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In several wireless sensor network applications the availability of accurate nodes’ location information

is essential to make collected data meaningful. In this context, estimating the positions of all unknown-

located nodes of the network based on noisy distance-related measurements (usually referred to as

localization) generally embodies a non-convex optimization problem, which is further exacerbated by

the fact that the network may not be uniquely localizable, especially when its connectivity degree is not

sufficiently high. In order to efficiently tackle this problem, we propose a novel two-objective

localization approach based on the combination of the harmony search (HS) algorithm and a local

search procedure. Moreover, some connectivity-based geometrical constraints are defined and

exploited to limit the areas in which sensor nodes can be located. The proposed method is tested

with different network configurations and compared, in terms of normalized localization error and

three multi-objective quality indicators, with a state-of-the-art metaheuristic localization scheme

based on the Pareto archived evolution strategy (PAES). The results show that the proposed approach

achieves considerable accuracies and, in the majority of the scenarios, outperforms PAES.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The increasing attention attracted by the so-called wireless
sensor networks (WSNs) during the last decade stems from their
capacity to efficiently sense physical phenomena, without the
need of any wired link and at a reduced per-node computational
complexity Akyildiz et al. (2002). In addition to the classical
monitoring applications for which WSNs were initially targeted,
their proliferation and the value of their sensed information has
ignited the interest in context-aware services and applications, in
which the knowledge of nodes’ location becomes essential so as
to provide valuable spatio-temporal information on the physical
world and its dynamics. Hence, in such applications it is essential
to associate the captured data with the location of the node at
hand in order to make such sensed data meaningful (Hu and
Evans, 2004). Indeed, the importance of localization is exempli-
fied by a large number of applications such as vehicle and animal
tracking, habitat monitoring, precision agriculture, location-based
routing (Ko and Vaidya, 2000), industrial sensing, infrastructure
ll rights reserved.

: þ34 91 885 6699.

o-Sanz).
security and control of machinery, all of which inherently rely on
location information of the constituent nodes of the WSNs.

From a theoretical point of view, effective location awareness
in WSNs might be based on installing a global positioning system
(GPS) on each compounding node of the network. However, the
size constraints, the limited energy budget and the reduced cost
imposed on such nodes make this solution unfeasible in practice.
Another drawback of GPS-based schemes lies on the fact that they
are not suitable for indoor and underground deployments,
because of the lack of satellite coverage in these areas. Conse-
quently, effective, yet also efficient node localization in WSNs is
still considered to be a challenging paradigm in the scientific
community, which has unchained an upsurge of alternative
approaches to this problem.

In the majority of such alternative schemes, it is assumed that
only a fraction of the nodes of the network, referred to as anchor

nodes, know their coordinates either by resorting to the aforemen-
tioned locally installed GPS devices, or by being placed at pre-
defined geographical locations. The remaining nodes (denoted as
non-anchor nodes) are able to infer their positions based on (1) the
information on the location of the anchor nodes, (2) connectivity-
based information, and (3) noisy pairwise distance estimations
obtained through distance-ranging techniques, e.g. received signal
strength (RSS) (Alippi and Vanini, 2006), time difference of arrival
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Fig. 1. An example of the flip ambiguity problem.
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(TDoA) (Savvides et al., 2001) or angle of arrival (AoA) (Niculescu
and Nath, 2003). In this work we will focus on RSS based
techniques, for which the maximum likelihood (ML) estimation is
the most natural approach to tackle the localization problem.
However, the ML formulation of the problem, i.e. locating the
nodes from a set of pairwise measured distances, results in a
multivariable non-convex optimization problem (Aspnes et al.,
2004) for which different methods have been proposed in the
literature, namely multidimensional scaling (MDS) (Ji and Zha,
2004; Costa et al., 2006), semi-definite programming (SDP) (Biswas
et al., 2006) and stochastic optimization (Kannan et al., 2005,
2006). MDS, which is widely applied in data analysis, hinges on
obtaining the relative coordinates of each node based on a starting
distance matrix. On the other hand, SDP relaxes the original ML
problem formulation in order to obtain an approximate solution at
a reduced computational effort (Biswas et al., 2006; Tseng, 2007).
Since the relaxation may increase the estimation error (Wang et al.,
2008), additional refinements, such as gradient descent search
procedures (Liang et al., 2004), are often employed to refine the
initial solutions obtained by SDP (Biswas and Ye, 2004). Finally, the
third class of techniques considers heuristic optimization algo-
rithms to efficiently solve the localization problem, such as
simulated annealing (SA) (Kannan et al., 2006) or genetic algo-
rithms (Vecchio et al., 2012). In this paper we concentrate on this
last set by deriving a connectivity- and distance-based heuristic
localization technique.

The localization problem is generally further complicated by
the non-uniqueness of the nodes’ location in the network. Indeed,
when tackled from a graph-theoretic perspective, the problem of
finding a unique graph realization compatible with the inter-node
distance measurements (i.e. the so-called network localizability

problem) has gained momentum in the last years (Jackson and
Jordan, 2005; Yang and Liu, 2011). Dense connectivity is
obviously a principal requirement for a network to be localizable,
even though a necessary and sufficient condition for the network
localizability still represents an open research issue. The lack of
localizability may lead to the so-called flip ambiguity phenom-
enon, which generally occurs due to the almost collinear place-
ment of the neighbors of a particular sensor node. In this case,
although the node location is flipped with respect to the virtual
line connecting its neighboring nodes, the estimated topology is
still compatible with the inter-node distance measurements. This
effect can propagate catastrophically to subsequent iterations
affecting, in turn, the location estimates of other nodes of the
network. Therefore, it is of utmost importance to identify possibly
flipped nodes, and to perform some specific processing during the
localization task in order to avoid, or at least alleviate, its effect on
subsequent location estimates. The flip ambiguity phenomenon is
exemplified in Fig. 1 where, since sensor nodes A, B, G and H are
nearly collinear, node F can be reflected to position F0, while
satisfying both distance and connectivity constraints. The effects
of the flip in the estimated position of F can lead nodes C, D and E
to be estimated at location C0,D0 and E0, at their turn.

So far a number of heuristic localization approaches have speci-
fically incorporated strategies for efficiently dealing with flip ambi-
guities in sparse networks. For instance, the authors in Kannan et al.
(2005) proposed a two-phased simulated annealing (SA) approach
tackling the localization problem in presence of the flip ambiguity
phenomenon. During the first phase, SA is used to obtain an accurate
estimate of the node locations by minimizing the squared error
between the estimated and the measured inter-node distances while,
in the second phase, an additional error term is added to the cost
function when the estimated node location violates the connectivity
constraints imposed by the network topology. Likewise, the same
authors in Kannan et al. (2010) propose a robust criterion to detect
flip ambiguities and enhance the reliability of the estimations by
rejecting flipped nodes from being included in the localization
process. More recently, a two-objective evolutionary algorithm based
on the Pareto archived evolution strategy (PAES) is presented in
Vecchio et al. (2012). There, the first objective function to be
minimized, denoted as CF, is given by the squared error between
the estimated and the measured inter-node distances. The second
objective function, referred to as CV, is defined as the sum of
neighborhood violations in the candidate topology. The obtained
results show that the multi-objective treatment of the problem
outperforms SA in terms of normalized location error (NLE) for a
wide set of network topologies.

This paper advances over the state of the art by proposing a novel
two-objective heuristic localization algorithm based on the combina-
tion of the Harmony Search algorithm with a novel local search
procedure that alleviates the effects of the flip ambiguity phenom-
enon. Similar to the PAES-based counterpart, each candidate solution
is evaluated in terms of both localization accuracy (CF) and con-
nectivity constraint violation (CV). Our proposal, hereafter referred to
as non-dominated sorting harmony search (NSHS), resorts to the
same ranking and crowding estimation operators used by the non-
dominated genetic algorithm-II (NSGA-II, Deb et al., 2002) in order to
achieve a wide and uniformly covered Pareto-optimal front approx-
imation. The obtained simulation results show that our approach
outperforms the multi-objective PAES-based approach proposed in
Vecchio et al. (in press) for a number of different network topologies
and performance metrics.

The rest of the paper is structured as follows: in Section 2 the
node localization problem is mathematically formulated, whereas
Section 3 delves into the proposed NSHS multi-objective algo-
rithm. Section 4 presents the simulation framework and discusses
the obtained experimental results in terms of normalized locali-
zation error (NLE) and different unary multi-objective quality
indicators, i.e. the hypervolume, the unary-E and the R2 indicators.
Finally, concluding remarks are discussed in Section 5.
2. Problem statement

The node localization problem can be mathematically defined
by considering a WSN composed by a set of n nodes uniformly



1 The RSR operator does not belong to the original HS implementation, but

allows for an improved control of the trade-off between the explorative and

exploitative behavior of the algorithm.
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deployed in T �R2, out of which the first mon nodes represent
the set of anchor nodes, whose coordinates pi ¼ ðxi,yiÞA
T ðiAf1, . . . ,mgÞ are fixed and assumed to be known a priori for
the localization algorithm. The problem consists of estimating the
positions p̂i ¼ ðx̂i,ŷiÞ, 8iAfmþ1, . . . ,ng of the remaining n�m non-
anchor nodes, assuming that any two sensor nodes in the
connectivity range of each other, say i and j, can estimate
their inter-node distance dij by resorting to any of the measure-
ment techniques listed in Section 1. In the following, dij will be
modeled as

dij ¼
rij if ði,jÞAf1, . . . ,mg � f1, . . . ,mg,

rijþeij otherwise,

(
ð1Þ

where rij9Jpi�pjJ represents the actual (real) distance between
node i and j (J � J denotes the Euclidean norm), and eij stands for
the measurement error.

We assume that each node knows which nodes it can com-
municate with. Let us define the n�n binary connectivity matrix
C, such that cij ¼ 1 if sensor nodes i and j are within the
connectivity range of each other, i.e. if rijrR, where R represents
the radius of the circular coverage area of every node of the
network. Hence, we can define the set of neighbors of node i as

N i9fjAf1, . . . ,ng, ja i : rijrRg ð2Þ

and its complementary set N i, composed by those nodes placed
outside the coverage area of node i. Observe that the positions of
anchor nodes and the connectivity range determine the regions in
which each non-anchor node can (or cannot) be located. This
information can be exploited in the initialization phase and
during the localization process to further refine the position
estimates of the non-anchor nodes.

The goal of the localization algorithm is to estimate the
positions of all non-anchor nodes as accurately as possible given
R, C and fpig

m
i ¼ 1. To this purpose, two different, though related,

objective functions to be minimized can be defined: CF (cost
function) and CV (constraint violation). In detail, the first objec-
tive function CF is defined as

CF9
Xn

i ¼ mþ1

X
jAN i

ðdij�d̂ijÞ
2

0
@

1
A, ð3Þ

where dij represent the measured inter-node distances given in
expression (1), while d̂ij represent the estimated distances
between nodes i and j and computed as

d̂ij9
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx̂i�x̂jÞ

2
þðŷi�ŷjÞ

2
q

: ð4Þ

Therefore, CF represents the squared error between the estimated
and the measured inter-node distances of those nodes that are in
the connectivity range of each others. The second objective
function, CV, takes into account the number of connectivity
neighborhood constraints violated by the candidate topology. In
words, a node j fulfilling jAN i for a given i causes a violation of
the connectivity constraints given by C if its estimated position
lied outside the transmission range of node i or, equivalently, if
d̂ijoR provided that jAN i. Thus, CV can be formally defined as

CV9
Xn

i ¼ 1

Xn

j ¼ 1
d̂ ij 4 R

cijþ
Xn

j ¼ 1
d̂ ij r R

ð1�cijÞ

0
BB@

1
CCA: ð5Þ

Thus, both CF and CF leads to the multi-objective formulation of
the localization problem

min
fp̂ ig

n
i ¼ mþ 1

½CF,CV� s:t: p̂i9ðx̂i,ŷiÞAT: ð6Þ
Finally, in order to a posteriori evaluate the accuracy of an
estimated topology we use the normalized localization error (NLE)
defined as

NLE9
100

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ðn�mÞ

Xn

i ¼ mþ1

Jpi�p̂ iJ
2

vuut , ½%�, ð7Þ

where NLE¼0% corresponds to the case of a perfect estimation.
3. The proposed NSHS algorithm

The bi-objective minimization problem posed in expression (6)
will be tackled by means of a multi-objective formulation of the
so-called harmony search (HS) algorithm (Geem et al., 2001). HS
is a relatively new population-based metaheuristics that imitates
the music improvisation process when seeking the most harmo-
nious melody. Since its first publication in 2001, it has been
widely applied for solving several optimization problems in
different application fields such as vehicle routing (Geem et al.,
2005), multicast routing (Forsati et al., 2008), multiuser detection
(Zhang and Hanzo, 2009; Gil-Lopez et al., 2009), engineering
design (Liao, 2010), radio resource allocation (Del Ser et al., 2012,
2011) and the access node location problem (Landa-Torres et al.,
2011). A thorough review of the HS algorithm, its comparison
with other metaheuristic approaches and a number of related
applications can be found in Geem (2009). However, to the best of
our knowledge, no previous work has been reported in the
scientific community dealing with the application of multi-
objective HS to the node localization problem.

Given its population-based nature, HS relies on a set of
candidate solutions fHðkÞgKk ¼ 1 (harmony memory), which are
iteratively refined by means of intelligent combination and
mutation operators applied note-wise. Adopting the classical
notation of the related literature, in the following we will refer
to a possible candidate set HðkÞ as harmony or melody, whereas a
note denotes any of its compounding entries hl(k), with
kAf1, . . . ,Kg and lAf1, . . . ,Lg. In our optimization framework, each
melody represents the positions of all the nodes of the network,
thus the harmony memory can be redefined as HðkÞ9fp̂ iðkÞg

n
i ¼ 1,

with k¼1,y,K. The first m notes (i.e. i¼1,y,m 8k) are pairs of real
numbers representing the (x,y) coordinates of the anchor nodes
(which are assumed to be known a priori), whereas the remaining
n�m pairs (i¼mþ1,y,n) correspond to the estimated coordi-
nates of the non-anchor nodes of the network. Thus, the impro-
visation process of the proposed HS algorithm will be only applied
to the estimated positions of the non-anchor nodes (i.e. the
second part of the melody or, equivalently, fp̂ iðkÞg

n
i ¼ mþ1), which

can be located in the areas defined by the topological constraints
described in the previous section.

Briefly, the improvisation procedure is controlled by three
different stochastic operators, each driven by its corresponding
probabilistic parameter: the harmony memory considering rate

(HMCR), the pitch adjusting rate (PAR) and the random selection

rate (RSR)1. After the improvisation procedure, the value of the
two objective functions (CF and CV) are separately computed for
each improvised harmony and the best K harmonies (with respect
to the fitness values and the spread, the latter measured in terms
of crowding distance as in Deb et al., 2002) are kept in the
harmony memory for the next iteration. This procedure is
repeated until a fixed number of iterations IHS is completed.



D. Manjarres et al. / Engineering Applications of Artificial Intelligence 26 (2013) 669–676672
The flow diagram of the proposed NSHS algorithm is depicted
in Fig. 2, and consists of five steps:
A.
Fig
den

diff
The initialization process is executed only at the first iteration.
At this step, the initial K harmonies are arranged by fixing
8k¼ 1, . . . ,K the first m notes to the actual positions of the
anchor-nodes (i.e. fhiðkÞg

m
i ¼ 1 ¼ fp̂ig

m
i ¼ 19fx̂iðkÞ,ŷiðkÞg

m
i ¼ 1

fxi,yig
m
i ¼ 1) and by generating the remaining n�m notes at

random, within the topological constraints imposed on the
corresponding n�m non-anchor nodes.
B.
 During the improvisation procedure, the stochastic operators
are sequentially applied to each note of the harmonies so as to
produce the new set of K improvised harmonies (i.e. candidate
positions). In detail,
1. HMCRA ½0;1� sets the probability that the new value for a

certain note fx̂iðkÞ,ŷiðkÞÞg is drawn uniformly from the
values of this same note in all the other K�1 melodies.
. 2.
otes

eren
Flow diagram of the proposed NSHS algorithm. Note that a� b (mod c)

arithmetic congruence (i.e., a and b are congruent modulo c if the

ce (a�b) is an integer multiple of c).
2. PARA ½0;1� refers to the probability that the new value for a
given note ðx̂

k
i ,ŷ

k
i Þ is taken randomly from its coverage area

considering the geometrical constraints posed by anchor
nodes for the non-anchor node at hand. Specifically, when
operating on ðx̂

k
i ,ŷ

k
i Þ, y points (i.e. (x,y) coordinates) are

drawn uniformly at random from the intersection of the
circular coverage areas corresponding to every anchor node
j such that cij ¼ 1 ðjAf1, . . . ,mgÞ. The note ðx̂

k
i ,ŷ

k
i Þ is then

substituted by the geometrically closest point among the
picked y coordinates.

3. The random selection rate, RSRA ½0;1�, acts in a similar
manner to the PAR procedure. However, in this case the
note at hand is replaced with any point picked at random
from the same intersection as above (rather than choosing
the closest point in terms of Euclidean norm).
C.
 Additionally, a local search procedure is performed every I LS

iterations. The details of this refinement procedure will be
given in Section 3.1.
D.
 At each iteration the generated harmonies are evaluated in
terms of CF and CV (expression (3) and expression (5),
respectively). Then, as explained in Kalyanmoy et al. (2000),
each current and improvised harmony is associated with a
rank equal to its non-dominance level (1 for the best level,
2 for the next-best, and so on). Then, within each front, a
specific crowding measure representing the sum of distances
to the closest harmony along each objective is used to define
an ordering among the harmonies: in order to cover the overall
objective space, harmonies with large crowding distance are
preferred to harmonies with small crowding distance. Thus,
the harmony memory is filled by selecting the best K harmo-
nies (considering first the ordering among the fronts and then
among the harmonies).
E.
 If the iteration counter nIteroIHS, the algorithm iterates by
setting nIter¼nIterþ1 and returning to step B. Otherwise, the
algorithm stops and the set of harmonies belonging to the first
non-dominance level represents the Pareto front approximation.

3.1. Local search procedure

The proposed local search procedure is triggered every I LS

iterations, at the end of the improvisation procedure. When
invoked, it is executed on each non-anchor node i (1) lying
outside the coverage area of any anchor node; and (2) whose
any of its neighbors in the estimated topology violates the
connectivity constraints imposed by the i-th row of C. Fig. 3
depicts an example of the application of the local search proce-
dure to the estimated node 10 in a simplistic scenario. In this
setup, anchor nodes A, B and C are represented by crosses (� ),
whereas real and estimated positions of non-anchor nodes are
denoted with circles ðJÞ and squares (&), respectively. Real and
estimated positions of node 1 (to which the local search proce-
dure is applied) are highlighted by filling the marks in black (�
and ’, respectively). In this setup, the real connectivity matrix C
and the estimated connectivity matrix C0 are given in Fig. 4. Note
that C is provided as an input parameter to the algorithm,
whereas C0 can be inferred for every candidate topology.

The fact that non-anchor node 10 lies outside the coverage
range of any anchor node and has some false neighbors implies a
violation in the connectivity constraints imposed by C (i.e. 70 and
80). Hence, 10 can be selected by the local search procedure to be
refined. The next step is to identify the group of nodes to be
moved together with node 10, so as to avoid generating new
connectivity violations. Specifically, this group will be composed
by selecting those non-anchor nodes that are not inside the
coverage range of any anchor node, but are real neighbors of



Fig. 3. An example of scenario obtained at the end of the improvisation process, (a) before and (b) after the local search procedure.

Fig. 4. The real connectivity matrix C and the estimated connectivity matrix C0 for the local search example described in Section 3.1.
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node 1. Thus, in this specific case, the group will be composed by
nodes 40 and 50. On the other hand, those anchor nodes connected
to any actual neighbors of node 1 (nodes A, B and C) define the
region in which node 10 can be located. This region comprises the
intersection of the annuli with inner and outer radii R and 2R

respectively, centered in the selected anchor nodes, under the
condition that the number of false neighbors decreases. Finally,
the group of nodes 40 and 50 are randomly located inside the
coverage region of node 10 (see Fig. 3).
4. Numerical results

In order to assess the performance of the proposed multi-
objective NSHS algorithm in tackling the node localization pro-
blem in WSNs, a comparison study between the NSHS and the
PAES-based approaches has been performed based on extensive
Monte Carlo simulations. In these simulations the localization
technique proposed in Vecchio et al. (in press) will be used as a
reference for the comparison, as it was shown to be more effective
with respect to the Simulated Annealing-based counterpart in
Kannan et al. (2006).

4.1. The PAES-based approach to the node localization problem

The PAES algorithm was introduced in Knowles and Corne
(2000) and probably represents the simplest possible non-trivial
algorithm capable of generating diverse solutions in the
Pareto optimal set. Further, PAES is characterized by a lower
computational complexity than traditional niching methods
(Knowles and Corne, 2000; Coello et al., 2006). Briefly, it consists
of three steps: (1) generation of a candidate solution c; (2) muta-
tion of c so as to produce a new candidate solution m; and
(3) replacement of c with m if m dominates c, or inclusion of m in
the archive of non-dominated solutions if it is not dominated by
any solution already included in the archive. The archive of non-
dominated solutions is divided into a number of equally sized
regions for which a crowding degree value is determined by
counting the solutions associated to each region. This approach
prioritizes solutions associated with scarcely crowded regions, so
as to increase the diversity in the Pareto front. The algorithm
stops after a maximum number of iterations, and the final archive
of non-dominated solutions represents the Pareto front approx-
imation. For more details on PAES the reader should refer to
Knowles and Corne (2000) and Coello et al. (2006).

Regarding the specific PAES-based approach to the node
localization problem presented in Vecchio et al. (in press), two
ad-hoc mutation operators, namely the node mutation and the
neighborhood mutation operators, are used. The first mutation
operator performs a uniform-like mutation with probability PM, in
which the mutated position of a randomly selected non-anchor
node is generated within its topological constraints. If not applied,
then the second mutation operator is executed. It also mutates
the position of a given non-anchor node considering its topolo-
gical constraints, but it further applies the same translation to the
neighbors of the node with a certain probability PN. In addition to
the topological constraints imposed by the connectivity matrix C,
the PAES-based approach in Vecchio et al. (in press) defines a new



Table 1
Parameter setup of the compared techniques.

PAES NSHS

Archive size: 50 K: 50

Number of regions: 25 HMCR: 0.9

PM: 0.9 PAR: 0.01

PN: 0.3 RSR: 0.01

IP : 100 000 IHS : 2000

Fig. 5. Box plots of the three unary quality indicators obtained by PAES and NSHS

(P and HS, respectively) in the 12 network topologies. (a) Hypervolume indicator.

(b) Unary-E indicator. (c) R2 indicator.
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type of node which is second-level neighbor to at least one anchor
node. Thus, its position is forced to lie within the intersection of
the annuli with inner and outer radii R and 2R, respectively, and
centered in the anchor nodes which it is second-level neighbor to.

4.2. Simulation setup

The simulation framework consists of 12 different network
topologies built by uniformly placing n¼200 nodes in
T9½0;1� � ½0;1�. Out of these nodes, 10% are assumed to be the
anchor nodes (i.e. m¼20), while the remaining n�m¼180 nodes
represent the non-anchor nodes to be localized. Moreover, three
different connectivity ranges RAf0:13,0:15,0:17g are considered
to model different degrees of network sparsity. We assume that
the inter-node distances are estimated from RSS measurements,
which are generally affected by log-normal shadowing (Liu et al.,
1998). Therefore, the errors eij follow a zero-mean distribution
with variance s2. Note that the variance of eij in expression (1) is
given by l2r2

ij where, without loss of generality, l is set to 0.1 in all
the scenarios.

Table 1 summarizes the values of the parameters used in the
execution of both algorithms.2 It should be pointed out that a fair
comparison in terms of computational complexity has been
targeted by imposing an equal number of fitness evaluations
between the compared algorithms. In this context, the number of
fitness evaluations for both algorithms equals 105 in all the
simulated cases (i.e. K � IHS for NSHS and IP for the PAES-based
approach).

Finally, the simulation results have been obtained by perform-
ing 30 Monte Carlo experiments for each algorithm and network
scenario.

4.3. Simulation results

As a preliminary step, in order to quantitatively compare the
approximated fronts obtained by the two multi-objective sto-
chastic solvers on each simulated scenario, we have computed
three unary Pareto-compliant quality indicators. In particular, to
compare the NSHS and the PAES approaches we have used the
hypervolume indicator (Zitzler and Thiele, 2009), the unary-E
indicator (Zitzler et al., 2003) and the R2 indicator (Hansen and
Jaskiewicz, 1998), computed in the performance assessment
package provided in the PISA toolkit (Bleuler et al., 2003), and
whose features and properties have been discussed in detail in
Zitzler et al. (2003). Here, the lower the value of the indicator is,
the higher the quality of the corresponding algorithm is.

Fig. 5 shows the box plots of the distributions of three
indicators obtained by the two multi-objective solvers, in all the
considered scenarios, with the following notation: P and NH stand
for PAES and NSHS, respectively; 1,y,12 denote the network
topologies; whiskers are used to represent the lowest and largest
2 These values are the same for all the simulated scenarios and have been

obtained by means of a previous optimization process, not shown for the sake of

brevity.
values of the distribution; the boxes delimit the lower and the
upper quartiles; the medians are depicted with a solid line and
the outliers are eventually marked with asterisks. By analyzing
the box plots we can observe that the proposed NSHS approach
produce significantly better multi-objective performance indica-
tors with respect to the PAES counterpart. For verifying whether
the distributions of the different indicators are statistically
different, we have performed a two-sided rank sum test (Wil-
coxon test). The different colors of the box plots have been used to
represent the results of the non-parametric test applied to each
distribution of the indicators, for each scenario. Briefly, the test
compares the medians of two samples, and returns the p-value for
the null hypothesis that the samples are drawn from the same
population. If the p-value is lower than 0.05, we deduce that the
null hypothesis does not hold, that is, the sample medians are
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NSHS (P and HS, respectively) in the 12 network topologies.
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significantly different from each other. A white box plot denotes
the best distribution of the indicator values obtained for a specific
topology. A black box plot identifies a distribution of the indicator
values whose median is larger than the median of the correspond-
ing white box plot with a statistical significance. A gray box plot
denotes a distribution of the indicator values whose median is
larger than the median of the corresponding white box plot, but
the difference between the medians is not statistically significant.
We observe that NSHS was always able to produce, for all the
considered scenarios, better distributions of the three indicators,
with statistical significance. Furthermore, the coverage rate (C-
metric) has been calculated based on the approximated dominant
front for all scenarios obtaining a value of C(NSHS,PAES)¼1,
hence supporting the claim that NSHS dominates PAES with
respect to Pareto dominance.

Moreover, in order to evaluate and compare the localization
accuracy of the two approaches, we use the normalized localiza-
tion error (NLE) formally posed in expression (7). Table 2 lists, for
every scenario, algorithm and averaged over 30 Monte Carlo
experiments, the mean, minimum and standard deviation of the
NLE values associated to the topologies belonging to the approxi-
mated Pareto front produced after IP (correspondingly, IHS)
iterations. Note that in light of the obtained results, NSHS in
general outperforms the previously published PAES approach in
terms of minimum, mean and standard deviation of the NLE
values associated to the topologies embodying their estimated
fronts.

To shed more light on the obtained NLE results, the distribu-
tion of the best NLE values is computed by selecting, within the
corresponding 30 Monte Carlo experiments, the minimum NLE
values associated to each approximated non-dominated front for
each algorithm and scenario. Fig. 6 shows the results, again in box
plot fashion. The results elucidate a quite stable behavior of both
algorithms, as shown by the equally balanced lower and upper
quartiles, whiskers close to the quartiles boundaries and a
relatively low number of outliers. However, it can be observed
that the outliers of PAES are in general more distant from the
medians, being lower for NHSH. Again, for verifying whether the
distributions are statistically different, we have performed a two-
sided rank sum test (Wilcoxon test) with a confidence interval of
95%, and exploited the same color notation as before for the
boxes, to highlight the best median (white box) and whether the
worse median is statistically significant (black box) or not (gray
box). We observe that only for topology 4 PAES outperforms NSHS
with statistical significance. For all the remaining topologies NSHS
outperforms PAES: in particular NSHS gave better results with
statistical significance in all the remaining scenarios, except for
Table 2
Mean/minimum/standard deviation statistics for the NLE values associated to the

topologies of the dominated fronts of the PAES scheme in Vecchio et al. (in press)

and the NSHS approach herein proposed.

# R PAES Proposed NSHS

1 0.13 33.05/19.67/13.54 29.11/15.62/8.82
2 29.86/20.93/5.54 28.45/14.34/10.57

3 24.08/18.68/2.42 24.00/18.49/3.75

4 18.43/14.30/3.85 20.47/14.75/3.46

5 0.15 19.65/14.46/4.17 15.80/9.94/6.58

6 18.27/11.82/4.20 14.14/10.29/1.84
7 17.85/14.18/2.49 15.27/10.67/2.56

8 18.08/14.59/2.14 15.95/13.93/1.45

9 0.17 14.95/11.75/2.01 11.58/8.04/3.11

10 17.22/13.02/2.16 13.92/10.01/1.94
11 14.31/11.28/1.33 12.79/9.26/1.31
12 13.09/10.70/0.94 9.88/6.51/2.17

Fig. 7. Evolution of the fitness functions with and without the application of the

local search procedure.
scenarios 1 and 2 where the null hypothesis of equal medians
could not be rejected.

Finally, in order to evaluate the benefits introduced by the
local search procedure, Fig. 7 depicts the behavior of the CF and
CV fitness functions, averaged over the harmony memory at each
iteration, for two different runs of NSHS executed on scenario 1,
with and without the application of the local search procedure,
respectively. It can be observed that the introduction of the local
search procedure positively affects the convergence of both the
metrics. We have verified that this positive effect does not depend
on the specific topology, and is directly reflected also in the NLE
metric: for scenario 1, the statistical (mean/min/std) NLE perfor-
mance degrades from 29.11/15.62/8.82 to 88.70/56.19/19.09
when the local search procedure is removed from the NSHS
algorithm.
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5. Concluding remarks

In this paper we have presented a novel multi-objective
heuristic localization technique for wireless sensor networks
based on the harmony search algorithm. The proposed approach
is further aided by a local search procedure that aims at alleviat-
ing the so-called flip ambiguity phenomenon. The proposed
algorithm exploits the information on the node connectivity by
imposing geometrical constraints so as to bound the areas where
nodes can be placed. Through extensive computer simulations, it
is shown that our approach embodies a cost-effective localization
scheme that outperforms, in terms of multi-objective quality and
localization accuracy, a state-of-the-art localization approach
based on the PAES algorithm, for the majority of the simulated
scenarios.
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