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ABSTRACT Monte Carlo techniques need to be used, with the obvious
A performance analysis of the authentication methodjrawback of requiring long time simulations whenever small
S L . ._probabilities are to be estimated. The analysis proposesl he
proposed by J. Fridrich and M. Goljan is carried out. This . . .
method has the particular feature that both the embedd('asrbased on computing the hash bit error probability dueo th
wlatermark embedding and noise, and showing its impact on
and the detector generate the watermark from a perceptu

digest of the image. Hence, in order to accurately analyzte%i:nfgewer Operating Characteristic (ROC) of the overall

the performance, the digest errors caused by the watermar . . g .
In the next section we give a brief introduction to the ro-

embedding, the addition of a complementary signal and thSust authentication method proposed by Fridrich and Gpljan

scaling attacks are also taken into account. . . . .
Index Terms— Content-based authentication, robustincluding the embedding and detection processes. Perfor-
hash, performance analysis. mance is addressed in Sect. 3, whereas in Sect. 4 simulations
are carried out to check the accuracy of our analysis. Finall
1. INTRODUCTION Sect. 5 presents the main conclusions.

Due to the ease of modifying digital objects, ensuring thel.1. Notation

authenticity and/or integrity of digital contents has mehe  We will denote scalar random variables with capital letters
become an unavoidable requirementin medium-high securitie.g., X) and their outcomes with lowercase letters (e:}y.
profile scenarios (e.g., recordings of people enteringiotsti  The same notation criterion applies to random vectors and
areas, banks videosurveillance systems, etc.). Sevetet-wa their outcomes, denoted in this case by bold letters ®g.
marking techniques have been proposed to tackle this issug), with transposes denoted by the superindex The ith
these algorithms embed a low-power signal (a.k.a. digiéal w component of a vectdK is denoted asX;. Images in the
termark) in the digital content to be protected. Analyzing t pixel domain will be partitioned iV, blocks and arranged as
inserted watermark, one can check whether the received digectors.

ital content is authentic or is a forgery. Some of these water

marking techniques generate the watermark as function of a 2. DESCRIPTION OF THE FRIDRICH-GOLJAN

secret key and a perceptual digest of the digital objectga.k METHOD

robust hash, perceptual hash or soft hash). Ideally, therdif |, this section a description of the method by Fridrich and
ence between the robust hash vectors of two digital objscts Goljan [1], that will be analyzed in Sect. 3, is given; fur-

proportional to the dissimilarity of their meaning. thermore, a correlation based detector for that methodois pr
From the set of authentication techniques which embeBosed.

a watermark that depends on the image robust hash (also

known as watermarking self-embedding authenticatior®, th2.1. Hash and Watermark Computation

algorithm proposed by Fridrich and Goljan [1] is one of theThe original host signal in the pixel domain is block-wise-pa

most prominent. However, a theoretical performance analytitioned and arranged a§, vectorsx?, 1 < i < N,, each

sis of this widely-referenced self-embedding authenbcat of size M.> For the sake of notational simplicity, we will

algorithm is still lacking. Thus, for performance comparis avoid the block superindex. For eagha set ofN;, length-
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as the length¥/ vectors’. Thus, from eaclx, and depending mentioned conditions on the Gaussianity and independence
on the set o, an NV}, bits hash vectoh is computed as of the signals are known not to be verified; due to this exten-
0 if LIxT.si|<T, sive use, this statistic was chosen for detection in thesodirr
hj = M ° work. Under these considerations, the thresh@ldandT,
1 otherwise : ! - . ;
which define the decision regions, can be obtained from the

whereT. is a quantization threshold derived to comply with "€Spective expectations and variances of the distribution

the constraint that the total number@ over all theN, hash ~ WhenHo (E{p, },Var{px, }) andH: (E{px, },Var{ps, })

vectorsh of the image must be equal to the total number ofhold [3].

1's. In our analysis this threshold will be approximated by

the median of the absolute value of the coefficients obtained 3. PERFORMANCE ANALYSIS

by projecting the host image blocks onto the pseudorandom

sequences, i.eI%XT .87, In this section we will analyze the effect of the watermark em
Each hash vectoh is permuted usingV, permutations bedding and the attack on the estimate of the hash on the de-

k), 7k {0,130V — {0,1}Vn, with k = 1,--- ,N,. tector side, and how a non-perfect estimate of the watermark

Next, the results are joined to define the |engf,p-vectors will deteriorate the overall performance. Our first sted b

i 1 H A1 T j
S (Wll (h),ﬂf(h), o mle (h)),l=1,---,Np. Theset!, the charactgnzaﬂon of the rgndom vanaﬁ];ef X 87
jointly with 6, and the index of the current image block, are ~ Re€asoning that projecting onte’ resembles comput-

used as seed of a Pseudo-Random Number Generator (PRl\iGg an almost orthogonal transform somewhat similar to the
that generates a length- sequence with components uni- DCT, whose coefficients have been previously character-
formly distributed on[—1, +1], and that we will denote by |_zed in the literature by a Generalized Gaussian letrlbu-
v!. Finally, the watermarkv corresponding to a block of the tion (GGD) [4], we propose to modéD; by a GGD, i.e.,
fp,(z) ~ Axe~1Px=I"* 'where in the GGD expressiofy,
) ) - _ Bx and the shaping parametey are fitted for each block of

The watermarkw is embedded in the host signal using e jmage to the experimental data using Maximum Likeli-
Additive Spread Spectrum [2] in the pixel domain, so the cory 44 Estimation (MLE). This hypothesis has been validated
responding block of _the watermar_ked image is obtained a§sing the luminance component of a set éfimages consti-
y = x +yw, wherey is an embedding strength parameter. y,teq by those images with si266 x 256 pixels from volume
2 2. Detection "miscellaneous” .of the _USC—SIPI database [5]. Specifica}lly

_ . the Kullback-Leibler divergence (KLD) between the his-

On the detector side, the steps described above are follmved;,qram of the projection of the blocks onto the pseudorandom
obtain an estimate of the watermarlw from a block of the 3 tems and the corresponding GGD is an order of magnitude
received signaz. Given thatz and the host image differ, the |5\er than that resulting from a Gaussian distribution.

quantization threshold at the detectr is calculated again The first step of our analysis is the calculation of the prob-
from 1;Z" - S’ as described in Sect. 2.1. The main objective,

fthe d ) decide whether th . fth ability of flipping one bit of the hash obtained at the detecto
ofthe detector is to decide whether the estimate of the watey, iy, respect to the hash computed at the embedder. For large
mark is present (authentic block) or not (manipulated bjock

7 values of)M, it is shown in [6] that the projected watermark
In the current work the decision on the presence or ab:, .7 ; V2202 .
sence of the estimate of the watermark is formulated as a b7 V.~ S’ can be modeled by(0, *—;==), whereos is
: the standard deviation of the pseudo-random sequencas
nary hypothesis test, namely, s ;
the other hand, the projection of the complementary sighal
Ho : z=nx+9W)+n ontoS’, i.e. ﬁNT - §7, is modeled by a GGD with parame-
Hi : z=x+7W, tersAy, Bx andcy, being its pdf denoted by ().
Taking this into account, in [6] it is shown that the proba-
whereH,, represents the hypothesis of the received signal bebility of a hash bit error under hypothegig can be expressed
ing the sum of a watermarked signal scaled by a given factag (1), whered(z) & —L foo e‘édr. In (1) the first inner

. . Vor Jx
n € [0, 1.] and 520me complementary signglwith ZEro mean integral gives the probability that the hash bit at the detec
and variancery,, whereasH; denotes the hypothesis of the

ived sianal beind th fth bedd is 1 when the counterpart at the embedded,ignd the sec-
reC(Ialve dS|gna Ielnght. eb_outputo t eglm € her. -k ond inner integral calculates the probability of changirigta
_nhor ertq sove t. 'S binary test pro em, the well-known, o the embedder to at the detector. Both of them consider
likelihood ratio test is used. In this way, when both the

the effect of the host and watermark distribution, wherbas t

?pbsttsgn;]l and thle tr_10|ste) i\r/ve 'nd?ﬁenden_t agdblc;aﬁssgntg&iter integral takes into account the noise effect. It istivor
ributed, the correfation between the received block a pointing out that the previous expression is valid whenever

corresponding watermark, i.,= +;z” - W, is a sufficient

statistic for this prOblem- This St?-tiSti_C is W?dely usedarg 2Note that this characterization is valid for both the caskerem is an
the research community due to its simplicity, even when thémage or additive Gaussian noise (for whigh = 2).

original host signak, is constructed asr = , /Nih Zl]ihl s




f:;e Axe_

|8 ppox (1 s (mmﬂfﬂ) _0 (m<Td+T+t>)) dr

P. = 2 /oo Aye 18NN \/7271?% VPn?og
e % :;"e Axef‘TXT‘deT
nTe g —1E8Xrex VM (Ty—7—t) VM (Ty+74t)
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B c
Sl Axe™ 5 dr
N VME(To — (Nj, — ng) 2L VM (Ty — (Nj, — ng) 2L
Py ~ 3 Pr(N. = m.fHo) |Q &(To — (N )%E) 0 (Th — (N )3) @
na0 VIPox +PPod, + ok VPok + P70k, + 0%
Nn VME((N —ns) w2 — To) VM(Ty — (Ni — ns) 7)
Ppn & Pr(N; = ns|H g + M 3
f R;O r( ns|Hi) [Q( T ) £Q< e )} 3)
n > 0; in the particular case whenmg = 0, due to the as- analysis as
sumption of independence betweKnandNN, it is clear that N\ (Nn—ne)
P, ~ 1/2. Additionally, (1) can be easily adapted to hypoth- Pr(Ne = n.) = (ne>Pe ‘(1-F) r

esisH; by settingy = 1 andN”'S’ = 0 (By = o).
As it is described in Sect. 2.1, the estimated waternéark

In [6] it is shown that the values of the probability of false

is gengrated fronV,, permutations of the reconstructed haShpositive and false negative are respectively given by (2) an
vectorh; one bit of each of these permutations is picked tq(3), wherePr(N, = n,|H,) and Pr(N, = n,|H;) denote

form the vectort!, 1 < [ < N,,. Thus, N, errors in the
estimate of the hash vector, witki, < N, will be spread
to at mostmin{N. - N,,, N} different vectorst!. This im-
plies that the correlation betweenandw for a given block
will depend, through the generation of, on the number of
wrong vectorst!, denoted byN,. Hence, in order to quan-

the probability of Ny, = ns under hypotheses, and H,
respectively, and = sign(Var{ps,} — Var{ps, }) when
Var{py, } # Var{px, }. WhenVar{py,} = Var{py, } the
obtained expressions are still valid by doifig = oo and
¢ = 1. Furthermoreg x denotes the standard deviation of the

tify the watermark estimation error it is necessary to knowmage blockx ando,,, represents the standard deviation of

the probability of the numbeNs of wrong vectorg!. In this
way, the probability of the number of wron§vectors aftek:
permutations (denoted bY; ;) beingm, given thatV, = n.
is calculated by the recursive formula

1, if K =1andmy = ne,

0, if k =1 andmg # ne,
Np,
Pr(Ns . = mg|ne) = Z Pr(Nog = malme_1,me)
my_1=0

otherwise,

(4)
which depends on both the probability 8% 1 = mi_1
givenN, = n. (i.e., Pr(Ns ,—1 = mg_1|n.)), and the prob-
ability of N, ;, being equal ton, given thatN, ;1 = my_;
andN, = n. (i.e., Pr(Ns, = mg|mg_1,ne)). This last
probability is calculated asPr (N, = my|mg—_1,ne) =
ne I e ) (T025 (Ve
(e ) (2, lneo)l((Nh_l; ) i my, < Ny
and0 < my — mip_1 < n., and0 elsewhere, and where
2 <k < Np, ne < Ny. By settingk = N, andm;, = ng in
(4), the probability ofN, after N, permutations is obtained
as the expectation dfr (N, n, = ns|N. = n.) with respect
to the distributionNoTNe, ie.,

X Pr (Ns,k—1 = mr_1|ne),

h
Pr(Ng =ng) = Z Pr(Ns N, = ns|Ne = ne) Pr(Ne = ne)

ne=0

where Pr(N,

the projection of the original watermavsk ontow computed
at the detector wheV, = n,, which can be calculated as
 [(Nh —ng) - op2 + (N — 1) - Nj, - oy,

p)
Ny - oy

+ng - op + (Np

2 2 1
O'nS

—ns)-(Nh—ns—l)-a{“/},

whereo{, = 1/9 ando?,, = 4/45, aso?, = Var{V;?} and
Vi ~U(—1,1). Further details on the presented analysis and
proofs can be found in [6].

4. EXPERIMENTAL RESULTS

In this section we experimentally check the accuracy of our
model. In order to do so, we study the scenario where the
detector must decide whether a given image bears the right
watermark. In this setup, the null hypothegig is particu-
larized ton = 0 andn is the block of a non-watermarked
image. The aforementioned setlaf images was used, with
block size of64 x 64 pixels, N, = 16 and N, = 5. The
results are plotted in Fig. 1, where the empirical and analyt
ical ROC curves almost perfectly match. Furthermore, the
curves for different values of (y € {2, 4,8,10}), show that,

in reasonable work scenarios, better performance, in tefms
the ROC, is achieved with larger valuesfalthough one
should also notice that a largerimplies a larger distortion.
Hence, a trade-off between distortion and performanceldhou

ne) can be calculated by combinatorial be achieved.
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Fig. 1. Analytical (dashed lines) and empirical (solid Fig. 2. P. vs shaping factory (solid lines) andP, for
lines) ROCs for a set of4 images [5]. M = 4096, uniform fp(x) (dashed lines) for different DNRs when
Ny =16, N, =5,n1=0,andy € {2,4,8,10}. Ho holds. N Gaussian distributedy/ = 4096, n = 1,

ox = _(n(;éﬁ andy = 10.

The dependence df. on the MLE estimated parameters between the received signal and the watermark estimated at
of the GGD used for modelingT .S’ whenH, holds is il-  the detector; therefore, a trade-off between distortiahger-
lustrated in Fig. 2, wheré, is plotted as a function of the formance must be considered.
shaping factorx for several values of Data to Noise Ratio Furthermore, we have seen hdw depends on the stan-
(DNR=0% /0%, andn is Gaussian distributed. The simu- dard deviation and the shaping parameter of the projection
lations were obtained with the following parametess¢ =  (modeled by a GGD) of the image blocks onto the pseudo-
0-10_\/M (this is a typical value for real images)/ = 4096, random patterns. These results have been compared with an
n = 1 andy = 10. On one hand, and according to intuition, it approximation taP, for largecy values, showing to be rea-
can be seen that the larger the values of DNR, the smaller tt@nably close to the real probability fox > 1.5.
hash bit error probabilities due to watermark embedding and
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