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Abstract—A secondary user that tries to reuse the spectrum
allocated to a primary user can exploit the knowledge of the
primary message to perform this task. In particular, the overlay
cognitive radio paradigm postulates the use of a fraction of
the available power at the secondary transmitter to convey the
primary message, so the spectral efficiency of the primary system
is increased, and, therefore, some transmission resources (time
slots or frequency bands) can be released to the secondary
transmission while the primary user rate is kept constant. The
fraction of released resources can be incremented if some channel
state information is available at the secondary transmitter. In this
paper, we present a scenario where the secondary transmitter
maximizes the primary link quality (measured in terms of
Effective SNR), and obtains its channel state information by
exploiting the primary user SNR-based feedback.
Index Terms—Overlay cognitive radio, Power allocation, Chan-

nel estimation, Spectrum reuse

I. INTRODUCTION

The Overlay Cognitive Radio paradigm [1] presents a

scenario where a secondary user makes use of the knowledge

of a primary user waveform in order to reuse the spectrum

allocated to licensed users. This knowledge can be possible,

for example, if the primary system uses an Automatic Repeat

reQuest (ARQ) protocol, so the secondary transmitter could

have prior information of a primary retransmission if it was

able to decode the first transmission [1], or if the secondary

transmitter is located near the primary one, so a high-rate

wired or wireless link can be used to convey the primary

message.

This knowledge can be exploited by transmitting the pri-

mary signal from the secondary transmitter in order to ac-

commodate its own information while preserving the primary

user Quality of Service. Depending on the nature of the

system, and specially on the existence of feedback channels

and adaptive transmission, the primary transmitter can change

its behavior in presence of a secondary transmitter that conveys

the primary information. For example, in the case of point-to-

point communications it is usual to have a feedback channel

from the receiver to the transmitter to perform some tasks

such as Adaptive Modulation and Coding (AMC), power and

bit loading, etc. In this case the secondary transmitter can
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obtain additional information about the primary link if it is

able to demodulate the feedback signal. In these systems, the

primary transmitter can operate in different modes, trying to

maximize the spectral efficiency for a given channel quality.

Thus, the correct metric for the primary user communication

is the resulting bit rate. If the bit rate is larger than the one

the primary communication needs, the primary transmitter is

going to free some transmission resources (in the frequency or

time domain) [2]. If this is the case, the secondary information

can be transmitted in the released resources due to the primary

user reinforcement.

However, it is usually assumed that the secondary transmit-

ter has full Channel State Information (CSI), or, if measured

in capacity terms, that the contributions from the primary and

secondary transmitters are coherently added at the primary

receiver location [2]. As opposed to this, here we will focus

on a point-to-point scenario where the secondary transmitter

tries to maximize the primary user rate based on the partial

CSI obtained by means of the primary feedback concerning

the Signal to Noise Ratio (SNR). The paper is organized as

follows: in Section II the proposed scenario is presented; in

Section III a general optimization problem, based on Effective

SNR metrics, is introduced; in Section IV different approxi-

mations for the Mutual Information Effective SNR metric are

presented, and the optimization problem is solved assuming

perfect CSI; in Section V the problem of obtaining CSI by

exploiting the primary feedback channel is stated and the

effects of imperfect CSI in the previously solved optimization

problem are presented; finally, Section VI concludes the paper.

II. PROPOSED SCENARIO

Let us assume an Orthogonal Frequency Division Multi-

plexing (OFDM) point-to-point communication system where

a Primary Transmitter (PT) is communicating with a single

Primary Receiver (PR). A Secondary Transmitter (ST) tries

to exploit the knowledge of the primary signal in order

to communicate with a Secondary Receiver (SR). The PR

conveys Channel State Information (CSI) to the PT, so the

latter can use AMC to maximize the link throughput, or

minimize the communication time. Let us assume that the

communication needs of the primary system can be set to Rp
bits per time unit. For the sake of simplicity, we will assume

that the OFDM symbols have constant length, and use the

OFDM block as the time unit, so Rp denotes the necessary



bit rate for the primary system, measured in terms of bits per

OFDM symbol.

Depending on the quality of the link, the resulting AMC

mode will set the transmission rate to Rs bits per OFDM

block. It is clear that if Rs < Rp the link does not provide

the sufficient quality for the transmission, but if Rs ≥ Rp
only a fraction ρ=̇

Rp
Rs

of the transmission resources will

be used, and the remaining (1 − ρ) could be used by the

secondary transmitter. For an ARQ system, another convenient

figure of merit is the throughput or the goodput, metrics that

include the performance loss due to the presence of message

retransmissions. In this case, the fraction of used resources

can be written as ρ =
µp
µs
, where µp denotes the throughput

required by the primary system, and µs the total throughput

after the insertion of the secondary transmitter.

Thus, the maximization of the secondary user rate is equiva-

lent to the minimization of ρ or, equivalently, the maximization
of Rs or µs.

In general, choosing the correct AMC mode for a given

channel state is not a trivial problem when facing frequency

selective channels in OFDM communications, as the mean

SNR is not a good indicator of the channel quality. In order

to face this problem, different Effective SNR Metrics (ESM)

were recently developed [3]. These metrics can be expressed

as a generalized mean, parametrized1 by the function Θ(·), of
the SNR at each carrier

ψe = Θ−1

(

1

N

N
∑

i=1

Θ(ψi)

)

(1)

where ψe denotes the effective SNR and ψi denotes the

SNR of the i-th carrier. The AMC mode (also known as

MODCOD) will be selected depending on the value ψe from
a set M = {m1, ..., mM} of M different modes, each one

with an associated rate of Ri i = 1 ...M bits per OFDM block.

Without loss of generality, we will order the modes in such

a way that R1 < R2 < ... < RM , with associated mode

thresholds 0 = t0 < t1 < ... < tM−1 < tM = +∞ such

that the mode mi is selected if ti−1 < ψe < ti. In general,

the throughput function is more difficult to approximate, as it

must take into account packet retransmissions. In this work,

we will approximate the throughput µ(ψe) by the linear

interpolation of the rate at the MODCOD threshold values, i.e.

µ(ψe) =
Ri−Ri−1

ti−ti−1
(ψe − ti−1) +Ri−1, with ti−1 ≤ ψe < ti.

Let us denote ηi as the (complex) channel coefficient of the
i-th carrier of the PT to PR link, and σ2 as the noise power

at the PR, assumed to be constant at every carrier, without

loss of generality. Thus, in absence of the ST, and assuming

a unit power primary signal, we can write ψi =
|ηi|2
σ2 . With

the insertion of the ST, the resulting SNR can be written as

ψi =
|αiγi+ηi|2

σ2 , where αi is the complex channel coefficient

of the i-th carrier of the ST to PR link, and γi is a one-tap pre-
equalizer at the ST that allows us to change the amplitude and

1For example, following expression (1), the arithmetic mean is parametrized
by the function Θ(x) = x, and the geometric mean by Θ(x) = log(x).

phase of the transmitted symbols. This scenario is depicted in

Figure 1.

Fig. 1. Diagram of the proposed scenario. The ST uses a one-tap per
carrier pre-equalizer to maximize the primary link ESM. The PR feeds back
information related to the SNR of each carrier (see Section V). ci is the
symbol to be transmitted in the i-th carrier in a given OFDM block, assumed
to have unit variance, and wi ∼ CN (0, σ2).

III. PROBLEM STATEMENT

The objective of the secondary user is to maximize the

quality of the primary link (measured in terms of ESM)

in order to obtain a fraction of released resources 1 − ρ
as large as possible. In our first approach, we will assume

that the channel coefficients αi, ηi are perfectly known at

the secondary transmitter, and in Section V a method that

estimates these parameters exploiting the feedback channel

will be described.

The design variables in our optimization problem are the

complex values γi for a total transmit power below a given

value P . It is clear that for a given power allocated to the i-th
carrier |γi|2, the optimum value for γi is γi = |γi|ej(∠ηi−∠αi),

so the signals are coherently combined at the receiver, and

ψi =
(

|αiγi|2 + |ηi|2 + 2|αiγiηi|
)

/σ2. Therefore, and with-

out loss of generality, we will assume that αi, γi and ηi are
real and non-negative values (just by taking the modulus of

the complex coefficients), so the optimization problem can be

stated as

minimize −Θ−1
(

1
N

∑N
i=1 Θ(ψi)

)

subject to 1
N

∑N
i=1 γ

2
i ≤ P
−γ � 0

(2)

with ψi =
(αiγi+ηi)

2

σ2 , and γ = [γ1, ... γN ]
T
. Obviously, the

result of the optimization problem is going to vary depending

on the function Θ. In the following section, we will study

the optimum power allocation corresponding to the Mutual

Information Equivalent SNR Metric (MIESM).



IV. POWER ALLOCATION FOR MIESM METRIC

The MIESM is based on the mutual information per bit.

The expression for Θ, taken from [4], is

Θ(ψ) = (3)

1− 1

M log2M

M
∑

m=1

EU

{

log2

(

M
∑

k=1

e−
|Xm−Xk+U|−|U|2

1/ψ

)}

where M is the number of symbols in the constellation, and

U is a complex Gaussian random variable of zero mean and

variance 1/ψ (1/(2ψ) per dimension). We also denote by Xm,

m = 1, ..., M the M complex constellation points. Note that

this metric does not depend on the code rate being used, but

only on the constellation.

As there is not a closed-form expression for (3), we will

approximate Θ by two different functions in order to obtain

analytical results of interest, although these results will be

evaluated using the actual value of Θ, obtained by Monte Carlo

integration.

On a first approach, we will approximate Θ by a

parametrized exponential function, similarly to [5],

Θ(ψ) = 1−
L
∑

l=1

φle
−βlψ (4)

where
∑L
l=1 φl = 1, and φl ≥ 0 and βl ≥ 0 are parameters

that have to be properly chosen in order to fit the actual value

of (3). Note that the approximation with L = 1 makes this

metric equivalent to the Exponential ESM (EESM) [3], so we

can think of this approximation as a Generalized Exponential

Effective SNR Metric of degree L (L-GEESM). Therefore, the

results for this approximation can be directly applied to the

EESM metric just by setting L = 1.
Additionally, we propose to approximate the function Θ by

a piecewise linear function (PLF) in the logarithmic domain

Θ(ψ) =







0 ψ < ψ0
log10(ψ)−log10(ψ0)
log10(ψ1)−log10(ψ0)

ψ0 ≤ ψ ≤ ψ1

1 ψ > ψ1

(5)

where ψ0 and ψ1 have to be adjusted to approximate (3).

Note that this PLF approximation makes the ESM ψe equal to
the arithmetic mean of the SNR values ψi in the logarithmic

domain, where extreme values for ψi are not taken into

account, as values of ψi > ψ1 and ψi < ψ0 are clipped to

ψ1 and ψ0 respectively.

The results of the fitting, performed with the MATLAB Curve

Fitting toolbox, are shown in Figure 2. The approximation

with the L-GEESM is only shown for values of L = 1, 2, 3,
as the benefit of using higher order approximation is almost

unnoticeable. In the following, we will try to maximize the

MIESM by using these two approximations in (2).

A. L-GEESM approximation

The maximization of the L-GEESM can be seen to be

equivalent to maximizing Θ(ψe) =
1
N

∑N
i=1 Θ(ψi), as in this
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Fig. 2. Approximations for the mutual information Θ for a 16-QAM
constellation.

case Θ is given by (4), which is a monotonic increasing func-

tion. Therefore, by removing constant terms in the objective

function and adding a power constraint on γ, we arrive to

minimize f0 (γ) =̇
1
N

∑N
i=1

∑L
l=1 φle

−βl (
αiγi+ηi)

2

σ2 (6)

subject to f1 (γ) =̇
1
N

∑N
i=1 γ

2
i − P ≤ 0

f2 (γ) =̇− 1
N γ � 0

where the factor 1/N has been introduced in the last constraint

in order to simplify the upcoming expressions, and f2 (γ) =
[f2,1 (γ) , ..., f2,N (γ)]

T
= − 1

N [γ1, ..., γN ]
T
.

The Karush-Kuhn-Tucker (KKT) conditions for the problem

(6) are

−
L
∑

l=1

φl
2βl
σ2

αi (αiγi + ηi) e
− βl(αiγi+ηi)

2

σ2

+2λ1γi − λ2,i = 0 (7)

λ1f1 (γ) = 0 (8)

λ1 ≥ 0 (9)

λT2 f2 (γ) = 0 (10)

λ2 � 0 (11)

where γ is a feasible point of (6). We will study the conditions

by making assumptions about the different constraints being

active or not.

If f1 is not active (f1 (γ) < 0), then we have from (8) that

λ1 = 0, so (7) reads as

−
L
∑

l=1

φl
2βl
σ2

αi (αiγi + ηi) e
− βl(αiγi+ηi)

2

σ2 −λ2,i = 0∀ i = 1 ..., N.

(12)

As the values αi,γi, ηi, βl, σ
2 and λ2,i are non-negative, the N

equalities in (12) will never be met, except in some degenerate

cases, such as αi = 0∀ i, which are not of interest. This means
that if the point γ is optimum, f1 (γ) = 0. This fact can

be easily seen in problem (6), where the terms in the sum



of the objective function are decreasing functions of γi, so
allocating the remaining power to any of the terms will make

the objective function decrease and, therefore, a point with

non-active f1 cannot be optimum.

If f2,i and f1 are active, i.e., γi = 0, (7) reads as

−∑L
l=1 φl

2βl
σ2 αiηie

− ηiβl
σ2 = λ2,i, or, as the left part of the

equation is non-positive, and condition (11) constraints λ2,i to

be non-negative,
∑L
l=1 φl

2βl
σ2 αiηie

− ηiβl
σ2 = 0, so the condition

is only met if αi or ηi are equal to zero. Note that in the case
αi = 0 it is clear that allocating power to the i-th carrier is

not going to change the objective function value, so that power

consumption is useless. Since these are again degenerate cases,

we can state that for a non-degenerate problem (αi and ηi
being strictly positive), the power constraint f1 is going to be
active (f1 (γ) = 0), and the N constraints f2 are going to be

inactive (γi > 0∀ i).
Therefore, the condition (7) for a non-degenerate problem

is
L
∑

l=1

φl
βl
σ2
αi

(

αi +
ηi
γi

)

e−
βl(αiγi+ηi)

2

σ2 = λ1, (13)

with a value of λ1 such that the power constraint is met with

equality. In order to obtain a solution, we define the following

function

hi (γi) =
L
∑

l=1

φl
βl
σ2
αi

(

αi +
ηi
γi

)

e−
βl(αiγi+ηi)

2

σ2 (14)

which is the sum of products of two strictly decreasing

functions of γi and, therefore, is a strictly decreasing function
of γi. Taking this fact into account, we can state that the

function h is injective, so the inverse h−1 is unique.

From all the above, the optimum ST power distribution

based on the L-GEESM approximation is computed in two

steps:

• Obtain λ1 as the root for 1
N

∑N
i=1 h

−2
i (λ1) = P

• Obtain γi as h
−1
i (λ1).

The inversion of h is a computationally expensive operation,

and although its values could be stored in a lookup table in

order to speed up the optimization, it is convenient to have an

alternative computationally efficient approximation.

B. PLF approximation

In this approximation, we have the problem that the objec-

tive function is not differentiable. In a first approach, we will

only take into account the logarithmic part of the piecewise

function, and afterwards we will add the upper part ψ > ψ1.

The lower clipping ψ < ψ0 will be omitted for convenience,

as its effect in the final results was found to be negligible. For

ψ0 < ψ < ψ1, the optimum value of γ is obtained by solving

minimize f0 (γ) =̇− 1
N

∑N
l=1 2 log (ηi + αiγi)

subject to f1 (γ) =̇
1
N

∑N
i=1 γ

2
i − P ≤ 0

f2 (γ) =̇− 2
N γ � 0

(15)

which is a convex problem. The optimality conditions for this

problem read as

− 2

γi + ηi/αi
+ 2λ1γi − 2λ2,i = 0 (16)

λ1f1 (γ) = 0 (17)

λ1 ≥ 0 (18)

λT2 f2 (γ) = 0 (19)

λ2 � 0. (20)

If the power constraint is not active (f1 (γ) < 0), follow-
ing (17) we have that λ1 = 0, so we arrive to condition

− 1
γi+ηi/αi

− λ2,i = 0, that will only be met in the case

αi = 0 ∀ i. In the same way, if γi = 0 for some values of

i, we have that −αi
ηi
− λ2,i = 0, a condition that will only

be met in the case αi = 0. Therefore, for the non-degenerate
cases we have that the power constraint is met with equality,

and the non-negativity constraint with inequality.

Thus, we have that

γi =
−ηi +

√

4α2
i + η2i λ1/

√
λ1

2αi
(21)

with a value of λ1 such that the power constraint is met with

equality

1

N

N
∑

i=1

(

−ηi +
√

4α2
i + η2i λ1/

√
λ1

2αi

)2

= P. (22)

If we add the upper clipping to the problem, it is clear that

if (ηi + αiγi)
2
/σ2 > ψ1 some power is being wasted on the

i-th carrier, as a value of

γi =

√
ψ1σ − ηi
αi

(23)

will lead to the same objective function value with less power

consumption. Therefore, we propose to solve the optimization

problem iteratively by clipping the values of γi with ψi > ψ1

according to (23), removing those γi from the optimization,

and running the algorithm once again. Algorithm 1 describes

this iterative approximation.

Algorithm 1 Iterative approximation for the upper-clipped

PLF optimization

O = {i|ψi < ψ1};
end← false

while not end do
Solve Problem (15) over γi, i ∈ O
A ← {i|ψi > ψ1}
if A = ∅ then
end← true

else

γi =
√
ψ1σ−ηi
αi

∀ i ∈ A
O ← O \ A

end if

end while



C. Results

We have analyzed the obtained MIESM values for the PLF

and 2-GEESM approximations for a 16-QAM constellation.

The noise variance was set to σ2 = 0.2, and the number of

carriers was N = 128. The optimization was run for different
values of P . In Figure 3 there is a plot of the channel under

study (recall that αi and ηi were assumed, without loss of

generality, to be non-negative values) and the resulting γ for

different values of P for the 2-GEESM approximation. It can

be seen that the secondary power allocation concentrates on

those carriers with a weaker primary channel.

In Figure 4 there is a plot of the fraction of released

resources 1− ρ with respect to the available secondary power
P . It can be seen that the PLF approximation offers a perfor-

mance that is comparable with the one offered by the GEESM

approximation, and outperforms a uniform power allocation

policy (i.e., γi =
√
P ∀ i). Thus, this PLF approximation can

be of special interest because of its reduced complexity. The

fraction of released resources 1− ρ is shown to increase with
P , reaching near a 40% of released resources for values of

P near 1. The thresholds ti that conform the mapping from

effective SNR to MODCOD rate and throughput were taken

from the LTE performance study in [6]. In our simulations,

the MODCOD evolves from 16-QAM 1/3 to 16-QAM 4/5.
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V. CHANNEL ESTIMATION

We will assume a simplified scenario where the channel

coefficients αi, ηi are time invariant, and the noise power σ2

is known at PR and ST. After a group of OFDM symbols, in

the n-th feedback message, the PR conveys the square root of

the SNR measured at each carrier, that we will model as

fi,n =
|ηi + γi,nαi + wi,n|

√

(2σ2)
(24)

where the terms wi,n are independent and identically dis-

tributed random variables2 wi,n ∼ CN
(

0, 2σ2
)

that account

2In this case, the noise variance was set to 2σ2 to keep the notation
consistent with the usual representation of a Rician random variable, where
σ2 denotes the noise variance per dimension.
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for the SNR estimation error. This could be the case of

an OFDM system that uses a pilot-based estimation scheme

where the pilot symbols have unit power, and the PR just feeds

back the modulus of the received pilot. ηi and αi are modeled
as deterministic but unknown parameters, so we will follow a

Maximum Likelihood (ML) estimation approach.

As the SNR is fed back separately for each carrier, the

estimation can be carried out independently for every carrier,

so we will drop the carrier index i in the following expressions.
For convenience, we will consider our observations xn to be

xn = fn
√
2σ2 = |η + γnα+ wn| . (25)

Let us denote xJ=̇ [x1, ..., xJ ]
T
as the result of stacking J

observations into a vector. It can be seen that the observations

are independently Rician distributed, so the probability density

function of xJ , parametrized by the unknown parameters η and
α, is given by

p (xJ ; η, α) =

J
∏

n=1

xn
σ2

exp

(

−x
2
n + ν2n
2σ2

)

I0

(xnνn
σ2

)

(26)

where νn = |η + γnα|. In this case, γn constitutes a training

sequence for the estimation procedure. With this, we can write

the log-likelihood function of (η, α) as

L (η, α) =

J
∑

n=1

−ν2n
2σ2

+ log
(

I0

(xnνn
σ2

))

(27)

where I0 (·) is the zeroth order modified Bessel function of

the first kind, and a constant term that is independent of the

parameters (η, α) has been omitted.

It is important to remark that the parameter νn is not

constant with n, as γn can change with time. In fact, if

we try to simplify the log-likelihood function by making γn
constant with n an ambiguity will appear in the estimation

procedure, as the likelihood function will have an infinite

number of maxima. This fact is illustrated in Figure 5, where

the existence of multiple (or even infinite) global and local

maxima complicates the problem, even for a simple case with



real parameters (η = 3, α = 1, θ = 0). In fact, there exists

an additional ambiguity that cannot be removed, as the points

(η, α) and
(

ηejθ0 , αejθ0
)

lead to the same likelihood value.

However, this ambiguity does not affect our optimization

procedure, as it only depends on the modulus of the channels

(|ηi| and |αi|) and the difference in its phase (θ), as presented
in Section III. With this, we can rewrite L as a function of

the parameters of interest

L (|η|, |α|, θ) =
J

∑

n=1

−
∣

∣|η| ejθ + γn |α|
∣

∣

2

2σ2
(28)

+ log

(

I0

(

xn
∣

∣|η| ejθ + γn |α|
∣

∣

σ2

))

.

A. Results

The log-likelihood function was maximized using a gradient

based algorithm with two initial points (α, η, θ) = (1, 1, π/2)
and (1, 1,−π/2), selecting afterwards the one that led to a

higher value of L in order to cope with the presence of

local maxima. The training sequence γ was selected randomly

following a complex Gaussian distribution, and normalized

afterwards to meet the power constraint P . The studied

channel is that in Figure 3 with additional phase terms3

ejθi , θi = 4πi/N , multiplying the coefficents ηi. The estima-
tion procedure was run for different training sequence lengths

J , and the PLF-based Algorithm 1 was run taking as input the

estimated (|αi|, |ηi|), while the knowledge of θi was used to

make the primary and secondary contributions to be coherently

added at the primary receiver, as explained in Section III. The

conditions of the simulation are the same as in Section IV, and

the estimation noise was set to wk ∼ CN (0, 0.2). The obtained
results are shown in Figure 6, where it can be seen that even

the scenario with a short training sequence (J = 5) clearly
outperforms the uniform allocation4, specially for large values

of P . For smaller values of P the estimation error is much

larger, so the fraction of released resources can be increased

by the use of longer training sequences.

VI. CONCLUSIONS

We have presented a scenario where a secondary transmitter

is aware of the primary message, and exploits this knowledge

to free some primary transmission resources to convey a sec-

ondary message. Channel knowledge is obtained by exploiting

the SNR-based feedback from the primary receiver. This

knowledge is shown to dramatically increase the fraction of

released resources with respect to a non-CSI aware secondary

transmitter.

Future lines of this work include the study of the per-

formance of the proposed method in time-varying channels

and quantized CSI values, the extension to multiple secondary

3The obtained results were similar when a random phase component was
applied to each carrier separately.

4In Section IV the uniform power allocation assumed phase knowledge, so
the primary and secondary contributions were coherently added. In this case,
no phase knowledge is assumed, so some of the carriers can experience a
lower SNR than that in absence of the ST, so the gain is much smaller.
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Fig. 5. Level curves of the likelihood function for different training
sequences. The point × = (3, 1) represents the true value of (η, α) In (a)
γ = [1, 1, 1, 1], and the dashed line represents the points with the same
value as ×; in (b) (γ = [1, −1, 1, −1]) the point � = (1, 3) has the same
value as ×; in (c) (γ = [1, −1, 2, −2]) the only global maximum is ×, but
a local maximum � appears.
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Fig. 6. Fraction of released resources, measured in terms of throughput, for
different values of training sequence length. The optimization was run with
the PLF approximation.

transmitters and receivers, the design of the training sequence,

and the study of computationally simpler estimation schemes.
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