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Joint NDA Estimation of Carrier Frequency/Phase
and SNR for Linearly Modulated Signals
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Abstract—We consider the problem of joint non-data-aided
(NDA) estimation of carrier frequency and phase offsets, and
the signal and noise powers, from the baud-rate samples of a
linearly modulated signal in Gaussian noise. The Cramér-Rao
lower bound (CRLB) is obtained, showing that, for quadrature-
symmetric constellations, the carrier parameters are decoupled
from signal and noise powers. A joint NDA maximum-likelihood
(ML) estimator is developed, based on the application of the
expectation-maximization (EM) algorithm. Its performance is
close to the CRLB for a wide SNR range.

Index Terms—Carrier offset estimation, SNR estimation,
Cramér-Rao lower bound, maximum-likelihood estimation,
expectation-maximization algorithm.

I. INTRODUCTION

Accurate estimation of carrier frequency and phase offsets
before data detection is a mandatory task in high-speed digital
receivers. Similarly, many advanced communication systems
require knowledge of the signal-to-noise ratio (SNR) at the
receiver side, e. g., in turbo decoding and link adaptation.
Traditionally, these two estimation problems have been consid-
ered separately. In this respect, the Cramér-Rao lower bound
(CRLB) for carrier frequency and phase estimation has been
derived in [1] under the assumption that the signal and noise
powers are known; in addition, many carrier recovery methods
require that gain control be established first, which amounts
to saying that at least the signal power is known. On the
other hand, available results on SNR estimation either assume
perfect carrier recovery [2], [3], or adopt an incoherent (i.e.
envelope-based) approach [4] so as to achieve the necessary
robustness to residual carrier offsets at the price of a degrada-
tion in estimation performance.

In a realistic scenario, however, all four parameters (fre-
quency and phase offsets, signal and noise powers) must be
estimated. In this context, the CRLB for non-data-aided (NDA)
joint estimation of carrier parameters and SNR has been
explored in [5] with respect to B(Q)PSK and MSK waveforms.
We extend this approach to general quadrature-symmetric
constellations, and develop a joint maximum-likelihood (ML)
estimator for carrier frequency/phase and SNR, based on the
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expectation-maximization (EM) algorithm. This SNR estima-
tor can cope with carrier offsets, unlike previous coherent
estimators [3], and makes more efficient use of the data than
envelope-based schemes.

II. SIGNAL MODEL

We assume that a linearly modulated signal is transmitted
through a frequency-flat channel and that the symbol timing
is perfectly recovered by the receiver. The data symbols ck

are independently and equiprobably drawn from an M -ary
constellation C with zero mean and unit variance. The L
received baud-spaced samples rk are affected by additive
noise, magnitude scaling, and carrier offsets:

rk =
√

S ck ej(2πkν+θ) +
√

N wk, (1)

where k ∈ K = {k0, . . . , k0 + L − 1}, ν is the frequency
error (normalized to the symbol rate, and small enough so that
intersymbol interference can be neglected), θ is the phase error,
and S and N are respectively the signal and noise powers. The
noise process {wk} is zero mean, white circular Gaussian with
unit variance; hence, the SNR is given by ρ

.= S/N .

III. CRAMÉR-RAO LOWER BOUND

Let r be the vector of observations and u =
(u1, u2, u3, u4) = (ν, θ, ρ, N) the parameter vector to be
estimated. The samples rk are conditionally Gaussian, and
thus the related probability density function (pdf) is given
by f(rk|u, c) = 1

πN exp{− 1
N |rk − √

ρN c ej(2πkν+θ)|2}.
Due to statistical independence, the joint pdf develops as
f(r|u) =

∏
k∈K f(rk|u), where

f(rk|u) =
1
M

∑
c∈C

f(rk|u, c)

=
1

πN
e−|rk|2/N 1

M

∑
c∈C

e−ρ|c|2

× exp
{

2
√

ρ

N
Re

[
rkc∗e−j(2πkν+θ)

]}
.(2)

The CRLB on the variance of any unbiased estimate of u i is
given by the i-th diagonal element of the inverse of the Fisher
information matrix (FIM) I(u), whose elements are defined
as [6, Ch. 3]

Iij(u) .= Er

[
∂Λ(r|u)

∂ui

∂Λ(r|u)
∂uj

]
, (3)

where Λ(r|u) .= log f(r|u) is the log-likelihood function
(LLF) of the parameters, and Er[·] denotes expectation with
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respect to f(r|u). Then the following result holds (see the
Appendix for the proof):

Lemma 1: Suppose that the constellation C has quadrature
symmetry, i.e., if c ∈ C, then −c, c∗ and −c∗ belong to C as
well. Then the FIM is block diagonal as follows: I13(u) =
I14(u) = I23(u) = I24(u) = 0. In addition, with the choice
k0 = −(L − 1)/2, then I12(u) = 0 as well.

Note that quadrature symmetry is satisfied for most practical
constellations. This result implies that the parameter sets {ν},
{θ} and {ρ, N} are decoupled, i. e., the CRLB for any of these
sets is the same, no matter if the other two are regarded as
known or unknown. These bounds have been obtained in [1]
for the carrier offset parameters (assuming ρ, N known) and
in [2] for the SNR (assuming ν, θ known):

CRLBν =
3FM (ρ)

2π2L(L2 − 1)ρ
, (4)

CRLBθ =
FM (ρ)
2Lρ

, (5)

CRLBρ =
(2ρ + ρ2)FN (ρ)

L
. (6)

The NDA factors FM (ρ) and FN (ρ), derived in [1] and [2]
respectively, are only functions of the constellation C and the
true SNR; they quantify the loss with respect to the data-aided
(DA) case. Both factors are larger than unity, approaching
this limit asymptotically as ρ → ∞. With the exception of
MSK and B(Q)PSK schemes, for which analytical expressions
exist [5], FM (ρ) and FN (ρ) must be numerically evaluated.
For square QAM constellations, an efficient method (involving
only one-dimensional integrals) for computing FN (ρ) is given
in [7]. As a remark, the choice of a symmetric set K not
only decouples the frequency and phase parameters, but also
minimizes the CRLB for the phase [5].

Fig. 1 shows the CRLB (6) for SNR estimation (normalized
to the true value ρ2 and scaled by L) for 16-QAM and
QPSK constellations, together with the corresponding bounds
for envelope-based (EVB) estimators restricted to use only
the magnitudes {|rk|} of the observations [4]. Asymptotically
for high SNR, the CRLB for NDA EVB estimators is 3 dB
above the corresponding CRLB for NDA I-Q based estimators,
which in turn coincides with the DA CRLB in this region.
These observations clearly motivate the search for schemes
that jointly estimate the SNR and the carrier offset parameters.

IV. ML ESTIMATION BASED ON THE EM ITERATION

Lacking closed-form expressions, ML estimates have to be
obtained by numerical methods. Among these, iterative gradi-
ent schemes are sensitive to stepsize tuning, whereas second-
order schemes, like e.g. Newton’s method, require costly
evaluations of higher-order partial derivatives of the LLF 1. On
the other hand, NDA scenarios motivate the application of the
EM algorithm [8], [9]. NDA SNR estimates based on the EM
method have been previously reported in [3] (I-Q based, re-
quiring previous carrier offset correction) and in [4] (envelope-
based). Here we present an EM-based joint estimator of the

1Another means to reduce the complexity of Newton’s method is the method
of scoring, which will not be pursued here.
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Fig. 1. Normalized Cramér-Rao lower bounds for SNR estimation (scaled
by observation length L).

SNR and the carrier offset parameters. Let c be the unknown
vector of data symbols, so that we may consider r and (r, c) as
incomplete and complete set of observables, respectively. For
convenience, let v .= (ν, θ, S, N) be the unknown parameter
vector, and v̂(n) = (ν̂(n), θ̂(n), Ŝ(n), N̂ (n)) be the estimate on
v at iteration n. In the expectation step of the EM scheme
we must compute λ(v|v̂(n)) .= Ec[log f(r|v, c) | v̂(n), r],
where Ec[·] denotes expectation with respect to the transmitted
symbols. Observe that

log f(r|v, c) = −L logπN − 1
N

∑
k∈K

{
|rk|2 + S|ck|2

− 2
√

SRe
[
r∗kckej(2πkν+θ)

]}
. (7)

Therefore, taking conditional expectations with respect to the
ck’s in (7), one obtains

λ(v|v̂(n))
L

= − logπN− 1
N

(
M2 − 2

√
SB(n)(ν, θ) + SA(n)

)
(8)

where Mp
.= 1

L

∑
k∈K |rk|p denotes the p-th sample moment

of the observations, and

A(n) =
1
L

∑
k∈K

ξ
(n)
k , (9)

B(n)(ν, θ) =
1
L

∑
k∈K

Re
[
r∗kη

(n)
k ej(2πkν+θ)

]
, (10)

with η
(n)
k and ξ

(n)
k as a posteriori mean and mean-squared

values of the k-th symbol:

η
(n)
k

.=
∑
ci∈C

P
(n)
ik ci, (11)

ξ
(n)
k

.=
∑
ci∈C

P
(n)
ik |ci|2. (12)

P
(n)
ik is the related a posteriori probability, which by Bayes’

theorem is given as

P
(n)
ik

.= Pr(ci| v̂(n), rk) =
f(rk| v̂(n), ci)Pr(ci)

f(rk| v̂(n))
. (13)

Assuming a priori equiprobable symbols, neither Pr(c i) = 1
M

nor f(rk| v̂(n)) depend on index i; thus, they can be replaced
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by a normalization factor μk so that P
(n)
ik = μkf(rk|v̂(n), ci),

with μk such that
∑

ci∈C P
(n)
ik = 1. Note that (11) corresponds

to a soft decision on the k-th transmitted symbol.
In the maximization step, one must find v̂(n+1) =

arg maxv λ(v| v̂(n)). This results in

ν̂(n+1) = arg max
ν

∣∣∣∣∣
∑
k∈K

r∗kη
(n)
k ej2πkν

∣∣∣∣∣ , (14)

θ̂(n+1) = − arg

[∑
k∈K

r∗kη
(n)
k ej2πkν̂(n+1)

]
, (15)

Ŝ(n+1) =
1

[A(n)]2

∣∣∣∣∣ 1
L

∑
k∈K

r∗kη
(n)
k ej2πkν̂(n+1)

∣∣∣∣∣
2

, (16)

N̂ (n+1) = M2 − A(n)Ŝ(n+1). (17)

A standard means to obtain ν̂ (n+1) is to perform a qL-
point FFT of the sequence {r∗

kη
(n)
k , k ∈ K} and then

apply parabolic interpolation around the maximum of this FFT
(this is the approach used in Section V, with q = 3). The
estimates (14) – (17) are used to compute the a posteriori
probabilities P

(n+1)
ik for the next cycle. The process is repeated

until a pre-specified number of iterations nmax is reached; the
final SNR estimate is then given by ρ̂ = Ŝ(nmax)/N̂ (nmax).
In terms of computational cost, obtaining n̂u(n+1) takes
O(qL log2 qL) real multiplications, where the rest of steps re-
quire approximately (4M +10)L multiplications per iteration.
The number of iterations required for convergence depends
on the modulation scheme and the SNR; noisy scenarios with
dense constellations result in slower convergence.

V. NUMERICAL RESULTS

We present results obtained with QPSK and 16-QAM via
Monte Carlo simulations with ν = 0.03, θ = 18◦ and
L = 512. The EM joint estimator is initialized as follows.
The M2M4 estimates [10] of the signal and noise powers
are taken as starting point: Ŝ(0) =

√
(2M2

2 − M4)/(2 − g4)
(where g4

.= E[|ck|4]), and N̂ (0) = M2 − Ŝ(0). The initial
frequency estimate ν̂ (0) is taken as the point at which the
L-point FFT of the sequence {|rk|4, k ∈ K} attains its
largest magnitude. Finally, the initial phase estimate is taken

as θ̂(0) = − 1
4 arg

[∑
k∈K

(
rke−j2πkν̂(0)

)4
]

.

Fig. 2 shows the mean square error of SNR estimates
(normalized by ρ2), as well as the normalized CRLBs for
DA and NDA estimation [2], [10]. The performance of the
estimator is fairly close to the theoretical limit, departing only
at very low SNR values.

The performance of phase and frequency estimates is shown
in Figs. 3 and 4 together with the corresponding CRLBs. Note
that there exist ambiguities in the estimation of the carrier
offsets due to the quadrature symmetry of the constellations
and the lack of training symbols: only phases and frequencies
respectively in the intervals θ ∈ [−45◦, 45◦] and ν ∈ [− 1

8 , 1
8 ]

are blindly identifiable.
As usually the case with NDA carrier estimates, a threshold

effect is observed. The optimization problem from which the
frequency estimate is obtained is prone to exhibiting local
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Fig. 2. SNR estimator performance and CRLBs (L = 512).
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Fig. 3. Carrier phase estimator performance and CRLBs (L = 512).

maxima far from the exact frequency value. When the SNR
drops below some critical value, these ouliers may overtake
the “true” maximum, resulting in a sharp increase of the
estimation variance. Note that a “false” frequency estimate will
result in a meaningless phase estimate as well. In fact, in the
very low SNR region, θ̂ and ν̂ approximately follow uniform
distributions in their respective ranges. The threshold SNR is
higher for 16-QAM than for QPSK, as expected. From Fig. 2
it is seen, however, that the SNR estimator remains close to
its CRLB even for SNR values below these thresholds. This
robustness is likely to be a consequence of the parameter sets
{ν, θ} and {S, N} being decoupled, as detailed in Section III.

VI. CONCLUSIONS

Joint NDA estimation of carrier frequency and phase offsets,
together with that of signal and noise powers, has been
investigated for linearly modulated signals. The Cramér-Rao
lower bound for this problem was derived, showing that the
carrier parameters are decoupled from the power parameters
for quadrature-symmetric constellations. In order to obtain the
joint ML estimates, the EM algorithm, which computes soft
decisions of the transmitted symbols as a byproduct, has been
applied. By suitably modifying the corresponding a priori
and a posteriori probabilities, the EM-based estimator can
be straightforwardly adapted to the case in which training
symbols are present in the received data packet.
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gθ(zk) = 2Ak(N)
√

ρ

N

∑
c∈H

e−ρ|c|2Im[c∗zk]Sk(ρ, N), (18)

gν(zk) = 4πk Ak(N)
√

ρ

N

∑
c∈H

e−ρ|c|2Im[c∗zk]Sk(ρ, N) = 2πk gθ(zk), (19)

gρ(zk) = Ak(N)
∑
c∈H

e−ρ|c|2
{

Re[c∗zk]√
ρN

Sk(ρ, N) − |c|2Ck(ρ, N)
}

, (20)

gN (zk) = Ak(N)
∑
c∈H

e−ρ|c|2
{(

− 1
N

+
|zk|2
N2

)
Ck(ρ, N) −

√
ρ

N3
Re[c∗zk]Sk(ρ, N)

}
, (21)
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Fig. 4. Carrier frequency estimator performance and CRLBs (L = 512).

APPENDIX

PROOF OF LEMMA 1

Conditioned on u = (u1, u2, u3, u4) = (ν, θ, ρ, N), the
observations rk are independent, so that after some straight-
forward algebra the elements of the FIM can be expressed
as

Iij(u) =
∑
k∈K

∫
C

∂f(rk |u)
∂ui

∂f(rk |u)
∂uj

1
f(rk |u)

drk, (22)

where C denotes the complex plane. With zk
.=

rk e−j(2πkν+θ), the pdf in (2) can be rewritten in a more
convenient form as

g(zk) .= f(rk |u) = Ak(N)
∑
c∈H

e−ρ|c|2Ck(ρ, N), (23)

where Ak(N) .= 2
πMN e−|zk|2/N , Ck(ρ, N) .=

cosh(2
√

ρ/N Re[c∗zk]), and H is the subset of C comprising
the symbols in the right (or left) complex semiplane. The
partial derivatives gui(zk) .= ∂g(zk)/∂ui required in (22)
are straightforwardly computed as (18) – (21) placed on top
of this page, where Sk(ρ, N) .= sinh(2

√
ρ/N Re[c∗zk]).

From (23) – (21) and the quadrant symmetry of C, it is
easily verified that g(z) and its partial derivatives satisfy the
following properties:

g(z) = g(−z) = g(z∗) = g(−z∗), (24)

gui(z) = gui(−z), for i ∈ {1, 2, 3, 4}, (25)

gui(z
∗) =

{ −gui(z), for i ∈ {1, 2},
gui(z), for i ∈ {3, 4}. (26)

Now let hij(zk) .= gui(zk)guj (zk)/g(zk). Then the symmetry
properties (24) – (26) imply that h ij(−z) = hij(z) for all
i, j ∈ {1, 2, 3, 4}, whereas hij(z∗) = −hij(z) if i ∈ {1, 2}
and j ∈ {3, 4}. Therefore,

Iij(u) =
∑
k∈K

∫
C

hij(zk) dzk

=
∑
k∈K

∫
C1

[hij(zk) + hij(−zk) + hij(z∗k) + hij(−z∗k)] dzk

= 0 if i ∈ {1, 2} and j ∈ {3, 4}, (27)

where C1 is the first quadrant of the complex plane. Finally,
the fact that ν and θ are uncoupled for k0 = −(L − 1)/2
follows immediately from

I12(u) =
∑
k∈K

∫
C1

h12(zk) dzk

=
(L−1)/2∑

k=−(L−1)/2

2πk

∫
C1

g2
θ(z)
g(z)

dz = 0. (28)
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