
QUANTIZATION LATTICE ESTIMATION FOR MULTIMEDIA FORENSICS
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ABSTRACT

The most widely used information lossy source coding schemes for
multimedia signals rely on the quantization of the content samples
in a linearly transformed domain. A number of forensic applications
(e.g., processing history estimation, tampering detection, software
identification) can be posed as the estimation of the equivalent lattice
quantizer from the observed samples. We present a new lattice esti-
mation algorithm based on the observation of noisy points ofthe lat-
tice. Although inspired by the work of Neelamaniet al., our scheme
uses the so-called ”dual lattice” to achieve significant performance
improvements with respect to its predecessors as measured by the
number of vectors of the lattice basis that can be correctly estimated.
Such performance improvement is even more dramatic when small
pieces of the contents are considered, which indeed is especially rel-
evant for forensic applications.

Index Terms— Dual lattice, lattice estimation, multimedia
forensics, noisy estimation.

1. INTRODUCTION

The most widely used information lossy source coding schemes for
multimedia signals are based on the quantization of the content sam-
ples in a linearly transformed domain. Typically, such domain is
chosen both for perceptual and energy compaction reasons, so that a
significant number of coefficients in the transform domain are quan-
tized to zero. Estimation of this transform has a great interest in
multimedia forensic applications, such as:

• Estimation of the previous history of a content: for exam-
ple, given an image in raw format, decide if it was previously
compressed in a lossy way, and estimate the compression pa-
rameters.

• Detection of quantization inconsistencies between different
parts of the content: this might indicate that the content was
tampered with. In this practical scenario, the number of al-
tered samples can be very small.

• Identification of post-quantization processing: estimation of
the quantization grid can be used as a previous step to deter-
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mine which processing the content has been subjected to after
the quantization (e.g., filtering a JPEG-compressed image).

• Identification of software tools or capturing devices: different
software and hardware manufacturers can work in different
color spaces, leaving a trace that can be tracked by estimat-
ing the color lattice used for image processing or during the
capture of the contents.

Due to its interest, this problem has already deserved attention
of several researchers. To the best of our knowledge, the first re-
lated work is due to Fan and Queiroz [1], where the authors esti-
mate the JPEG quantization steps. This work was significantly im-
proved by Neelamaniet al. in [2], where the estimation of the quan-
tization lattice is studied for the first time in multimedia forensics.
The authors use lattice estimation for determining the color space
where the quantization of DCT-coefficients is performed fora JPEG-
compressed image without downsampling of color components; this
is the problem that we will study in the experimental part of this
work, although the proposed methodology can be also extended to
the general problem of multidimensional lattice estimation. In fact,
our work is inspired by [2] (specifically, by the blind lattice-based
algorithm proposed therein), although our estimation method is rad-
ically different. Due to our novel approach, the number of vectors of
the lattice basis that can be correctly estimated is significantly larger
than that in [2]. Even though the scheme proposed in [2] is highly
robust to round-off errors, it has also some limitations that have mo-
tivated our approach. Those limitations are:

• Neelamani et al.’s method strongly relies on the computation
of the multidimensional histogram of the available samples.
Therefore, for a given number of bins per dimension, the total
number of bins exponentially grows with the dimensionality
of the problem, thus hindering the use of efficient solutions.

• In the implementation provided by the authors [3], a mini-
mum number of samples per bin is required. Therefore, valu-
able information samples are not considered. This is espe-
cially relevant when high AC-DCT frequencies are consid-
ered, as only few coefficients are quantized to a non-null cen-
troid. This problem also increases with the dimensionalityof
the lattice, since for a fixed number of available samples an
exponentially growing number of bins implies that most bins
will be empty.

The lattice estimation problem was also studied in a recent pa-
per by Tagliasacchiet al. [4], although for the noiseless case, i.e.,
when the input samples are exactly the quantizer output. Thecur-
rent work, similarly to [2] deals with the more practical noisy case,



where the quantized content contains additional noise for instance
due to rounding-off to integer values in the pixel domain.

2. NOTATION AND PROBLEM FORMULATION

Random variables will be denoted by capital letters (e.g.,X), while
small letters will be used for their realizations (e.g.,x). For their
n-dimensional vector counterparts we will use bold fonts (e.g., X
andx, respectively); in the experiments we will focus on the color
space estimation, similarly to [2], son = 3. The probability density
function (pdf) of random variable (vector)X (X) evaluated atx (x),
will be denoted byfX(x) (fX(x)).

The problem we want to solve can be posed as follows. Given an
input signalX in some domain (for the experimental results reported
in this work, as well as in [2], this domain is the8×8-DCT, as JPEG
images are considered), this signal is quantized using a latticeΛ to
produceY. This quantization depends on some parameter which
is not known by the estimator; in the considered use case, that un-
known information is the color transformation that is applied to the
8×8-DCT coefficients before quantizing, as well as the correspond-
ing quantization steps. Afterwards, some noiseN is added toY,
yielding the observed signalZ = Y+N. As done in Section 6 and
[2], noiseN can model the round-off effects introduced when quan-
tizing pixels to integer values, so it is modeled by AWGN indepen-
dent ofY. Similarly to [2], our aim is to blindly, i.e., without assum-
ing anya priori information about the used lattices, estimateΛ given
a sequence ofL independent observed vectorszi, i = 1, · · · , L (i.e.,
continuing with the parallelism with [2],L stands for the number of
blocks of the image). The lattice estimate will be denoted byΛ̂.

The space ofn-dimensional lattices will be denoted byL, the
fundamental Voronoi region of latticeΛ by V(Λ), and rV(Λ)

.
=

minx/∈V(Λ) ||x||, its inner radius. For a certain lattice pointλ ∈
Λ, we denote byPλ the probability thatX is quantized toλ. If
minimum Euclidean distance quantizers are assumed (denoted by
QΛ(·)), Pλ can be written asPλ =

∫

λ+V(Λ)
fX(x)dx.

In this paper, we make extensive use of thedual lattice con-
cept. For a latticeΛ, its dual latticeΛ⊥ is defined asΛ⊥ =
{

x ∈ R
n : xT · y ∈ Z for all y ∈ Λ

}

[5]. Let matrixB be a basis
of lattice Λ; notice that estimatingΛ is equivalent to estimating
anymatrixB generatingΛ. If B is full-rank, then it turns out that
D

.
= B−1 is such thatDT is a basis ofΛ⊥. Given a minimum

distance quantizerQΛ(·) corresponding toΛ and a vectorx, the
modulo-Λ reduction ofx, isx modΛ = x−QΛ(x).

3. DERIVATION OF THE COST FUNCTION

From the independence of the quantized signalY and the noise
N, the pdf of the estimator input signal,Z, is easily shown to be
fZ(z) =

∑

λ∈Λ PλfN(z−λ). Sincea priori knowledge about the
input signal distribution is not typically available at theestimator,
probabilitiesPΛ will not be known; therefore, Maximum Likelihood
(ML) Estimation based onz is not generally possible. A strategy
widely used in the literature [6, 7] to simplify lattice-based prob-
lems is to work with the modulo-̂Λ reduced version of vectorz, i.e.,
v

.
= z modΛ̂. Be aware that the mapping fromz tov will usually be

information-lossy. In general, we can writeV = [λ+N] modΛ̂,
whereλ ∈ Λ is the centroid representing the quantized vectory.
Therefore, the distribution ofV is

fV(v) =
∑

λ′∈Λ̂

∑

λ∈Λ

PλfN
(

v − λ+ λ′
)

, (1)

wheneverv ∈ V(Λ′), and is zero otherwise. Obviously, whenΛ̂ =

Λ, thenλ modΛ̂ = 0, and consequentlyV = N modΛ. Notice
that, due to the modular reduction,V is independent ofX.

Under the high-SNR assumption, defined asr2V(Λ) ≫ σ2
N ,1

the probability of the noise lying outsideV(Λ) is negligible.
Therefore, if Λ̂ = Λ, the pdf of V can be approximated as
fV(v) = fN(v), i.e., the modulo-Λ reduction of the observed

vectorZ is Gaussian-distributed. On the other hand, whenΛ̂ 6= Λ,
under the high-SNR assumptionfV(v) can be approximated by
∑

λ∈Λ PλfN

(

[v − λ] modΛ̂
)

, but nowλ modΛ̂ will lie at no

specific point inV(Λ̂). This effect especially affects the disribution
of V when a large number ofPλ’s have significant values.

Therefore, by considering the pdf ofV when Λ̂ = Λ under
the high-SNR assumption, we can derive a nearly-ML estimateof Λ
when a set ofL realizations ofV is available,2 namelyzi, 1 ≤ i ≤
L. The estimate becomeŝΛ = argminΛc∈L

∑L
i=1

∥

∥zi modΛc

∥

∥

2
.

Be aware that the verification of the high-SNR assumption is crit-
ical to avoid the trivial solution in whicĥΛ = 0. In practice (cf.
Section 4), constraints on the search space or penalties on the target
function must be included.

For the sake of notational simplicity we will denote byz̄ the
matrix collecting all theL observationszi, 1 ≤ i ≤ L; this allows
us to write the near-ML target function as

g(z̄,Λc) =
L
∑

i=1

‖zi modΛc‖2 =
L
∑

i=1

min
ci∈Zn

∥

∥

∥
z
i −Bc

i
∥

∥

∥

2

,(2)

whereci are the minimum-distance quantizer coordinates of vector
zi corresponding to a basisB generatingΛc. Obviously, the value
of g(z̄,Λc) does not depend on the particular lattice basisB, as all
of them will yield the sameg(z̄,Λc) (although using different values
of ci).

A major implementation problem arises when one tries to find
Λ̂ by using (2); all the components of the lattice basisB must be
jointly estimated, which introduces a very large computational load,
even for moderate values ofn. Interestingly, when the true lattice
Λ is known to belong to the space of orthogonal lattices, then the
cost function in (2) can be decoupled and each basis vector can be
independently found. Inspired by this observation, we seeka low-
complexity solution in which each basis vector is found at a time.
This alternative approach is based on rewriting (2) as

g(z̄,Λc) =

L
∑

i=1

min
ci∈Zn

∥

∥

∥B
(

Dz
i − c

i
)∥

∥

∥

2

. (3)

The termDzi yields the scalar product between vectorzi and each
vector of the basis of the dual lattice ofΛc, corresponding to the
different rows ofD. If we focus on thejth such row, which we
denote bydj , from (2) we can construct the following alternative
cost function

h(z̄,bj ,dj) = min
ci∈Z

L
∑

i=1

∥

∥

∥b
j
∥

∥

∥

2 ∥
∥

∥d
j
z
i − ci

∥

∥

∥

2

, (4)

1Note that the given condition does not strictly apply on the SNR, rather,
it is defined for a particular direction; in any case, we have preferred this
name for the sake of clarity.

2Strictly speaking, the proposed estimator is not ML, since some infor-
mation is lost in passing fromz to v.



wherebj is thejth column ofB, and we must introduce the con-
straint thatdj · bj = 1, becauseD · B = In×n. Notice that (4)
does not depend on the rows ofD and columns ofB other than the
jth, and thus the complexity is greatly reduced at the expenseof only
approximately solving (2), except for the case of orthogonal bases.

Thus, we can estimate a column ofB and of the corresponding
row ofD by calculating

(b̂, d̂) = arg min
(b,d)∈R2n:d·b=1

L
∑

i=1

‖b‖2
∥

∥

∥
dz

i modZ
∥

∥

∥

2

.

It is easy to check that the solution verifiesb = dT

‖d‖2
, so

d̂ = arg min
d∈Rn

∑L
i=1

∥

∥dzi modZ
∥

∥

2

‖d‖2 , (5)

or similarly, due to the relationship betweenb andd,

b̂ = arg min
b∈Rn

‖b‖2
L
∑

i=1

∥

∥

∥

∥

bT zi

‖b‖2 modZ

∥

∥

∥

∥

2

. (6)

Therefore, the consideration of the dual lattice properties en-
ables us to work with a cubic lattice in (5) or, equivalently,solve for
a basis vector at a time.

3.1. Additional considerations

From (5) it is clear that asdzi modZ is always bounded, an un-
wanted solution would be to maked as large as possible (similarly,
b would be as small as possible). Indeed, special attention should be
paid to the following two related situations:

• Estimation of nested lattices: for any latticeΛ1, such that
Λ ⊂ Λ1 (i.e.,Λ is nested intoΛ1 [8]), if one takes arbitrary
vectorsx ∈ Λ andy ∈ Λ⊥

1 , thenxTy ∈ Z. The estimation
of a lattice finer than the real lattice but containing the latter
is in fact a correct solution to the lattice estimation problem.

• Degenerated solutions: a solution to (5) is‖d‖ → ∞ (al-
ternatively,‖b‖ → 0). Nevertheless, this degenerated solu-
tion contravenes the high-SNR assumption introduced at the
beginning of this section. To avoid the assumption being vi-
olated, an upper bound on‖d‖ or a related penalty on the
target function can be established in practice.

4. ALGORITHM DISCUSSION

In this section we give an outline of the algorithm that implements
the solution presented in the previous section. We also briefly dis-
cuss some relevant implementation decisions. The algorithm com-
prises the following steps:

• Smallest quantization step estimation (only performed ifa
priori information about such step is not available). Most
of the subsequent stages need knowledge of the quantization
steps. Assuming that there are not large differences between
them, we will focus on the estimate of the smallest. The
proposed estimation strategy considers those input observa-
tions with Euclidean norm larger than a threshold, and or-
ders them by increasing Euclidean norm. Let those norms be
denoted byt1, . . . , tL. The ratio between successive norms
(Ri

.
= ti/ti−1) is computed. For samples corresponding to

the same centroid, the resulting value will be close to1; in

contrast, for sampleszi andzi−1 coming from different cen-
troids,Ri will be very large, more so whenzi−1 comes from
the 0 centroid. Therefore, we computei∗ = argmaxi Ri

and the quatization step is estimated as
√
ti∗ . This value is

used for defining thresholds that help us to decide if an input
sample corresponds to the0 centroid, and if a vector is small
enough to be a good candidate for being in the lattice basis.

• Lattice quantization implementation. Minimum distance
quantizers and the corresponding modulo lattice reduction
were implemented following [9].

• Low-SNR penalty. As mentioned in Section 3, some con-
straint or penalty should be introduced in order to ensure the
verification of the high-SNR assumption. In the current im-
plementation a penalty should be introduced in (6). Specifi-
cally, very low values of the candidate norm (orders of mag-
nitude smaller than the estimated smallest quantization step)
will increase the target function.

• Local minima. The main problem when dealing with (6),
or equivalently with (5), is that the target function has lots
of local minima due to the modulo reduction; therefore, off-
the-shelf optimization algorithms do not guarantee the con-
vergence to the global minimum (or even to a good enough
solution). In the proposed algorithm this issue is solved by
working with a set of candidate points; if the candidate point
minimizing (6) provides a small (with respect to a threshold)
value of that function, then it is used as starting point of a lo-
cal optimization. In the current implementation, this is done
by means offminsearch, from the optimization toolbox
of Matlab). The optimization result is included in the basis
estimation (unless it can be written as linear combination of
vectors already included in the basis estimation).

• Candidate set definition. Two different strategies are consid-
ered for defining the candidate set:

1. We include both the input samples and their modulo-
lattice reduction using the lattices spanned by other
samples.

2. We considern input samples corresponding to differ-
ent lattice centroids that are linearly independent. The
matrix containing thosen samples is a noisy basis of a
sublattice ofΛ, the original lattice we wish to estimate.
Therefore, its inverse transpose is a noisy basis of a lat-
tice containingΛ⊥. From the latter basis, and using the
target function introduced above, we can estimateΛ⊥,
and consequentlyΛ.

We have experimentally observed that no choice is superior
than the other for all cases. Therefore, the results provided by
both are combined to produce an improved estimate.

• Candidate set update. Once we have estimated one vector in
the lattice basis, we remove its contribution on the remaining
vectors in the candidate set. In order to do that, we modulo re-
duce the vectors in the candidate set using the lattice spanned
by the current estimate of the basis.

• Nested lattice. The final lattice basis estimate is processed in
order to avoid the possible estimation of a finer lattice con-
taining the true one.

5. FINAL STEP AND BIAS ANALYSIS

Once the vector-wise estimation of matrixB, that we will denote
by Bv, is performed, a refinement of those estimated vectors can be
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Fig. 1. Number of lattice basis vectors correctly estimated by the
method proposed in [2] and the current proposal, following the ex-
perimental setup proposed in [2]: Lena image and the same color
space and quantization table (corresponding to QF =70). Subimages
of M ×M pixels are considered.M ∈ {16, 32, 64, 128, 256, 512}.

carried out by exploiting the structure of the resulting basis. We will
assume that this estimate is good enough for correctly decoding the
coordinates of the quantized signalȳ, i.e., for a basisB of the correct
latticeΛ, this assumption implies that

arg min
c1∈Zn

∥

∥

∥z
i −Bvc1

∥

∥

∥

2

= arg min
c2∈Zn

∥

∥

∥z
i −Bc2

∥

∥

∥

2 .
= c

i, (7)

for all 1 ≤ i ≤ L. Using these decided centroidsci, i = 1, · · · , L,
one can further improve the estimate by solving (2) as

B̂ = arg min
Bc∈Rn×n

L
∑

i=1

∥

∥

∥
z
i −Bcc

i
∥

∥

∥

2

. (8)

A similar refinement is considered by Neelamaniet al. [2], although
therein it is carried out in each step of the algorithm after including
a new histogram bin in the estimation (for updating the basisesti-
mated so far); in contrast, our algorithm resorts to (8) justonce. As
discussed in [2], the solution to (8) iŝB =

(

z̄c̄T
) (

c̄c̄T
)−1

, where
c̄ is a matrix whose columns areci, 1 ≤ i ≤ L.

In fact, the latter expression can be used to determine whether
the resulting estimator is biased. Under the assumption that (7)
holds, and taking into account thatZ̄ = N̄+BC̄ the mean ofB̂ is

E{B̂} = E

{

(

N̄ +BC̄
)

C̄
T
(

C̄C̄
T
)−1

}

= B;

consequently, the proposed estimator is unbiased and constitutes a
basis ofΛ.

6. EXPERIMENTAL RESULTS

The main target of this section is to compare the results achieved by
our method with those obtained by Neelamaiet al. [2, 3]. In order
to do so, a first experiment considers the framework used in [2],
i.e., the quantization of image Lena512× 512 with the quantization
table corresponding to Quality Factor (QF)70, and the color space
indicated therein. Furthermore, the number of independentcentroids
observed in our input samples is also computed, in order to provide
an upper bound to the number of basis vectors that can be estimated;
getting close to this bound is difficult, especially when jonly a few
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Fig. 2. Number of lattice basis vectors correctly estimated by the
method proposed in [2] and the current proposal, as a function of
the QF. The16 color images in USC-SIPI Miscellaneous Image
Database [10] are tested.

samples of a finely quantized signal are observed. Fig. 1 compares
the number of lattice basis vectors correctly estimated by the method
in [2] and ours, for different sub-images of Lena with the specified
sizes. This serves to illustrate the variation of the estimated vectors
versus the number of available samples. Remarkably, our scheme
estimates a significantly larger number of basis vectors forall the
sub-image sizes. When the full image is considered, the upper bound
(137 vectors) is achieved, in contrast to the51 vectors estimated in
[2].

In the second experiment the16 color images in [10] are consid-
ered, and we try to estimate the63 3-dimensional lattices for each of
them (therefore, the maximum number of estimated vectors would
be 3024); since the sizes of some of those images are512 × 512
while others are256×256, for the former we have kept the upper left
corner of size256× 256 to avoid the dependence of the results with
the number of observations. The resulting images are JPEG com-
pressed with different QFs, and then the basis vectors are estimated.
Fig. 2 shows the overall number of correctly estimated basisvectors
as a function of QF; again, the performance improvement achieved
by our method is evident in all the QF range. Specifically, when low
QFs are considered, our proposal is more suitable for extracting the
information from the few available non-null centroids. Alternatively,
for very high QFs the number of non-null centroids with just afew
samples is very high; as discussed in Section 1, unlike our method,
[3] is sensitive to this spread of the samples.

7. CONCLUSIONS AND FURTHER WORK

In this work a blind lattice estimation scheme, whose input are the
noisy versions of the quantizer outputs, is proposed. The general
problem is inspired in [2]. Nevertheless, the approach we follow,
based on the use of the dual lattice, is substantially different, and
entails a reduction of the computational complexity. The results of
some of our experiments, run on the same use case in [2], show adra-
matic increase in the number of estimated basis vectors thatcan be
correctly estimated. Finally, we want to remark that our method can
be applied to estimate higher dimensional lattices; preliminary re-
sults, not reported here, show its feasibility. In fact, theperformance
gains increase with the number of dimensions. This extension to
higher-dimensional lattices will be discussed in a future work.
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