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Roberto López-Valcarce

Departamento de Teorı́a de la Señal y las Comunicaciones
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Abstract

It is shown that the fourth power phase estimator minimizes or maximizes (depending on a condition

on the transmitted constellation) the cost function associated to the recently proposed multimodulus

algorithm (MMA) for blind equalization. Implications for operation of MMA are then discussed.

I. INTRODUCTION

In burst-mode digital transmission systems adopting coherent demodulation, phase recovery within

each burst becomes a crucial issue. Among the blind (or non-data-aided) carrier phase estimators available

from the literature, perhaps the fourth power estimate appears to be the most popular. It is known to yield

an approximate maximum likelihood estimator in the limit of small SNR [2]. Serpedin et al. have shown

in [4] that several seemingly different phase estimators are in fact equivalent to the fourth power estimator.

This letter presents a reinterpretation of the fourth power estimator in terms of the minimization of a

dispersion-based cost function. This cost has been recently proposed in the context of blind equalization

[3], [5] as the basis of the so-called multimodulus algorithm (MMA). One advantage of MMA over the

standard constant modulus algorithm (CMA) [1] is precisely its ability to perform blind phase acquisition.

Thus, this inherent phase recovery property of MMA can be seen as a ’built-in’ fourth power estimator;
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consequently one cannot expect MMA to synchronize the phase with constellations for which the fourth

power estimator is not well suited, such as
�

-PSK (
� ���

).

II. PROBLEM STATEMENT AND DERIVATION

In the absence of channel impairments other than phase offset and noise, the received samples can be

written as
�����
	���
����
	��������������
	����������
	�� �!��"#���
	�$ %'&(�)&+*,$

(1)

where

����
	

is the complex-valued transmitted symbol,
�����
	

is complex-valued additive noise, assumed

independent of the symbols and circular (i.e. -/. �102���
	�34�65 for all positive integers 7 ), and 8 is the

phase angle to be determined from the observed values . �)���
	�3 .
Let 9 be a candidate estimate, and define the derotated samples

:
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The multimodulus cost function [3], [5] is defined as the sum of the dispersions of the real and imaginary

parts of the derotated signal:

B�� 9 	�� -/. � :
4C� ���
	ED@F � 	GC��H� :
,C" ���
	IDJF " 	GCK3!$ (3)

for some constants
F �

,
F "

. We will assume that
F � �LF "

; in that case, it is readily seen by expanding

(3) that this constant merely adds a constant term to
B

, so that we can take
F � �MF " �N5

and
B�� 9 	O�

-/. :
,P� ���
	�� :
,P" ���
	�3 . By noting that
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the derivative of the cost is seen to be

Q B�� 9 	Q 9
� � -S. :
 � ���
	 :
 " ���
	UT :
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	ED :
 C" ���
	WV�3
� X�Y -/. :
 P ���
	�3!A (5)

After some algebra, this can be written explicitly in terms of 9 as

Q B�� 9 	Q 9
� � -/. � � ���
	G� " ���
	UT �ZC� ���
	ED[�OC" ���
	WV�3]\U^!_`� 9

D -S. � P� ���
	a��� P" ���
	ED�b�� C� ���
	G� C" ���
	�3]_dcfeg� 9
� X�Y -/. � P ���
	�3]\U^!_2� 9 Dihkj -S. � P ���
	�3]_dcleg� 9 A (6)
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Therefore the stationary points of the cost, at which (6) vanishes, are given by

��� ek� 9 �
X�Y -S. � P ���
	�3hkj -S. � P ���
	�3

$

or equivalently

9 �
%
� � e����?j -/. � P ���
	�3!A (7)

Differentiating (5) and using (4), the second derivative of the cost is found:

Q C B�� 9 	Q 9 C
� Dk��hkj -S. :
 P ���
	�3!A (8)

Hence we see that -S. :
,P ���
	�3 is real at the stationary points of
B

, becoming negative at the minima and

positive at the maxima.

For circular noise independent of the data, it follows that -/. :
 P ���
	�3�� -S. 
 P ���
	�3 � ��� � < >
	 . From

(5) and (8), it is seen that the noise does not alter the location or character (minimum/maximum) of the

stationary points under these conditions.

If the constellation to which . 
����
	�3 belong has quadrant symmetry, and if the symbols are drawn

equiprobably, then -/. 
JP ���
	�3 is real. In that case, the stationary points of
B

are given by

X�Y -/. :
 P ���
	�3 � -S. 
 P ���
	�3]_dcleg�2� 8 D 9 	��;5 � 9 � 8 �
����� � $

and Q C B�� 9 	Q 9 C
����� >
� ��������� P

� �GD %K	 ����� � -S. 
 P ���
	�3!A

Hence consecutive minima (or maxima) of
B�� 9 	 are

�����
rad apart, which reflects the inherent ambiguity

due to the quadrant symmetry of the constellation.

The fourth power estimator is defined as [2], [4]

:8 �
%
� � e����fj�� -S. 
! P ���
	�3 -S. � P ���
	�3�"�A (9)

Note that -/. 
  P ���
	�3 � -/. 
,P ���
	�3 since this quantity is real. Then in view of (7) and (8), it is seen that

the fourth power estimate minimizes or maximizes the cost
B

according to the sign of -S. 
�P ���
	�3 .

III. EFFECT IN THE MULTIMODULUS ALGORITHM

As MMA is designed to minimize (3), phase correction (modulo
�����

) will be accomplished provided

that -S. 
 P ���
	�3$# 5 . Most rectangular and cross QAM constellations satisfy this property. Other con-

stellations, such as that of the CCITT V.29 standard, do not, so that if the MMA is employed in those
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systems the equalizer output should be rotated by
��� �

rad. For QPSK, the constellation . ���/%��@� 	 ��� � 3
satisfies -/. 
4P ���
	�3 # 5 , while . �/%�$��g� 3 does not. Finally, for

�
-PSK constellations with

� �N�
,

-/. 
,P ���
	�3 � 5 (and in fact
B�� 9 	 becomes flat), so that MMA cannot compensate for the phase in these

systems.
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