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Abstract—We consider the design of Amplify & Forward
Full-Duplex (FD) relay-assisted communication systems. The FD
mode has potential for significant improvements in spectral
efficiency, but it suffers from large self-interference (SI) levels.
Beamforming-based SI mitigation is attractive for millimeter
wave (mmWave) systems due to the large number of degrees of
freedom available with large antenna arrays. We first develop
an all-digital beamformer design by imposing a zero-forcing
constraint on SI, performing quasi-optimally in terms of spectral
efficiency. The design is then modified to fit the hardware-related
constraints usually found when operating at mmWave, so that
the beamformers can be implemented in the analog domain by
using phase shifters, with an acceptable performance loss.

Index Terms—Full-duplex, amplify-and-forward relay, mil-
limeter wave communications, analog beamforming.

I. INTRODUCTION

In wireless networks, improved reliability and coverage
extension can be achieved by using relays [1]. In partic-
ular, Amplify-and-Forward (A&F) relays constitute a low-
complexity and highly flexible technology [2]. The Full-
Duplex (FD) mode, in which the relay simultaneously receives
and transmits on the same frequency channel, has attracted
attention due to its potential to improve spectral efficiency with
respect the traditional Half-Duplex (HD) mode [3], [4]. How-
ever, as in any FD system, it becomes necessary to mitigate the
high-power self-interference (SI) leaking from the relay trans-
mitter to its receiver, which is challenging. Since it is critical
to avoid saturation of the receiver RF front-end and ADC, SI
mitigation typically combines antenna design, analog-domain,
and digital-domain cancellation; such techniques have been
demonstrated for microwave-band single-antenna FD systems
[5]. Analog domain cancellation methods scale poorly with the
number of antennas, making their extension to multiple-input
multiple-output (MIMO) systems challenging. Nevertheless,
MIMO opens the door to spatial SI suppression [6]–[9] at
the price of lower data rates, because some of the available
spatial degrees of freedom (DoF) are sacrificed.

On the other hand, millimeter wave (mmWave) systems
incorporate substantially larger antenna arrays [10], [11], pro-
viding more DoF and making spatial SI suppression more
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attractive. The potential of mmWave communications for im-
proving the performance of next-generation networks is widely
recognized [11], [12], and the application of FD at mmWave
frequencies is gathering interest [13]–[17]. An important fea-
ture in mmWave MIMO is the use of hybrid architectures
[11], [21], which allow to use fewer power-hungry RF chains
than antennas by cascading baseband digital and RF analog
beamforming stages. The latter is implemented with phase
shifters, imposing a constant-amplitude (CA) constraint on
the entries of the analog beamforming matrix: spatial SI
suppression methods in FD mmWave systems must take such
CA constraints into account. This is not straightforward, and
only a few recent works have started to consider this problem.
In [17]–[19] a network of two FD mmWave nodes with bidi-
rectional communication was considered, an all-digital design
was first derived, and then projected onto the set of feasible
hybrid beamformers. However, as discussed in [18], this final
projection step is problematic in general. In [20] a mmWave
setting is considered, in which a base station communicates
with several single-antenna users through a MIMO FD A&F
relay, but only results for very low SI levels were reported.

We consider a mmWave two-hop A&F relaying network in
which the source and destination nodes communicate through
the FD MIMO relay. As in [17], we focus on single-stream
transmission with a single RF chain per front-end. Inspired
by the approach from [17] for the two-node bidirectional
network, we first develop an all-digital design which yields
quasi-optimal performance. In this single-stream scenario, and
similarly to [18], the final projection approach to obtain the
analog beamformers incurs a very significant loss, so we
appropriately modify the all-digital design to overcome this
issue. The resulting analog design is computationally simple
and significantly reduces the aforementioned loss.

II. PROBLEM SETTING

Fig. 1 shows a mmWave network consisting of a source
node S, an FD relay node R and a destination node D. Node
S transmits a data stream to R using an array of NS antennas.
The relay R is equipped with receive and transmit antenna
arrays of sizes NR and NT, respectively, whereas node D uses
a receive array of size ND. We assume that there is no direct
link from S to D. The channels are assumed frequency-flat, and
the matrices for the S → R and R → D links are respectively
denoted as HSR (size NR×NS) and HRD (size ND×NT). The
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Fig. 1. FD relay network with analog TX/RX beamforming.

SI channel, with size NR × NT, is denoted by HRR. Since
the proposed designs are model-independent, the discussion
on specific channel models is postponed to Sec. V, where
numerical results will be presented.

Let f denote the complex-valued NS × 1 beamforming
vector applied by node S before transmission; and let v denote
the ND×1 combiner applied by node D. Similarly, let w (size
NR × 1) and b (size NT) be the corresponding beamformers
ar R. With analog-domain beamforming using phase shifters,
the entries of f , w, b and v have constant magnitude. The
average transmit power per symbol at S is ρS, and the noise
vectors nR, nD at the receive side of R and D are zero-mean
Gaussian with covariance σ2

RINR
and σ2

DIND
respectively.

The signal received at R can be written as

yR = wH(
√
ρSHSRfs+

√
ρSIHRRbz + nR), (1)

where s is the symbol sent from S, and z is the SI affecting
R. Both s and z have unit variance, with ρSI quantifying
SI strength. Due to relay processing delay and hardware
imperfections, z is a delayed and distorted version of the signal
transmitted by R. In practice the relay will be equipped with
additional passive and/or active SI cancellation stages, so that
z is to be understood as residual SI left over by those stages.

The relay operates in A&F mode, so that its received signal
yR is amplified with power gain g and retransmitted. In this
way, the signal received at D is given by

yD = vH(
√
gHRDbyR + nD). (2)

It can be assumed w.l.o.g. that ‖f‖ = ‖w‖ = ‖b‖ = ‖v‖ = 1.
Then, treating SI as noise and assuming Gaussian codebooks,
the achievable rate of this network is given by

R = log2

(
1+

gρS|vHHRDb|2|wHHSRf |2

σ2
D + gσ2

R|vHHRDb|2 + gρSI|vHHRDb|2|wHHRRb|2

)
(3)

A. Design problem

The goal is to maximize R in (3) w.r.t. f , w, b, v and g
subject to the following constraints:
1) Unit-norm: All four vectors f , w, b, v have unit norm.
2) Constant-amplitude (CA): Each of the entries of vectors

f , w, b, v has constant magnitude.

3) Relay power: Let ρR > 0 denote the maximum available
transmit power at R. Then gE{|yR|2} ≤ ρR, i.e.,

g
(
ρS|wHHSRf |2 + ρSI|wHHRRb|2 + σ2

R

)
≤ ρR. (4)

It is useful to introduce the following variables:

εR ,
ρS
σ2
R

, εD ,
ρR
σ2
D

, εSI ,
ρSI
ρS
, q ,

σ2
R

σ2
D

g. (5)

Note that εR, εD, and εSI denote the SNR at R and D, and the
self-interference to useful signal ratio at R, respectively, when
the corresponding channels have unit gain. Additionally, let us
introduce the equivalent power gains

h2SR(w,f) = |wHHSRf |2, (6)
h2RD(v, b) = |vHHRDb|2, (7)
h2RR(w, b) = |wHHRRb|2. (8)

With these, the rate R in (3) can be rewritten as

R = log2

(
1 +

qεRh
2
SR(w,f)h

2
RD(v, b)

1 + q (1 + εRεSIh2RR(w, b))h
2
RD(v, b)

)
,

(9)
whereas the relay power constraint (4) becomes

q
(
εRh

2
SR(w,f) + εRεSIh

2
RR(w, b) + 1

)
≤ εD. (10)

B. Performance upper bound

In order to benchmark the performance of the different
designs, it is useful to have an upper bound to (9). It can
be obtained assuming no SI (εSI = 0) and dropping the CA
constraints. Then, using the fact that for any a ≥ 0

f(x) =
x

a+ x
monotonically increases in x ≥ 0, (11)

it follows that R ≤ R?, with

R? , log2

(
1 +

εRεDσ
2
1(HSR)σ

2
1(HRD)

1 + εRσ2
1(HSR) + εDσ2

1(HRD)

)
, (12)

with σ1(A) denoting the largest singular value of A.

III. ALL-DIGITAL DESIGN

Due to the coupling between w and b in the term
h2RR(w, b), maximizing (9) is not a convex problem even if
the CA constraints are dropped. Inspired by the fact that, for
a two-node bidirectional network with FD nodes, imposing
Zero-Forcing (ZF) constraints on the SI yields close-to-optimal



performance [17], we will follow a similar approach. The
resulting problem is:

max log2

(
1 +

qεRh
2
SR(w,f)h

2
RD(v, b)

1 + qh2RD(v, b)

)
(13)

s. to q ≥ 0, ‖f‖ = ‖w‖ = ‖b‖ = ‖v‖ = 1, (14)
q
(
εRh

2
SR(w,f) + 1

)
≤ εD, (15)

h2RR(w, b) = 0. (16)

Note that by virtue of the ZF constraint (16), the SI is
cancelled in the analog domain, specifically at the input of
the receive RF chain in Fig. 1. Using fact (11), it is readily
seen that (13) is maximized w.r.t. q when (15) is satisfied with
equality, i.e., when the relay transmits at full power. In this
way, Problem (13)-(16) becomes:

max log2

(
1 +

εRεDh
2
SR(w,f)h

2
RD(v, b)

1 + εRh2SR(w,f) + εDh2RD(v, b)

)
(17)

s. to ‖f‖=‖w‖=‖b‖=‖v‖=1, h2RR(w, b) = 0. (18)

By virtue of fact (11), f and v are obtained as the unit-norm
vectors maximizing h2SR(w,f) and h2RD(v, b) , respectively,
for fixed w and b:

f =
HH

SRw

‖HH
SRw‖

, v =
HRDb

‖HRDb‖
. (19)

Substituting (19) in (17), the problem becomes

max
w,b

log2

(
1 +

εRεD‖HH
SRw‖2‖HRDb‖2

1 + εR‖HH
SRw‖2 + εD‖HRDb‖2

)
(20)

s. to ‖w‖ = ‖b‖ = 1, wHHRRb = 0. (21)

This problem does not admit a closed-form solution for w or
b, because of the coupling between variables due to the ZF
constraint in (21). Analogously to [17], we propose to tackle
this problem using a cyclic maximization approach:
1) In the first step, hold the TX beamforming vector b fixed

to its value from the previous iteration, and then maximize
(20) w.r.t. w subject to the unit norm and ZF constraints:

max
w
‖HH

SRw‖2 s.to ‖w‖ = 1, wHHRRb = 0. (22)

2) Hold fixed the RX beamforming vector w obtained in this
way, and then maximize w.r.t. b:

max
b
‖HRDb‖2 s.to ‖b‖ = 1, wHHRRb = 0. (23)

These two steps are then iterated until convergence. Note that
at each iteration the objective function (20) is increased, or at
least not decreased; therefore, the sequence of objective values
along the iterations must converge since it is bounded above.

It remains to solve (22)-(23). These two subproblems have
the same generic form: given G ∈ CM×N and c ∈ CN ,

max
x

‖Gx‖2 s. to ‖x‖2 = 1, xHc = 0. (24)

In Problem (22), we take x = w, c = HRRb and G = HH
SR,

whereas in Problem (23) we take x = b, c = HH
RRw and

G = HRD. The general solution of (24) is given in the next
result, whose proof is skipped for lack of space.

Lemma 1. Let P⊥ be the projection matrix onto the subspace
orthogonal to c:

P⊥ = IN −
ccH

‖c‖2
. (25)

Then the solution x? to Problem (24) is the principal
unit-norm eigenvector of P⊥G

HG, yielding ‖Gx?‖2 =
λ1(P⊥G

HG), where λ1(A) is the largest eigenvalue of A.

Hence, the all-digital design proceeds by solving (22)-(23)
iteratively with the aid of Lemma 1. Upon convergence, w, b
are obtained, and then f , v are computed via (19), and finally,
the relay gain is then set to achieve full power transmission.

Recall, however, that this all-digital design has neglected
the CA constraints on the beamforming vectors f , w, b, v. A
straightforward approach is to project the all-digital solutions
onto the set of unit-norm CA vectors (by dividing each entry
by its corresponding magnitude, and then scaling the resulting
vector to unit norm). This final projection method, however,
entails a significant performance loss as shown in Sec. V,
mainly because the resulting vectors w, b need not satisfy
the ZF constraint, resulting in large SI levels.

IV. ANALOG DESIGN

Instead of projecting the all-digital solutions, the proposed
analog design seeks vectors that satisfy the ZF and CA
constraints simultaneously and at every iteration of the cyclic
maximization procedure (22)-(23). To this end, let us define
the set of N -dimensional unit-norm CA vectors as

VN =

{
v ∈ CN

∣∣∣ vi = 1√
N
ejθi , i = 1, . . . , N

}
. (26)

Then we introduce explicitly the CA constraint w ∈ VNR in
subproblem (22) and b ∈ VNT in subproblem (23). With this,
the modified subproblems can be generically written as

max
x

‖Gx‖2 s. to x ∈ VN , xHc = 0. (27)

In contrast with (24), (27) does not have a closed-form
solution. We propose to find a feasible point x for (27), i.e.,
simultaneously satisfying x ∈ VN and xHc = 0, by using
the method of alternating projections [22], which iteratively
project the current estimate onto VN and the subspace or-
thogonal to c. To avoid convergence to a small value of the
objective function, these alternating projections are initialized
at a point corresponding to a large objective value (cf. the
solution provided by Lemma 1), with the hope that successive
projections will not wander too far away from it. These inner
iterations (alternating projections) should be run for each of the
two basic subproblems which are part of each outer iteration
of the cyclic maximization procedure.

Once the relay beamformers w, b are obtained, the beam-
forming vectors at S and D are computed by

max
f
|wHHSRf |2 s. to f ∈ VNS , (28)

max
v
|vHHRDb|2 s. to v ∈ VND , (29)

which can be solved in closed form; specifically, the solutions
are given by the projections of HH

SRw and HRDb onto VNS



and VND , respectively. Finally, the relay gain is set for full
power transmission. Algorithm 1 summarizes the design.

Algorithm 1 Analog beamformer design
1: function ALTPR(G, c, N )

2: x←principal 1-norm eigenvector of
(
G− GccH

cHc

)H
G

3: for k ← 1, Ninner do
4: x̃← x− cHx

cHc
c

5: for i← 1, N do xi ← 1√
N

x̃i
|x̃i|

6: end for
7: end for
8: return x
9: end function

10: Input: HSR, HRD, HRR, ρR, ρS, ρSI, σ2
R

11: Initialize w, b
12: for t← 1, Nouter do
13: w ← ALTPR(HH

SR,HRRb, NR)
14: b← ALTPR(HRD,H

H
RRw, NT)

15: end for
16: f̃ ←HH

SRw

17: for i← 1, NS do fi ← 1√
NS

f̃i
|f̃i|

18: end for
19: ṽ ←HRDb
20: for i← 1, ND do vi ← 1√

ND

ṽi
|ṽi|

21: end for
22: g ← ρR

σ2
R+ρS|wHHSRf |2+ρSI|wHHRRb|2

V. NUMERICAL RESULTS

We present simulation results for the setting of Fig. 1
with the S, Rand D nodes having their antennas arranged
in uniform linear arrays (ULAs) with half-wavelength (λ/2)
separation between adjacent elements. The distance and angle
between the TX and RX ULAs of R are d = 2λ and ω = π

2
respectively, see [18, Fig. 2]. The number of antennas is set
to NS = NR = NT = ND = 16. For the S→R and R→D
channels, we consider the narrowband clustered model from
[21], with Ncl scattering clusters and Nray paths per cluster.
The channel matrices HSR, HRD are then given by

HSR/RD =

Ncl∑
k=1

Nray∑
`=1

βk,`ar(φ
j
k,`)a

∗
t (θ

i
k,`), (30)

where βk,` is the complex gain of the `th ray in the kth cluster,
and at(θ

i
k,`) and ar(φ

j
k,`) are the antenna array steering and

response vectors at the transmitter and receiver, respectively,
evaluated at the corresponding azimuth angles of departure
from transmitter at node i, θik,`, or arrival at node j, φjk,`. We
assumed Ncl = 4 clusters with Nray = 10 paths per cluster.
Departure/arrival angles are random, with mean cluster angle
uniformly distributed in [0, 360◦] and angular spreads of 15◦.
All the path gains have the same variance and are indepen-
dently drawn from a circular complex Gaussian distribution.
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Fig. 2. Performance results. εD = −10 dB, εSI = 30 dB.

The TX and RX arrays of node R are are assumed close to
each other, and thus a line-of-sight near-field model is adopted
for the SI channel HRR [13], [14], [17], [18]: letting dpq be
the distance between the p-th antenna of the TX array and the
q-th antenna of the RX array, then

[HRR]pq =
1

dpq
e−j2π

dpq
λ . (31)

All channel matrices are normalized so that their respective
Frobenius norms equal the product of the corresponding
column and row dimensions.

The spectral efficiency was computed for the different de-
signs by averaging over 200 Monte Carlo runs. For comparison
we also show the achievable rate for the Half-Duplex setting,
in which the available bandwidth is split in half between the
S→R and R→D links, yielding half the noise powers as in
the FD case. With full-power relay transmission, this rate is

RHD =
1

2
log2

(
1 +

2εRεDh
2
SR(w,f)h

2
RD(v, b)

1
2 + εRh2SR(w,f) + εDh2RD(v, b)

)
.

(32)
Assuming all-digital beamformers, (32) is maximized when
h2SR(w,f) = σ2

1(HSR) and h2RD(v, b) = σ2
1(HRD). For an

HD analog design with CA beamformers, we cyclically max-
imize h2SR(w,f) w.r.t. w and f , and similarly for h2RD(v, b).

For the all-digital FD and analog HD design, 20 cyclic-
maximization iterations were run. For the analog FD design in
Algorithm 1 we set Nouter = Ninner = 20. The beamformers
were randomly initialized in all cases.

Fig. 2 shows the spectral efficiency obtained by different
designs in terms of the SNR at the relay εR. The SNR at
D is εD = −10 dB and the SI-to-signal ratio is εSI = 30
dB. Although the FD all-digital design performs close to
the upper bound (12), a large degradation is observed if the
corresponding solution is projected onto the set of CA vectors,
and in fact the performance is worse than that of HD designs.
The proposed FD analog design provides a CA solution at a
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moderate loss with respect to the all-digital one. In Fig. 3 we
fixed εR = −5 dB and varied εD, with similar conclusions.
Note that in either FD or HD modes, the spectral efficiency
is limited by the minimum of εR and εD, and that the ratio of
FD to HD efficiencies is in general smaller than 2 (it goes to
2 asymptotically as both εR, εD →∞ simultaneously).

Finally, in Fig. 4 we set εR = −5 dB, εD = −10 dB
and varied εSI. The HD designs are obviously independent
of εSI. This is also the case for the FD all-digital and analog
designs which enforce the ZF condition, but not when the all-
digital design is projected to obtain a CA solution: in that case,
spectral efficiency drops sharply as SI strength increases.

VI. CONCLUSION

The proposed ZF-based all-digital beamformer design for
A&F Full-Duplex mmWave relays performs close to the upper
bound by effectively suppressing SI in the analog domain,
but simply projecting the corresponding beamformers onto the

set of CA vectors violates the ZF constraint on the SI. The
large performance loss incurred is overcome by the proposed
analog design, which enforces the ZF constraint at all steps.
Knowledge of the SNRs is needed only to set the relay gain,
but since the optimal strategy is for the relay to transmit at
full power, with slowly-varying channels this can be achieved
by automatic gain control. The sensitivity of the designs to
channel estimation errors will be the subject of future research.
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