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ABSTRACT

We consider the problem of estimating the coefficients in a
multivariable linear model by means of a wireless sensor net-
work which may be affected by anomalous measurements.
The noise covariance matrices at the different sensors are as-
sumed unknown. Treating outlying samples, and their sup-
port, as additional nuisance parameters, the Maximum Likeli-
hood estimate is investigated, with the number of outliers be-
ing estimated according to the Minimum Description Length
principle. A distributed implementation based on iterative
consensus techniques is then proposed, and it is shown ef-
fective for managing outliers in the data.

Index Terms— Multivariate regression, outliers, dis-
tributed estimation, wireless sensor networks.

1. INTRODUCTION

Wireless Sensor Networks (WSNs) can be deployed to per-
form inference from measurement samples. Often in practice,
a fraction of the measurements, termed outliers, do not ad-
here to the modeling assumptions [1–4]. Managing outliers is
often critical for successful operation of the inference engine.
In particular, multivariate analysis techniques are known to
be very sensitive to anomalous data, which become difficult
to detect [2, 5]. Due to computation and communication con-
straints, outlier detection in WSNs should ideally be carried
out in a decentralized way. Different techniques have been
proposed along these lines over the years, including nearest
neighbor-based, clustering-based, classification-based, and
statistical-based approaches [6, 7].

We consider the estimation of the coefficients of a multi-
variable linear model by means of a WSN. Each sensor ob-
tains a set of multivariate observations, affected by measure-
ment noise and possibly by outliers. The noise at different
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sensors is assumed uncorrelated, but we allow for correla-
tion across the entries of the noise vector at a given sensor,
with unknown covariance matrix which may differ from one
sensor to another. This fact, together with the detrimental ef-
fect of outliers, makes the estimation problem quite challeng-
ing. We do not adopt any particular outlier generation model,
and instead treat outliers as nuisance parameters to be jointly
estimated with the wanted regression coefficients; however,
rather than pursuing sparsity-promoting regularization of a
Least Squares (LS) cost as in [8–10], we adopt a Minimum
Description Length (MDL) approach [11, 12], by which the
Maximum Likelihood estimates (MLEs) are first obtained for
different candidate number of outliers in the data, and then
the one minimizing the MDL cost is retained. Our method
is based on cyclic optimization of the outliers’ support and
the parameter values. In addition, we present a decentralized
variant of this MDL-based scheme which, being based on dis-
tributed iterative consensus techniques [13, 14], is well suited
for WSN implementation, and whose effectiveness is illus-
trated via simulation examples.

2. PROBLEM STATEMENT

Consider a network of K sensors deployed to estimate a de-
terministic d×1 vector parameter θ. The k-th sensor observes
N p× 1 vectors of noisy observations, with N ≥ p:

ykn = Hknθ +wkn + ckn,
k = 1, . . . ,K,
n = 1, . . . , N,

(1)

whereHkn are known p× d regressor matrices, andwkn de-
notes zero-mean Gaussian noise. It is assumed that wk1n1

is statistically independent of wk2n2
for (k1, n1) 6= (k2, n2),

and that E{wknwT
kn} = Rk, k = 1, . . . ,K. The noise co-

variance matricesRk are assumed unknown.
The vectors ckn represent a bias which can model a tem-

poral sensor malfunction, an abnormal measurement, or even
malicious data injected by an adversary; we assume that only
a small number h of them are nonzero. The parameter h is
unknown, as well as the indices (k, n) for which ckn 6= 0.
Lacking any a priori knowledge about the nonzero ckn, we



choose to regard them as deterministic unknown, rather than
adopting a particular model. This allows us to adopt the MDL
criterion in order to jointly estimate all unknown parameters.

For an index pair (k, n), let q , (k − 1)N + n, i.e.,
k = d qN e, n = 1 + (q mod N), and relabel the sets {ykn},
{Hkn}, {ckn} as {yq}, {Hq}, {cq} respectively, with q
ranging from 1 to Q = KN . Under hypothesis Hh, there are
h nonzero cq1 , . . . , cqh , and the set of unknown parameters is

Θh = {θ,R1, . . . ,RK , cq1 , . . . , cqh , q1, . . . , qh}. (2)

Thus, the number of unknown parameters is (p + 1)h + C,
with C a constant independent of h. Only θ is of interest, and
the remaining elements of Θh constitute nuisance parameters.

According to the MDL principle [11, 12], one should
choose the hypothesis that minimizes

MDL(h) = − log f(Y ; Θ̂h |Hh) + (p+ 1)
h

2
logQ, (3)

with Y = [ y1 y2 · · · yQ ] the matrix of observations, f the
corresponding pdf, and Θ̂h the MLE of Θh underHh. For the
Gaussian model (1), the pdf underHh, and given Θh, is

f(Y ; Θh |Hh) =

[
K∏
k=1

exp(−Tr{R−1k Ŝk})
(2π)p detRk

]N
2

(4)

where, for k = 1, . . . ,K,

Ŝk ,
1

N

N∑
n=1

(ykn−Hknθ−ckn)(ykn−Hknθ−ckn)T , (5)

and where we are implicitly assuming that ckn = 0 for
(k, n) /∈ {(k1, n1), . . . , (kh, nh)}.

3. CENTRALIZED ESTIMATION

Suppose that all the data {ykn} is available at a processing
center. In order to obtain the MLE under Hh, consider the
partition Θh = Ph ∪ Ch, where

Ph = {θ,R1, . . . ,RK , cq1 , . . . , cqh}, (6)
Ch = {q1, . . . , qh}. (7)

(Alternatively, and using qi = (ki−1)N+ni for i = 1, . . . , h,
we write Ch = {(k1, n1), . . . , (kh, nh)}). Our approach is
based on cyclic optimization: first, the MLE of Ph is found
for a given value of Ch. Then, for the obtained value of Ph,
the MLE of Ch is sought, and the procedure is iterated.

3.1. MLE of Ph

Given Ch, (4) can be readily maximized w.r.t. {ckn}:

ĉkn = ykn −Hknθ, (k, n) ∈ Ch. (8)

For each k = 1, . . . ,K, define now the set

Sk = {n | 1 ≤ n ≤ N and (k, n) /∈ Ch}. (9)

Then, substituting (8) in (5), the matrices Ŝk become

Ŝk ,
1

N

∑
n∈Sk

(ykn −Hknθ)(ykn −Hknθ)T . (10)

From (4), the negative of the log-likelihood function is

− log f ∝ N

2

K∑
k=1

(
log detRk + Tr{R−1k Ŝk}

)
. (11)

Since no structure is imposed on Rk, the values minimizing
(11) are given by R̂k = Ŝk, k = 1, . . . ,K, yielding

− log f ∝ KNp

2
+
N

2

K∑
k=1

log det Ŝk. (12)

Recall now that, for α ∈ R andX(α) ∈ Rp×p,

∂

∂α
log detX(α) = Tr

{
X−1(α)

∂

∂α
X(α)

}
. (13)

Therefore, differentiating (12) w.r.t. θ and taking (10) into
account, after straightforward manipulations it is found that

∇θ

K∑
k=1

log det Ŝk = 0 ⇒[
K∑
k=1

∑
n∈Sk

HT
knŜ

−1
k Hkn

]
θ =

K∑
k=1

∑
n∈Sk

HT
knŜ

−1
k ykn. (14)

Since the Ŝk depend on θ via (10), (14) is a nonlinear equa-
tion in θ, and no closed-form solution is known. Never-
theless, the structure of (14) suggests an iterative approach.
Given an estimate θ̂(t), the matrices Ŝk are computed as in
(10) with θ ← θ̂(t). These are then used in (14), which
becomes linear in θ. The corresponding solution is taken as
θ̂(t+1), and the process is repeated until convergence. The
iteration may be initialized by setting Ŝ−1k = I for all k in
(14), which yields the standard LS estimate for θ̂(1) computed
after leaving out those samples with indices in Ch.

3.2. MLE of Ch

Assume Ph given, and let θ̂ be the corresponding estimate of
θ. Note that finding Ch is equivalent to finding the sets Sk,
k = 1, . . . ,K in (9). In view of (12), one must solve

min
S1,...,SK

K∑
k=1

log det Ŝk s. to
K∑
k=1

|Sk| = KN − h. (15)

This is a combinatorial problem, and thus very hard to solve
by exhaustive search. The following result is inspired by [15]
and suggests a computationally efficient heuristic approach to
approximately solve (15).



Theorem 1. Consider vectors {vkn, 1 ≤ k ≤ K, 1 ≤ n ≤
N} ⊂ Rp, and sets Sk ⊆ {1, . . . , N} such that

∑K
k=1 |Sk| =

H . LetAk =
∑
n∈Sk vknv

T
kn. If detAk 6= 0, define

d2kn = vTknA
−1
k vkn. (16)

Let S ′k, k = 1, . . . ,K be the sets of indices corresponding to
the H smallest values of d2kn, and let Bk =

∑
n∈S′

k
vknv

T
kn.

Then
∑K
k=1 |S ′k| = H , and it holds that

K∑
k=1

log detBk ≤
K∑
k=1

log detAk, (17)

with equality iffBk = Ak, k = 1, . . . ,K.

The proof can be developed along the lines of that of [15,
Th. 1], and is omitted for brevity. In view of Theorem 1, it
is possible to construct a non-negative, non-increasing (hence
convergent) sequence of objective values for (15) as follows.
Set vkn = ykn − Hknθ̂ (residuals). Then, given a candi-
date collection of H = KN − h uncontaminated samples
S(t)1 ∪ · · · ∪ S

(t)
K , construct Ak and compute d2kn as per (16).

Obtain the new sets S(t+1)
1 ,. . . , S(t+1)

K by leaving out the h
samples yielding the largest d2kn values, and iterate. Typi-
cally, convergence is attained after a few steps. For initializa-
tion, one can setA−1k = I for all k, which in the first iteration
leaves out the h samples with largest norm of the residual.

3.3. Cyclic optimization

The above procedures can be applied cyclically as follows.
Let hmax be an upper bound to the number of contaminated
samples. Then for each h = 0, 1, . . . , hmax, one performs:

• Set θ̂[0]h to the LS estimate using all KN observations.

• Set i = 0 and repeat until convergence:

1. Given θ̂[i]h , estimate C[i+1]
h as in Sec. 3.2.

2. Given C[i+1]
h , estimate θ̂[i+1]

h as in Sec. 3.1.

3. Set i← i+ 1.

• Let θ̂h and Ch be the values after convergence. Compute
Ŝk via (10) with θ ← θ̂h and with Sk as in (9).

• Let MDL(h) = N
2

∑K
k=1 log det Ŝk + (p+ 1)h2 logKN .

The estimates are θ̂h? and Ch? , with h? = arg minh MDL(h).

4. DISTRIBUTED ESTIMATION

The methods in Sec. 3 are centralized, in the sense that they
make use of the whole dataset.We now focus on decentralized
schemes in which there is no central processing center and the
data is distributed over the network, i.e., node k only has ac-
cess to its samples {ykn, ∀n}. Nodes can only communicate

with their neighbors, and the network is assumed connected
(there exists a path connecting any two nodes) and undirected
(any pair of neighboring nodes can both talk and listen to each
other). The method proposed below involves a symmetric
weight matrix W ∈ RK×K with elements Wij 6= 0 only
if nodes i and j are neighbors1, and satisfying (see [13])

1TW = 1T , W1 = 1, ρ
(
W − 1

K11T
)
< 1, (18)

with 1 ∈ RK the all-ones vector, and ρ(·) the spectral radius.
The distributed method is iterative in nature, and can be

summarized as follows. Let t be the iteration number. Each
node k keeps a local estimate θ̂(t)k , as well as auxiliary vari-
ables Φ

(t)
k and ψ(t)

k . Using this local estimate θ̂(t)k , it runs the
procedure of Sec. 3.2, particularized to the case K = 1, over
its data {ykn, ∀n}; i.e., with the residuals v(t)kn −Hknθ̂

(t)
k ,

n = 1, . . . , N , the MDL cost is computed for different values
of h using the method from Sec. 3.2. Then, node k obtains a
candidate set of uncontaminated samples S(t)k , by taking the
value of h minimizing this local MDL cost.

The next step is based on the observation that the ma-
trix and vector featuring respectively in the left- and right-
hand side of (14), and which constitute global quantities, are
the summation of local quantities. This suggests the use of
consensus-based techniques in order for the network to iter-
atively compute the global quantities by means of local ex-
changes. First, at each node k the following are computed:

v
(t)
kn = ykn −Hknθ̂

(t)
k , (19)

Ŝ
(t)
k =

1

N

∑
n∈S(t)

k

v
(t)
kn

(
v
(t)
kn

)T
, (20)

M
(t)
k =

∑
n∈S(t)

k

HT
kn

(
Ŝ

(t)
k

)−1
Hkn, (21)

g
(t)
k =

∑
n∈S(t)

k

HT
kn

(
Ŝ

(t)
k

)−1
ykn. (22)

After the information exchange with their neighbors, the
nodes update Φ

(t−1)
k , ψ(t−1)

k as follows:

Φ
(t)
k =

∑
j

Wkj

[
β(t)Φ

(t−1)
j + α(t)M

(t)
j

]
, (23)

ψ
(t)
k =

∑
j

Wkj

[
β(t)ψ

(t−1)
j + α(t)g

(t)
j

]
. (24)

Finally, the local estimate of θ is updated by solving

Φ
(t)
k θ̂

(t+1)
k = ψ

(t)
k . (25)

The quantities to be exchanged are those in brack-
ets in (23)-(24). These updates are inspired by ”consen-
sus+innovations” techniques [14, 16] for distributed estima-
tion. By innovation we mean the new information supplied

1By convention, every node is neighbor to itself.



by the update ofM (t)
j and g(t)j (rather than that brought in by

new samples, as in [14]). The sequences β(t), α(t) are suit-
able time-varying weights for the consensus and innovation
terms, respectively. A possible choice is

α(t) =
1

t
, β(t) = 1− 1

tδ
, 0 < δ < 1, t ≥ 1. (26)

Thus α(t) monotonically decreases to 0 from α(1) = 1,
whereas β(t) monotonically increases to 1 from β(1) = 0.
As a consequence, in the beginning of the iterative process
the innovations term is dominant, and a gradual switch takes
place in order to drive the network toward consensus. A sim-
ple way to initialize the iteration is to have each node k take
θ̂
(1)
k as the standard LS estimate of θ based on its local data2.

5. SIMULATION RESULTS

We considered a network of K = 20 nodes, randomly de-
ployed on a 1 × 1 square, and collecting N = 25 samples
each. Nodes are linked if their distance is less than 0.7, the
weight matrix W was built by the Metropolis rule [17], and
δ = 0.5 was taken in (26). The matricesHkn andR1/2

k were
randomly generated with i.i.d. Gaussian entries in each of 100
Monte Carlo runs. For given {Hkn} and {Rk}, the SNR is

SNR =

∑
k,n ‖Hknθ‖2

N
∑
k Tr{Rk}

≤
∑
k,n ‖Hkn‖2F

N
∑
k Tr{Rk}

‖θ‖2. (27)

For simplicity, the upper bound in (27) is taken as the SNR
in the simulations, and the matrices R1/2

k are properly scaled
at each run to yield the desired value. As performance metric
we consider the Normalized Mean Square Error:

NMSE =
1

K

K∑
k=1

E{‖θ̂(t)k − θ‖2}
‖θ‖2

. (28)

Contamination vectors ckn, with i.i.d. entries drawn from a
uniform distribution in [−500, 500], were randomly added to
the samples with a given probability of occurrence pc. We set
d = 4 and θ = [−0.7172 − 0.0878 0.6414 0.2578 ]T .

Three distributed schemes were tested. First, the decen-
tralized LS algorithm from [17], adapted to the case of multi-
ple samples per sensor. Since this scheme requires knowledge
of the noise covariance matrices, which in our setting is not
available, it was run with the assumption that Rk = I for all
k. The second scheme is a variant of the distributed algorithm
from Sec. 4 in which the nodes are oblivious to the potential
presence of outliers, so they do not run the outlier detection
procedure of Sec. 3.2 on their data. Finally, the complete dis-
tributed scheme of Sec. 4 including outlier detection at each
individual node (taking hmax = 10) is also tested.

2Since β(1) = 0, the initial values Φ(0)
j ,ψ(0)

j in (23)-(24) are irrelevant.
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Fig. 1. NMSE trajectories for the distributed algorithms. 10%
(solid) and 20% (dashed) of outliers in the data.

Results are shown in Fig. 1, together with the NMSE of
the centralized method of Sec. 3 as benchmark. Two sce-
narios were considered: (p = 8,SNR = −5 dB) and (p =
3,SNR = 0 dB). For each setting, two cases were simu-
lated, corresponding to pc = 0.1 and 0.2. The LS algorithm
from [17] performs poorly, due to outliers and noise corre-
lation. Even without outlier detection, the proposed scheme
improves over plain LS since it incorporates estimation of the
unknown noise covariance matrices; nevertheless, the influ-
ence of outliers is seen to be detrimental, more so for smaller
p. By including the outlier detection step at the nodes, per-
formance is significantly improved in both scenarios, getting
close to the benchmark of the centralized method.

6. CONCLUSIONS

We have proposed a consensus-based distributed algorithm
for estimating a parameter vector in a multivariate Gaussian
linear model with unknown noise covariances and contami-
nated by outliers. By regarding outliers as deterministic nui-
sance parameters and advocating the MDL principle to es-
timate their number, only an upper bound to the fraction of
outliers in the data is to be set; in particular, it becomes un-
necessary neither to specify an outlier generation model, nor
to tune a detection threshold or a sparsity-controling regular-
ization parameter, as in other anomaly detection schemes.

One difference between the centralized and distributed
implementations is that the former performs the outlier es-
timation step over the complete dataset, whereas in the latter
each node runs such step on its own data. Although this al-
lows decentralized operation, it entails some performance loss
with respect to the centralized version. Investigating means to
overcome this loss is the object of ongoing research.
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