bound and taking into account that the logarithm is strictly increasing, we find that

1

2

∑
l,j

log

(
1 +
√
µ0 ·

γ0[l, k]

2

)
≤ 1

2

∑
l,j

log (1 +
√
µ · γ[l, k]) ≤ 1

2

∑
l,j

log (1 +
√
µ0 · γ0[l, k]) . (10)

For any x > 0, from the monotonicity of the logarithm we can write log(1 +x/2) ≥ log(1 +x)− log(2).

Then, the decrease in the lower bound when γ[l, j] = γ0[l, j]/
√

2, written as ∆I−
.
= I−0 − I− in nats

can be bounded as follows:

0 ≤ ∆I− ≤ MN

2
log(2). (11)

When this change is written in bits per pixel, we arrive at a simple interpretation: whenever L is

doubled, the decrease in the leakage is at most 0.5 bits per pixel. As we will confirm in the experimental

part, in practice the reduction is more modest, and more so as L keeps increasing (see Fig. 5).

3.2 Membership inference

In the PRNU scenario a membership inference test [26] is a binary hypothesis test that, given a PRNU

estimate, classifies a certain image as having been used or not in the estimation. This inference is

possible due to the aforementioned leakage: the higher the success rate in the membership inference

test, the larger the leakage. It is important to note that the number L of images used in the estimation

becomes a key parameter, since as L increases the information provided by the other images will dilute

the individual contributions.

The potential recognition of the images used to estimate the PRNU allows any malicious attacker to

obtain information about the input database, which may result in privacy risks in certain scenarios.

As an example, knowing whether certain images were used to compute the PRNU may aid a convicted

criminal in identifying the informant who handed them to law enforcement.

We derive two types of membership detectors: a Neyman-Pearson-based (NP) detector and a

normalized-cross-correlation-based (NCC) detector. Even though the former is expected to perform

better due to its statistical properties, along its derivation we will find that it requires information

that is not readily available to a potential attacker. Therefore, assuming knowledge of such information

leads to a ‘genie-based’ detector which is not practically realizable but is useful as it sets an upper

bound on the achievable performance. In contrast, the NCC detector will behave (slightly) worse but

is perfectly implementable.

Let Y(r) be the image whose membership we want to test and which is known to contain the true

PRNU K. Note that the available observations to implement the test are X̂(r), W(r) and K̂. Then,

two hypotheses can be formulated:
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H0 : K̂ =

(
L∑
i=1

W(i) ◦ X̂(i)

)
/ R, (12)

H1 : K̂ = Q +

 L∑
i=1,i6=r

W(i) ◦ X̂(i)

 / R, (13)

where Q
.
=
(
W(r) ◦ X̂(r)

)
/R. The matrix K̂ can be modeled as having independent zero-mean Gaus-

sian elements with variances at position (l, j) denoted by λ2l,j under the hypothesis H0 and θ2l,j under

the hypothesis H1.
Let P

.
= K̂−Q. Then, applying the Neyman-Pearson criterion [27], the following test is obtained:

JNP
.
=
∑
l,j

log

(
λl,j

θl,j

)
− (P [l, j])2

2θ2l,j
+

(
K̂[l, j]

)2
2λ2

l,j

 > ψ′, (14)

where ψ′ is a threshold selected so that a certain probability of false alarm is attained.

In order to implement the test above, the variances λ2l,j and θ2l,j are needed for all l, j. They can

be computed as the respective local variances at each position of K̂ and P. Unfortunately, P is only

available through Q that in turn requires knowledge of R. Since the latter will be in general unknown

to an attacker, the NP detector must be considered only of theoretical interest.

When L is large enough, it is reasonable to assume that θ2l,j ≈ λ2l,j , for all l, j. In such case, the test

in (14) simplifies to:

lim
Θ→Λ

JNP =
∑
l,j

K̂[l, j]Q[l, j]

λ2l,j
− (Q[l, j])

2

2λ2l,j
> ψ′. (15)

Notice from (14) that when L → ∞, then P → K̂ and θ2l,j ≈ λ2l,j , for all l, j since the information

provided by an individual image is less significant. As a consequence, when L → ∞ the membership

test is equivalent to guessing the outcome of (fair) coin tossing.[2]

Assuming JNP is Gaussian distributed under H0 with mean µJ and variance σ2
J , which is reasonable

by invoking the Central Limit Theorem, we obtain the following expression for the probability of false

alarm in terms of the threshold ψ′,

PFA = Q
(
ψ′ − µJ
σJ

)
=⇒ ψ′ = σJQ−1 (PFA) + µJ , (16)

where Q (·) represents the Q-function, i.e., Q(x) = 1√
2π

∫∞
x
e−t

2/2dt, and Q−1(·) its inverse function.

Then, using the approximation for large L, we know that under H0 the mean value is given by

µJ = −
∑
l,j

(Q[l, j])
2

2λ2l,j
, (17)

while, assuming uncorrelation between all pixels, the variance can be approximated by:

σ2
J ≈

∑
l,j

(Q[l, j])
2

λ2i,j
. (18)

[2]This should be reflected in ROC curves as following the ‘line-of-chance’, cf. Sect. 3.2.
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As a realizable alternative to the NP detector, it is possible to resort to the NCC of K̂ and W(r),

which has been already employed in camera attribution scenarios [28]. This approach relies on the

availability of sample estimates of the respective means (µ̂k and µ̂t) and variances (σ̂2
k and σ̂2

t ) of K̂

and W(r). The resulting detection statistic becomes

JNCC
.
=

1

MN − 1

∑
l,j

(K̂[l, j]− µ̂k)

σ̂k
· (W (r)[l, j]− µ̂t)

σ̂t
. (19)

4 Potential in detecting PRNU-copy attacks

One well-known countermeasure against PRNU-copy attacks is the triangle test that assumes the

existence of a public set of images from which some have been used to extract the PRNU that is

planted in the target image. The test looks for high correlations between the allegedly forged image

and the images in the public set. An improved version, the pooled triangle test looks for high joint

cross-correlations between the forged image and some subset of the public set.

The triangle test and more so the pooled one, find some difficulties to get them implemented in

practice because the camera owner may lose track of her set of public images. However, the existence

of leakage in the case of natural images shown here might be useful for detecting the existence of a

planted PRNU, independently from the availability of a public set. Indeed, in the residual computed

from the forged image, there will be traces of the planted PRNU with an underlying structure that

does not match that of the forged image.

With mere illustrative purposes, we have taken the same PRNU shown in Fig. 3 bottom-left, and

planted it in the image of Fig. 4(a). Then, we have computed the residual Fig. 4(b) which shows

clear traces of the planted PRNU that obviously do not correspond to Fig. 4(a). For instance, the

vehicle from Fig. 3 top-right is still visible in the area of the residual corresponding to the sky. The

problem remains when images are JPEG-compressed, because even though the traces of the PRNU

may dissipate with compression, the leakage in the estimated PRNU is harder to eliminate (see Sect. 6).

This is illustrated in Fig. 4(c), where all intervening images (i.e., those used to extract the PRNU and

the host image on which it is planted) are JPEG-compressed with QF=92.

A more systematic approach to exploiting leakage towards PRNU-copy detection is out of the scope

of this paper. In any case, the fact that traces of the copied PRNU will be more easily found in flat

regions of the target image suggests that a deep neural network trained with residuals coming from

both pristine and forged images would be a feasible detector.

Finally, we remark that leakage mitigation techniques, to be discussed in the following Section should

be able to reduce the probability of success of such a detector.

5 Leakage mitigation

Given the privacy risks that PRNU leakage entails, it is worth considering potential mitigation strate-

gies, some of which are discussed here. We refer the reader to [8] for complementary details. We classify

countermeasures in three categories: prevention, ‘deleaking’, and privacy preservation.

Preventive methods aim at conditioning the estimation process so that the resulting PRNU leaks

less information. This can be achieved, for instance, by increasing the number of images L whenever

possible (see discussion at the end of Sect. 3.1), maximizing the use of flat-field images, or improving

denoising algorithms thus reducing ∆(i) and, consequently, the leakage, as shown in (4). In Sect. 6 we

will present some experimental proof of the leakage reduction afforded by those approaches.

Deleaking methods consist in modifyng the estimated PRNU in a way that has limited loss in the

PRNU detection performance, while decreasing the leakage. Examples of this are PRNU compression
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(a) (b)

(c)

Figure 4 (a) Image from the database taken with the Nikon D3300 camera; (b) residual after planting the PRNU from
Fig. 3 bottom-left, where traces of the car in Fig. 3 top-right are perfectly visible; (c) residual as in (b) where all images
used for extracting the PRNU and the target image are JPEG-compressed with QF=92; the traces of the car are still
conspicuous.

methods (e.g. [11]), but other possibilities exist, such as high-pass filtering in order to mitigate the

pollution introduced by the contextual information of images [29] or whitening the estimated PRNU

by normalizing by its local standard deviation (i.e., equalizing) at every spatial position. This PRNU

equalization offers practically the same detection performance as using the conventional PRNU but

consistently decreases the leakage. A detailed treatment of binarization and equalization as deleaking

methods is carried out in [8] and, therefore, is not covered in this work.

Finally, another approach is to limit the exposure of the images and the PRNU in the clear using

privacy-preserving techniques. This is possible by carrying out the PRNU estimation with encrypted

images (and producing an encrypted PRNU) and detecting the encrypted PRNUs from encrypted query

images [21]. This way, PRNU detection can be seen as a zero-knowledge proof mechanism. Although this

is a very promising approach, substantial work is still needed to reduce the computational complexity

of the underlying methods so that they become practical.

6 Experiments

6.1 Experimental setup and results

We have carried out experiments to validate our measures on a database of images, all in both TIFF

and JPEG formats, taken with several commercially available cameras listed in Table 1. The number of

images per camera ranges from 122 (Canon1100D#2) to 316 (Canon1100D#1). We discuss the results

separately for the mutual information and the membership inference test.
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Camera ILB (L = 26) ILB (L = 50)

NikonD60 1.6551 1.3458

Canon1100D#1 1.4007 1.1037

Canon1100D#2 1.7100 1.4092

Canon1100D#3 1.5962 1.2582

NikonD3000 1.4175 1.1147

NikonD3200 1.3827 1.0810

NikonD5100 1.9167 1.5768

Canon600D 0.8013 0.6791

NikonD7000 1.5246 1.2280

XiaomiMI5S 1.3916 1.1428

Table 1 Lower bound (6) in bits per pixel for different cameras and sizes of estimation sets when the wavelet-based
denoising filter is employed. The lower bound oscillates for different camera models, ranging from 1.9167 bpp in the best
case to 0.8013 bpp (for L = 26), which showcases the fact that some camera models may leak more than twice as much
information than others when the wavelet denoiser is used.

6.2 Mutual information

In our first experiment, with TIFF images, we have computed the lower bound from (6) (heretofore

denoted as Information Leakage Bound, ILB, and measured in bits per pixel, bpp) for two different

values of L, namely L = 26 and L = 50. Denoising is carried out using the wavelet-based denoiser

in [22]. The results, shown in Table 1, correspond to the average ILBs of 10 (resp. 5) runs of the

experiment with randomly chosen subsets of size L = 26 (resp. L = 50).

The decreasing trend with L can be explained by the fact that the disturbance power budget P stays

approximately constant, while the ‘desired’ signal Nk reduces its power with L. In fact, notice that,

as L→∞ the term Nk is expected to go to zero due to the law of large numbers. The relatively small

ILBs observed for the Canon 600D camera are conjectured to be due to the images in the respective

dataset being very similar to each other.

Figure 5 (left) better illustrates the decrease of the leakage (as measured by the ILB) with L, as

discussed at the end of Sect. 3.1. The plotted values correspond to the average ILBs of 5 runs of the

experiment with randomly chosen subsets of size L. As discussed above, increasing L constitutes an

advisable leakage mitigation mechanism that adds to the gains achieved in terms of detection perfor-

mance. Notice, however, the diminishing returns with L: the leakage reduction from, say, doubling L

is larger for smaller values of L. There is an important lesson here: as commercially available cameras

increase their resolution, an ever smaller L is required to achieve a certain PRNU detection perfor-

mance. While this fact is valuable from a practical point of view (often the number of available images

in forensic cases is very small), it may be detrimental in terms of leakage, and additional measures

may be required.

In order to quantify the impact of using flat-field images, in our next experiment we use DNG images

taken with a the camera of a Xiaomi MI5S smartphone to build the following: sets 50brt and 50drk

correspond to L = 50 images of respectively white and black cardboard, while in sets 49brt+berry

and 49drk+berry one of the images is replaced by the one shown in Fig. 2(Left). The corresponding

ILBs are given in Table 2.

As we discussed above in connection with the leakage mitigation, by comparing these values with

those in Table 1 we can see that the usage of flat-field images tends to reduce leakage substantially. On

the other hand, our dark images leak less information than the bright ones. Of course, this leakage does

not correspond to perceptually meaningful information. Furthermore, while the inclusion of a non-flat
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Figure 5 (Left) Information Leakage Bound (in bpp) vs L for three different cameras in the set, showing the expected
decrease of the leakage with respect to L. (Right) Receiver operating characteristic for the NP detector and the NCC, for
L = 100 and L = 50. Results for the wavelet denoiser. Solid lines: Nikon D7000; dashed lines: Canon 600D. The results
indicate that both the NP and the NCC detectors provide a similar detection performance for the Nikon D7000. In
contrast, the results for the Canon 600D are less favourable, which is in agreement with the results for the lower bound
depicted in Tab. 1. In both cases, the detection performance degrades significantly when L increases.

50brt 50drk 49brt+berry 49drk+berry

0.8006 0.4399 0.8074 0.5290

Table 2 Lower bound (6) for flat-field images with and without the image in Fig. 2(Left). The term drk stands for dark
cardboard images, while brt refers to bright cardboard images. The image in Fig. 2(Left) is indicated as berry. As seen,
leakage is larger for darker images, as predicted by the multiplicative model of the PRNU (5).

.

Camera ILB (L = 26) ILB (L = 50)

NikonD60 1.4157 1.0414

Canon1100D#1 1.2263 0.9462

Canon1100D#2 1.3252 1.0502

Canon1100D#3 1.2823 0.9995

NikonD3000 1.1892 0.9397

NikonD3200 1.3060 1.0275

NikonD5100 1.7740 1.3218

Canon600D 0.7126 0.6790

NikonD7000 1.1890 0.9144

XiaomiMI5S 1.3577 1.1285

Table 3 Lower bound (6) in bits per pixel for different cameras and sizes of estimation sets when the BM3D denoising
algorithm is employed. The lower bound oscillates for different camera models, ranging from 1.7740 bpp in the best case to
0.7126 bpp (for L = 26).

image does not increase the information leakage of bright flat-field images, as the former gets diluted

in the latter when averaging, this is not the case for dark images: the new image has a considerable

impact on Nk and thus contributes to a larger leakage. This is consistent with the empirical observation

that it is easier to extract traces from the image in Fig. 2(Left) when averaged with dark images (cf.

Fig. 2(Right)).

Table 3 contains the results of repeating the experiment shown in Table 1 but using the BM3D

denoising algorithm [20] instead of the wavelet-based one. The objective here is to show that a better
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Figure 6 Detection statistics for the Neyman-Pearson detector (14) (images (a) and (c), the corresponding scale is
×105) and the Normalized Correlation coefficient detector (19) (images (b) and (d)) on a set of 190 images (Nikon
D7000 camera), where the PRNU is estimated from the first 50 images (top row) or the first 25 images (bottom row).
From the results, it is clear that the detector is able to identify which images were used to estimate the PRNU, but its
performance decreases when more images are employed in the estimation, as the contribution of each individual image
gets diluted when larger datasets are considered.

denoising reduces the leakage. Even though all ILBs are smaller for the BM3D algorithm, the reduction

with respect to the wavelet-based filter is not as substantial as one would expect, given the additional

computational cost that it entails.

6.3 Membership inference

Aiming at testing the ability and accuracy of both NP and NCC membership inference detectors,

experiments were performed with PRNUs estimated from subsets of 25 and 50 TIFF images, randomly

selected from a set of 190 images captured using the NikonD7000 camera. In Fig. 6 the outputs of the

NP and NCC detectors are represented for one such subset. The first 50 samples of the shown sequence

correspond to the membership test statistics for those 50 images used to estimate the PRNU. From

the results, it is clear that the detector is able to distinguish which images were used to estimate the

PRNU in a given dataset.

In the same figure we also show the results of repeating the same process considering PRNUs esti-

mated from randomly chosen sets of 25 TIFF images. As expected, the output of the detectors follows

the same trend, but the difference between both levels is now larger, since the individual contributions

of each image are less relevant when larger datasets are considered for the estimation.
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Figure 7 Receiver operating characteristic for the NP detector and the NCC, for L = 100 and L = 50. (Left) Results for
the wavelet denoiser, using JPEG compressed images with a Quality Factor of 92, for the camera Nikon D7000. The
results indicate that both the NP and the NCC detectors provide a similar detection performance. (Right) Results for
BM3D denoiser, for TIFF images obtained from the Nikon D7000. As we can see, the performance of the detectors
decreases with respect to the wavelet denoiser, but the test is still able to obtain an acceptable degree of discrimination,
showing that the leakage is still present in the images.

These results are confirmed by representing the ROC curves for both detectors in Fig. 7 with L =

100 and L = 50, generated using 160 different combinations of TIFF images to obtain the PRNU,

selected randomly. From this figure the degradation when L increases is again evident. Besides, the NP

detector obtains marginally better results, as expected since it was derived from a likelihood ratio. In

Fig. 5 (right) the results for the camera Canon600D are also included. From all our set of cameras, this

was the only one in which the membership inference method failed systematically. The reasons why are

to be fully researched yet. In any case, these results match those depicted in Tab. 1, where the lower

bound on the mutual information for this camera is the lowest between all the tested devices. The

excellent results (from an attacker’s point of view) obtained with the NikonD7000 are also explainable

from the ILBs in the table since this particular model exhibits a high ILB. This confirms the existence

of a very close relationship between the membership identification and the lower bound expressed in

Eq. (6), which we intend to explore in the future.

In Fig. 8 the experiments shown in Fig. 6 were repeated, but considering only L = 50 images drawn

from a set of 190 JPEG compressed images using a Quality Factor of 92. We focused again on the

Nikon D7000. From the results, we can see that both detectors perform similarly in this scenario. These

conclusions can be further verified with the ROC curves plotted in Fig. 7(a), obtained following the

same experimental setup than for the uncompressed case.

In Fig. 7(b), the ROC curves following exactly the same procedure as in the previous experiments, but

considering the BM3D denoiser instead of the wavelet-based approach and TIFF images, are plotted.

As we can see from the results, the performance of both detectors decreased, which was expected since

the BM3D performs better than the basic wavelet denoiser, removing more contextual information.

However, we can see that the test still performs acceptably, showing that improving the denoiser is not

the most effective practice to reduce the leakage, and confirming the results obtained with the mutual

information.

7 Conclusions

In this paper, the leakage in the PRNU from the database of images used for its estimation is revealed

and lower-bounded using a information-theoretic approach. Experimental results show that this leakage
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Figure 8 Detection statistics for the Neyman-Pearson detector (14) (a) and the Normalized Correlation coefficient
detector (19) (b) on a set of 190 JPEG-compressed images (Nikon D7000 camera), where the PRNU is estimated from
the first 50 images. The performance of both detectors decreased slightly, as the compression process enhances the
denoising. In both cases, the two levels can still be differentiated.

is substantial and thus can entail significant risks to privacy. As a consequence of this leakage, mem-

bership identification based on the PRNU becomes possible using Neyman-Pearson and Correlation

based approaches, achieving high accuracy for both detectors. More importantly, the leakage here un-

covered calls for a careful risk assessment and additional security and privacy measures when it comes

to sharing PRNU-fingerprint databases. Different methods to mitigate the leakage were discussed and

experimentally tested. First, we addressed the gain afforded by increasing the number L of images

used for the estimation and showed that while effective, this strategy produces diminishing returns.

On the one hand, we investigated the option of using JPEG compression as a mean to mitigate this

phenomenon, and showed that in practice compression schemes provide few advantages over working

with uncompressed images. On the other hand, experiments with the BM3D were also performed. De-

spite the relative improvement on the obtained results compared with the wavelet denoiser, the results

also showed that it is not the most effective way to solve the leakage problem.

This paper is still a first step to model and remove the leakage from the PRNU. Some open problems

we expect to tackle in the near future are:

• Image database reconstruction. Use machine learning techniques to reconstruct as reliably

as possible the image database from the estimated PRNU. This will illustrate even further the

threats to privacy and support the use of leakage mitigation techniques.

• Data-driven PRNU estimators. Analyze the leakage phenomena on machine learning-based

PRNU estimators.

• Alternative mitigation methods. Investigate on alternative leakage mitigation techniques, as

high pass filters (both fixed and based on learning methods).

• Compression schemes. Analyze more aggressive compression schemes, and the trade-off be-

tween leakage mitigation and detection performance.
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DFT: Discrete Fourier Transform.
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