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ABSTRACT

The most widely used information lossy source coding sclsefiore
multimedia signals rely on the quantization of the contemhgles
in a linearly transformed domain. A number of forensic aggtiions
(e.g., processing history estimation, tampering detactioftware
identification) can be posed as the estimation of the ecritddttice
guantizer from the observed samples. We present a newelatic
mation algorithm based on the observation of noisy pointa®fat-
tice. Although inspired by the work of Neelamagtial.,, our scheme
uses the so-called "dual lattice” to achieve significanfgrenance
improvements with respect to its predecessors as measyrtteb
number of vectors of the lattice basis that can be correstiynated.
Such performance improvement is even more dramatic wheti sm
pieces of the contents are considered, which indeed is iedlyeel-
evant for forensic applications.

Index Terms— Dual lattice, lattice estimation, multimedia
forensics, noisy estimation.

1. INTRODUCTION

The most widely used information lossy source coding sclsefiore
multimedia signals are based on the quantization of theecbsam-
ples in a linearly transformed domain. Typically, such doema

chosen both for perceptual and energy compaction reasotizatsa
significant number of coefficients in the transform domamauan-
tized to zero. Estimation of this transform has a great @gem

multimedia forensic applications, such as:

e Estimation of the previous history of a content: for exam-
ple, given an image in raw format, decide if it was previously

compressed in a lossy way, and estimate the compression pa-

rameters.

Detection of quantization inconsistencies between difier
parts of the content: this might indicate that the conterg wa

tampered with. In this practical scenario, the number of al-

tered samples can be very small.
Identification of post-quantization processing: estiom@tdf

the quantization grid can be used as a previous step to deter-
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mine which processing the content has been subjected to afte
the quantization (e.g., filtering a JPEG-compressed image)

Identification of software tools or capturing devices: eliént
software and hardware manufacturers can work in different
color spaces, leaving a trace that can be tracked by estimat-
ing the color lattice used for image processing or during the
capture of the contents.

Due to its interest, this problem has already deservedtaiten
of several researchers. To the best of our knowledge, therdirs
lated work is due to Fan and Queiroz [1], where the authoris est
mate the JPEG quantization steps. This work was significamt!

roved by Neelamarst al. in [2], where the estimation of the quan-
ization lattice is studied for the first time in multimediarénsics.
The authors use lattice estimation for determining the rcspmce
where the quantization of DCT-coefficients is performedtafdPEG-
compressed image without downsampling of color componémits
is the problem that we will study in the experimental part lust
work, although the proposed methodology can be also extetule
the general problem of multidimensional lattice estimatitn fact,
our work is inspired by [2] (specifically, by the blind lattitased
algorithm proposed therein), although our estimation iwetik rad-
ically different. Due to our novel approach, the number aftoes of
the lattice basis that can be correctly estimated is sigmiflg larger
than that in [2]. Even though the scheme proposed in [2] iblhig
robust to round-off errors, it has also some limitationg tiave mo-
tivated our approach. Those limitations are:

e Neelamani et al.'s method strongly relies on the computatio
of the multidimensional histogram of the available samples
Therefore, for a given number of bins per dimension, thd tota
number of bins exponentially grows with the dimensionality
of the problem, thus hindering the use of efficient solutions

e In the implementation provided by the authors [3], a mini-
mum number of samples per bin is required. Therefore, valu-
able information samples are not considered. This is espe-
cially relevant when high AC-DCT frequencies are consid-
ered, as only few coefficients are quantized to a non-nuH cen
troid. This problem also increases with the dimensionalfty
the lattice, since for a fixed number of available samples an
exponentially growing number of bins implies that most bins
will be empty.

The lattice estimation problem was also studied in a recant p
per by Tagliasacchét al. [4], although for the noiseless case, i.e.,
when the input samples are exactly the quantizer output. cline
rent work, similarly to [2] deals with the more practical spicase,



where the quantized content contains additional noisenfstance
due to rounding-off to integer values in the pixel domain.

2. NOTATION AND PROBLEM FORMULATION

Random variables will be denoted by capital letters (€X9,,while
small letters will be used for their realizations (e.g), For their
n-dimensional vector counterparts we will use bold fontg.(eX
andx, respectively); in the experiments we will focus on the colo
space estimation, similarly to [2], so= 3. The probability density
function (pdf) of random variable (vectoX (X) evaluated at: (x),
will be denoted byfx () (fx (x)).

wheneverv € V(A'), and is zero otherwise. Obviously, whdn=
A, thenx modA = 0, and consequently’ = N modA. Notice
that, due to the modular reductiow, is independent oX.

Under the high-SNR assumption, definedrgs,, > o'
the probability of the noise lying outsid®(A) is negligible.
Therefore, if A = A, the pdf of V can be approximated as
vv) = fn(v), i.e., the moduldA reduction of the observed
vectorZ is Gaussian-distributed. On the other hand, wheg A,
under the high-SNR assumptiofy;(v) can be approximated by
hen PN ([v Y modf\), but now A mod A will lie at no

specific point inV(A). This effect especially affects the disribution

The problem we want to solve can be posed as follows. Given aff V when a large number df,'s have significant values.

input signalX in some domain (for the experimental results reported

in this work, as well as in [2], this domain is tBe< 8-DCT, as JPEG
images are considered), this signal is quantized usingiaedat to

Therefore, by considering the pdf 8f whenA = A under
the high-SNR assumption, we can derive a nearly-ML estirate
when a set of_ realizations ofV is available? namelyz’, 1 < i <

produceY. This quantization depends on some parameter whicly,. The estimate becomes = arg mina,er ZiLzl sz mod Ac||2.

is not known by the estimator; in the considered use caseutha
known information is the color transformation that is apglto the
8 x 8-DCT coefficients before quantizing, as well as the corradpo
ing quantization steps. Afterwards, some ndSds added toY,
yielding the observed sign@ = Y + N. As done in Section 6 and

Be aware that the verification of the high-SNR assumptiorrits ¢
ical to avoid the trivial solution in whicth = 0. In practice (cf.
Section 4), constraints on the search space or penaltidsedarget
function must be included.

For the sake of notational simplicity we will denote kythe

[2], noiseN can model the round-off effects introduced when quan-mayrix collecting all thel, observations:’, 1 < i < L; this allows

tizing pixels to integer values, so it is modeled by AWGN ipde-
dent of Y. Similarly to [2], our aim is to blindly, i.e., without assum
ing anya priori information about the used lattices, estimatgiven

a sequence df independent observed vectarsi = 1, --- , L (i.e.,
continuing with the parallelism with [2][, stands for the number of
blocks of the image). The lattice estimate will be denotediby

The space oh-dimensional lattices will be denoted I8, the
fundamental Voronoi region of latticA by V(A), andryy =
minxgy(a) ||x]], its inner radius. For a certain lattice poiht €
A, we denote byP, the probability thatX is quantized to\. If
minimum Euclidean distance quantizers are assumed (dkihgte
QA (")), P\ can be written a$, = f)\+V(A) Ix (x)dx.

In this paper, we make extensive use of theal lattice con-
cept. For a latticeA, its dual lattice A is defined asA+
{xeR":x" .y eZforally € A} [5]. Let matrix B be a basis
of lattice A; notice that estimating\ is equivalent to estimating
any matrix B generating\. If B is full-rank, then it turns out that
D = B7'is such thatD” is a basis ofA-. Given a minimum
distance quantize@ (-) corresponding to\ and a vectorx, the
moduloA reduction ofx, isx modA = x — Qa(x).

3. DERIVATION OF THE COST FUNCTION

From the independence of the quantized sigiabnd the noise
N, the pdf of the estimator input signd, is easily shown to be
Jz(2) = >, ca PrfN(z— ). Sincea priori knowledge about the
input signal distribution is not typically available at tkstimator,
probabilitiesPa will not be known; therefore, Maximum Likelihood
(ML) Estimation based om is not generally possible. A strategy
widely used in the literature [6, 7] to simplify lattice-leak prob-
lems is to work with the moduldx reduced version of vectar, i.e.,
v = z modA. Be aware that the mapping framo v will usually be
information-lossy. In general, we can writé¢ = [\ + N] mod A,
whereX € A is the centroid representing the quantized vegtor
Therefore, the distribution o¥ is

fv(v) = Z ZPAfN (V*A+>\/),

M eAAEA

@)

us to write the near-ML target function as

‘@

>

1=

min
i n

sz — Bc'
C*eZ

L L
9z A) = Y|z modA|? =
=1 1
wherec’ are the minimum-distance quantizer coordinates of vector
z’ corresponding to a basB generatingA.. Obviously, the value
of g(z, A.) does not depend on the particular lattice bd3jsas all
of them will yield the samg(z, A.) (although using different values
of ¢*).
A major implementation problem arises when one tries to find
A by using (2); all the components of the lattice baBisnust be
jointly estimated, which introduces a very large compotai load,
even for moderate values af Interestingly, when the true lattice
A is known to belong to the space of orthogonal lattices, tien t
cost function in (2) can be decoupled and each basis vectobea
independently found. Inspired by this observation, we seékv-
complexity solution in which each basis vector is found ainzet
This alternative approach is based on rewriting (2) as

>

9(2, Ac) min 3)
ciczn

:

B (Dzi - ci)

The termDz’ yields the scalar product between vectband each
vector of the basis of the dual lattice Af., corresponding to the
different rows of D. If we focus on thejth such row, which we
denote byd?, from (2) we can construct the following alternative
cost function

L
h(z,b’,d’) = min )

i
c'€Z )

2

dizt — ¢ , (4)

bf’2(

INote that the given condition does not strictly apply on théRSrather,
it is defined for a particular direction; in any case, we haxefgrred this
name for the sake of clarity.

2Strictly speaking, the proposed estimator is not ML, sinmme infor-
mation is lost in passing fromto v.



whereb’ is the jth column of B, and we must introduce the con-
straint thatd’ - b’ = 1, becauseD - B = l,x». Notice that (4)
does not depend on the rows Bfand columns ofB other than the
jth, and thus the complexity is greatly reduced at the expefhsely
approximately solving (2), except for the case of orthodjbases.

Thus, we can estimate a column Bfand of the corresponding
row of D by calculating

L
S Ib|*|az modZH2 .

=1

f), d) = ar min
( ) & (b,d)er2n.d-b=1

T

It is easy to check that the solution verifies= H(cjlW o]

. > L ||z’ modz||®

d = arg min , 5)
dern 41l
or similarly, due to the relationship betwebrandd,
N L bTZi 2
b = arg min ||b|’ —— modZ (6)
guin 10172 |5

Therefore, the consideration of the dual lattice properta-
ables us to work with a cubic lattice in (5) or, equivalensig|ve for
a basis vector at a time.

3.1. Additional considerations

From (5) it is clear that aglz’ modZ is always bounded, an un-
wanted solution would be to makkas large as possible (similarly,
b would be as small as possible). Indeed, special attentionlgtbe
paid to the following two related situations:

e Estimation of nested lattices: for any lattida, such that
A C Ay (i.e., Ais nested into\; [8]), if one takes arbitrary
vectorsx € A andy € A7, thenx”y € Z. The estimation
of a lattice finer than the real lattice but containing théelat
is in fact a correct solution to the lattice estimation pewbl

e Degenerated solutions: a solution to (5)||id|] — oo (al-
ternatively,||b|| — 0). Nevertheless, this degenerated solu-

tion contravenes the high-SNR assumption introduced at the

beginning of this section. To avoid the assumption being vi-
olated, an upper bound dfd|| or a related penalty on the
target function can be established in practice.

4. ALGORITHM DISCUSSION

In this section we give an outline of the algorithm that inmpéts
the solution presented in the previous section. We alsdlypidkés-
cuss some relevant implementation decisions. The algoritbm-
prises the following steps:

e Smallest quantization step estimation (only performed if
priori information about such step is not available). Most

of the subsequent stages need knowledge of the quantization

steps. Assuming that there are not large differences batwee
them, we will focus on the estimate of the smallest. The
proposed estimation strategy considers those input adserv
tions with Euclidean norm larger than a threshold, and or-

ders them by increasing Euclidean norm. Let those norms be

denoted bytq,...,tr. The ratio between successive norms

contrast, for samples’ andz‘~! coming from different cen-
troids, R; will be very large, more so whezi~! comes from
the 0 centroid. Therefore, we compuié = arg max; R;

and the quatization step is estimated\@s-. This value is
used for defining thresholds that help us to decide if an input
sample corresponds to tlecentroid, and if a vector is small
enough to be a good candidate for being in the lattice basis.

Lattice quantization implementation. Minimum distance
quantizers and the corresponding modulo lattice reduction
were implemented following [9].

Low-SNR penalty. As mentioned in Section 3, some con-
straint or penalty should be introduced in order to ensuge th
verification of the high-SNR assumption. In the current im-
plementation a penalty should be introduced in (6). Specifi-
cally, very low values of the candidate norm (orders of mag-
nitude smaller than the estimated smallest quantizatiep) st
will increase the target function.

Local minima. The main problem when dealing with (6),
or equivalently with (5), is that the target function hasslot
of local minima due to the modulo reduction; therefore, off-
the-shelf optimization algorithms do not guarantee the con
vergence to the global minimum (or even to a good enough
solution). In the proposed algorithm this issue is solved by
working with a set of candidate points; if the candidate poin
minimizing (6) provides a small (with respect to a threshold
value of that function, then it is used as starting point aj-a |
cal optimization. In the current implementation, this isndo
by means off m nsear ch, from the optimization toolbox

of Matlab). The optimization result is included in the basis
estimation (unless it can be written as linear combinatibn o
vectors already included in the basis estimation).

Candidate set definition. Two different strategies are icbns
ered for defining the candidate set:

1. We include both the input samples and their modulo-
lattice reduction using the lattices spanned by other
samples.

2. We considem input samples corresponding to differ-
ent lattice centroids that are linearly independent. The
matrix containing those samples is a noisy basis of a
sublattice ofA, the original lattice we wish to estimate.
Therefore, its inverse transpose is a noisy basis of a lat-
tice containing\™. From the latter basis, and using the
target function introduced above, we can estimate
and consequently.

We have experimentally observed that no choice is superior
than the other for all cases. Therefore, the results provige
both are combined to produce an improved estimate.
Candidate set update. Once we have estimated one vector in
the lattice basis, we remove its contribution on the renmajini
vectors in the candidate set. In order to do that, we modulo re
duce the vectors in the candidate set using the lattice gplann
by the current estimate of the basis.

Nested lattice. The final lattice basis estimate is processe
order to avoid the possible estimation of a finer lattice con-
taining the true one.

5. FINAL STEP AND BIAS ANALYSIS

(R; = ti/ti—1) is computed. For samples corresponding toOnce the vector-wise estimation of matid that we will denote

the same centroid, the resulting value will be closd ;tan

by B,, is performed, a refinement of those estimated vectors can be
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Fig. 1. Number of lattice basis vectors correctly estimated by the"19- 2. Number of lattice basis vectors correctly estimated by the

method proposed in [2] and the current proposal, followimg ex-
perimental setup proposed in [2]: Lena image and the sanoe col
space and quantization table (corresponding to @8)=Subimages
of M x M pixels are considered € {16, 32, 64, 128, 256, 512}.

carried out by exploiting the structure of the resultingibag/e will

assume that this estimate is good enough for correctly dlegadde
coordinates of the quantized sigi§ali.e., for a basi$3 of the correct
lattice A, this assumption implies that

. 2 . 2 .
. [3 _ . i - (3
arg lelel%n z' — Byc1|| = arg clglel%n z' — Bcp c, (1)
forall 1 <4 < L. Using these decided centroid§ i = 1,--- , L,
one can further improve the estimate by solving (2) as
A L . 112
B =arg min Z z' — Bc.c' (8)

Be€Rpxn “
i=1

A similar refinement is considered by Neelamanal. [2], although
therein it is carried out in each step of the algorithm aftetuding

a new histogram bin in the estimation (for updating the basts
mated so far); in contrast, our algorithm resorts to (8) puste. As
discussed in [2], the solution to (8) B = (zc”) ((‘:(‘:T)_l, where

¢ is a matrix whose columns at¢, 1 < i < L.

In fact, the latter expression can be used to determine wheth

the resulting estimator is biased. Under the assumption (fa
holds, and taking into account that= N + BC the mean of3 is

N _ _ _ _ —1
E{B} = E{(N +BC)c” (cc”) } = B;
consequently, the proposed estimator is unbiased andittbesta
basis ofA.

6. EXPERIMENTAL RESULTS

The main target of this section is to compare the resultsaeliby
our method with those obtained by Neelaraaal. [2, 3]. In order

to do so, a first experiment considers the framework used]in [2
i.e., the quantization of image Leha2 x 512 with the quantization
table corresponding to Quality Factor (QF), and the color space
indicated therein. Furthermore, the number of indepenckemtroids
observed in our input samples is also computed, in orderdwige

an upper bound to the number of basis vectors that can besgstim
getting close to this bound is difficult, especially whenlyoa few

method proposed in [2] and the current proposal, as a funcfo
the QF. Thel6 color images in USC-SIPI Miscellaneous Image
Database [10] are tested.

samples of a finely quantized signal are observed. Fig. 1 acesp
the number of lattice basis vectors correctly estimatedhbyriethod
in [2] and ours, for different sub-images of Lena with thecfed
sizes. This serves to illustrate the variation of the edthaectors
versus the number of available samples. Remarkably, ownseh
estimates a significantly larger number of basis vectorsafiothe
sub-image sizes. When the full image is considered, therlypend
(137 vectors) is achieved, in contrast to thie vectors estimated in
(2].

In the second experiment thé color images in [10] are consid-
ered, and we try to estimate t& 3-dimensional lattices for each of
them (therefore, the maximum number of estimated vectorddvo
be 3024); since the sizes of some of those imagesH 2 x 512
while others ar@56 x 256, for the former we have kept the upper left
corner of size256 x 256 to avoid the dependence of the results with
the number of observations. The resulting images are JPEG co
pressed with different QFs, and then the basis vectors tinsagsed.
Fig. 2 shows the overall number of correctly estimated basitors
as a function of QF; again, the performance improvementeseki
by our method is evident in all the QF range. Specifically, mioev
QFs are considered, our proposal is more suitable for diitathe
information from the few available non-null centroids. étbatively,
for very high QFs the number of non-null centroids with jusea
samples is very high; as discussed in Section 1, unlike otinade
[3] is sensitive to this spread of the samples.

7. CONCLUSIONS AND FURTHER WORK

In this work a blind lattice estimation scheme, whose inpattae
noisy versions of the quantizer outputs, is proposed. Timengé
problem is inspired in [2]. Nevertheless, the approach wevo
based on the use of the dual lattice, is substantially differand
entails a reduction of the computational complexity. Thauhes of
some of our experiments, run on the same use case in [2], sty a
matic increase in the number of estimated basis vectors#mbe
correctly estimated. Finally, we want to remark that ourhodtcan
be applied to estimate higher dimensional lattices; piiekmy re-
sults, not reported here, show its feasibility. In fact, peeformance
gains increase with the number of dimensions. This extengio
higher-dimensional lattices will be discussed in a futuoeky
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