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Abstract

In recent years, the paradigm of Cloud Computing has become a very appealing concept both for providers,

that can benefit from hiring out their extra computation and storage resources, and for users, that can avoid the

initial investment on resources by outsourcing their processes and data to a cloud.

This game changer concept of outsourcing has also arrived at multimedia processing, and cloud technology has

become an idoneous platform to deliver multimedia processing services. Nevertheless, privacy-aware multimedia

applications dealing with sensitive signals find an insurmountable barrier in the privacy issues derived from the

fuzzy nature of processing and location of an untrusted environment like a cloud.

This paper provides a comprehensive overview that takes a look at the role of Signal Processing in the En-

crypted Domain in providing a practical solution for privacy-preserving multimedia cloud processing, highlighting

prototypical outsourced applications, like secure adaptive filtering and private eHealth. We cover the theoretical

framework for privacy, involving privacy measures, and also practical approaches, with a special emphasis on

noninteractive solutions based on fully homomorphic encryption, discussing their actual applicability, tradeoffs

and practicality and foreseeing the future advances that will revolutionize the field of noninteractive private

outsourcing of multimedia processes.

Index Terms

Multimedia Cloud, Cloud Privacy, Signal Processing in the Encrypted Domain

I. INTRODUCTION

In recent years, the paradigm of Cloud Computing has gained an increasing interest from the academic

community and from the commercial point of view. The Cloud is a very appealing concept both for the

providers, that can benefit from hiring out their extra computation and storage resources, and for the users, that

can avoid the initial investment on resources by outsourcing their processes and data to a cloud.

This game changer concept of outsourcing has also arrived at multimedia processing; cloud technology has

become an idoneous platform to deliver multimedia processing services [1]. Implementing these services in a

cloud is a challenging task due to heterogeneity issues and QoS requirements, but multimedia processing is

extremely amenable to distributed parallel processing and it is a perfect fit for computing over grids, content

delivery networks, server based computing and P2P multimedia computing; all of these services can be efficiently

supported by a multimedia-aware cloud whose architecture is adapted to the provision of multimedia-oriented

services; furthermore, we are also witnessing the reciprocal behavior as new cloud-aware multimedia processing
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applications, that take into account and effectively profit from the benefits that the Cloud may offer to them,

keep constantly arising [1].

There are currently some technological challenges that multimedia clouds still need to tackle in order to be

fully operational; those have become very active research topics. But the most important issues that can hold

back the widespread adoption of an outsourced scenario like a cloud are actually security and privacy. Both

concepts are very close to each other in the Cloud, as there can be no privacy without security. Nevertheless,

privacy is a more specific requirement, and it is related only to sensitive data and/or processes. While many

research efforts are devoted nowadays to guaranteeing security [2] in clouds, dealing with aspects such as

authentication through federated identities or basic encryption of the managed data, the issue of preserving data

privacy and addressing the different data protection legislations remains open. The privacy problem in the Cloud

is a severe concern, mainly because data and signals in a cloud can be distributed among different servers and

even different countries with their own data protection legislation. This fuzzy nature of processing and location

in clouds can negatively affect the trust that users put on these systems, as they face the risk of losing control

over their data and processes when they are outsourced. In fact, many cases of privacy invasion by some cloud

services have been reported by the press; they are mainly related to location services (like Street View) and

mail automated processing for personalized advertising. These privacy breaches have triggered legal decisions

against the abusive use of private data by cloud providers. Hence, it has become evident that privacy issues

can constitute a severe barrier for cloud adoption1, but they can be addressed through the use of technological

solutions developed within the emergent field of Signal Processing in the Encrypted Domain (SPED) [3].

This paper shows the issues and challenges that multimedia clouds face with respect to privacy, and explains,

as a comprehensive overview, how they are being progressively tackled through the application of SPED

techniques, focusing on exemplifying use cases. We will present the most crucial aspects of a SPED privacy-

preserving multimedia cloud, ranging from the theoretical level to implementation problems and practical

techniques developed within the SPED field. Special emphasis will be put on noninteractive solutions based

on homomorphic encryption, discussing their actual applicability, tradeoffs and practicality and foreseeing the

future advances that will revolutionize the field of noninteractive private outsourcing of multimedia processes.

II. CLOUD AND PRACTICAL SCENARIOS

Cloud Computing [4] comprises the provision of computing and storage services to users through the

Internet, commonly supported by heterogeneous infrastructures. A public cloud provides determined services

to individuals and organizations that want to take advantage of either an ubiquitous access to their resources

or make use of a huge computing power without having to invest in the needed hardware acquisition or

maintenance. Typically, cloud services are presented in three layers (Fig. 1):

• Infrastructure as a Service (IaaS): The lower architectural layer, representing the raw cloud hardware re-

sources put at the service of the customer, providing mainly virtualized storage and processing capabilities.

Examples of IaaS are EC2 (Elastic Compute Cloud) from Amazon, or Azure from Microsoft.

1In 2010, the European Commission published a report on “The future of Cloud Computing. Opportunities for European Cloud Computing

beyond 2010”, in which the opportunities and challenges of Cloud Computing are highlighted.
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Fig. 1. Service levels and stakeholders in a cloud-based scenario.

• Platform as a Service (PaaS): The second layer, usually providing an application server and a database in

which the customer can develop and run his/her own applications, coded on top of the provided Application

Programming Interface (API). Google App Engine is an example of PaaS.

• Software as a Service (SaaS): This is the most extended use of the Cloud as such, where a series of

applications (typically office packages) are provided to the final user, that can access them without any

installation or maintenance. Examples are Google Docs, Zoho or Office365.

Each of these layers comprises three essential functionalities that summarize the purpose of a cloud: storage,

transmission and computation. For all of them, privacy is a must when dealing with sensitive data in a public

(untrusted) cloud; hence, mechanisms that enforce privacy guarantees over the stored, transferred and processed

data are needed. Secure transmission and storage encompass many technical cryptographic approaches that

already provide the desired protection; these two problems are not specific for the Cloud, and they have been

studied and effectively addressed for a long time. Nevertheless, protecting the involved data and signals while

they are being processed is a relatively new concept, specific to outsourced or distributed systems where

untrusted environments come into play; this is the crucial point in which we will focus our discussion. Before

describing what trust is and how it is distributed in a cloud scenario, let us present the involved stakeholders. We

will abstract ourselves from some of the design problems typical of cloud architectures not directly related to

privacy (i.e., network, device and service heterogeneity, load balancing and elasticity), and present the functional

elements/roles played by the stakeholders of a cloud system from a privacy-aware perspective:

• Cloud Infrastructure: The company that owns the HW (datacenters) supporting the cloud services provided

in upper layers. These companies can be dedicated IaaS providers or organizations with a surplus of

computing power and unused resources that they hire to external customers. All the storage and processing

outsourced to the cloud takes place at the cloud infrastructure.

• Software/Application provider: Software developers that produce applications run on top of the cloud

infrastructure/platform and offered as a SaaS to end-users.

• Payment provider: Party in charge of billing for the consumed cloud resources.

• Customers/End-users: Parties that contract and make use of a service on the cloud infrastructure, supplied



4

by the application provider; they may also outsource data and/or signals to the cloud infrastructure so that

the contracted application can process them and provide the desired results.

Many cloud-based services have been rapidly deployed in recent years, and they are becoming completely

ubiquitous. But they are often provided with no privacy guarantees. The service level agreement that an end-user

signs with the cloud provider involves the acceptance that the latter will have total access to any data/signal that

the user outsources unencrypted to the cloud; this means that the user must “blindly” trust the cloud provider

and expect that the data will be used only for a correct purpose inside the cloud infrastructure (data/signals

privacy). Additionally, for application providers that deploy their software on top of a PaaS, a mutual trust

relationship is established: the PaaS provider must trust that the code it will execute is not malicious, while the

application provider must trust that the PaaS will use the software in a correct way, managing the appropriate

licenses and limiting the execution to the authorized users; this software may also be subject of intellectual

property protection (process privacy). Besides the secure authentication needs that these trust relationships rise,

it is a must (and a legal requirement in some countries) that blind trust be substituted by privacy-preserving

technical means that enforce the privacy rights of the customers. We are concerned here with signals privacy:

outsourced sensitive data from the customers must never be accessed by the cloud infrastructure. It must be

noted that there are also further problems, like billing for cloud usage, that involve privacy constraints and

require secure protocols that fall out of the scope of this paper.

Let us depict here three exemplifying scenarios of signal processing applications that showcase the privacy

problem in the Cloud (Fig. 2):

a) Outsourced Biometric Recognition: Biometric signals coming from faces, iris, fingerprints, voice,. . . are

inherently sensitive signals, as they hold information that can uniquely identify their owner. In a biometric

recognition system, the collected biometric information of an individual is contrasted against the templates

from a database stored at a server (or distributed among several collaborative servers) in order to determine

whether the individual is recognized by the system. Outsourcing the storage of biometric databases to a cloud

yields many advantages (easy parallelization of the recognition logic and matching process), but the outsourced

signals must be protected whenever the cloud is untrusted. That is, the presented biometric sample must be

kept encrypted while it is processed in the server, and the database templates should also be kept encrypted

within the cloud infrastructure [5]. An exemplifying scenario of outsourced biometric recognition is that of a

CCTV system where the faces of the recorded citizens are matched against a database of potential criminals.

The faces of innocent citizens must not be indiscriminately disclosed to the recognition logic.

b) e-Health: e-Health is the paradigmatic scenario where sensitive signals (DNA [6], Electrocardiograms,

Magnetic Resonance Images,. . . ) are involved; hence, privacy is a crucial aspect. Cloud adoption would be

highly beneficial for health institutions, allowing for the outsourcing of the storage and processing needs that

their own systems may not be able to cope with (e.g. HealthGrids). Many collaborative studies and statistical

retrospective analyses for specific diseases could take advantage of cloudified medical databases: one or several

institutions that own a possibly distributed private patient database can release it (with patient data conveniently

protected) so that research groups and labs can perform accurate statistical analyses on those non-synthetic data

and obtain the desired results.

Nevertheless, whenever the used cloud does not belong to the Health institution, automated cloud outsourcing
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for e-Health systems is completely infeasible from a legal perspective. Privacy-preserving technological solutions

that enforce signal protection and enable these outsourced scenarios are thus a must.

c) Outsourced adaptive or collaborative filtering: Filtering itself is an essential block of signal processing,

present in any system we can think of, from voice processing in a smartphone to complex volume rendering

in the production of a synthetic 3D movie. More specifically, adaptive filters are the only effective filters

in nonstationary environments; they are present in multiuser communications scenarios dealing with sensitive

signals, where the privacy of the users must be protected from each other and from the central processing

server [7], whenever there is one (in the Cloud). Model-Reference Adaptive Control (MRAC) is an example

application dealing with adaptive controllers in many industrial contexts like robot manipulation, ship steering,

aircraft control or metallurgical/chemical process control; when the controller is outsourced to a cloud, the signals

coming from the plant have to be sent to the cloud; if they are sensitive (e.g., in the case of an industrial plant

whose processes have to be kept secret for protecting the industrial property), a privacy-preserving solution

must be applied.

Additionally, collaborative filtering, involving data from multiple sources, has found application in recom-

mender systems, similarity-based searches and prediction in social networks or e-commerce portals. In this

scenario, the similarity between two users is commonly calculated as a normalized correlation between their

respective preference vectors; a recommender system will find the most similar users to provide them with a

list of items that have been highly rated by those similar users. Hence, the recommender system, that may be

implemented on a cloud, has access to all the sensitive data comprised in the user preferences database; these

data must be protected.

Privacy preservation in the presented scenarios faces many challenges, related to the development of secure

protocols that efficiently provide the desired functionalities without hindering the provider’s capabilities to

normally develop its activities and deploy its services. In order to effectively guarantee privacy and evaluate

the impact of a given privacy preserving protocol on the utility provision, a unified privacy framework for

multimedia clouds is needed, as a means to measure privacy and formalize the privacy settings.
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Fig. 2. Representative scenarios of Privacy-aware signal processing in the Cloud (MRAC, e-Health and Biometric verification).

III. FORMALIZING THE PRIVACY PROBLEM: MEASURING PRIVACY

The trust relationships between the Cloud stakeholders introduced in the previous section depict and define

a trust model. Within this model, the behavior of those parties considered “untrusted” has to be established.

All the participants in a secure protocol interchange and obtain a series of intermediate messages until the
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protocol finalizes and the result is provided to the appropriate parties; the set of all these messages conforms

the transcript of the protocol; untrusted parties may use it for dishonest purposes. Semi-honest parties follow the

predetermined protocol without any deviation, but they might be curious and try to infer additional information

from the transcript, while malicious parties will deviate from the protocol and either introduce fake data or

forge some of the intermediate protocol messages in order to gain some advantage for inferring extra private

information. Typically, privacy-preserving protocols tackle the semi-honest case, and present further extensions

for dealing with the more realistic malicious case.

Once the adversary model is defined, a proper privacy framework should clearly establish means to quantita-

tively measure the privacy, or, conversely, the private information leakage. The evaluation of the leakage that a

given protocol produces determines its suitability for a set of privacy requirements, that fix a determined privacy

level for a given cloud application dealing with sensitive signals. It is worth noting that typical cryptographic

measures for security and secrecy (besides Shannon’s perfect secrecy) usually rely on complexity theory and

hardness assumptions for computationally bounded adversaries; contrarily, signal processing measures for the

conveyed information in a signal are based on fundamental information-theoretic magnitudes that do not take

into account any computational limitation. As SPED joins together these two disciplines, there has been some

controversy on the definition of a universal “privacy measure”.

From the cryptographic point of view, in the semi-honest adversary model, a simulator argument is typically

used to prove the statistical (or computational) indistinguishability of a correct protocol transcript and the output

of a random simulator that impersonates the honest parties. This means that a (polynomial-time constrained)

adversary will not be able to correctly guess with non-negligible probability whether the transcript comes from

the honest party or from the random simulator, not being able to infer any information from the true transcript.

The simulator argument suffices to determine the validity of a privacy-preserving interactive protocol; but

from the signal processing point of view, it does not measure how much private information is leaked from

the final output of the protocol, whenever that output is disclosed to the cloud or to other parties (e.g., in the

statistical analysis eHealth scenario). This privacy leakage is not easily quantified, as it generally depends on

the specific process or algorithm that the input data undergoes at the cloud. A cryptographic approach that has

recently consolidated as a widely used measure of privacy is the so called Differential Privacy [8], initially

proposed for private database statistical calculations (see Box II). Informally, the concept of differential privacy

in a statistical database states that any possible outcome of an analysis should be “almost” equally likely for two

databases that differ in just one record. Hence, the performed statistical analyses will not disclose significant

information about one individual of the database. More formally, for any two databases D1 and D2 that differ

in at most one element, and a query f run on any of these databases with results in Rk, an ε-differentialy

private mechanism (ε > 0) builds a mechanism comprising a randomized function2 K that is called instead of

f , such that the probability of any output set S ⊆ Rk is not significantly higher (within a multiplicative factor

eε) for D1 than for D2.

Differential privacy has not been extensively applied to privacy-preserving Cloud Computing yet, but it is

closely related to the exemplifying scenarios that we have presented: in all of them, there is a private database,

2A randomized function K yields a non-deterministic result with a probability distribution parameterized by the input arguments of K.
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whose data are subject to a process in the cloud; the result of this process should not disclose information

about the sensitive inputs. The cloud scenario introduces the particularity of an untrusted environment that will

require further protection on the stored, communicated and processed database, and not only on the output

values of the analyses. Nevertheless, it is evident that differential privacy can be applied to quantify how much

information (bounded by the parameter ε) is leaked about an individual when disclosing a result of a query

masked by K, that can be any function or process, like robust statistics or predictive filtering. Conversely, it is

also crucial to measure and evaluate the needed random distortion that K introduces for achieving a required

ε-differential privacy level (see Box II). We will further discuss this essential privacy-utility distortion tradeoff

in Section V.

IV. GETTING PRACTICAL: PRIVACY TOOLS FROM SPED

The theoretical framework for determining privacy measures and utility tradeoffs discussed in the previous

section has to be translated into the implementation of efficient primitives that can be practically used in

actual privacy-aware environments like the cloud-based scenarios that we are focusing on. The most important

cryptographic tools available for the development of such primitives are briefly explained in the following

paragraphs. For an extensive description of these techniques and their main applications we refer the reader to

the tutorial article [9].

d) Homomorphic Processing: Some cryptosystems present homomorphisms between the clear-text and

cipher-text groups, that allow for the execution of a given operation directly on encrypted values, without the

need for further decryption.

Paillier [10], with its variants, is the most widely used homomorphic cryptosystem in privacy-preserving

protocols, due to its semantic security and its additive homomorphism, as it provides a good trade-off between

efficiency, encryption size and cipher expansion. In its most common form, a Paillier encryption of a number

x ∈ Zn is EP [x] = (1 + x · n) · rn mod n2, where n is the product of two safe primes, and r is chosen

at random in Z∗n. The additive homomorphism of Paillier allows for computing the addition of two encrypted

numbers and the product of an encrypted number and a known integer:

EP [x+ y] = EP [x] · EP [y] mod n2, EP [x · k] = EP [x]k mod n2. (1)

Since Gentry’s seminal paper [11] in 2009, there have been many proposals of fully homomorphic cryptosys-

tems (FHE), able to execute any operation in the encrypted domain without the need for decryption. While

their applications are really promising, at this point they are still not totally practical, due to the big size of the

encryptions and the need of costly bootstrapping operations on the ciphers to achieve the full homomorphism

(see Box III).

e) Searchable Encryption and Private Information Retrieval (PIR): Searchable encryption has been iden-

tified by DARPA as one of the technical advances that can be used to balance the need for both privacy and

national security in information aggregation systems3. It is a cryptographic primitive that allows for checking

whether a given pattern has a match inside some encrypted data. It is used for keyword searches in encrypted

3In 2002 the Information Science and Technology Study Group from DARPA published the report “Privacy with Security”.
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databases, and presents the advantage of protecting also the performed queries; as a counterpart, it is not very

flexible, and it has also scalability issues. Additionally, PIR methods solve a somehow dual privacy problem,

as they allow for private queries on a database, in which the contents are not necessarily encrypted, concealing

just the query and its result from the database owner.

f) Secure Multiparty Computation (SMC) and garbled circuits: Secure Two-Party Computation was born

in 1982 with Yao’s Millionaires’ problem. The problem was cast as a binary comparison of two quantities in

possession of their respective owners, who are not willing to disclose to the other the exact quantity they own.

The proposed solution was based on garbled circuits, in which both parties evaluate a given circuit, gate by

gate, without knowing the output of each gate.

While homomorphic computation is very efficient for implementing arithmetic operations, circuit evalua-

tion [12] is still more efficient when dealing with binary tests, comparisons and thresholding. Traditionally, the

search for efficient solutions has led to proposals for changing between integer and binary representations in

order to efficiently implement both arithmetic and binary operations.

g) Secure (approximate) interactive protocols: SMC is a generic solution to almost any privacy-preserving

problem but its huge communication overhead makes it unpractical. Furthermore, in a cloud scenario, garbled

circuits would need that the user itself generate the circuit offline and send it to the Cloud to be executed

on the private inputs. Unless a trusted third party generates the circuit, the customer cannot deal with such

computational cost, that surpasses that of executing the circuit in the clear. Hence, garbled circuits get (in

general) partially invalidated for their use in the Cloud.

Specific interactive protocols developed for privately executing a certain function are an efficient workaround

for this problem. The needs of communication and interaction rounds can be reduced with respect to a generic

garbled circuit. Furthermore, it is sometimes possible to let the private function introduce a certain power-

bounded error to the outputs; then, either a simpler approximate function can be found, or it may be possible to

optimize the cost of a secure implementation by representing the original function as a linear and a non-linear

part: the former is performed homomorphically in the Cloud, while all the interaction is limited only to those

non-linear parts that will be run as secure protocols.

h) Obfuscation mechanisms (differentially private): Obfuscation consists in adding some kind of (random)

noise to the sensitive signals in order to partially or totally conceal them [13], in such a way that some relatively

complex operations can be performed on them, provided that the original meaning of the data is preserved.

These methods were initially proposed as the only protection mechanism for private data, as they have the

advantage of allowing complex operations with a relatively low computational and communication burden. The

counterpart is accuracy, for the induced error, and privacy, as some information about the obfuscated data can

be inferred from the intermediate steps of the process. Nevertheless, with the advent of differential privacy,

obfuscation mechanisms that provide a differentially private output have been combined with homomorphic

encryption that keeps the intermediate values secret. In fact, this is an appropriate solution for private access

to encrypted databases in a cloud.
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A. Practical limitations of privacy tools

Endowing any signal processing application with privacy protection through any of the previous techniques

will have the cost of a negative impact on the efficiency of the algorithms. There are two main magnitudes that

determine the efficiency of a secure protocol in any scenario: its computational overhead and the communication

it needs in terms of used bandwidth and number of interaction rounds.

The restrictions and peculiarities of a cloud scenario essentially limit two parameters: a) the bandwidth of the

customer-cloud link, that cannot be continuously active, and b) the computational overhead for the customer:

there is a very asymmetric relationship with the server, the latter having a much higher computational power

and parallelizable computing resources. Nevertheless, a cloud has the advantage of being able to absorb the

additional computation load and distribute it among several nodes, playing with the spatio-temporal overhead

and providing almost transparent response times to the customer. Hence, the fundamental bottleneck for privacy-

preserving implementations in cloud is communication. It must be noted, though, that the use of more cloud

resources (either in nodes or in time) will always mean a higher bill for the customer: that is the price to pay

for privacy.

The presence of many users can also pose challenges to the key distribution and key management in a privacy-

preserving cloud computing architecture. In order to be combined, all the aforementioned privacy-preserving

techniques must work with a unique key: e.g., homomorphic addition is only possible between values encrypted

under the same key. There is the possibility of counting on trusted third parties that perform reencryption, either

having the corresponding keys or through user delegation using a proxy-reencryption mechanism; nevertheless,

resorting to trusted third parties is a solution that should be avoided, as it implies shifting the trust from the

cloud to those third parties, but it cannot enforce privacy in the absence of trust.

From the available privacy-preserving techniques, homomorphic computation is the most promising one. Cur-

rently, additive homomorphisms are widely used in private implementations, and they can efficiently cope with

any linear filter or transform. As an example, they have been used to implement Fast Fourier Transforms [14].

This is especially relevant for the Cloud, as any operation that can be performed homomorphically can be run

unattended in a cloud without any extra communication needs. Unfortunately, an additive homomorphism is not

enough for many practical applications dealing with non-linear functions such as comparisons, thresholding or

binarization. Furthermore, the blow-up problem (see Box I) is also present even in linear functions, requiring

a certain amount of communication to reduce the accumulated scaling factors before the cipher gets useless.

Let us depict here two cases of secure filtering in which the blow-up problem is readily visible:

Discrete Fourier Transform (DFT): The well known definition of the M -point DFT of a sequence xn is

the following:

Xk =

M−1∑
n=0

xnW
nk, k = 0, 1, . . . ,M − 1,

with W = exp(−j2π/M). The encryption of a complex signal xn with quantized real part x̂R,n and imag-

inary part x̂I,n (see Box I), can be denoted [14] as E[x̂n] = {E[x̂R,n], E[x̂I,n]}, using a quantization scale

∆. The twiddle factors Wnk undergo the same quantization process C(u) = Ŵu = CR(u) + jCI(u) =

d∆2 cos
(

2πu
M

)
c − jd∆2 sin

(
2πu
M

)
c, with a possibly different scale ∆2. Bianchi et al. [14] propose a privacy-

preserving implementation of the DFT using Paillier encryptions, for which clear-text additions correspond to
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products between encryptions. They devise two encrypted implementations: a direct one and a radix-2k one.

The former takes the form

E[X̂k] =

{
M−1∏
n=0

(
E[x̂R,n]CR(nk)E[x̂I,n]−CI(nk)

)
,

M−1∏
n=0

(
E[x̂R,n]CI(nk)E[x̂I,n]CR(nk)

)}
, k = 0, 1, . . . ,M − 1.

If the quantized integer inputs are bounded by ∆, the outputs are upper bounded by M(∆∆2 + ∆+∆2√
2

+ 1
2 ).

Hence, the modulus n of the cipher must be larger than this bound so that the operations do not wrap-around

(cipher blow-up, see Box I). The radix-2 implementation is analogous to the direct one, by applying the recursive

relationships given by the binary FFT butterflies; this radix-2 implementation implies recursive multiplications

of the Ŵu at each stage, such that the outputs magnitude will grow with M∆∆
log2M−1
2 ; log2M is the number

of stages for the radix-2 implementation. A radix-2 implementation in the clear is a much more efficient

construction than a direct one; nevertheless, its encrypted version imposes a much stronger constraint on the

size of the cipher (exponential in the number of levels) in order to be privately implementable without blowups.

Adaptive Filtering: We pick a simple (yet powerful) adaptive filtering algorithm like the LMS (Least Mean

Squares) to picture the blow-up problem. The LMS comprises two processes that jointly form a feedback loop:

1) a transversal filter wn with NE coefficients applied to the input sequence un, and 2) an update process of

the coefficients of the transversal filter, based on the instantaneous estimation error en between the output of

the filter yn and a desired response dn. For real signals, these two processes are expressed as

yn = wT
nun, wn+1 = wn + µun (dn − yn)︸ ︷︷ ︸

en

,

where µ is the step size and .T denotes transpose.

When outsourced, the filtering and update equations of the LMS will be executed at the cloud; let us assume

that the cloud has access to the input signal un, and the customer sends the encrypted reference dn, obtaining

as output the encrypted desired signal yn. The values of the filter coefficients wn will be kept encrypted in

the cloud. It must be noted that if the cloud does not know un in the clear, a solution based solely on additive

homomorphic encryption will not be enough, as the product between wn and un, if both are encrypted, will

require an interactive multiplication protocol.

The real inputs un, dn,wo, µ have to be quantized prior to being either encrypted or operated with other

encryptions, so the system will be working with ûn, d̂n, ŵ0, µ̂ instead, all of them with a scale factor ∆. After

the first iteration, the obtained ŷ0 = ŵT
0 û0 and w1 will accumulate a scale factor ∆2. After k iterations, the

accumulated scale factor in ŷk will be ∆k+2.

If the real inputs are all in the range (−1, 1), after roughly b logn
log ∆c− 2 iterations, the cipher will not be able

to accommodate the increased plaintext size, and the results will wrap-around: we have a blow-up. In the case

of adaptive filtering (in general, for any iterative algorithm with recursive updates), the blow-up problem is far

more serious than for the DFT case, as it imposes a bound on the number of iterations that can be run; this

completely invalidates the sole homomorphic encryption solution for adaptive filtering, unless other techniques

are used, as we will see in the next section.
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V. MAPPING COMPLEX TO REAL SOLUTIONS

There are many challenges that SPED must face in order to provide efficient privacy-preserving solutions

in a cloud scenario. Specifically, we have named several tradeoffs that have to be optimized: for a given

privacy-preserving solution, a balance must be found among the following four magnitudes: computational load,

communication (bandwidth and interaction rounds), accuracy (error propagation), and privacy level (differential

privacy). At the same time, the technical limitations of some solutions (like the cipher blow-up problem) have

to be worked out, with the corresponding impact on the previous tradeoffs. In general, the appropriateness

of a privacy-preserving solution could be measured as a cost function that gives weights to each of the four

magnitudes, depending on the scenario for which it is devised.

Privacy vs Accuracy: As mentioned before, the privacy level can be established through a given privacy

metric; if we choose ε-differential privacy, we can determine the optimal randomization mechanism (noise added

to mask the output function) in order to achieve a certain privacy level [15], that is to say, define the optimal

utility masked function for a given level of differential privacy [16].

Computation vs Communication vs Accuracy: Let us come back to the adaptive filtering scenario [7]

to showcase the interrelations among these three magnitudes, together with a solution to the cipher blow-

up problem. As we have seen, private adaptive filtering cannot be addressed only with the use of additive

homomorphic computation without incurring in cipher blow-up. Hence, a secure primitive that handles the

rescaling or requantization of intermediate values is needed; how this requantization is performed, and how

much error can this process allow will determine the efficiency of the chosen solution. In fact, [7] shows that it is

possible to lower both the computation and communication complexity by playing with the output error power.

This is achieved through an approximate interactive rounding protocol that minimizes the interaction rounds

and the computational complexity for both client and server, while slightly increasing the error that is induced

on the outputs. Fig. 3 shows the comparison between the proposed solution in [7] and other combinations

of homomorphic encryptions and garbled circuits or exact interactive protocols for rounding; the Figure plots

the three relevant magnitudes (output error, computation and communication), as a function of input accuracy

(fractional bits used for representing the input values), filter size for a fixed number of iterations (50), and

performed iterations with a fixed filter size (5 taps). The plots show that the trade-off achieved by the fast

approximate solution is much better than for the others. In fact, the computation and communication complexity

are greatly reduced and they are close to those of a protocol based solely on homomorphic encryption, plotted

as a reference minimum complexity obtained without tackling the blow-up problem. Regarding the computation

needs, Fig. 3 shows a large time complexity for a relatively small number of iterations; this is due to a sequential

implementation that tests the total needed resources. If we take into account the availability of computing

resources in a cloud architecture, parallelization is a natural option for trading time complexity by resource

utilization. SPED primitives are very amenable to be parallelized, and privacy-preserving implementations can

take advantage of this fact to balance the latency of the secure cloud and keep the responses within a reasonable

time scale. Similarly, for some applications it is possible to achieve a reduction on the complexity through

packing techniques (see Box IV).

Communication in the Cloud Cost Function: If we look into cloud requirements and limitations, as

presented in previous sections, the cost function that determines the optimal tradeoff for the Cloud will give the
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Fig. 3. Comparison of efficiency and accuracy loss for different privacy-preserving approaches to the Block LMS protocol: GC - Garbled

Circuits, HP - Homomorphic Processing, Hy - Hybrid (HP with GC requantization), HB - Hybrid with packing, FP - Approximate Protocol,

FB - FP with packing.

largest weight to communication overheads. The optimal case consists in limiting the communication between

the customer and the cloud to only transmitting the encrypted input values and receiving the final results. For

a generic function, this can only be achieved if the so called somewhat homomorphic cryptosystems or fully

homomorphic ones are used (see Box III). As an example of this fully noninteractive processing, we can recall

the outsourced biometric scenario, where the cloud holds the biometric database of (encrypted) templates, and

the client sends a fresh biometric features vector, also encrypted. Troncoso and Pérez-González [17] present a

solution based on a extension of a fully homomorphic cryptosystem that copes with low cardinality non-binary

plaintexts, and applies it to face verification with optimally quantized Gabor coefficients. The cloud executes

a second order comparison function on 4000-dimensional feature vectors to obtain a score value whose sign

determines the matching of the presented face. Communication is strictly limited to the encrypted features and

the encrypted result. The system can perform an unattended verification in around ten seconds with a sequential

implementation, for which the client load is 30 times lower than the server load. When implemented in a cloud,

massive parallelization allows for a real-time response.

Privacy as the Key Factor: For some outsourced scenarios, privacy is an absolute requirement: indepen-

dently of the efficiency factors, the system is not feasible if a solution that addresses privacy protection is not

available. This is the case of the e-Health data analysis scenario, where a database of private information about

some individuals is made available to organizations and parties wishing to perform statistical analyses on the
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database records. The privacy of those individuals is the main concern of this system. In quantifiable terms,

a certain ε-differential privacy has to be guaranteed for any statistical analysis that is allowed on the data.

Additionally, this scenario poses further challenges mostly related to the heterogeneous structure of medical

databases, which mix qualitative and numerical data, and may have errors and missing values; these anomalies

are really difficult to cope with when there is no direct clear-text access to individual data [18]. Nevertheless, for

structured databases, like genomic ones, that are thoroughly checked before they are released, these difficulties

are not present. There are recent approaches for addressing these problems like Uhler et al’s [19] who propose

differentially private methods for releasing minor allele frequencies (MAF), χ2 statistics and p-values; they

also provide a differentially private method for finding genome-wide associations through a penalized logistic

regression. Unfortunately, most of the existing approaches assume that the noise is added to the released statistics

directly by the database owner, so this is not applicable if the database has to be released through an untrusted

cloud. In that case, additional encryption mechanisms for the individual records stored in the cloud have to be

devised. Ideally, a privacy-preserving eHealth cloudified scenario should conform to the generic architecture

depicted in Fig. 4.

Other limitations: Generally, homomorphic encryption is not able to combine data encrypted by multiple

private keys from different users in the cloud. López-Alt et al. [20] propose the so called on-the-fly multiparty

computation. It consists in cloud-aided Secure Multiparty Computation, for which the cloud can non-interactively

perform arbitrary, dynamically chosen computations on data belonging to arbitrary sets of users selected on-

the-fly. This approach also minimizes the need for interaction, as each user is only involved in two steps:

initial encryption of the inputs and final decryption of the outputs. This is achieved thanks to a new type of

encryption called multikey FHE (Fully Homomorphic Encryption). In this construction, a ciphertext resulting

from a multikey evaluation can be jointly decrypted using the secret keys of all the users involved in the

computation; a relinearization step is performed prior to decryption, so that the latter does not depend on the

specific function that outputs the to-be-decrypted result. Such cryptosystem is based on the NTRU (stemming

from “N-th degree TRUncated polynomial ring”, a special case of GGH, Goldreich-Goldwasser-Halevi, using
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convolutional modular lattices), that is turned into a fully homomorphic multikey encryption, with ciphertext

and key size polynomial (with large constants) on the number of users.

In this setting, each user can encrypt his/her data (with his/her own key) and upload them encrypted to the

cloud. Thanks to the fully homomorphic capacity of the cryptosystem, the cloud itself can execute a chosen

function on the inputs from several users. The obtained result is in an encrypted form; in order to decrypt it,

the cloud needs the cooperation of all the users whose encrypted data were used as inputs to the function.

This is a very nice setting, in the sense that if certain data from a user are employed in a calculation, nobody

can decrypt the result until that user agrees to it, by cooperating in the decryption step. The drawbacks of

this solution, as with any other solution based on current FHE cryptosystems, are the inefficient homomorphic

operations (computation) and the huge sizes of the ciphertexts (communication).

VI. OTHER APPROACHES AND FUTURE LINES

Throughout this paper we have motivated the need for privacy when outsourcing processes to cloud en-

vironments, answering to the legal and moral rights to privacy of the customers accessing a cloud. These

rights get materialized in the technological need of a generic enough noninteractive solution for private process

outsourcing, for which Cloud Computing is a paradigmatic case.

The first and most fundamental challenge for this scenario deals with the definition and quantification

of privacy in the Cloud. The range of cloud applications is rich and varied, from very simple spreadsheet

applications to rendering of synthetic video scenes or finding the solution to complex optimization problems.

While differential privacy can provide a framework for quantifying the privacy level of the (noisy) disclosed

values, it has not yet been extensively applied to cloud, and there is a real challenge in determining and

optimizing the tradeoff between the added noise-power (the degradation of the output) and the ε-differential

privacy that can be achieved, especially when the calculated function is not a simple aggregation, but a complex

function of the private input values. Another promising approach is the evaluation of which transformations and

operations on the input data preserve differential privacy so that privacy analyses can be easily extrapolated.

The communication burden of most privacy-preserving approaches conflict with the essential limitation of

the cloud with respect to the link with the customer. We can foresee that the most promising research lines that

address and can potentially solve the open issues of private multimedia clouds are essentially related to unat-

tended private processing without the need of collaboration or communication with the client. The development

of efficient fully homomorphic encryption (FHE) that allow for the practical use of noninteractive homomorphic

processing is the main research line that can lead to feasible solutions. There are several further challenges

for FHE, like: a) the efficient private execution of non-linear functions; full homomorphisms commonly deal

with a ring with addition and multiplication, but there is no direct mapping of nonlinear operations in the real

numbers (like logarithms or thresholding) to these finite rings, so they have to be approximated somehow; and b)

the efficient combination of inputs from different customers, each holding his/her own private key, a especially

relevant issue in a multi-tenant and multi-user environment like a cloud. Meanwhile, privacy in the Cloud can be

progressively addressed through the combination of additive homomorphic processing and interactive protocols

that can effectively protect the sensitive signals in the cloud, at the cost of a computation and communication

burden with respect to a non-privacy-preserving execution.
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We have focused on the use of the computation resources of the Cloud, but the mere use of a cloud as a

database also poses interesting challenges. There are very recent proposals that can deal with encrypted cloud

searches in a privacy preserving fashion. As an example, PRISM [21] is a secure version of a MapReduce

system, that consists in a cloud outsourced database in which encrypted information is uploaded for subsequent

word searches. The proposed system runs parallel private queries using PIR mechanisms and then linearly

combines the results to produce the output. The net privacy overhead for the queries multiplies by ten the

computation time and introduces communication rounds with the client; thanks to the parallelization, the cloud

reduces the perceived overhead in the response time to 11%. It must be pointed out also that the output of this

protocol has a (low) probability of being erroneous. Again, also for the database approaches, communication

and accuracy are fundamental parameters that still have to be optimized in future proposals.

Finally, there is another aspect of cloud privacy that we have not covered: resource usage computation and

billing. Disclosing the individual usage of cloud resources can lead to very efficient attacks that can accurately

estimate the behavior of a customer and the specific operations and processes that he/she performed in the

Cloud. This is another notion of privacy not directly related to the outsourced sensitive signals themselves, but

to the usage and consumption patterns of the cloud user; it can also be addressed through SPED techniques.

BOX I: ACCURACY AND SIGNAL REPRESENTATION: THE BLOWUP PROBLEM

All the known secure cryptographic techniques work on finite rings. Hence, all their inputs must be mapped to

the appropriate ring (Zn,+, ·), in which + and · are modulo n operations. For bounded discrete data this is not

usually a problem, provided that n is sufficiently large to accommodate all the input and output domains for such

data; then, the finite ring operations are equivalent to the clear-text addition and product, and the cipher never

“wraps-around”. Nevertheless, (multimedia) signals are real numbers that need a determined representation and

computation accuracy in order to yield acceptable results. Applying a quantization operation is a must for using

cryptographic techniques with signals: the inputs to a secure protocol must be quantized prior to encryption.

There have been several proposals (and controversy) in terms of an accurate signal representation/quantization

that perform this mapping from R to the cryptosystem finite ring Zn. The straightforward and most widespread

approach consists in applying a scale factor and working in fixed-point arithmetic, like many FPGAs and

DSPs actually do; fixed-point implies keeping a quantization or scale factor ∆, for which an input x ∈ R

gets represented as x̂ = d x∆c, where d.c stands for rounding to the nearest integer. The quantization noise

ε = x− x̂ ·∆ will get propagated from the inputs to the outputs of the employed signal processing algorithm.

Hence, numerical stability and numerical accuracy of the algorithms come into play.

The flexibility of floating point and the large dynamic range that it allows for is lost when using the previous

approach. Hence, different encodings have also been proposed, trying to mimic the IEEE 754 floating point

standard in the encrypted domain. An example is the logarithmic encoding presented in [22], for which a bounded

real x ∈ [−l, l], with l > 0, can be represented as a tuple: (ρx, σx, τx) ∈ {0, 1} × {−1, 1} × {0, . . . , 2κ − 1},

where ρx indicates whether x is zero, σx is the sign of x, and τx = d−S · logB

(
|x|
C

)
c with κ bits. C, B

and S are constants that must be adjusted for the range of the involved numbers. This strategy achieves an

increased dynamic range and better accuracy in the representation of small quantities, but it comes at the price

of increased complexity for additions and multiplications between tuples.
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Finally, even when working with fixed point arithmetic, there is no direct mapping between the real division

and inverses in Zn, so the scale factor ∆ affecting all the encrypted values will increase with each multiplication.

This effectively limits the number k of allowed consecutive products that an encrypted algorithm can perform to

a bound given by the maximum mappable number in the finite ring Zn. After a number k of successive products,

the result (∆k
∏k−1
i=0 |xi| > n) may “wrap-around” due to the modulo reduction, the subsequent operations are

not equivalent to their real counterparts anymore, and it is said that the cipher blows up [7]. This is a critical

limitation that imposes the need to applying secure requantization protocols at intermediate steps.

BOX II: PRIVACY METRICS AND PRIVACY NOTIONS

Privacy metrics have been related and deeply entangled with statistical databases from their origin. The first

notion of “privacy metrics” comes from a “privacy desideratum” by Dalenius in 1977, who defined for the first

time the probabilistic notion of “disclosure”; he stated that in order to avoid disclosures from a given database,

“nothing about an individual that could not be learned without access to the database should be learnable from

the database”. This is the most stringent privacy requirement that can be issued on any database; fulfilling it

would imply having a perfectly private database. Unfortunately, Dwork [8] showed later that no useful database

can comply with this requirement; only a completely uninformative, and therefore, useless, database can fulfill

it.

Hence, the concept of privacy and the measure of disclosure of private information had to be relaxed. Other

notions of privacy arose, like the concept of non-privacy [23], occurring when a computationally-bounded

adversary can expose a 1 − ε fraction of the database entries for all constant ε > 0; this concept excludes

even the weakest notions of privacy, and was later restricted to attribute non-privacy, that excludes the secrecy

of any attribute when all other attributes are known to an attacker. The most flexible and useful notion of

privacy presented to date is differential privacy [8], for which a randomized mechanism provides sufficient

privacy protection (ε-differential privacy) if the ratio between the probabilities that two datasets differing in one

element give the same answer is bounded by eε.

Opposed to these privacy notions, there are also information-theoretic concepts related to privacy coming

from the area of software systems, like secure information flow [24], that ideally seeks the lack of leakage (there

called non-interference), and tries to quantify the amount of produced leakage using entropy-based measures.

The most widespread form of entropy in this area is that of min-entropy, defined as minus the logarithm of the

probability of guessing the true value of a random variable with the optimal “one-try” attack: the probability

of the most likely element; then, the leakage is maximized when the prior distribution for the guessed variable

is uniform. Finally, there are other privacy notions based on the use of minimizing Bayes’ risk as a measure

of information leakage [25].

It would be difficult to choose one of the previous privacy notions over the others, as they all present

advantages and shortcomings, but the sweet fact here is that all these measures are closely interrelated: they

all measure the “privacy loss” produced by disclosing a function of some private inputs, and the needed noise

that has to be added to this function. For a given ε-differential privacy level, it is indeed possible to find

explicit relationships and tradeoffs between all these magnitudes, establishing quantitative bounds for either the

distortion power [8], [26] or the mutual information between private inputs and noisy outputs [15].
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BOX III: LATTICE CRYPTOGRAPHY AND FULLY HOMOMORPHIC ENCRYPTION (FHE)

Lattice cryptography [27] was born as a great promise for post-quantum cryptography, as the security of

lattice-based constructions rely on worst-case assumptions, unlike “traditional” cryptography; but the turning

point when lattices started to be a really appealing cryptographic concept can be set at the time Gentry presented

his seminal work [11], proving the existence of a fully homomorphic cryptosystem with semantic security; it

was based on ideal lattices. Many similarities can be found between the use of lattices in signal processing for

source and channel coding and lattice cryptography; in fact, encrypting a value is essentially encoding it, with

the peculiarities that the channel noise is induced on purpose, and the used lattice description is not the same

for coding as for decoding (public-private key).

We will explain here the GGH-family of lattice cryptosystems (named after Goldreich, Goldwasser and

Halevi), as it is based on simple concepts while being highly powerful and efficient for building fully homo-

morphic schemes. Choose a lattice L(B) generated by a basis formed by the columns of a matrix B. The

encryption of a value m in a GGH cryptosystem is a two-step encoding: first, a noise vector n[m] that encodes

the message m and fits inside the Voronoi cell V of L(B) is generated; then, a random centroid v in the lattice is

chosen; the encryption of m is produced by adding the noise to the centroid: c = E[m] = v+n[m]. Decryption

is also two-step: the error correcting capabilities of the lattice allow to obtain the centroid v (v = BdB−1cc)

and subtract it from c to get the noise n[m], further decoded to recover the original message m. Normally,

n[m] is a structured noise, chosen as a bounded nested lattice inside the Voronoi region V with nesting factor

equal to the plaintext cardinality.

The secrecy of the encoding-decoding process comes from the design of the basis B: a) the vectors of the

lattice are chosen with random components, so that L is a random lattice, and b) its dimensionality is much

higher than for the lattices usually employed in coding: several thousands or tens of thousands. The second

fact makes that the problem of finding the shortest vector of the lattice (SVP, roughly equivalent to finding

the lattice centroid closest to a given vector c through lattice reduction algorithms like LLL, Lenstra-Lenstra-

Lovász), be computationally infeasible if the available basis is not a “good basis”; additionally, the two facts

together (random basis and extremely high dimensionality) make that the Voronoi region defined by B be nearly

hyperspherical, as the columns of B will be, with high probability, almost orthogonal (a “good basis”). Hence,

for decryption to be infeasible it is necessary to find a “bad basis”, that is normally chosen as the Hermite

Normal Form H = HNF (B); this “bad basis” represents the public key of the cryptosystem, and the random

vector v of an encryption is chosen such that c = v +n(m) = n(m) mod H; respectively, the “good basis”

B is the secret key that allows for decryption.

This construction may have homomorphic properties: the encryption operation v+n[m] is linear, and due to

the linearity of the lattice (both the “coarse” lattice generated by B and the “fine” lattice given by the structured

noise), addition of two lattice points (v1 and v2) will yield another lattice point (v3):

c1 + c2 = (v1 + n[m1]) + (v2 + n[m2]) = v3 + ns[m1 +m2].

With this construction, the cryptosystem presents an additive homomorphism; but this is only true whenever

the resulting noise vector ns[m1] + nS [m2] still lies inside V . Whenever two ciphertexts are added, the noise

vectors also get added in the resulting ciphertext; if the added noise falls outside the Voronoi region of the
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lattice, then the error cannot be corrected anymore, and decryption may be incorrect. Consequently, in order

to achieve a determined homomorphic capacity, there must be a gap between the noise norm (||ns||) of a

new “fresh” encryption and the radius of the Voronoi region V (Fig. 5). When the product between two

lattice points is also defined (e.g., when a convolutional modular lattice is used, and B is generated as a

circulant matrix), the cryptosystem presents an algebraic homomorphism, limited by the gap (it is somewhat

homomorphic). Gentry solved this limitation by reducing the order of the decryption circuit (squashing) and

executing it homomorphically, in what he called a bootstrapping operation of a ciphertext; this “resets” the noise

of an already operated ciphertext to a “fresh” encryption, thus achieving a full homomorphism. This step needs

encryptions of “fragments” of the secret key so that anyone without that key can homomorphically execute the

squashed decryption circuit.

The main drawbacks of current lattice-based fully homomorphic cryptosystems are the large size of both

encryptions and keys, and the high computational complexity of the bootstrapping operation. These limitations

have motivated recent advances either towards a) leveled fully homomorphic cryptosystems that do not need

bootstrapping to execute a polynomial of bounded degree [28], and also towards b) reducing the cipher

expansion [17] (ratio between the cipher size and the plaintext size).

BOX IV: DATA PACKING STRATEGIES; FILLING THE MODULUS GAP

The most widely used homomorphic cryptosystems (Paillier family) need a large modulus n for the hardness

security assumptions to hold. This leaves a huge plaintext size of thousands of bits to encrypt typically small

signals that can be represented in fixed-point arithmetic with tens of bits. Hence, the actual cipher expansion is

much bigger for typical signals, and all that extra room is left unused. When the involved signals are bounded

as |x̂i| ≤ 2nb−1 at every stage of the protocol, it is possible to take advantage of this extra space that the cipher

offers: a vector of K = b log2 n
nb
c components can be packed into only one encryption as [29] (Fig. 6)

E [x̂packed] = E

[
K−1∑
i=0

(x̂i + 2nb−1) · 2i·nb

]
,

being 2nb−1 a shift factor for considering only positive numbers4.

As with any parallelization strategy, encrypted vector packing needs a computation overhead for performing

the packing and unpacking operations, and it may exist an optimum vector size for packing, where the complexity

4The shift factor fixes the sign convention between the bit representation (−a ≡ 2nb − a) and the modular arithmetic (−a ≡ n− a),

working always in the range [0, 2nb ), and avoiding errors in the conversion between both representations.
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reduction of the vectorial operations performed as scalar ones gets compensated by the complexity increase

of the additional (un)packing protocols [29]. In fact, the packing formulation with powers of two can be

generalized to an arbitrary base [30], but there are unpacking protocols that are optimized to work with binary

decompositions of the encrypted values and impose no overhead only when the used base is a power of two.

There are applications we have shown, like filtering (either adaptive filtering [7] or frequency-domain

filtering [14]), that can be easily parallelized when working in a block-by-block basis. The Block Least Mean

Squares algorithm in [7] is an example where packing allows for a secure parallel block implementation. The

computational and communication complexity of the whole protocol gets reduced by a factor of roughly K.

This is possible because packing can be performed on the clear, with a negligible complexity compared to

modular operations working with encryptions. Additionally, the latter get effectively reduced, with a packing

strategy, by the same amount as the number of packed elements.
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