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ABSTRACT

Previous work has shown that the optimum MSE causal
equalizer is IR, with a number of poles equal to the chan-
nel order. We investigate two different blind criteria for
the adaptation of the recursive part of the equalizer: Output
Variance Minimization (OVM) and a Pseudolinear Regres-
sion (PLR) method. In sufficient order casesboth algorithms
convergeto the desired setting. In undermodeled cases (i.e.
the number of polesin the equalizer is less than the chan-
nel order) these algorithms do not necessarily converge to
a MSE minimum, but they generally provide acceptable
performance. It is shown that under mild conditions PLR
always admits a stationary point.

1. INTRODUCTION

Adaptive equalizers are usually implemented using FIR fil-
ters, sincethese systemsareunconditionally stable.However,
itisknown[7] that the optimum Mean-Squared Error (M SE)
linear equalizer hass in general an IR transfer function. In
many casesthe performanceimprovement obtained by using
an IR equalizer with respect to that of an FIR structurewith
the same number of coefficients can be significant.

In [7] the adaptation of the IIR equalizer was done by
means of the Kalman filtering algorithm. This requires
knowledge about the channel, which was obtained via an
identification stage using a training signal. A different al-
ternative was suggested in [3], which presented an unsu-
pervised adaptation mechanism exploiting the structure of
the equalization problem. In particular, the adaptations of
the recursive and nonrecursive parts of the equalizer can be
decoupled and carried out under different criteria.

Our goal isto provide an analysis of the criterion used
for the recursive part. Two different scenarios appear: the
‘sufficient order’ and the ‘reduced order’ cases. In the for-
mer the order of the recursive filter matches the length of
the channel. Two possible adaptation rules are then possi-
ble: output variance minimization (OVM) by means of a
gradient descent, and a pseudolinear regression (PLR) algo-
rithm, both of which converge to the optimum filter. In the
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reduced order case the situation is more complex. We pro-
vide someinitial results about the general behavior of these
algorithms, concerning issues such as characterization, ex-
istence, and uniqueness of stationary points. Itisshownvia
examples that, although OVM and PLR need not provide
optimum equalizers in general, the loss in performance is
usualy small for moderate degrees of undermodeling. This
loss isthe price to pay for the use of unsupervised criteria.

2. PROBLEM SETTING

Figure 1 depicts the equalization problem. The transmitted
symbols {w.,,} and the noise {n,,} are assumed stationary,
independent, and white with variances o2 and ¢2. The
channel has transfer function H(z). The received signal is
u, = H(z)w, + n,, which has autocorrelation r,[k] =
Elunu,—k] and psd Sy (2) = 37 ru[k]z7F.
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Figure 1: Channel-equalizer configuration

The equalizer transfer function is B(z)/A(z). It was
shown in [7] that for FIR channels H(z) = ho + hyz~' +
-+« + hp 2™ the equalizer that minimizesthe MSE E[e2]
with e,, asin figure 1 has M poles and d zeros, where d is
the associated delay:

B(z) _ bo +biz b4 bgz e
A(z)  1+4az—t+-+ayzM

In[3], thefeedforward part B(z) isadapted blindly by means
of the Constant Modulus Algorithm (CMA). We focus on
the adaptation of therecursive part 1/A(z).



3. THETWO BLIND ALGORITHMS

Let ¥y, = [Yn ¥Un—1 Yn—a |¥' and b =
[ bo b1 ba ]T. The error e, can be written as
en = Wn_q — b'y,, so that the optimal vaue of b is
_ —1

b. =R, p,, Where

Ry = E[ynygjL py = E[wn—dyn]‘ (1)
Thusassuming that B(z) isoptimized asafunction of A(z),
one obtains a ‘reduced error surface’ of the form

J = E[e2]p=p, = 02 — pgRglpy. 2

Observethat J isafunction of A(z) alone. Asshownin[7],
if H(z) is FIR with degree M, then J is minimized when
Yn = ﬁun iswhite. That is, the optimum A(z) is the
minimum phase spectral factor of S, (z). This observation
provides a blind criterion (whitening {y,, }) for the adapta-
tion of 1/A(z). Note that direct minimization of .J does
not lend itself to blind adaptation; however, two unsuper-
vised schemes are available for whitening {y,, }. Thefirstis
the minimization of E[y?2] via a gradient descent; we refer
to this as the Output Variance Minimization (OVM) crite-
rion. Defining s, = ﬁyn anda=1[a - ay]7,
Sn_1 = Sn—1 Sn—m ]T,the OVM dgorithmis

An41 = aAp + HYnSn—1, (3)

where i > 0 isasmall stepsize. Approximating s, = Yn,
the pseudolinear regression (PLR) algorithm is obtained:

anp41 = an + HYnYn_1, (4)

wherey, | = [ Yn1 Yn—m ]T. PLR disposes
of the additional filter 1/A(z) that OVM requires for the
computation of s,. Also, PLR presents improved stability
behavior due to its ‘ self-stabilization’ property [5, ch. 15],
so that stability monitoring is usually not necessary. Thisis
not the case for OVM, which may easily become unstable
when the optimum filter has poles close to the unit circle.

4. STATIONARY POINTS

We proceed now to analyze the stationary points of OVM
and PLR. Idedly, these stationary points should provide
minimization of J. In general they can be characterized
asfollows. Let V(z) = 2=M A(z71)/A(z) be the all-pass
function associated with A(z), and for any function f(z) =
Y ohe—oo fez TR N [f(2)]4 = fizT! + 2272 + - - denote
be the operator extracting the strictly causal part. Use of
the Beurling-Lax theorem [8, ch. 3] showsthat 1/A(z) is
a stationary point of OVM or PLR iff it satisfies, for some

causal function g(2) = 35 o grz~* with 3~ [gi|? < o0,

7Su(z) 2V (2)g(z
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Observe that % is the psd of the process {y,,}. (6)
is the z-domain statement of the conditions

Elynyn—k] =0, 1<k<M, ()

that must be satisfied at any stationary point of PLR. These
can be seen as an approximation to the whiteness conditions
Eynyn—r] =0foral k > 0.

From (5) and (6) we immediately see that the stationary
points of the two algorithms do not necessarily coincide.
Recall that our principal concernisthe minimization of J as
givenin (2); let us consider the sufficient order case first.

5. THE SUFFICIENT ORDER CASE

If H(z) isFIRwiththesamedegree M as A(z) (or less), then
{u,} iIsamoving average process of order M, or MA(M).
Then as stated above, J isminimized if {y,} iswhite. The
following is a consequence of [1] and [4]:

Lemmal If {u,} isan MA process of order M or less,
then both (5) and (6) have a unigque minimum phase solution
A(z) which isthe minimum phase spectral factor of S,,(z).

Thusin sufficient order settings both OVM and PLR present
asingle stationary point which coincideswith the minimum
of J. Thisis an additional advantage of the blind criteria
observethat thecost .J isahighly nonlinear function of A(z)
which could present local minima.

In addition, this stationary point islocally convergent for
both algorithms. Thisis clear for OVM since the optimum
is a minimum of E[y2]. For PLR, the argument is more
subtle; see[9].

6. REDUCED ORDER CASE: OVM

When {u,} isnot MA(M), no A(z) with degree M exists
that completely whitens{y,, }. Inthat casethereisnosimple
description for the minimizer of .J. Nevertheless, the cost
E[y2] can still be seen as a proxy to J, as we now discuss.
Considerthecased = 0. ThenR,, = E[y2], p, = E[wnyn]
are both scalars. The reduced error surface becomes
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Note that, since {w,,} is white, the term E[w,y,,] does not
dependon A(z) at all, sothat minimization of .J isequivalent
to the minimization of E[y2],i.e. the OVM criterion.



When d > 0 thisis not strictly true. However, note that

lIp, P

)\max

J=o,—-p,R;'p, <0, : ®
where Anmax is the largest eigenvalue of R,,. Thusin order
to minimize J it makes sense to make Apax as smal as
possible; and SiINCe Amax > trace(R,)/(d + 1) = E[y2],
by making E[y2] small one could expect to decrease Amax-
Thisargument isloose since p,, dependson A(z) for d > 0.
The examplesin section 8 will illustrate this point.

7. REDUCED ORDER CASE: PLR

The first question that arises about the behavior of PLR in
undermodeled settings is the existence of stationary points.
Thisissueisnot trivial since PLR does not correspond to the
minimization of any meaningful cost. To this purpose, we
present a new approach which reveals the stationary points
of PLR asfixed points of an off-line iterative scheme. First
observe that for fixed A(z), one hasy, = u, —a’y, ;.
Therefore the conditions (7) can be rewritten as

Ely,_1yn_ila= Elu.y, ;] 9)

Notethat thisequationisnot linearina sincey,,_, depends
on a, though it suggests the following iterative process:

1. At iteration i, let a = a(® be fixed and let

vy, =1 g @ 1T with ys) = u, —
M 7 7
23:1 ag )yilj-

; ; : -1 :
2 Letal*) — E [yill(yill)T] E [unyi)_l].
3. Iterate Steps 1 and 2 until convergence.

Clearly, at any fixed point of thisiteration, (9) issatisfied,
so that these fixed points coincide with the stationary points
of PLR. The following result holds now:

Theorem 1 If thepsd S, (z) is bounded and nonzero for all
|z] = 1, then the iterative method admits a fixed point a.,
corresponding to a minimum phase polynomial A, (z).

Observe that any small amount of white measurement noise
in {u,} will yield S,(z) # 0 for dl |z| = 1. Theorem
(1) then shows that under these mild conditions the PLR
adaptivealgorithm admitsat | east one stationary point inside
the stability region. In some cases this point is unique:

Lemma 2 The minimum phase stationary point of PLR is

uniqueif either (1) M =1,i.e. A(z) =1+ a1z~ or (2)
2 .

Su(Z) = (l—ozz_sw Wlthp =1 orp= 2.

Whether this stationary point is always unique remains an
open question. For example, if {u,} iSMA(M + 1), itcan
be shown that the conditions (6) become

55

] =1 [M + 127V (2). (10)
+

Although (10) is highly structured, showing the uniqueness
of its solution (if the case) for M > 1 seems difficult.
Observe that the above iterative off-line scheme resem-
bles in a sense the Steiglitz-McBride (SM) system identifi-
cation method, in that a nonlinear problem is replaced by
an iteration of linear ones. Some results have been derived
in order to lower bound the performance of SM stationary
points [8]. We are currently investigating the possibility of
using that approach in order to come up with a priori upper
bounds on the cost J (or E[y2]) at stationary points of PLR.

8. EXAMPLES

Here we illustrate the main points with a few reduced order
examples. Inall of themwetakes?, = 1and o = 0.1.
Examplel: Let M = 1and H(z) = g=r, Ip| < 1.

With d = 1, J isunimodal for |p| < ¥3-1 and bimodal for

@ < |p| < 1. OVM presentsasingleminimum, whichis
the solution of a?p(1 + a1p) = a1 + p with |a;| < 1, while
the unique stationary point of PLR isa; = —p. Figure
2 shows the variation of the global minimum of J and the
OVM and PLR solutionsas afunction of p, together with the
normalized loss 5w, For p = 0 werecover the sufficient
order case. The degree of undermodeling increaseswith |p|,
with a corresponding degradation in performance.
Example 2. Let M = 1 again, but now H(z) = 1 +
271 4+ gz~2. Thereduced cost J for d = 1 isunimodal for
al values of ¢q. Figure 3 shows the variation of its global
minimum, the OVM and PLR solutions, and the normalized
excess error, for |¢g| < 2. In this example the OVM and
PLR solutions remain close to the global minimum of J for
g > 0, whilefor ¢ < 0 the performance lossis larger.
Example3: Let M = 2and H(z) = 14271 +1.5272+
0.5273 +0.2z~*. Figure 4 showsthe contour plots of .J for
d =1, 2, 3, together with those of OVM (which in this case
is unimodal) and the PLR stationary point, in the stability
domain |k;| < 1 (k1 = ¢, ka2 = a2). Ford > 1J
becomes multimodal. Even though OVM and PLR do not
exactly minimize J, they still provide good performance.

9. CONCLUSIONS

An analysis of two blind criteria(OVM and PLR) for adap-
tive IR equalizers has been presented, with emphasisin the
undermodeled case. Although in general these algorithms
do not convergeto an M SE minimum, they usually provide
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Figure 2: Performance of OVM and PLR for Example 1.

acceptableperformance. A characterization of the stationary
points has been given, and it was shown that PL R always ad-
mits a stationary point, which in some casesis unique. The
guestions of uniqueness in the general case, lower bounds
on performance, and local convergence, remain open.

10. APPENDIX

Proof of Theorem 1: Definethe function F : R® — RM
asF(a) = Ely,_1yL:_i]7'E[uny,_,]. Thentheiterative
method can be written as a(+?) = F(a(®). Introduce now
themap k = L(a), wherek = [ k; ky 1T isthe
vector of reflection coefficients (lattice parameters) associ-
ated to the polynomial A(z), and which can be obtained via
the Schur recursion [8]. The stability domain becomes the
following convex open subset of RM :
D={k |k;| <1 fori=1,...,M }.

We can definethefunction G : D — RM asthecomposition
G = Lo Fo L1, Thustheiteration can be reparameterized
in lattice coordinates ask "+ = (k). Observethat the
iteration may break if k is outside D.
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Figure 3: Performance of OVM and PLR for Example 2.

Let 0D denote the boundary of D. As the vector of
|attice parameters k approaches 9D, at least one root of the
corresponding A(z) approaches the unit circle. In that case
the diagonal entries of the matrix E[y,,_,y~_,] become

(ﬁun) 2] — 00, 1y

because S, (z) > 0 on the unit circle is assumed. On the
other hand the components of the vector E[u,y,,_;] are
given by

Ely)]=E

2mi

1 P2
Elunyn—;] = j|{2|:1 Su(z)mdz (12

for 1 < j < M. For minimum phase A(z), the only poles
of the integrand inside the unit circle are those of S, (z);
therefore, using the residue theorem to evaluate (12), we see
that these quantities remain finite even as one or more roots
of A(z) approach |z| = 1.

Thisimpliesthat ask — 0D frominside D,

F(L7Y(k)) — 0,

inview of (11), (12) and thedefinitionof . Since L(0) = 0,
we conclude that the domain of G' can be extended in order
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Figure 4. Contoursof OVM and J for Example3. o = PLR
stationary point; x = OVM minimum.

toinclude D by defining G(k) = 0 foral k € 9D, and in
thisway G : DU D — RM remains continuous.

We now invokethefollowing Borsuk fixed point theorem
[2, p.46]:

Theorem 2 Let D be a closed, bounded, symmetric and
convex subset of RM, and let G be a continuous mapping
fromD to RM. If G is odd along the boundary, i.e.

G(-k) = -G(k) forallk € D, (13)
then G admits a fixed point in D: there existsk,, € D such
that G(k,) = k..

We can apply this result with D = D U dD: since
G(k) = 0 for dl k € 9D, (13) is clearly satisfied. Thus
G(k.) = k. for somek, € D. Moreover k. cannot lie on
9D sinceall 9D ismapped onto 0 whichisnotin dD. Thus
the fixed point liesinside the stability domain D. ]

Proof of lemma 2(1): With M = 1, assume that the
polynomias1 + az~! and 1 + bz~ were both minimum-
phase stationary points of PLR. Define the processes

1 1
() — = ) — -
n 1+aztom Yn 1+ba1om™

and their correlation coefficients

ralk] = Elp@y @), nlk] = By, ).
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Figure5: Thefunction f(z) = z/(1 + z?) isone-to-oneon
[_17 1]'

Then we must have r,[1] = r[1] = 0. Define the process
{2,} as

1

— (b) —
1+az

b) — (a)
—1Yn 1+ bz

a
—1 y'n, ?

Tn
with correlation coefficients r,[k] = E[znzn—k]. Noting
that 4 = (1 + bz—1)z,,, it can be easily shown that

ro[l] = ra[1] 4 (rz[0] + r.[2])b + TZ[l]b2~ (14)
Definethecross-correlation coefficientsc[k] = E[y,(f’)xn_ k)
Sincez,, = y,(f’) — ax,_1, they satisfy

clk] =
rz[k] =

rp[k] — aclk + 1],
clk] — arg[k —1].

(15)
(16)

By (15), r,[1] = 0 implies ¢[1] = —ac[2]. In view of (16),
this gives

re[l] = —a(rz[0] + c[2]), 17)
rz[2] = ¢[2] — arg[1]
= 2]+ a®(r.[0] + c[2)). (18)
Substituting thisinto (14), we obtain
ro[1] = —(a— (1+a?)b+ ab®)(r.[0] + c[2])
= 0 by assumption. (19

Now note that since
r2[0] + 2 [2] = (1 + a®)(r5[0] + ¢[2])

we cannot haver,[0] + c[2] = 0 dueto thefact that |r,[0]| >
|72[2]]. Thus (19) reads as a — (1 + a?)b + ab® = 0, or
equivalently

a b

14+a2 14052




Observe that the function f : [-1,1] — [—1, 1] given by
f(z) = 135> isone-to-one, seeFigure5. Thus f(a) = f(b)

impliesa = b, since|a| < 1, |b] < 1. =
Proof of lemma 2(2): If

02

Sulz) = (1—az7?)(1 — azp)’
then
1
VTR R

is an autoregressive (AR) process of order M + p. Without
loss of generality we can assume |a| < 1. Because {y,}
isAR(M + p), the Forward Prediction Error Filter (FPEF)
of order M + p associated to the process {y. } has transfer
function (1 — az?) A(2).

Consider the lattice parameterization of this FPEF, given
by thereflection coefficientsky, . . ., karyp. If A(z) isaPLR
stationary point, thenthefirst A/ autocorrelation coefficients
of {y.} are zero, according to (7). Thisin turnimplies that

ey =ky = =ky =0. (20)

(Incidentally, (20) istrue regardless of whether {y,,} iSAR
or not: it holdsaslongas(7) istrue, and can be easily shown
viathe Levinsonrecursion for thelinear prediction problem,
e.g. [6]). Now if p = 1, (20) meansthat one must have

(1—azP)A(z) =1+ kpypz~ M1,

which reads as
a—a = 0,
a;—a;1a = 0, 2<i< M,
—apya = kM+1.

The solution to these equationsis unique and it is given by
AR)=1+az 7l + - +aMz=M,
On the other hand, if p = 2, then (20) implies

(1—-azP)A(z) =

1+ (kM+1kM+2)Z_1 + kM_HZ_M_l + kM+2Z_M_2

Equating the coefficients of equal powersof z,

ar = kyiikayo,
a—a = 0,
a; —a;— 16 = 0, 3SZSM7
—apy—100 = kyy1,
—apya = kMgl.

Againthese equationshave aunique solution, whichisgiven

by
o 0  foriodd,
i =9 /2

for ¢ even.
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