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ABSTRACT

The characteristic artifacts left in an image by JPEG compression are
often exploited to gather information about the processing history of
the content. However, linear image filtering, often applied as post-
processing to the entire image (full-frame) for enhancement, may al-
ter these forensically significant features, thus complicating the ap-
plication of the related forensics techniques. In this paper, we study
the combination of JPEG compression and full-frame linear filtering,
analyzing their impact on the Discrete Cosine Transform (DCT) sta-
tistical properties of the image. We derive an accurate mathematical
framework that allows to fully characterize the probabilistic distri-
butions of the DCT coefficients of the quantized and filtered image.
We then exploit this knowledge to estimate the applied filter. Exper-
imental results show the effectiveness of the proposed method.

Index Terms— JPEG compression, linear filtering

1. INTRODUCTION

In today’s digital age, low-cost and sophisticated digital technolo-
gies allow for the creation of sophisticated and visually compelling
photographic fakes, thus questioning the trust in photographs. The
nascent field of digital forensics has emerged to help regain some
trust in digital photographs [1].

A plethora of forensic techniques have been proposed in the lit-
erature so far, aiming at identifying specific processing operators ap-
plied to images [2], but little attention has been paid to the forensic
analysis of chains of operators. In such a scenario, difficulties in the
authentication may arise since the characteristic footprints exploited
to detect a specific processing may be wiped off by the application
of a second one. JPEG compression is a forensically interesting pro-
cessing operation, as it is one of the most popular image compres-
sion schemes in use today. Previous works in the literature exploit
the characteristic artifacts introduced in the DCT distribution of an
image during compression to discover instances of previous JPEG
compression and even estimate the used quantization steps [3][4][5].
Multiple instances of JPEG compressions have been also studied,
detecting instances of all previous compressions [6]. However, it is
very likely that later in its life the JPEG-compressed image will be
processed by a further full-frame post-processing aiming at reduc-
ing the JPEG-compression block effects, or at enhancing the quality
of the image. By doing so, the characteristic artifacts present in the
DCT distribution of JPEG images may be partially perturbed, thus
complicating the application of the given forensic techniques (see
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[7], where authors study the case when image resizing has been ap-
plied between two compressions).

In this work, we study the combination of single JPEG com-
pression and full-frame linear post-processing. Specifically, linear
filtering represents an interesting case study since it is a very com-
mon and useful linear tool applied for image enhancement, such as
edge sharpening, noise removal, illumination correcting and deblur-
ring. We analyze the DCT statistical properties of a JPEG com-
pressed and linearly-filtered image and mathematically establish the
relationship between DCT coefficients, before and after filtering. By
exploiting the well-known statistical properties of the distribution of
DCT coefficients in JPEG images, we derive a model to theoretically
characterize the probability distribution of the DCT coefficients of a
JPEG image filtered with a given filter kernel. As a first result of
this analysis, we show that the extended assumption for natural im-
ages about the AC DCT coefficients for different frequencies being
independent, and for the same frequency being i.i.d. [8][9], does not
hold; indeed, the inter- and intra-block redundancy of the quantized
DCT coefficients must be taken into account. By considering those
redundancies, the studied processing can be accurately modeled. In
order to finally identify the applied linear filter, a distinguishability
measure is calculated to quantify the difference between the derived
models (each model depends on the applied filter kernel) and the ac-
tual distribution of a to-be-tested image. The minimum difference
will be taken as evidence for the identification of the applied filter.
We will assume in this work the quantization to be fixed and known,
although future work will be devoted to removing this assumption.

To the best of our knowledge, the presented work constitutes a
first attempt to study the statistical perturbation introduced by linear
filters on JPEG images and, although their detection is not necessar-
ily proof of malicious tampering, the derived framework represents
a valuable mean to disclose the processing history.

2. BLOCK-WISE JPEG COMPRESSION AND
FULL-FRAME LINEAR FILTERING

Throughout this paper, lower case letters (e.g., x) denote L1 × L2

size images in the spatial domain;1 x(i, j) stands for the pixel at
position (i, j) of image x, with i ∈ {0, . . . , L1 − 1} and j ∈
{0, . . . , L2−1}. Images in the 8×8-DCT domain are denoted with
uppercase letters (e.g., X), so Xi8,j8(i′, j′) stands for the (i′, j′)
DCT coefficient at the (i8, j8) block, where i′, j′ ∈ {0, . . . , 7},
i8 ∈ {0, . . . , (L1/8) − 1}, and j8 ∈ {0, . . . , (L2/8) − 1}. For
the sake of notational simplicity, and due to the similarity with the
pixel domain notation, we will also use X(i, j), where i = i′ + 8i8
and j = j′ + 8j8, to denote Xi8,j8(i′, j′). Consequently, prime
variables will denote modulo 8 reduced variables, e.g., i′ = imod8.

1For the sake of simplicity, we will assume L1 and L2 to be integer mul-
tiples of 8.
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Fig. 1: Panel (a) shows the original DCT histogram for frequency
(0, 1) for uncompressed images and its curve fitting. In panel (b),
the same distribution after quantization with step ∆(0, 1) = 10 is
presented. Panel (c) shows the given distribution when a linear av-
erage filter of size 3 × 3 has been further applied, together with the
derived model for such distribution (red line).

The JPEG standard provides a block-based compression scheme,
which operates on 8×8 non-overlapping blocks of DCT coefficients.
Each DCT coefficient is quantized by dividing it by the correspond-
ing entry ∆(i′, j′) of a quantization table, fixed based on the desired
compression quality. Such quantized coefficients are then entropy-
encoded (Huffman coding) and stored in the JPEG file format. The
compressed data stream can be decompressed, applying all the steps
in reverse order. The compression process forces the values of the
DCT coefficients to be clustered around multiples of the quantization
step ∆(i′, j′). These specific artifacts in the coefficient distribution
can be shown in Fig. 1. Panel (a) shows the histogram of the DCT
coefficients at frequency (0, 1) collected from un-compressed im-
ages [10], while panel (b) depicts the distribution of the same data
after quantization, with ∆(0, 1) = 10. It becomes clear that the
structure of such histogram is related to the employed quantization
step. For the sake of presentation we disregard the round-off and
truncation errors, in the pixel domain, introduced by the compres-
sion scheme, without affecting the conducted analysis. However,
linear image processing, often applied as post- processing for image
enhancement, may alter the characteristic statistical properties intro-
duced by the compression scheme. Here, we study the case of linear
filtering since it is a very common and powerful tool employed for
image enhancement. It operates by convolving the original image
with an appropriate filter kernel. The result of such a convolution is
a filtered image, whose pixel values are a weighted sum of a certain
number of neighboring pixels, depending on the filter size. Fig. 1(c)
shows the histogram of the DCT frequency coefficients of panel (b)
after filtering with an 3 × 3 Average filter; the characteristics of the
histogram of the quantized coefficients are clearly perturbed, but
new patterns appear, depending both on the employed quantization
factor and the filter kernel. In this work we study such artifacts in
order to identify the filter kernel a JPEG image has undergone. We
mathematically analyze the statistical properties of the DCT dis-
tribution of compressed and filtered images and derive an accurate
model for them. Fig. 1(c) serves as an example of the derived model
for the probability distribution of JPEG filtered images.

3. MATHEMATICAL MODEL

In order to derive the theoretical model characterizing the DCT dis-
tribution of a JPEG and filtered image, we firstly mathematically
express the deterministic relation between the quantized DCT coef-
ficient X(i, j) and that of the JPEG and filtered image Y (i, j). The
study case here concerned is shown in Fig. 2. Following the scheme
backwards, we start considering the DCT coefficients Y (i, j) of a
JPEG compressed and filtered image and transform them into the
spatial domain y(i, j). Through a linear convolution operation with
the filter kernel h, we can relate Y (i, j) to the pixels of the com-
pressed image x, which is the Inverse DCT of X(i, j). Exploiting
the linearity property of both the filtering operation and the DCT
transform and working out the math, we are finally able to mathe-
matically formulate the relation between the DCT coefficients of a
quantized image X(·, ·) and the DCT coefficients of the further fil-
tered image Y (·, ·). Specifically, given a filter kernel of size smaller
than or equal to 17, the coefficientsX(i, j) contributing in the calcu-
lation of Y (i, j) are those from the same block of Y (i, j) plus those
from the 8 immediate surrounding blocks, resulting in 24 × 24 co-
efficients. It becomes clear that for filter kernels of sizes larger than
17, the number of contributing coefficients would increase, involving
more surrounding blocks. Finally, we make explicit the contribution
of the DCT coefficient X(i, j) at the same position of Y (i, j), as
follows:

Y i8,j8(i′, j′) = γi′,j′ ·Xi8,j8(i′, j′) +N i8,j8(i′, j′), (1)

where γi′,j′ , N i8,j8(i′, j′) ∈ R are a frequency dependent scaling
factor and noise term, respectively. These two terms can be calcu-
lated, through some math (not reported here because of space con-
straints), according to (2), where DCTi′,j′ is the (i′, j′)-th DCT co-
efficient obtained from an 8 × 8 pixel block, IDCTi′,j′ is the 8 × 8
pixel block (located at {8i8, . . . , 8i8 + 7} × {8j8, . . . , 8j8 + 7})
obtained by applying the IDCT to the (i, j) DCT coefficient (i8 =
bi/8c, j8 = bj/8c), ∗ denotes the bidimensional convolution, and
[A]c,da,b denotes the submatrix of A with first index taking values in
{a, . . . , b}, and second index in {c, . . . , d}. N i8,j8(i′, j′) stands
for the second term in the summation in (2).

Given the derived deterministic expression in (1) for Y (i, j), we
can exploit the knowledge about the distribution of the quantized co-
efficients X(i, j) to study the distribution of the DCT coefficients of
the final image y. Usually, the probability distribution of DCT co-
efficients in natural images is modeled as a zero-mean Generalized
Gaussian Distribution (GGD) [3]. Due to quantization, the probabil-
ity distribution of each quantized DCT coefficient is [3]:

f(Xi8,j8(i′, j′) = k∆|∆)=

∫ (k+ 1
2

)∆

(k− 1
2

)∆

fGGDi′,j′ (τ)dτ, (3)

where k ∈ Z and, for the sake of notation simplicity, ∆ = ∆(i′, j′).
It becomes clear that the probability mass function of each frequency
coefficient of a JPEG image (Fig. 1(b)) presents specific artifacts,
whose structure is related to the quantization step. From probabil-
ity theory [11], given two discrete independent random variables,
the probability density function (pdf) of their sum is the convolu-
tion of their corresponding pdfs. Therefore, according to the de-
rived mathematical model in (1), and based on the common DCT
coefficients models, which typically assume the different frequency
components to be independent and the coefficients in a given fre-
quency to be i.i.d. [12], we would expect the probability distribution
of the DCT coefficient Y (i, j) to be the result of a convolution be-
tween a train of impulses located at γi′,j′ · k∆(i′, j′), with γ ∈ R,
and a noise component due to the contributions of all the neighbor-
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Fig. 2: Block scheme of the considered processing operations. In order to exploit the known statistical properties of the distribution ofX(i, j),
we establish its mathematical relationship with the DCT coefficient Y (i, j) of the quantized and filtered image.
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Fig. 3: Probability distribution, at frequency (0, 1), quantized with
a step ∆(0, 1) = 10 and filtered with averaging filter. The red im-
pulses represent the location of γ0,1 ·k∆(0, 1) while the yellow ones
are translated by the mean of the Noise component.

ing coefficients, according to (1). However, we show that indeed
the typical assumptions on the DCT coefficients distribution of nat-
ural images do not hold, thus resulting in a deviation between the
classical theoretical models and the empirical data. Specifically, a
scaling between the peaks in the histogram of the DCT coefficients
of the compressed and filtered image and the impulse train identify-
ing the location of the translated quantization step γi′,j′ · k∆(i′, j′)
is observed. This suggests the need for a different model for the
noise component in (1), which cannot any longer be considered as
the addition of independent variables (coefficients of different fre-
quencies) and i.i.d. components (coefficients in the same frequency).
We model the noise component as a GGD variable, with parameters
depending on the centroid γi′,j′ · k∆(i′, j′) the noise is centered
around. We analyze the mean of such noise and verify that for real
images it monotonically increases with the quantized samples value.
In Fig. 3 it is shown how the translated impulses, now centered at
γi′,j′ · k∆(i′, j′) plus the mean of the noise component, match the
peaks of the histogram. Taking into account the scaling inferred by
the noise component, an accurate model for the distribution of the
DCT coefficients of a filtered JPEG image can be derived.

4. PROPOSED FORENSIC APPROACH

The main goal of the proposed approach is to estimate the filter op-
erator an image has been gone through. We build a dictionary-based
database for the derived models corresponding to different applied
filters, and a distinguishability measure is calculated to quantify the
difference between the theoretically derived models and the actual
distribution of an image. So, in our scheme, this measure will be
taken as an evidence to identify the filter operator applied to the
under-test image. As a first attempt in this forensic case study, we
assume the quantization applied to the image during compression to

be known a priori. Future work will release this assumption.
To build a generalized model associated with each filter in the

dictionary, we proceed as follows:
• We collect the DCT frequency coefficients from 669 of the images

present in the UCID- Uncompressed Image Database [10]. We
then fit, for each frequency, a GGD (see Fig. 1(a)).

• We evaluate the distribution of the quantized coefficients, accord-
ing to (3) (see Fig. 1(b)). In this work we used compression quality
factors QF ∈ {40, 50, 60, 70, 80, 90}.

• We select a set of linear filters to be part of the dictionary, both
low-pass (LP) and high-pass (HP) (e.g., Moving Average, Gaus-
sian, Laplacian), with different settings for the window size, the
variance σ2 or the scale parameter α, as reported in Table 1.

• For each filter and AC DCT coefficient, we calculate γi′,j′ in (1),
according to (2).

• For each γi′,j′ · k∆(i′, j′) the corresponding noise component is
modeled as a GGD.

• The distribution of DCT coefficients, quantized and filtered with
a given kernel, will be the sum of GGDs, each of them centered at
γ · k∆(i′, j′) translated by the mean of the noise component and
with amplitude depending on the distribution of the quantized and
not filtered coefficients (e.g., see Fig. 1(c)).

The distinguishability among the derived models for the considered
filters is calculated by means of the χ2 histogram distance [13]:

χ2 =
1

2

∑
z

(Pz −Qz)2

(Pz +Qz)
, (4)

where P andQ are the two probability distributions to be compared,
which of course depend on the considered DCT frequency. Intu-
itively, the χ2 distance would tend to zero when one distribution
converges to the other. So, a lower χ2 measure will be the clue to
identify the filter operator applied to the under-test image.

We combine the independently calculated comparisons for each
analyzed frequency coefficient by summing their values, according
to the Minkowski norm [14]. As a preliminary study we selected a
subset of frequency coefficients to be representative of low, medium
and high frequencies and identified the most significative ones. As a
future work, we plan to further explore the effect of all the frequency
coefficients. As a first result, we observed a good distinguishabil-
ity among all the theoretical models, even if very low χ2 values
may mislead the correct classification of some of the filter, as in
the case of filters (1)-(2)-(4)-(6) (see Table 1). This is due to the
similarity of the frequency response of those filters for the analyzed
DCT coefficients, and consequently, of their corresponding mod-
els. This issue is not specific of the presented framework, but a
general constraint. Table 1 shows groups based on the similarity



1. LP Average [3× 3] 3. LP Gaussian [3× 3], σ2= 0.5

2. LP Average [5× 5] 5. LP Gaussian [5× 5], σ2= 0.5

4. LP Gaussian [3× 3], σ2= 1 7. HP Laplacian, α2= 0.2

6. LP Gaussian [5× 5], σ2= 1 8. HP Laplacian, α2= 0.7

9. LP Laplacian, α2= 0.2 11. HP Average [3× 3]

10. LP Laplacian, α2= 0.7 12. HP Average [5× 5]

Table 1: Filters present in the dictionary-based filter database,
grouped according to the similarity of their frequency response.

of the frequency response of the filters selected to be part of the
dictionary. Given the models for all the distributions correspond-
ing to a specific filter, the performance of the proposed algorithm
is verified in terms of percentage of correct classification over the
image database. Each of the 669 images in the database [10], not
previously used to build the models, is compressed with quality
factors QF ∈ {40, 50, 60, 70, 80, 90} and post-processed with each
of the filter kernels present in the dictionary. We then compare the
obtained DCT histogram, for each frequency, with all the corre-
sponding DCT coefficient pdfs derived in the steps described above.
The estimated applied filter is that providing the minimum χ2 dis-
tance. Accuracy of correct classification is reported in Fig. 4(a).
Results are reported as grouped bar graphs, where each group refers
to a fixed quality factor QF and each bar represents one of the 13
filters in the dictionary. Results are promising, even if accuracy is
low for some filters with high QF. The average accuracy, over all
the groups, is reported as a black line in Fig. 4(c). We notice that
as the QF increases, the average accuracy decreases. This is due to
the fact that with a high QF, the compression steps ∆(i′, j′) for low
frequencies are small and thus difficult to be localized after filtering,
while higher frequencies will be likely set to zero, especially for
LP filtering. For each QF, we identified, among all the selected
frequency coefficients, a set of them to be the best combination
which better help to identify the applied filter in terms of the highest
accuracy. For example, we have the sets {(0, 1), (1, 0), (5, 2)} for QF
= 40 and set {(0, 1), (4, 3), (5, 2), (5, 3), (5, 0)} for QF= 90. Due to
space constraints, coefficients for different QFs are not reported. We
note that lower frequencies are more important for lower QFs, since
it is likely that higher frequencies will be set to zero.
Intuitively, lower frequencies will also be more significant when
dealing with low-pass filters, while higher frequencies will be
needed to correctly identify high-pass filters. Based on this idea, we
divide the filters database into two halves, one with low-pass filters,
while in the second are only high-pass filters. Depending on the
type of the filter applied to the under-test image, the proposed algo-
rithm will be applied using one of the two parts of the database. To
automatically determine if an image has been low-pass or high-pass
filtered, we build a set of reference Fourier Transform images, each
one corresponding to a filter in the set of low/high-pass kernels and
a particular compression factor QF. In order to do that, we average
100 FFTs of images compressed with the selected QFs and filtered
with the given filter; minimizing the Mean Square Error between
the reference FFTs and that of the under-test image we are able to
easily classify the image, with a 100% accuracy. So, using the LP
and the HP filters database separately, we obtained accuracy results
as reported in Fig. 4(b), where high-pass filters are grouped with
the red color, while low-pass are depicted with blue. An improved
percentage of correct classification is achieved for each set of filters,
compared to the classification with all the filters together (Fig. 4(a)).
Fig. 4(c) reports the average accuracy for the two separated clas-
sification, considering only low-pass (red line) or high-pass filters
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Fig. 4: Panel (a) shows the classification accuracy when each of the
13 filters in the dictionary is applied to each image in the database,
compressed with different QFs, while panel (b) shows the accuracy
when classifying LP (blue) and HP (red) filters separately. Panel (c)
shows the average accuracy for the classification of all the filters,
only LP and only HP filters (black,blue and red line, respectively).

(blue line). We notice that an improved accuracy is achieved with
the separation of the filters. Again, we identified specific sets of
coefficients to be utilized in the separated classifications. As an
example, for QF = 40 we have the set {(0, 1), (1, 0), (1, 1), (2, 6)}
for LP filters, and {(7, 0), (5, 0), (0, 7)} for HP filters. So, for HP
filters higher frequencies are more significant, as expected. Similar
sets of coefficients are found for higher QFs. The presented results
are very promising and show the efficacy of the proposed technique.

5. CONCLUSION

We have presented a mathematical model to characterize the DCT
coefficients distributions of a full-frame linearly-filtered JPEG im-
age. We explicitly expressed the theoretical relationship between
the DCT coefficients before and after filtering so as to accurately an-
alyze the effect of the considered processing. The derived theoretical
model allows building a dictionary-based database of distributions
of quantized images being filtered with a given kernel. We exploited
such dictionary for estimating the filter given the quantization, by
using the χ2 distance as target function. The presented framework
represents a first attempt to analyze the effects of full-frame linear
filtering on block-based compressed images. Future work will be
devoted to enlarge the filter dictionary and to eliminate the assump-
tion on the knowledge of the quantization step, so that eventually
this framework may be regarded as a forensically helpful means to
jointly disclose the applied compression factors and the filter kernel.
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