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ABSTRACT

Previous work has shown that the optimum MSE causal
equalizer is IIR, with a number of poles equal to the chan-
nel order. We investigate two different blind criteria for
the adaptation of the recursive part of the equalizer: Output
Variance Minimization (OVM) and a Pseudolinear Regres-
sion (PLR) method. In sufficient order cases both algorithms
converge to the desired setting. In undermodeled cases (i.e.
the number of poles in the equalizer is less than the chan-
nel order) these algorithms do not necessarily converge to
a MSE minimum, but they generally provide acceptable
performance. It is shown that under mild conditions PLR
always admits a stationary point.

1. INTRODUCTION

Adaptive equalizers are usually implemented using FIR fil-
ters, since these systems are unconditionally stable.However,
it is known [7] that the optimum Mean-Squared Error (MSE)
linear equalizer hass in general an IIR transfer function. In
many cases the performance improvement obtained by using
an IIR equalizer with respect to that of an FIR structure with
the same number of coefficients can be significant.

In [7] the adaptation of the IIR equalizer was done by
means of the Kalman filtering algorithm. This requires
knowledge about the channel, which was obtained via an
identification stage using a training signal. A different al-
ternative was suggested in [3], which presented an unsu-
pervised adaptation mechanism exploiting the structure of
the equalization problem. In particular, the adaptations of
the recursive and nonrecursive parts of the equalizer can be
decoupled and carried out under different criteria.

Our goal is to provide an analysis of the criterion used
for the recursive part. Two different scenarios appear: the
‘sufficient order’ and the ‘reduced order’ cases. In the for-
mer the order of the recursive filter matches the length of
the channel. Two possible adaptation rules are then possi-
ble: output variance minimization (OVM) by means of a
gradient descent, and a pseudolinear regression (PLR) algo-
rithm, both of which converge to the optimum filter. In the

reduced order case the situation is more complex. We pro-
vide some initial results about the general behavior of these
algorithms, concerning issues such as characterization, ex-
istence, and uniqueness of stationary points. It is shown via
examples that, although OVM and PLR need not provide
optimum equalizers in general, the loss in performance is
usually small for moderate degrees of undermodeling. This
loss is the price to pay for the use of unsupervised criteria.

2. PROBLEM SETTING

Figure 1 depicts the equalization problem. The transmitted
symbols

�������
and the noise

�������
are assumed stationary,

independent, and white with variances 	�
� and 	�

 . The
channel has transfer function ������� . The received signal is� ��� ������� ���������

, which has autocorrelation � ��! "$# �% ! � � � ��&�' # and psd (�������� ��)�*& * ���+! "$#,� &�' .
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Figure 1: Channel-equalizer configuration

The equalizer transfer function is 6 �����=<?>@����� . It was
shown in [7] that for FIR channels ������� �BADCE�FA . � & . �GHG�G ��A+I � & I the equalizer that minimizes the MSE

% ! ; 
� #
with

; �
as in figure 1 has J poles and K zeros, where K is

the associated delay:6 �����>L����� �NM C � M . � & . � GHG�G � M 7 � &+7O ��P . � & . � GHG�G ��PQI � & ISR
In [3], the feedforward part 6 ����� is adapted blindly by means
of the Constant Modulus Algorithm (CMA). We focus on
the adaptation of the recursive part

O <?>@����� .



3. THE TWO BLIND ALGORITHMS

Let TU � � ! : � : ��& . GHGHG : ��&+7 #,V and W �! M C M . GHG�G M 7 # V . The error

; �
can be written as; �B�X����&�7ZY W V TU � , so that the optimal value of W isW\[ �S] & .^`_a^ , where] ^ � % !�TU � TU V� #cb _ ^ � % ! � ��&+7 TU � # R (1)

Thus assuming that 6 ����� is optimized as a function of >@����� ,
one obtains a ‘reduced error surface’ of the formd � % ! ; 
� #fehgie$j � 	 
� Y _1V^ ] & .^k_1^ R (2)

Observe that
d

is a function of >L����� alone. As shown in [7],
if ������� is FIR with degree J , then

d
is minimized when: ��� ./103254 � � is white. That is, the optimum >L����� is the

minimum phase spectral factor of (i�l����� . This observation
provides a blind criterion (whitening

� : ���
) for the adapta-

tion of
O <m>L����� . Note that direct minimization of

d
does

not lend itself to blind adaptation; however, two unsuper-
vised schemes are available for whitening

� : � �
. The first is

the minimization of
% ! : 
� # via a gradient descent; we refer

to this as the Output Variance Minimization (OVM) crite-
rion. Defining n � � ./103254 : � and o � ! P . G�GHG P I #,V ,p ��& . � ! n ��& . GHG�G n ��& I #,V , the OVM algorithm iso �rq . � o � �ts : � p ��& . b (3)

where
svu�w

is a small stepsize. Approximating n �yx : �
,

the pseudolinear regression (PLR) algorithm is obtained:o �rq . � o �z��s : � U ��& . b (4)

where U ��& . � ! : ��& . G�GHG : ��& I #,V . PLR disposes
of the additional filter

O <m>L����� that OVM requires for the
computation of n � . Also, PLR presents improved stability
behavior due to its ‘self-stabilization’ property [5, ch. 15],
so that stability monitoring is usually not necessary. This is
not the case for OVM, which may easily become unstable
when the optimum filter has poles close to the unit circle.

4. STATIONARY POINTS

We proceed now to analyze the stationary points of OVM
and PLR. Ideally, these stationary points should provide
minimization of

d
. In general they can be characterized

as follows. Let {������ � � & I >L��� & . �=<?>L����� be the all-pass
function associated with >L����� , and for any function |\����� �) *' g & * | ' � &+' , let ! |\�����c# q}� | . � & . � | 
 � & 
 � G�GHG denote
be the operator extracting the strictly causal part. Use of
the Beurling-Lax theorem [8, ch. 3] shows that

O <?>@����� is
a stationary point of OVM or PLR iff it satisfies, for some

causal function ~������ ��)�*' g C ~ ' � &�' with
)X� ~ '�� 
���� ,� (��������>@������>@��� & . ��� q � � & . {�������~������ (OVM) (5)� ( � �����>L����� � q � � & . {�������~������ (PLR) (6)

Observe that ��� 03254/103254�/1032��$��4 is the psd of the process
� : ���

. (6)
is the � -domain statement of the conditions% ! : � : ��&�' # ��w b O�� " � J`b (7)

that must be satisfied at any stationary point of PLR. These
can be seen as an approximation to the whiteness conditions% ! : � : ��&�' # ��w

for all " uFw
.

From (5) and (6) we immediately see that the stationary
points of the two algorithms do not necessarily coincide.
Recall that our principal concern is the minimization of

d
as

given in (2); let us consider the sufficient order case first.

5. THE SUFFICIENT ORDER CASE

If ������� is FIR with the same degree J as >@����� (or less), then� � ��� is a moving average process of order J , or MA( J ).
Then as stated above,

d
is minimized if

� : �l�
is white. The

following is a consequence of [1] and [4]:

Lemma 1 If
� � �D� is an MA process of order J or less,

then both (5) and (6) have a unique minimum phase solution>L����� which is the minimum phase spectral factor of (i�l����� .
Thus in sufficient order settings both OVM and PLR present
a single stationary point which coincides with the minimum
of

d
. This is an additional advantage of the blind criteria:

observe that the cost
d

is a highly nonlinear function of >L�����
which could present local minima.

In addition, this stationary point is locally convergent for
both algorithms. This is clear for OVM since the optimum
is a minimum of

% ! : 
� # . For PLR, the argument is more
subtle; see [9].

6. REDUCED ORDER CASE: OVM

When
� � �D� is not MA( J ), no >L����� with degree J exists

that completely whitens
� : �l�

. In that case there is no simple
description for the minimizer of

d
. Nevertheless, the cost% ! : 
� # can still be seen as a proxy to
d

, as we now discuss.
Consider the case K ��w

. Then
] ^ � % ! : 
� # , _ ^ � % ! � � : � #

are both scalars. The reduced error surface becomesd � 	 
� Y � % ! � � : � #�� 
% ! : 
� # b ��K ��w � R
Note that, since

�������
is white, the term

% ! ��� : � # does not
depend on >@����� at all, so that minimization of

d
is equivalent

to the minimization of
% ! : 
� # , i.e. the OVM criterion.



When K u�w
this is not strictly true. However, note thatd � 	 
� Y _ V^ ] & .^ _ ^ � 	 
� Y ��� _ ^ ��� 
�D����� b (8)

where
� �����

is the largest eigenvalue of
] ^ . Thus in order

to minimize
d

it makes sense to make
�Q�����

as small as
possible; and since

�Q�������B�=�5���H� � ] ^ ��<Q��K � O � � % ! : 
� # ,
by making

% ! : 
� # small one could expect to decrease
�D�����

.
This argument is loose since _ ^ depends on >L����� for K uvw

.
The examples in section 8 will illustrate this point.

7. REDUCED ORDER CASE: PLR

The first question that arises about the behavior of PLR in
undermodeled settings is the existence of stationary points.
This issue is not trivial since PLR does not correspond to the
minimization of any meaningful cost. To this purpose, we
present a new approach which reveals the stationary points
of PLR as fixed points of an off-line iterative scheme. First
observe that for fixed >@����� , one has

: � � � � Y oQV U ��& . .Therefore the conditions (7) can be rewritten as% ! U ��& . U V��& . #,o � % ! � � U ��& . # R (9)

Note that this equation is not linear in o since U ��& . depends
on o , though it suggests the following iterative process:

1. At iteration � , let o � o 03��4 be fixed and letU 03�34��& . � ! : 03��4��& . GHG�G : 03��4��& I #fV with
: 03��4� � � � Y) I  g . P 03��4  : 03��4��&   .

2. Let o 03� q . 4 � %¢¡ U 03��4��& . � U 03��4��& . ��Vi£ & . %¢¡ � � U 03��4��& . £ .

3. Iterate Steps 1 and 2 until convergence.

Clearly, at any fixed point of this iteration, (9) is satisfied,
so that these fixed points coincide with the stationary points
of PLR. The following result holds now:

Theorem 1 If the psd (��+����� is bounded and nonzero for all� � �i� O
, then the iterative method admits a fixed point o�[

corresponding to a minimum phase polynomial >z[h����� .
Observe that any small amount of white measurement noise
in

� � �l� will yield (��������¥¤�¦w
for all

� � �§� O
. Theorem

(1) then shows that under these mild conditions the PLR
adaptive algorithm admits at least one stationary point inside
the stability region. In some cases this point is unique:

Lemma 2 The minimum phase stationary point of PLR is
unique if either (1) J � O

, i.e. >@����� � O ��P . � & . , or (2)( � ����� � ¨c©0 . &+ª 2 ��« 4c0 . &+ª 2 « 4 with ¬ � O
or ¬ ��­

.

Whether this stationary point is always unique remains an
open question. For example, if

� � �l� is MA( J � O
), it can

be shown that the conditions (6) become� (��+�����>L����� � q � ���+! J � O #,� & . {������ R (10)

Although (10) is highly structured, showing the uniqueness
of its solution (if the case) for J u O

seems difficult.
Observe that the above iterative off-line scheme resem-

bles in a sense the Steiglitz-McBride (SM) system identifi-
cation method, in that a nonlinear problem is replaced by
an iteration of linear ones. Some results have been derived
in order to lower bound the performance of SM stationary
points [8]. We are currently investigating the possibility of
using that approach in order to come up with a priori upper
bounds on the cost

d
(or

% ! : 
� # ) at stationary points of PLR.

8. EXAMPLES

Here we illustrate the main points with a few reduced order
examples. In all of them we take 	 
� � O

and 	 

 ��w R O .
Example 1: Let J � O

and ������� � .. q+® 2 �$� ,
� ¬ � � O

.

With K � O
,
d

is unimodal for
� ¬ � �°¯ ± & .
 and bimodal for¯ ± & .
 � � ¬ � � O

. OVM presents a single minimum, which is
the solution of

P 
 . ¬1� O �tP . ¬+� �SP . � ¬ with
� P . � � O

, while
the unique stationary point of PLR is

P . �²Y ¬ . Figure
2 shows the variation of the global minimum of

d
and the

OVM and PLR solutions as a function of ¬ , together with the
normalized loss ³ & ³?´lµ ¶³ ´Dµ ¶ . For ¬ ��w

we recover the sufficient
order case. The degree of undermodeling increases with

� ¬ � ,
with a corresponding degradation in performance.

Example 2: Let J � O
again, but now ������� � O �� & . ��· � & 
 . The reduced cost
d

for K � O
is unimodal for

all values of
·
. Figure 3 shows the variation of its global

minimum, the OVM and PLR solutions, and the normalized
excess error, for

� ·Q� � ­
. In this example the OVM and

PLR solutions remain close to the global minimum of
d

for·¸u�w
, while for

· � w
the performance loss is larger.

Example 3: Let J ��­
and ������� � O � � & . � O Rº¹ � & 
 �w Rº¹ � &�» �¥w R ­ � &�¼ . Figure 4 shows the contour plots of

d
forK � O

,
­
, ½ , together with those of OVM (which in this case

is unimodal) and the PLR stationary point, in the stability
domain

� " � � � O
( " . � ¾ �. q ¾ © , " 
 �¿P 
 ). For K u O d

becomes multimodal. Even though OVM and PLR do not
exactly minimize

d
, they still provide good performance.

9. CONCLUSIONS

An analysis of two blind criteria (OVM and PLR) for adap-
tive IIR equalizers has been presented, with emphasis in the
undermodeled case. Although in general these algorithms
do not converge to an MSE minimum, they usually provide
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Figure 2: Performance of OVM and PLR for Example 1.

acceptable performance. A characterization of the stationary
points has been given, and it was shown that PLR always ad-
mits a stationary point, which in some cases is unique. The
questions of uniqueness in the general case, lower bounds
on performance, and local convergence, remain open.

10. APPENDIX

Proof of Theorem 1: Define the function ÀÂÁ�Ã IÅÄ Ã I
as ÀZ��o+� � % ! U ��& . U V��& . # & . % ! � � U ��& . # . Then the iterative
method can be written as o 03� q . 4 � ÀZ��o 03��4 � . Introduce now
the map Æ �ÈÇ ��o�� , where Æ � ! " . GHG�G " I # V is the
vector of reflection coefficients (lattice parameters) associ-
ated to the polynomial >L����� , and which can be obtained via
the Schur recursion [8]. The stability domain becomes the
following convex open subset of Ã I

:É �B� ÆNÁ � " � � � O
for � � O b RHR�R b5J � R

We can define the function ÊËÁ É Ä Ã I
as the compositionÊ ��Ç¸Ì À Ì�Ç & . . Thus the iteration can be reparameterized

in lattice coordinates as Æ 0�� q . 4 � ÊZ��Æ 03��4 � . Observe that the
iteration may break if Æ 0��34 is outside

É
.
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Figure 3: Performance of OVM and PLR for Example 2.

Let Í É denote the boundary of
É

. As the vector of
lattice parameters Æ approaches Í É , at least one root of the
corresponding >@����� approaches the unit circle. In that case
the diagonal entries of the matrix

% ! U ��& . U V��& . # become% ! : 
� # � %ÅÎ�Ï O>L����� � ��Ð 
?Ñ Ä �Sb (11)

because (�������� uËw
on the unit circle is assumed. On the

other hand the components of the vector
% ! � � U ��& . # are

given by% ! � � : ��&   # � O­�Ò �ÔÓ�Õ 2 Õ g . ( � ����� �   & .>@��� & . � Kh� (12)

for
OÖ�v×y� J . For minimum phase >@����� , the only poles

of the integrand inside the unit circle are those of (�������� ;
therefore, using the residue theorem to evaluate (12), we see
that these quantities remain finite even as one or more roots
of >L����� approach

� � ��� O
.

This implies that as Æ Ä Í É from inside
É

,ÀZ� Ç & . �ØÆa�=� ÄÚÙ b
in view of (11), (12) and the definition of À . Since

Ç � Ù � � Ù
,

we conclude that the domain of Ê can be extended in order
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to include Í É by defining ÊZ�ØÆa� � Ù
for all ÆÝÜyÍ É , and in

this way ÊÞÁ É�ß Í É Ä Ã I
remains continuous.

We now invoke the following Borsuk fixed point theorem
[2, p.46]:

Theorem 2 Let TÉ be a closed, bounded, symmetric and
convex subset of Ã I

, and let Ê be a continuous mapping
from TÉ to Ã I

. If Ê is odd along the boundary, i.e.ÊZ� Y Æ1� �BY ÊZ��Æa� for all ÆàÜáÍ É b (13)

then Ê admits a fixed point in TÉ : there exists Æ [ Ü TÉ such
that ÊZ�ØÆ [ � � Æ [ .

We can apply this result with TÉ � É°ß Í É : sinceÊZ�ØÆa� � Ù
for all Æ`Ü�Í É , (13) is clearly satisfied. ThusÊZ�ØÆ [ � � Æ [ for some Æ [ Ü TÉ . Moreover Æ [ cannot lie onÍ É since all Í É is mapped onto

Ù
which is not in Í É . Thus

the fixed point lies inside the stability domain
É

.

Proof of lemma 2(1): With J � O
, assume that the

polynomials
O �vP � & . and

O � M � & . were both minimum-
phase stationary points of PLR. Define the processes: 0 ¾ 4� � OO ��P � & . � � b : 0fâ�4� � OO � M � & . � � b
and their correlation coefficients� ¾ ! "�# � % ! : 0 ¾ 4� : 0 ¾ 4��&+' #cb � â ! "$# � % ! : 0�â�4� : 0fâ�4��&+' # R
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Figure 5: The function |\�Øã+� � ã+<Q� O � ã�
ä� is one-to-one on! Y O b O # .
Then we must have � ¾ ! O # � � â ! O # �Þw

. Define the process� ã � � as ã � � OO ��P � & . : 0fâ�4� � OO � M � & . : 0 ¾ 4� b
with correlation coefficients � åD! "$# � % ! ã � ã ��&+' # . Noting
that

: 0 ¾ 4� � � O � M � & . �cã � , it can be easily shown that� ¾ ! O # � � å ! O # � �Ø� å ! w # � � å ! ­ #�� M � � å ! O # M 
 R (14)

Define the cross-correlation coefficients ær! "$# � % ! : 0�â�4� ã ��&�' # .
Since ã � � : 0�â�4� Y}P ã ��& . , they satisfyær! "$# � � â ! "$# Y}P ær! " � O #cb (15)� å ! "$# � ær! "$# Y}P � å ! " Y O # R (16)

By (15), � â ! O # �kw
implies ær! O # �çYèP ær! ­ # . In view of (16),

this gives ��ål! O # � YèP ����ål! w # � æ�! ­ #Ø�?b (17)��ål! ­ # � ær! ­ # Y}P � åD! O #� ær! ­ # ��P 
 �Ø� åD! w # � ær! ­ #�� R (18)

Substituting this into (14), we obtain� ¾ ! O # � Y � PéY � O ��P 
 � M ��P M 
 �?�Ø� å ! w # � ær! ­ #��� w
by assumption. (19)

Now note that since� åD! w # � ��å�! ­ # � � O ��P 
 �?�Ø� ål! w # � ær! ­ #��
we cannot have � å ! w # � ær! ­ # ��w

due to the fact that
� � å ! w # �$u� � å ! ­ # � . Thus (19) reads as

PêY � O ��P 
ä� M ��P M 
 �ëw
, or

equivalently PO ��P 
 � MO � M 
 R



Observe that the function |FÁ�! Y O b O # Ä ! Y .
 b .
 # given by|\�Øã�� � å. q å © is one-to-one, see Figure 5. Thus |\� P � � |\� M �
implies

P¸� M , since
� P�� � O

,
� M � � O

.

Proof of lemma 2(2): If(��+����� � æm
� O Yàì � &D® �?� O Yàì � ® � b
then : �Z� O>L����� � �
is an autoregressive (AR) process of order J � ¬ . Without
loss of generality we can assume

� ìE� � O
. Because

� : � �
is AR( J � ¬ ), the Forward Prediction Error Filter (FPEF)
of order J � ¬ associated to the process

� : �l�
has transfer

function � O Yàì � ® ��>L����� .
Consider the lattice parameterization of this FPEF, given

by the reflection coefficients " . , . . . , " I q+®
. If >L����� is a PLR

stationary point, then the first J autocorrelation coefficients
of

� : �l�
are zero, according to (7). This in turn implies that" . � " 
 � G�GHG � " Ií�Sw R (20)

(Incidentally, (20) is true regardless of whether
� : � �

is AR
or not: it holds as long as (7) is true, and can be easily shown
via the Levinson recursion for the linear prediction problem,
e.g. [6]). Now if ¬ � O

, (20) means that one must have� O Y}ì � ® ��>@����� � O � " I q . � & I & . b
which reads as P . Yàì � w bP � Y}P � & . ì � w b ­ � � � J`bYèP�Iêì � " I q . R
The solution to these equations is unique and it is given by>L����� � O ��ì � & . � GHGHG ��ì I � & I .

On the other hand, if ¬ �S­
, then (20) implies� O Y}ì � ® ��>L����� �O � ��" I q . " I q 
 ��� & . � " I q . � & I & . � " I q 
 � & I & 
 R

Equating the coefficients of equal powers of � ,P . � " I q . " I q 
 bP 
 Yàì � w bP � Y}P � & . ì � w bî½ � � � J`bYèP I & . ì � " I q . bYèP I ì � " I 
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Again these equations have a unique solution, which is given
by P � �¢ï w

for � odd,ì ��ð 
 for � even.
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[4] L. Ljung, T. Söderström and I. Gustavsson, “Coun-
terexamples to general convergence of a commonly
used recursive identification method”, IEEE Trans. Au-
tomatic Control, vol. 20(5), pp. 643–652, Oct. 1975.

[5] O. Macchi, Adaptive processing : the LMS approach
with applications in transmission, Wiley, 1995.

[6] J. Makhoul, “Linear prediction: a tutorial review”,
Proc. IEEE, vol. 63(4), pp. 561-580, April 1975.

[7] B. Mulgrew and C. F. N. Cowan, “An adaptive Kalman
equalizer: structure and performance”, IEEE Trans.
Acoustics, Speech, Signal Processing, vol. 35(12), pp.
1727-1735, Dec. 1987.

[8] P. A. Regalia, Adaptive IIR Filtering in Signal Process-
ing and Control, Marcel Dekker, 1995.

[9] P. Stoica, J. Holst and T. Söderström, “Eigenvalue loca-
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