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Abstract

This paper presents an acoustic local positioning system (ALPS) suitable for indoor positioning

of portable devices such as smartphones or tablets, based on the transmission of high frequency

CDMA-coded signals from a fixed network of beacons. The main novelty of the proposed ALPS is

its capability to mitigate the effects of multipath propagation by performing an accurate estimation

of the Line-of-Sight Time-of-Flights (LOS-TOF) through the Matching Pursuit algorithm. Signal

detection, multipath cancellation and positioning estimation all take place within the portable de-

vice, which provides a graphical representation of the updated position in less than a second. The

performance of the Matching Pursuit algorithm is analyzed in a real scenario and the results show

that the proposed method is capable to retrieve the multipath-free System Availability under strong

multipath conditions with SNR levels as low as 0 dB.

Keywords: Acoustic Local Positioning, Multipath Cancellation, CDMA-based Coding, Portable

Devices

1. Introduction

The availability and computing power of smart devices such as phones and tablets have in-

creased steadily in the last few years. These devices are also equipped with physical sensors such

as an inertial motion unit, magnetic compass, light sensor, etc., that permit a better interaction of

the user with the physical world. Of particular importance are Location Based Services (LBS)
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which are based upon knowledge of the users position in their environment. In today’s common

usage, LBS such as navigation guidance, restaurant finders, tourist guides, etc., are provided to the

user as applications installed in their devices. Outdoor location is obtained by the device through

the GPS receiver; however, it is well known that, due to the attenuation effects of roofs and walls

as well as multipath propagation, GPS has very low accuracy or cannot fix a position at all in

indoor environments, where much human activity takes place [1].

In order to extend the location availability to indoor environments, many technological possi-

bilities have been proposed [2, 3]. However, most works that use a portable device as the mobile

node of the positioning system can be classified into three main categories depending on their

base technology, each one with its advantages and drawbacks with respect to the other two. The

first category is formed by those systems that use the built-in accelerometer and magnetometer

to perform Pedestrian Dead Reckoning (PDR) [4, 5, 6]. These systems do not need an external

infrastructure, but they provide low precision location due to their inherent cumulative error. By

using the accelerometer as a pedometer and the magnetometer as a heading provider compass,

they typically achieve a precision of about 10% of the total traveled distance, although this value

has been improved by combining the readings of the magnetometer with those of a gyroscope [7]

or introducing Map Matching techniques [8].

In the second category we find all those systems based on the measurement of a Radio Fre-

quency Received Signal Strength (RF-RSS). Unlike the previous case, these systems need an ex-

ternal infrastructure to generate the RF signals, but they can take advantage from already deployed

WPAN [9, 10, 11] or WLAN [12, 13, 14, 15] transceivers. Due to the complex propagation of

radio frequency signals indoors, RSS measurements are subject to large variability in this type of

environments, resulting in typical positioning errors between one and a few meters. This poor

accuracy has been improved by fusing RSS measurements with the information provided by the

accelerometer [16, 17], both the accelerometer and the magnetometer [18, 19], the accelerometer

and the gyroscope [20] or even the built-in barometer [21].

Finally, the third category, into which this work can be classified, comprises all those systems

that measure the Time-of-Flight (TOF) of acoustic signals. Acoustic Local Positioning Systems

(ALPS) can achieve centimetric precision thanks to the relatively low propagation speed of sound
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in air, and they can also be easily implemented in portable devices since most of them are equipped

with audio recording hardware. Systems as Beep [22], and a later evolution of this work [23], pro-

pose a centralized approach where a Personal Digital Assistant (PDA) emits short ultrasonic pulses

that are detected by an array of six microphones, connected through a WLAN with a central pro-

cess unit. These systems achieved positioning accuracies below 70 cm in 90% of cases, improving

to 40 cm in positions away from walls and corners. A similar system is proposed in [24, 25],

where a smartphone is used to emit short 21.5 kHz ultrasonic pulses detected by an array of four

microphones. This centralized system achieved errors below 10 cm by minimizing a positioning

cost function. A different approach is proposed in the BeepBeep ranging system [26], where the

authors present a two-way sensing technique to estimate the relative distance between a PDA and

a smartphone. By measuring the TOF of chirp signals with frequencies between 2 and 6 kHz, this

system achieved positioning errors of 5 cm for distances below 4 m. Later, several works bene-

fited from the BeepBeep ranging technique to develop different relative indoor positioning systems

among smartphones and tablets [27, 28, 29], reporting average positioning errors between 10 and

30 cm.

The main disadvantage of all these systems is their limited update rate, due to the need to avoid

signal collisions, and robustness against in-band noise. The current signal processing capabilities

of smartphones and tablets [30] allow for more efficient CDMA-based systems, in which all signals

can be simultaneously emitted with low energy. The advantages of this multiple access scheme are

well known and have been already exploited in the design of general-purpose ALPS [31, 32, 33,

34]. However, the use of longer and simultaneous emissions aggravates the pernicious effect of

phenomena such as multipath propagation. Most of the previous works do not include multipath-

affected areas in their experimental test regions, and there are only a few authors that openly admit

a clear deterioration of their system performance in these critical areas [23, 26, 27]. Very recently,

some works have appeared in the field of ALPS which pay special attention to the development

of multipath cancellation strategies. This is, for example, the case of [35], where the authors

propose a TDMA-based system that performs the cyclic emission of pseudo-noise to locate a

smart portable device. This system discards the arrival of reflected echoes by making use of sliding

windows based on the a priori known features of the cyclic emission. Also, in [36] an iterative Peak
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Matching algorithm is proposed to cancel the effect of multipath in the auto-calibration process of

a wireless network of acoustic sensors that perform the emission of Maximum length sequences.

Once the direct path TOFs have been identified with the help of this algorithm, all ranges between

sensors are estimated by combining multidimensional scaling (MDS) with the above mentioned

BeepBeep technique.

This work presents a CDMA-based ALPS, which provides indoor localization for portable

devices that acquire the coded signals simultaneously emitted from a set of fixed beacons, and

perform all the necessary computations without the participation of any external processing unit.

An essential feature of this ALPS is its design for CDMA-positioning, including the acoustic

signal processing for robust TOF estimation and a multipath compensation technique that notably

improves the system performance in those areas affected by this phenomenon. This technique

is based on the Matching Pursuit algorithm, which has been proven to accurately detect direct

transmission path signals which are highly attenuated in CDMA-based systems [37, 38]. This

capability has been recently investigated by the authors in the context of a broadband ALPS [39],

a preliminary work where the image method proposed by Allen and Berkley [40] was used to

model the acoustic behavior of a small room and simulate the system performance. This current

work presents the materialization in a practical ALPS of the model described in [39], an objective

that entails the following challenges:

• Designing the emission architecture, including beacons, driving electronics and positioning

signals.

• Developing a positioning application for the portable device, including a signal detection

stage, a Gauss-Newton positioning algorithm and the graphical representation of the results

through a user-friendly interface.

• Incorporating the Matching Pursuit algorithm into this positioning application, adapting the

programming strategies to the particularities of the portable device processor.

• Testing the system in real scenario, under strong multipath conditions and with different

levels of noise, to validate the design.
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The rest of the paper is organized as follows. Section 2 presents a complete description of the

acoustic positioning system, including design aspects, physical properties of the transducers and

electronics, and positioning strategy and signals. In Section 3, the effect of multipath propagation

on the performance of an ALPS is described, and a solution based on the Matching Pursuit channel

estimation algorithm is proposed. Section 4 describes the practical implementation of this solution

in the portable device and Section 5 contains the experimental evaluation of the positioning system,

paying special attention to its performance with respect to multipath cancellation. Finally, the main

conclusions of this work are drawn and discussed in Section 6.

2. Description of the Acoustic Local Positioning System
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Figure 1: Schematic representation of the acoustic positioning system proposed in this work. Beacon coordinates are

measured with ±1 mm accuracy by using a laser rangefinder (Bosch GLM80).

The general arrangement of the acoustic positioning system proposed in this work is shown
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in Fig. 1a. Four acoustic emitting beacons are placed in different positions inside a box-shaped

room, whose dimensions can also be seen in Fig. 1b. These beacons are close to the wall which

is farthest from the entrance and with their acoustic axis perpendicular to it, thus allowing optimal

signal reception to those users facing this wall. This configuration is particularly useful for certain

types of LBS such as those designed to provide information to the visitors of a museum whose

exhibits are shown in a single wall (as long as there are no occlusions of the direct propagation

path). Beacons final emplacement inside the beacon’s location volume has been determined by

conducting a metahuristic search to minimize the Position Dilution of Precision (PDOP) in the

entire positioning area. A mean PDOP value of 5.07 has been obtained with the configuration

shown in Fig. 1b, which corresponds to a class 3 or Good rating according to [41].

The beacons are programmed to simultaneously emit encoded acoustic signals that are detected

by the receiver (a portable device) carried by the user. This device processes the received signal,

determines the TOF from each beacon (within an unknown time base), and computes an estimate

of its position. Figure 2 shows the acoustic impulse responses of the room in the center of the

positioning area for every beacon, obtained by means of the MLS technique [42]. The presence of

strong multipath propagation is evident in this figure, where direct paths, early reflections and late-

field reverberations can be clearly identified. A 60 dB reverberation time of T60 ≈ 1s is obtained

from these responses.

The following subsections provide detailed information about the most relevant aspects of this

ALPS, namely, the emitting and receiving transducers with their corresponding electronics, the

acoustic positioning signals and the positioning strategy.

2.1. Emitter and receiver architecture

The emission architecture is easily illustrated with the help of Fig. 3. The coded signals are

synthesized using a Virtex 5 FPGA-based board, which has been programmed to simultaneously

generate pseudoramdom emissions every 35 ms. These digital signals are fed into a couple of

double digital-to-analog converter modules (Digilent PmodDA2), and the analog outputs are high-

pass filtered to remove the DC offset. Finally, these signals are carried into a pair of two-channel

audio amplifiers (Philips TDA8920BTH), powered with a DC source to drive a set of four high-
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Figure 2: Acoustic impulse responses of the room in the center of the positioning area for every beacon.

frequency speakers (Visaton CP13). Figures 4a, 4b and 4c show respectively a picture of the

speaker, its acoustic directivity pattern and the frequency response, as provided by the manufac-

turer.

As stated before, the receiver module of the ALPS proposed in this work is a portable device

(iPad Air 2). The acoustic signal composed by the positioning codes is detected by the built-in

microphone of this device and then processed by its internal processor (A8X). Fig. 5 shows the

frequency response of this microphone, experimentally obtained in our laboratory (blue dots), and

that of an IIR filter of order 50 designed to simulate the LPS behavior prior to the experimental

study (red line).

2.2. Positioning signals

In order to identify each beacon individually, their positioning signals are encoded with a

particular, Binary-Phase Shift Keying (BPSK) modulated, pseudorandom Kasami code. These

codes improve the cross-correlation properties of Gold sequences (and therefore that of Maximum

Length sequences) at the expense of reducing the number of sequences with these properties from
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Figure 3: Connection diagram of the emission architecture of the ALPS.
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Figure 4: a) Picture, b) directivity pattern, and c) frequency response of the CP13 Visaton speaker, as provided by the

manufacturer.

2N + 1 to 2N/2, with L = 2N − 1 being the length of the sequences. Thus, they represent a good

choice if the number of sequences needed is not too large, and for this reason they have been com-

monly used in the design of broadband general-purpose ALPS [34, 43]. Although these correlation
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Figure 5: Frequency response of the receiver module (iPad microphone) experimentally obtained in our laboratory.

properties have been improved by the use of Interference Free Window Sequences [44], these latter

impose a taught constraint on the geometrical distribution of the emitters that ultimately deterio-

rates the system PDOP. Also, recent works have demonstrated a better Doppler-shift resilience of

Kasami codes against ideal correlation codes such as Loosely Synchronous and Complementary

Set of Sequences [45].

Next, we address the choice of three key parameters: carrier frequency, bit duration and length

of the positioning codes. The carrier frequency must lie within the combined bandwidth of the

emitting and the receiving transducers, extending from 2 to 20 kHz approximately. This frequency

should be high enough as to avoid causing excessive disturbance while maintaining a reasonably

wide directivity. A value of Fc = 16 kHz has been finally chosen as a good compromise between

both constraints. The bit interval, i.e, the number of carrier cycles per bit (NC) determines the

signal bandwidth, but also the spatial resolution of the system which is roughly given by c/(Fc×

NC), c being the speed of sound in air. We opted for NC = 1 to keep this resolution as low as

possible (≈ 2 cm), causing 35% of the emitted energy to be filtered away by the receiver because

of the relatively wide signal bandwidth. Nevertheless, despite this significant loss of energy, the

correlation properties of the filtered codes are not severely degraded as will be seen below.

Regarding the Kasami code length, we considered 63-bit and 255-bit signals for the emissions.
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Although longer codes provide larger correlation peaks, this is also true for the secondary echoes

and therefore there is not actual improvement in the process of discriminating between the main

and the secondary peaks, as far as all of them arise above the noise level. The main advantage

of using longer codes is that less energy is necessary to obtain similar performance, but the price

to pay is having to process longer data streams. Since a reduced computational load is a primary

objective of the proposed system to achieve real-time operation, we finally settled for the relatively

short 63-bit Kasami codes.

To further study the effect of the limited bandwidth on the ranging signals, we emitted a coded

signal from a single beacon and received it with the iPad placed at a distance of 0.7 m over its

acoustic axis. Figures 6a and 6b depict the emitted pattern and the received signal respectively,

clearly showing the filtering effects caused by the reduced receiver’s bandwidth. The aperiodic

correlation of the received signal with the emitted code is shown in Fig. 6c, along with the ideal

correlation. The degradation in the correlation shape, especially evidenced in the ringing after

the first correlation peak, is caused by the limited bandwidth of the acoustic channel as well as

the imperfect spatial alignment of emitter and receiver [46]. Finally, Fig. 6d shows the cross-

correlation of the ideal and actual received signal with the pseudo-orthogonal code assigned to a

different beacon.

2.3. Estimation of the receiver’s position

Once the processor produces valid TOFs from the respective beacons (although referred to

an unknown time base), hyperbolic multilateration is used by the receiver to estimate its position

[47]. This technique involves measuring the Time-Difference-of-Flight (TDOF) between the first

detected signal, emitted by the nearest beacon (BN) and the other signals detected subsequently,

emitted by the remaining beacons. The locus of the points that measure the same TDOF between

the nearest beacon and a second one (B1) define a hyperboloid whose focal points are those bea-

cons. A second hyperboloid intersecting the first one can be obtained from the TDOF between the

closest beacon and a third one (B2). With the help of a fourth beacon (B3), an additional hyper-

boloid intersecting the previous two in a single point can be obtained to fully determine the user’s

position. Fig. 7 shows a 2D representation of the multilateration technique.
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Figure 6: Emitted a) and received b) signals, from only one beacon. Ideal versus real autocorrelation c) and ideal

versus real crosscorrelation d) of the emitted codes.

The user’s position can be algebraically obtained either by solving a system of nonlinear equa-

tions with four beacons or a system of linearized equations obtained with the participation of
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Figure 7: Planar representation of the multilateration technique.

an extra beacon. Nevertheless, the presence of errors in the differential distances measurements

has as a consequence that the hyperboloids do not longer intersect in a single point, and the po-

sition must be resolved as a non-linear least squares problem. Our proposal makes use of the

Gauss-Newton optimization algorithm to iteratively resolve this position, providing high robust-

ness without adding any new beacon at the expense of increasing the computational complex-

ity. If we define the differential distance between beacon bi = (xi,yi,zi) and the nearest beacon

bn = (xn,yn,zn) from the estimated user’s position p = (x,y,z) as,

∆̂ri(p) = ‖bi−p‖−‖bn−p‖ for i = 1,2,3. (1)

and the same distances obtained from the measured TDOFs as,

∆ri = c ·TDOFi, (2)

then we can build the objective function to be minimized as,

F(p) =
3

∑
i=1

[ fi(p)]2, (3)

where fi(p) = ∆̂ri(p)−∆ri.
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Approximate solutions to the minimization of (3) can be obtained by different ways, as dis-

cussed in [48], in order to initialize the Gauss-Newton iteration. However, when the dimensions

of the room are not too large, a computationally cheaper option is to simply take the center of

the room as the initial position estimate p0 = (x0,y0,z0). Starting from this position, subsequent

estimates of this parameter can be obtained by means of the recursive relation:

pk+1 = pk−Jf(pk)
−1f(pk), (4)

where f(pk) = ( f1, f2, f3) and Jf(pk) is the Jacobian matrix of f with respect to pk, i.e.,

Jf(pk) =



∂ f1

∂x
∂ f1

∂y
∂ f1

∂ z

∂ f2

∂x
∂ f2

∂y
∂ f2

∂ z

∂ f3

∂x
∂ f3

∂y
∂ f3

∂ z


. (5)

Since our positioning system operates without time synchronization and uses exactly the min-

imum required number of beacons, TOF outliers cannot be detected by redundancy techniques,

such as the parity space [49]. Instead, we have implemented a straightforward method based in a

temporal filter which discards TOF values which deviate largely from previously determined ones.

Although simple, this technique permits to eliminate most instances of outliers in the computed

position.

3. Multipath cancellation algorithm

Multipath propagation is a main cause of degradation in the performance of broadband ALPS.

The effect of this phenomenon is critical near room walls and corners, where the strongly reflected

signals interfere with the Line-of-Sight (LOS) emissions and deteriorate the ideal correlation prop-

erties of these emissions. As a direct consequence of this deterioration, the largest correlation

peaks obtained by matched filtering at the receiver do not always correspond to the instant of

arrival of the LOS emissions.
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3.1. Sparse channel estimation

The problem described above can be overcome by performing a precise estimation of the chan-

nel impulse response. Note that the time of occurrence of the first coefficient in this estimated

response represents the desired TOF, since in an acoustic LPS a Line-of-Sight path between the

beacons and the receiver must always be assured. We consider first the case of a single channel

composed by one beacon and one receiver. In this situation, when the received signal r(t) is dig-

itized at a sampling rate Fs = 1/Ts and if we assume a multipath spread of Ns×Ts seconds, this

signal can be represented by,

r = Eh+n, (6)

where r = [r[Ns], r[Ns +1], · · · ,r[Ns + p−1]]T ∈ Rp×1 is a vector containing p samples of the re-

ceived signal, h= [h1, h2, · · · , hNs]
T ∈RNs×1 is the channel coefficient vector, n= [n[1], n[2], · · · , n[p]]T ∈

Rp×1 is a vector of zero-mean white Gaussian noise samples and,

E =



e[Ns] e[Ns−1] · · · e[1]

e[Ns +1] e[Ns] · · · e[2]

e[Ns +2] e[Ns +1] · · · e[3]
...

... · · · ...

e[Ns + p−1] e[Ns + p−2] · · · e[p]


∈ Rp×Ns,

is the characteristic signal matrix containing samples e[n] of the beacon’s emitted signal. As it is

well known, the maximum likelihood (ML) estimate for the channel coefficients is the solution to

the following minimization problem,

ĥ = argmin
h

{
‖r−Eh‖2

}
, (7)

whose optimal solution is given by the Least Squares (LS) estimate

ĥ = (EHE)−1EHr. (8)
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Note that the pseudo-inverse of the characteristic signal matrix (EHE)−1EH can be precom-

puted to facilitate the ML channel estimation defined by (8), since this matrix is known in advance.

However, considering that the number of samples in an ALPS channel response is typically of

several thousands, it is clear that the ML solution is not a feasible implementation for a real-time

operating system. This situation is even more problematic if multiple channels are to be estimated

jointly.

Here we explore the Matching Pursuit (MP) channel estimation algorithm as an alternative

to the ML solution. This algorithm provides a low complexity approximation to the ML solu-

tion for sparse channels [38], i.e., channels where the number of coefficients with non-negligible

magnitude is much lower than the total number of coefficients. The MP algorithm minimizes (7)

iteratively, one estimated channel coefficient ĥq j at a time, using a greedy approach in which the

detected path index q j and ĥq j are selected such that the decrease in (7) at each stage j is the largest

possible [37]. That is, multipath signal components are estimated via successive interference can-

cellation. For j = 1,2, . . . ,N f ,

q j = argmax
i 6=q1,...,q j−1

{∣∣EH
i r j
∣∣2

‖Ei‖2

}
, (9)

and

ĥq j =
EH

q j
r j∥∥Eq j

∥∥2 , (10)

with

r j+1 = r j−
EH

q j
r jEq j∥∥Eq j

∥∥2 , (11)

where Ei represents the i− th column vector of matrix E and r1 = r. The algorithm concludes

after stage j = N f . Eq. (6) can be easily extended to account for L simultaneous channels as,

r =
L

∑
l=1

Elhl +n, (12)
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where hl is the l− th channel coefficient vector and El is the characteristic signal matrix of the

l− th beacon. In this case, every new iteration of the MP algorithm computes Eqs. (9) and (10)

L times, and only the largest coefficient ĥl
q j

is stored. Next, the newly estimated signal ĥl
q j

El
q j

is

substracted from the current residue r j to obtain the updated signal r j+1 as indicated by (11).

3.2. LOS-TOFs calculation

Once we have seen that the TOF of the Line-of-Sight emission can be derived from a precise

estimation of the channel impulse response, it is necessary to determine the number of coefficients

to be calculated by the MP algorithm. Clearly, in order to minimize the computational load of the

MP algorithm this number must be as low as possible but, on the other hand, it should be large

enough as to be useful in a wide variety of different situations. The simulation analysis conducted

by the authors in [39] confirmed that a total number of four coefficients (one per channel) is enough

to estimate the LOS-TOFs in the trivial case of very weak multipath interference. This situation is

depicted in Fig. 8, where it can be seen that the four channels LOS-TOFs are estimated with errors

below 0.002 ms. However, this is not possible with very strong multipath interference that may

cause the appearance of larger coefficients in the impulse response than those associated with the

Line-of-Sight paths. In this case, the results show that a minimum of three coefficients estimated

per channel (for a total minimum of 12 coefficients) can assure a correct estimation of the desired

TOFs. This new situation is depicted in Fig. 9. The problem now is that, if a large number

of coefficients is calculated in the case of weak multipath interference or not interference at all,

some spurious coefficients may appear before the Line-of-Sight path coefficient. This problem

can be easily solved by establishing a detection threshold below which all calculated coefficients

are discarded as LOS-TOF candidates. Fig. 10 represents the same situation as that in Fig. 8, but

when the MP algorithm is forced to calculate a minimum of three coefficients per channel. As

can be seen, in this case, a detection threshold chosen as half the value of the largest coefficient

estimated in each channel (green dashed line), is above all spurious coefficients thus allowing the

correct estimation of the LOS-TOFs.

To summarize, the proposed method makes use of the multichannel MP algorithm to first

calculate at least three coefficients of every channel impulse response, and then estimates the TOF
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of the Line-of-Sight path by detecting the time of occurrence of the first coefficient whose value is

above half the value of the largest coefficient estimated in each channel.
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Figure 8: Impulsive response (black line), estimated coefficients (blue circles) and estimated LOS-TOF (red cross)

under weak multipath interference conditions. The MP algorithm was programmed to calculate a total number of four

coefficients, finding one per channel in these conditions.

4. Real-time implementation in the portable device

The implementation of the ALPS reception module has been performed on a last generation

iPad (iPad Air 2), which is equipped with 2 GB of LPDDR3-type RAM and a 32-bit processor

(model APL1012). This processor, called A8X, features a triple-core CPU at 1.5 GHz (Cyclone

2nd generation) with an ARMv8-A instructions set. All processes of signal acquisition, code de-

tection, multipath cancellation, Gauss-Newton positioning and displaying of the results have been

programmed in an Objective-C application with a total size of 1.1 MB, where approximately 1.3%

(14 kB) corresponds to the source code of the MP algorithm. Programming all these processes in

the iPad required an optimization effort to guarantee real-time operation, and the final app takes

a maximum time of 223 ms to update the position without the MP algorithm and 674 ms when
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Figure 9: Impulsive response (black line), estimated coefficients (blue circles) and estimated LOS-TOF (red cross)

under strong multipath interference conditions. The MP algorithm was programmed to calculate a minimum of three

coefficients per channel.

this algorithm is activated. The operating block diagram showing all the processes involved in the

positioning app is represented in Fig. 11.

Digital acquisition of an audio signal with an iOS device requires the configuration of the

Audio Queue Services, which is a C programming interface in Core Audio Toolbox framework,

available through The Mac Developer Library [50]. The audio signal acquisition rate was set to

96 kHz, thus giving a sampling / carrier frequency ratio of Fs/Fc = 6. The internal buffer size was

set to 5556 samples, so the iPad’s acquisition system takes 58 ms to complete its filling before

the program saves these data from the buffer to a pointer in memory. The length of the signal

acquisition window corresponds to the total length of two consecutive coded signal emissions

(code+gap+code), which guarantees that this signal will be entirely captured inside the buffer at

least once. Next, these samples are processed by means of the vDSP API which provides a wide

family of DSP mathematical functions.

Finally, after all the signal processing tasks leading to an estimated position, this position is

displayed to the user through a graphical interface designed for this purpose. Fig. 12 shows an
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and estimated LOS-TOF (red cross) under weak multipath interference conditions. The MP

algorithm was programmed to calculate a minimum of three coefficients per channel.
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Figure 11: Block diagram of the whole iOS positioning app.

snapshot of this interface where we can see a map of the laboratory with the beacons location

(black squares), a grid of test points (black dots) and the user’s estimated position (red dot). This

interface also incorporates Start/Stop and Exit buttons to manage the application, as well as a text

box to introduce the current temperature that is used to adjust the sound speed value.

5. Experimental Results

5.1. System characterization

Prior to analyzing the performance of the algorithm described in section 3, an experimental

study has been conducted to characterize the proposed ALPS in terms of two parameters, namely,

the Mean Positioning Error (MPE) and the System Availability (SA), the latter defined as the

percentage of measurements whose error is below the outliers threshold (50 cm).

First, the system performance in different locations of the positioning area has been studied by

fixing the portable device at an height of 1.1 m in each one of the 49 test points represented in Fig.

12, where it has been configured to continuously perform 200 location computations. The results

of this study are shown in Fig. 13, where the SA is represented as a length in the z direction and the

MPE is depicted using a color code. Hence, a good result (high SA with low MPE) corresponds to

a long greenish bar, whereas a bad result (low SA with high MPE) is represented by a short reddish
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Figure 12: Screenshot of the user interface.

bar. As can be seen in this figure, the lowest values of SA (equal or very close to 0) are obtained in

those tests points near the the wall with x = 0 coordinate, where strong echoes from the emissions

of beacons B1 and B3 overlap with the direct emissions from all beacons. The largest positioning

errors are obtained in the boundaries of the three walls. As expected, the best results are obtained

in the center of the positioning area with SA above 90% and MPE below 8 cm.

Next, we have investigated the influence of the receiver’s orientation on the system perfor-

mance by fixing the iPad in the center of the positioning area with a precision tripod that allows

for an accurate control of its pitch and yaw angles. Fig. 14a shows a picture of this tripod with

the iPad, and Figs. 14 b and c show the results of this analysis for the SA and MPE respectively.

As can bee seen in Fig. 14 b, the SA is very high with pitch angles between −10◦ and 15◦ and

with yaw angles between −20◦ and 5◦, and it drops abruptly out of these ranges. The asymmetric

behavior observed with respect to the yaw angle is a consequence of the beacon’s distribution in

this ALPS, since the emission from B1 is lost for yaw angles above 5◦. Clearly, this behavior
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Figure 13: Mean positioning error (MSE) and System Availability (SA) of the system in the 49 test points of the

positioning area.

could be easily improved by shifting the emplacement of B1 to a more centered position, at the

expense of deteriorating the mean PDOP in the positioning area. Fig. 14 c shows that the lowest

mean errors (ideal orientation) are obtained with pitch angles between 10◦ and 15◦ and yaw angles

between −5◦ and 0◦. The orientation of the iPad during the testing of performance in different

locations (Fig. 13) was within these ranges.

Finally, it is also interesting to characterize the system behavior in terms of robustness against

noise. Note that the emitted signals have most part of their energy in the high frequency audible

range, so this system is intended to operate at very low SNR to make these emissions imperceptible

to the human ear. In practice, the emission transients can be slightly heard, though, since they cause

an increment of 7 dBA (from 40 to 47 dBA) in the A-weighted room noise level. To experimentally
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Figure 14: Influence of the receiver’s orientation on the system performance: a) Picture of the precision tripod with

the iPad, b) Dependence of SA with pitch and yaw angles and c) Dependence of MPE with these angles.

investigate this robustness, an additional beacon has been placed at coordinates (x = 1.760, y =

4.4837, z = 1.160) emitting Gaussian white noise with selectable power level. The receiver has

been again fixed in the center of the positioning area with ideal orientation, and 200 locations

computations has been performed in these conditions. The error distribution of these computations

has been described in terms of their cumulative distribution function (CDF). Fig. 15 shows the
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results obtained when the SNR is selected to be 12, 9, 6, 3, and 0 dBs, this SNR being defined as,

SNR = 10 · log
Ps

Pne +Pna
, (13)

where Ps is the power of the emitted positioning signals, Pne is the power of the emitted noise, and

Pna is the power of the ambient noise measured in the absence of any emission. It is clear from Fig.

15 that noise increases the measurements dispersion, thus smoothing the CDFs slope to a lower

value the higher the noise level.
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Figure 15: CDF of the positioning error in the absence of multipath at different SNR levels.

5.2. Performance of the multipath cancellation algorithm

Once the behavior of the proposed ALPS has been characterized, a set of experiments have

been conducted to evaluate the performance improvements associated with the use of the matching

pursuit algorithm. Fig. 16 shows the SA and the MPE in the same 49 test points studied in Fig.

13, but when applying the multipath cancellation algorithm described in section 3. As can be seen,

this algorithm retrieves a high percentage of measurements lost in the vicinity of the walls, and it

also improves the MPE of these measurements, thus making the system useful in practice in the

whole positioning area. Note that the largest errors are observed near to the wall which is further

from the beacons location volume (y = 0), an expected result that is a consequence of the larger

Dilution of Precision characterizing this region.

To further study the capability of the proposed algorithm to mitigate the effect of multipath

propagation, a strong multipath has been forced in the center of the positioning area by placing
24
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Figure 16: Mean positioning error (MPE) and System Availability (SA) of the system in the 49 test points of the

positioning area after applying the MP algorithm.

a specular reflector (a cardboard box) at a distance of 30 cm from a receiver located in this ideal

position. This distance is far below the product emission duration × sound speed = 1.35 m, a

condition that ensures the reflected signals to overlap with the LOS receptions. Fig. 17 shows the

results obtained in this scenario before and after applying the multipath cancellation algorithm.

In the absence of the MP algorithm (dashed lines) the SA drops below 20%, with more than

80% of outliers. Note that a low number of precise measurements does not necessarily mean an

inoperative system. It just indicates the need for an additional processing of the results to achieve

a reliable final positioning. Needless to say, a deeper analysis of the error statistics is necessary to

design the most adequate processing. In this case, and due to the presence of a permanent reflector,

most outliers concentrate in the surroundings of a fixed erroneous position, which would make it
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difficult for the system to discriminate between these and the correct measurements through the

temporal filter described in Section 2.3. As can be seen in Fig. 17, this situation is solved by

applying the proposed MP algorithm (solid line), which makes the SA to raise up to 91%, with a

maximum error below 9.9 cm.
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Figure 17: CDF of the positioning error under strong multipath, before (dashed) and after (solid) applying the MP

algorithm.

The same study has been conducted with different levels of noise, generated as described in

the previous section. As can be seen in Fig. 18, without the MP algorithm, all CDFs drop to a SA

value below 20% (dashed lines). This figure also shows the results obtained when applying the

MP algorithm for every SNR situation (solid lines). By comparing the solid lines in Figs. 15 and

18 we can see that the algorithm is retrieving most measurements with an error below 12 cm, and

above this value, only measurements with very large errors or even divergences of the positioning

algorithm are obtained. These valid measurements can be used to characterize the system accuracy

through the mean and standard deviation of their error as summarized in Table 1, from where a

system accuracy slightly below 8 cm can be inferred.

6. Conclusions

This work has presented an acoustic local positioning system (ALPS) suitable for indoor po-

sitioning of portable devices such as smartphones or tablet computers, and based on the transmis-

sion of high frequency CDMA-coded signals from a fixed beacon network to a mobile device.
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Figure 18: CDF of the positioning error under strong multipath with (solid) and without (dashed) the MP algorithm

at different SNR levels.

SNR (dB) SA (%) MPE (cm) std (cm)

12 91 7.8 0.7

9 73 7.1 1.6

6 69 7.8 1.4

3 50 7.3 1.8

0 29 6.5 1.6

Table 1: Positioning error results at different SNR levels: System Availability (SA), Mean Positioning Error (MPE)

and standard deviation of this error.

The most remarkable novelty of the proposed ALPS is its capability to mitigate the effects of

multipath propagation by performing an accurate estimation of the Line-of-Sight Time-of-Flights

(LOS-TOF). This estimation makes use of the Matching Pursuit algorithm to calculate a minimum

of three coefficients from the channel impulse responses, and obtains the desired LOS-TOF as

the time of occurrence of the first coefficient whose value is above half the value of the largest

coefficient estimated in each channel.

All processes involved in the positioning task, namely, signal detection, multipath cancellation,

Gauss-Newton positioning and graphical representation of the results, have been implemented on

a last generation iOS device (iPad Air 2) to operate at real time with a minimum position update
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rate of 1.5 Hz.

The system performance has been characterized in terms of System Availability, i.e., the total

percentage of valid measurements, and the Mean Positioning Error of these measurements. The

dependence of this performance with receiver’s location, receiver’s orientation and level of noise

has been analyzed in detail. Finally, the improvements associated with the use of the proposed

multipath cancellation algorithm have been experimentally studied both in the boundaries of the

positioning area and also by forcing a strong multipath in the center of this area. In the first case,

results show that the algorithm is capable to retrieve a high percentage of measurements lost in

the vicinity of the walls, thus making the system useful in practice in the whole positioning area.

In the second case, it has been demonstrated that the proposed method is capable to retrieve the

original System Availability under strong multipath condition with SNR levels ranging from 12 to

0 dB.

Further study should be conducted to investigate the performance of the proposed ALPS in

other environments with different sizes, levels of noise and reverberation time.
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[45] J. A. Paredes, T. Aguilera, F. J. Aĺvarez, J. Lozano, J. Morera, Analysis of doppler effect on the pulse compres-

sion of different codes emitted by an ultrasonic LPS, Sensors 11 (2011) 10765–10784.

[46] J. G. Proakis, Digital Communications, 4th Edition, McGraw-Hill, 2000.

[47] W. H. Foy, Position-Location Solutions by Taylor-Series Estimation, IEEE Trans. Aerospace and Electronic

Systems AES-12 (2) (1976) 187–194.

[48] P. Stoica, J. Li, Source localization from range-difference measurements, IEEE Signal Processing Magazine

31



23 (69) (2006) 63–65.

[49] M. A. Sturza, Navigation System Integrity Monitoring using Redudant Meaurements, Journal of the Institute of

Navigation 35 (4) (1988) 69–87.

[50] https://developer.apple.com/xcode/ (2014).

32


