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Abstract—Spectrum sensing constitutes a key ingredient in
many cognitive radio paradigms in order to detect and protect
primary transmissions. Most sensing schemes in the literature
assume a time-invariant channel. However, when operating in
low Signal-to-Noise Ratio (SNR) conditions, observation times
are necessarily long and may become larger than the coherence
time of the channel. In this paper the problem of detecting an
unknown constant-magnitude waveform in frequency-flat time-
varying channels with noise background of unknown variance
is considered. The channel is modeled using a basis expansion
model (BEM) with random coefficients.

Adopting a generalized likelihood ratio (GLR) approach in or-
der to deal with nuisance parameters, a non-convex optimization
problem results. We discuss different possibilities to circumvent
this problem, including several low complexity approximations to
the GLR test as well as an efficient fixed-point iterative method
to obtain the true GLR statistic. The approximations exhibit a
performance ceiling in terms of probability of detection as the
SNR increases, whereas the true GLR test does not. Thus, the
proposed fixed-point iteration constitutes the preferred choice in
applications requiring a high probability of detection.

I. INTRODUCTION

Signal activity detection constitutes a key functional block
in many signal processing systems like those in sonar [1],
radar [2] and spectrum sensing for cognitive radio [3] among
others. The traditional approach assumes that the channel is
time-invariant so that some performance loss is incurred when
implemented for actual channels. This loss will depend on
how far the channel is from being time-invariant. In certain
applications, it may be necessary to adopt a time-varying
channel model form the very beginning.

Examples of these include, for instance, narrowband com-
munications, where the symbol period can be in the order of
the coherence time of the channel. This effect is particularly
important in the case of acoustic communications such as
those in underwater environments, typically affected by large
Doppler spreads [1]. For spectrum sensing, detectors shall typ-
ically fulfil stringent requirements in terms of high probability
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of detection at low SNR so that long observation windows
are needed [3]. Consequently, the channel is less likely to be
accurately approximated as time-invariant.

Herein we assume a frequency-flat channel following a basis
expansion model (BEM) [4], [5] with random coefficients.
Although formally any orthonormal basis can be employed,
we focus on the Fourier basis for concreteness. Moreover, this
allows us to model the channel as a low-pass random process,
as it frequently occurs in practice [6], by choosing the basis
functions associated with the lowest frequencies.

We assume that the signal to be detected has constant mag-
nitude (CM). This introduces additional structure in the prob-
lem as well as mathematical tractability. Many practical signals
have this property since it relaxes linearity requirements on
power amplifiers. Examples include frequency shift keying
(FSK) modulation, continuous-phase modulation (CPM) or
Gaussian minimum shift keying (GMSK) modulation as used
in GSM. An important application in Cognitive Radio is the
detection of wireless microphones: these typically employ ana-
log frequency modulation (FM), resulting in a CM waveform.

The detector is derived according to the generalized likeli-
hood ratio (GLR) rule [7], where the unknown parameters are
substituted by their maximum likelihood (ML) estimates. The
starting point is the detector for known CM signals from [8].
It turns out that the GLR for unknown CM signals is the
result of maximizing the test statistic from [8] with respect
to the transmitted signal, subject to the CM property. This
work addresses some alternatives to this (non-convex) problem
together with the computation of the exact solution in order
to provide the user with a performance/complexity tradeoff.

Notation: superscripts ·∗, ·T and ·H denote the conjugate,
transpose, and conjugate transpose respectively. All vectors
are assumed to be column vectors unless otherwise stated.
IN is the identity matrix of dimension N . The notation (v)k
and (A)k,l refers to the k-th component of vector v, and the
(k, l) entry of matrix A, respectively. diag {v} is a diagonal
matrix with the components of vector v on its diagonal. On the
other hand, diag {A} is a vector with the diagonal elements
of matrix A. The `n-norm of vector v is represented as ||v||n.
Finally, 0N and 1N denote N × 1 vectors with all zeros and
all ones respectively.

The rest of the paper is structured as follows. The system



model is introduced in Sec. II, and the derivation of the
optimization problem corresponding to the GLR test is given
in Sec. III. Alternative low-complexity detectors are presented
in Sec. IV, whereas an efficient numerical method to compute
the GLR statistic is given in Sec. V. Simulation results are
shown in Sec. VI, and Sec. VII provides some final remarks.

II. SYSTEM MODEL

An unknown, length-N signal x∗ ∈ CN is to be detected
after propagating through a frequency-flat, time-varying chan-
nel h ∈ CN in the presence of additive white Gaussian noise.
Depending on the hypothesis active, the observation y ∈ CN
is given by

H0 : y = σn, H1 : y = αXh+ σn, (1)

where α is a constant accounting for the transmitted power
and path loss, σ2 is the noise power and X .

= diag {x∗}. The
signal x∗ is assumed to have unit constant magnitude. Under
this model, α, σ andX are unknown deterministic parameters.
The noise vector n is zero-mean circularly symmetric complex
Gaussian, with E

{
nnH

}
= IN .

The time variations of the channel are modeled using a BEM
with K orthonormal basis functions:

h =

K∑
k=1

ckfk = Fc (2)

where the ck are the random coefficients, collected in the vec-
tor c .

= [c1 . . . cK ]T , and fK ∈ CN are the basis functions,
arranged as the columns of the matrix F .

= [f1 . . . fK ].
The vector c is regarded as zero-mean circularly symmetric
complex Gaussian with E

{
ccH

}
= N

K IK . The factor N/K
ensures that E

{
||h||22

}
= N .

Although any orthonormal basis can be considered, we
will focus on that consisting of the K elements with lowest
frequency in the Fourier basis [4], [9]. Thus, if the Fourier
basis is given by the columns of W .

= [w0 . . . wN−1] where

wl
.
=

1√
N

[
1 ej

2π
N l1 . . . ej

2π
N l(N−1)

]T
, (3)

then, with K odd and s .
= K−1

2 , F is given by

F = [w0 w1 . . . ws wN−s . . . wN−1]. (4)

For future reference, observe that

FFH =

K∑
k=1

fkf
H
k = w0w

H
0 + 2

s∑
k=1

Re
{
wkw

H
k

}
(5)

is a matrix of real coefficients; this follows from the fact
that wN−l = w∗l , 1 ≤ l ≤ s. On the other hand,
FFH = WDWH , where D .

= diag
{
[1Ts+1 0TN−K 1Ts ]

T
}

.
The autocorrelation matrix of the channel is therefore

Rh
.
= E

{
hhH

}
=
N

K
FFH =W

[
N

K
D

]
WH , (6)

and it follows that the power spectral density of the channel
tap is (asymptotically) given by the diagonal of the ma-
trix (N/K)D. Therefore, the channel is a low-pass random

process of bandwidth 2πs/N , which is proportional to the
maximum Doppler shift. This process has unit power, i.e.,
E
{
|(h)k|2

}
= 1, since Rh has ones on its main diagonal.

Finally, let us define the SNR as ρ .
= α2

σ2 and the bandwidth
occupancy ratio as b .= K/N .

III. GLR TEST DERIVATION

The GLR test [7] is a generalization of the Neyman-Pearson
test where nuisance parameters are replaced by their ML
estimates under the corresponding hypothesis. In case that x
is known, the GLR test is given by:

Lx(y)
.
=

max
α2≥0,σ2≥0

p(y;x, α2, σ2|H1)

max
σ2≥0

p(y;σ2|H0)

H1

≷
H0

γx, (7)

where p(·|Hi) denotes the probability density function of y
under hypothesis Hi (note that y is conditionally Gaussian),
and γx is the threshold. Therefore, when x is not known, the
GLR test can be obtained as

L(y) = max
x∈MN

Lx(y)
H1

≷
H0

γ, (8)

where MN .
= {x ∈ CN : |(x)i| = 1} is the set of unit-

magnitude signals of length N . The log-GLR statistic for the
test in (7) is derived in [8] and can be written as

logLx(y) =

{
N · log bp̂+(1−b)q̂

p̂bq̂1−b
, if p̂ > q̂,

0, otherwise,
(9)

where

p̂
.
=

1

K
||FHXHy||22 (10)

and

q̂
.
=

1

N −K
||GHXHy||22. (11)

The N×(N−K) matrix G comprises the N−K columns of
the Fourier basis W not included in F . We can think of p̂ as
an estimator of the observed average power within the Doppler
bandwidth after removing the influence of the information
signal. Recall that XHX = IN since x is CM. On the other
hand, q̂ is an estimate of the out-of-band average power. Note
that the observed energy is given by ||y||22 = Kp̂+(N−K)q̂.

It is readily checked that (9) depends on the data only
through the ratio p̂/q̂ and, moreover, it is a monotonically
nondecreasing function of p̂/q̂ in the range p̂/q̂ ≥ 1. Hence,
maximizing logLx(y) w.r.t. x amounts to maximizing p̂/q̂.
Since this ratio can be expressed as

p̂

q̂
= (N −K)

p̂

||y||22 −Kp̂
, (12)

which is a non-decreasing function of p̂ for fixed ||y||22,
the problem boils down to maximizing p̂. Defining Y

.
=

diag {y∗} enables us to rewrite (10) as

Kp̂ = ||FHY Hx||2 = xHAx, (13)



whereA .
= Y FFHY H is an N×N positive semidefinite ma-

trix with rank (A) = K. Consequently, the problem reduces
to that of maximizing xHAx subject to the CM constraint
x ∈MN :

x̂ = arg max
x∈MN

xHAx. (14)

Problem (14) can be solved in closed form when K = 1. In
that case, A = aaH is a rank-1 matrix, where a = Y f1, so
that xHAx = |aHx|2 ≤ ||a||21, with equality when ∠(x)i =
∠(a)i + C,∀i, where C is a constant. Specifically, if we use
the Fourier basis as in (4), then

√
Nf1 = 1N and the detector

becomes that for CM signals in time-invariant channels [10].
To the best of our knowledge, no closed-form expression

exists for x̂ in (14) when K > 1 and, consequently, one
has to either resort to numerical methods, or find suitable ap-
proximations. The latter are appealing since they are likely to
present a reduced computational complexity when compared
to numerical procedures. For this reason, in Sec. IV we explore
different possibilities along these lines. The computation of the
true GLR statistic will developed in turn in Sec. V.

IV. LOW-COMPLEXITY DETECTORS

We now investigate five approaches based on different
approximations and bounds of the cost function in (14).
Remarkably, all these approaches yield the correct solution
to the problem if K = 1, although they are not necessarily
equivalent if K > 1.

1) Largest eigenvalue of A: Since ||x||22 = N for all
x ∈ MN , one can relax the constraint in (14) to obtain the
following problem:

maximize xHAx (15)

subject to ||x||22 = N. (16)

The maximum is given by λ1(A) · N , where λ1(·) denotes
the largest eigenvalue. This constitutes an upper bound on
x̂HAx̂. Hence, one can think of approximating p̂ as p̂ ≈
p̂L1

.
= N

Kλ1(A).
2) `1-Norm of principal eigenvector: Since the original

problem is easily solvable when K = 1, consider a rank-
1 approximation of A in terms of its principal unit-norm
eigenvector v1, i.e., A as A ≈ λ1v1vH1 . This leads to

xHAx ≈ λ1(A) · |vH1 x|2 ≤ λ1 · ||v1||21 (17)

with equality attained for ∠(x)i = ∠(v1)i+C, ∀i. As a result,
one can approximate p̂ as p̂ ≈ p̂L1n1

.
= 1

Kλ1(A)||v1||21.
3) Phase relaxation: If we write the vector x as x =

[ejθ1 ejθ2 . . . ejθN ]T , then it is clear that

xHAx =

N∑
k=1

N∑
l=1

akle
j(θl−θk) (18)

where akl
.
= (A)k,l. Since A is Hermitian, (18) can be

rewritten in terms of the elements on and below the diagonal:

xHAx =

N∑
k=1

akk + 2Re

{
N∑
k=2

k−1∑
l=1

akle
−jθkl

}
, (19)

where we have defined θkl
.
= θk−θl. Although only N degrees

of freedom are available to choose the values of θkl, we can
relax this requirement and regard all of the θkl, l < k as free
parameters, thus having N(N − 1)/2 degrees of freedom. In
doing so, the θkl maximizing (19) are given by θkl = ∠akl,
resulting in the following bound:

xHAx ≤
N∑
k=1

N∑
l=1

|akl|. (20)

Therefore, it is reasonable to approximate p̂ as:

p̂ ≈ p̂PR
.
=

1

K

N∑
k=1

N∑
l=1

|akl| (21)

4) Phases of principal eigenvector: If we were to approx-
imate x̂ rather than p̂, a similar argument to that provided
in Sec. IV-1 could be applied. Consequently, one can take
(xPPE)i = (v1)i/ |(v1)i|, where v1 is the principal eigenvector
of A. Substituting the resulting vector in (13) another approx-
imation for p̂ arises:

p̂ ≈ p̂PPE
.
=

1

K
xHPPEAxPPE (22)

5) Semidefinite Relaxation: As suggested in [11], upon
noting that xHAx = Tr

{
AxxH

}
= Tr

{
AX̃

}
where

X̃
.
= xxH , one can relax the (non-convex) rank-1 constraint

on X̃ . This results in the following semidefinite program
(SDP):

maximize Tr
{
AX̃

}
(23)

subject to diag
{
X̃
}
= 1N (24)

X̃ ∈ S+ (25)

with S+ the cone of positive semidefinite matrices. A solution
can be efficiently found using any convex solver, and then we
can retrieve x ∈MN from the optimal X̃ , e.g., by taking the
phases of its principal eigenvector, as suggested in [11].

Disappointingly, the solution of the SDP above is not unique
(although all of them result in the same value of the cost
Tr
{
AX̃

}
), so that the particular one attained by any specific

algorithm will be highly dependent on the initialization as
well as the algorithm parameters. Thus, although the SDP
cost associated to two different solutions X̃1 and X̃2 is the
same, after mapping these to vectors x1, x2 ∈MN , the cost
of the original problem can be highly different, i.e. xH1 Ax1

is not necessarily close to xH2 Ax2. This is illustrated in
Fig. 1, where the cost of the original non-convex problem
is represented vs the cost of the SDP. Every cluster of points
corresponds to a particular realization of the matrix A whereas
each point is the result of solving the SDP with a different
initialization. The fact that in many instances the points in each
cluster are spread vertically is an indication of the phenomenon
described above. This has an effect on the performance of the
resulting detectors, as we have observed via simulations: the
probability of detection strongly depends on the initializations
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Fig. 1. Cost of the original problem in terms of the optimal cost of the SDP
(23).

and parameters of the convex solver, resulting in a quite erratic
and unpredictable behavior. In view of this, this approach will
not be pursued further.

V. COMPUTATION OF THE TRUE GLR

Although the matrix A is positive semidefinite, and thus
xHAx is a convex function of x, the feasible set of (14)
is clearly non-convex. Therefore, conventional algorithms for
solving this kind of problems cannot be used. On the other
hand, since computational efficiency is required for the al-
gorithm to be implemented in real time, one can think of
employing a simple method for local search such as a gradient
ascent or a fixed-point iterative algorithm.

A nice property of gradient ascent methods is the fact
that they are guaranteed to converge to a (local) maximum,
provided that the stepsize sequence is chosen adequately.
Unfortunately, for the problem at hand, stepsize sequence
design is highly dependent on the (unknown) SNR. In order
to sidestep the problem of stepsize tuning, we abandon this
approach in favor of fixed-point iterations.

These schemes aim at solving a set of equations by iter-
atively updating each variable so that one of the equations
is satisfied. In this case the set of equations is built upon
setting the gradient of the cost to zero. In order to compute the
gradient, consider the unconstrained problem that results from
substituting x = [ejθ1 ejθ2 . . . ejθN ]T in xHAx, and then
taking the derivatives with respect to θ .

= [θ1 θ2 . . . θN ]T .
Recalling that X .

= diag {x∗}, this results in

∇θ = 2 Im {XAx} . (26)

The iteration we propose is listed as Algorithm 1, where
the vector aHi denotes the i-th row in A. Several remarks are
in order regarding Algorithm 1:
• One can readily check that at any fixed point of this

iteration, the gradient (26) must vanish.
• Observe that, unlike the gradient descent algorithm, no

parameter tuning is required.

Algorithm 1 Fixed-Point iteration
1: Set initial vector x
2: repeat
3: for i = 1 to N do
4: Set θi = ∠(aHi x)
5: Set (x)i = exp{jθi}
6: end for
7: until stopping criterion is satisfied
8: Set p̂ = 1

Kx
HAx

• Variables θi and (x)i are overwritten at each iteration of
the outer loop.

• There are two nested loops instead of just one. This is for
stability reasons: each component in x is updated one at
a time rather than all together. In other words, to compute
(x)i during the k-th iteration of the outer loop, the
values of (x)1, (x)2 . . . (x)i−1 corresponding to the outer
k-th iteration and the values of (x)i, (x)i+1 . . . (x)N
corresponding to the k − 1-th iteration are used in the
right hand side of the expression in line 4. This prevents
oscillations without introducing additional complexity.

• No stability problems have been observed in all cases
tested with this scheme, which invariably converges to a
maximum of the original cost.

• In the simulations, the stopping criterion considered is
whether the norm of the gradient exceeds some certain
tolerance ε.

As mentioned before, the optimization problem is not con-
vex, and local maxima may exist. Thus, the choice of the initial
estimate is critical in order to find the global maximum. To
this end, one can consider the approaches presented in Sec. IV.
Since we need an approximation for the vector x̂ rather than a
bound for the cost, we can disregard the approaches from Secs.
IV-1, IV-2 and IV-3. Regarding the approximation in IV-4, it
can be shown that if the matrix FFH is real-valued, then the
gradient vanishes when evaluated at the CM vectors obtained
by retaining the phases of the components of any eigenvector
of A associated to a non-null eigenvalue. This happens, in
particular, when F has the form of (4). Unfortunately, these
CM vectors are not, in general, maxima of the cost function but
saddle points, as can be checked numerically after evaluating
the Hessian matrix at those points. Therefore, these vectors are
not suitable initializations for the fixed-point algorithm since
no correction will be applied on the initial iterate. On the
other hand, the approximation in Sec. IV-5 is not reliable as
initializer either for the reasons discussed in that section.

Having dismissed all approximations in Sec. IV, we must
consider other alternatives. Following the same reasoning as in
Sec. IV-3, an initial estimate θ could be found by projecting
the solution of the phase-relaxed problem onto the feasible
set. This can be accomplished by arranging an overdetermined
system of equations with the relationships θkl = θk−θl, k > l
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Fig. 2. ROC curves of the different detectors. N = 64 samples, SNR = 3
dB, K = 5 (Doppler spread = π × 0.0625 rad/sample).

and solving it using least squares (LS):

θ̂ = argmin
θ
||Mθ − θPR||2, (27)

where θPR is an N(N−1)/2-element vector with the θkl, k >
l, with θkl = ∠akl, and M is an N(N − 1)/2 × N matrix
where the i-th row is a vector of the form

mT
i = [ 0 · · · 0 1 0 · · · 0 −1 0 · · · 0 ]

(28)

with the non-null coefficients placed in such a way that the
aforementioned conditions are imposed. Note that the sum of
the columns of M is the zero vector; this reflects the fact that
the relationships above are invariant to any constant added to
the θk ∀k. To sidestep this rank deficiency issue, we can fix
θ1 = 0 so that we can drop the first column in M and the
first row in θ. In that case M has full rank and the solution
of (27) is unique.

VI. SIMULATION RESULTS

We illustrate now the performance of the true GLR test
as well as the detectors based on the approximations from
Sec. IV, for several values of Doppler spread and SNR. The
signal is generated as (x)i = ejui where the phases {ui} are
i.i.d. and uniformly distributed in (0, 2π). In the implementa-
tion of the true GLR detector, the stopping criterion for the
fixed-point iteration with phase relaxation-based initialization
(PRFP) uses a tolerance value ε = 10−3.

We start by considering a BEM channel as described in Sec.
II where the basis functions are the columns of the matrix
F in (4). Clearly, the maximum Doppler frequency (Doppler
spread) of such a channel is given by ωd = 2πs

N .
With SNR = 3 dB and using N = 64 samples, Figs. 2 and 3

show the Receiver Operating Characteristic (ROC) curves [7],
for K = 5 and K = 17 respectively, of the true GLR
detector ("PRFP") and the detectors derived in Sec. IV-1
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Fig. 3. ROC curves of the different detectors. N = 64 samples, SNR = 3
dB, K = 17 (Doppler spread = π × 0.250 rad/sample).

("L1"), Sec. IV-2 ("L1n1"), Sec. IV-3 ("PR") and Sec. IV-4
("PPE"). In addition, the curve labeled as "KS" corresponds to
the GLR detector with knowledge of the transmitted signal [8],
which is given by (9). This constitutes a performance upper
bound for all of the other detectors. We observe that the
true GLR test (PRFP detector) exhibits the best performance
among those without knowledge of the signal, as could be
expected. The non-GLR detectors of this group perform quite
similarly and suffer from a higher performance loss relative
to the true GLR test as K (and hence the Doppler spread) is
increased.

In order to illustrate the influence of the SNR on the
detectors, Figs. 4 and 5 show the probability of detection PD

for fixed false alarm rate PFA = 0.1 vs SNR, with the same
value of N = 64, and K = 5 and 17 respectively. Note that
the performance loss of the true GLR detector due to the lack
of knowledge about the transmitted signal is about 10 dB.
Another interesting effect is that there exists a performance
ceiling for the non-GLR detectors, that is, for given N and K
there exists an upper bound on the PD that cannot be exceeded
even as the SNR becomes arbitrarily large.

Finally, Fig. 6 shows the performance of the true GLR
detector and illustrates two different effects. On the one
hand, when the autocorrelation of the channel tap does not
correspond to a flat PSD within the Doppler bandwidth, as
assumed in the system model of Sec. II, some deviation in
the detector behavior is expected. To test this, we use the
popular dense scatterer model (also known as Jakes model [6],
[12]). Under this model the vector h is zero-mean Gaussian
distributed, with a Toeplitz covariance matrix E

{
hhH

}
with

(k, l) element given by J0(ωd(k − l)). It is seen that the
performance of the detector is quite robust to PSD mismatches.

On the other hand, the GLR detector assumes knowledge
about the Doppler spread; hence, it makes sense to investigate
the effect of model mismatches on this parameter. When ωd
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is known, a reasonable choice for K satisfies ωd = K−1
2

2π
N .

However, the actual value of the channel Doppler spread
may not be available to the detector. Thus, Fig. 6 shows
the probability of detection vs the actual Doppler spread, for
several values of K assumed in the detection. A significant
performance loss is observed as soon as the true Doppler
spread exceeds the assumed one, whereas the penalty for
overestimating this parameter is much milder.

VII. CONCLUSIONS

We have extended the detector for known CM signals in
time-varying BEM channels to the more challenging scenario
where the signal is unknown. Several low-complexity alterna-
tives to the GLR test have been proposed, together with an
iterative algorithm to compute the true GLR statistic (a fixed-
point iteration initialized with the solution of a LS problem).

Through simulations it has been observed that the prob-
ability of detection of the low-complexity detectors remains
bounded away from 1 even as the SNR goes to infinity, an
effect which is more pronounced as the Doppler spread of
the channel increases. This significant performance loss may
preclude the use of these schemes in practice. Fortunately,
the true GLR detector does not suffer from this drawback
and constitutes an appealing alternative, performing well even
under channel correlation not corresponding to the adopted
model as long as the true channel Doppler spread is not
underestimated.
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