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ABSTRACT

Watermarking schemes based on the Dirty Paper Coding (DPC)

paradigm have been shown to achieve much higher rates than classi-

cal Spread-Spectrum methods. However, in practice, the latter con-

tinue to be used due to their higher security and robustness. In fact,

the most prevalent DPC method, the so-called Scalar Costa Scheme

(SCS), is prone to non-additive attacks, such as a simple gain which

produces a desynchronization between the embedding and decod-

ing codebooks thus severely affecting performance. Although some

gain-robust modifications to the basic SCS exist, all have serious

drawbacks. One alternative, which was somehow abandoned for its

complexity, is to estimate the gain at the decoder, with the advan-

tage of preserving the simplicity of SCS. In this paper we take a new

look at the estimation problem and propose an affordable algorithm

to perform Maximum Likelihood estimation of the channel gain, that

is able to restore the original SCS performance. We also show and

experimentally illustrate how our scheme can be effectively adapted

to watermark decoding in filtered images.

Index Terms— Dirty paper coding, gain attack, image filtering,

maximum likelihood, watermarking.

1. INTRODUCTION

The advantages of Dirty Paper Coding (DPC) techniques in water-

marking have been widely recognized [1, 2, 3]. Specifically, DPC-

based schemes can achieve the channel capacity for Additive White

Gaussian Noise (AWGN) channels [4]. This good performance is

obtained thanks to the host rejection property of DPC techniques,

which rely on the quantization of the host signal by using a codebook

(indexed by the embedded symbol) with multiple codewords (con-

trarily to Spread-Spectrum techniques, where the involved codebook

contains a single codeword). Unfortunately, for typical DPC code-

books, such as the scalar ones used in the prevalent Scalar Costa

Scheme (SCS), the multiplicity of codewords makes them sensitive

to amplitude modifications of the codebook.

A simple but devastating special case is the fixed gain attack

(a.k.a. linear valumetric attack), in which the channel simply multi-

plies the watermarked signal by a constant real number. Even such

a simple channel has shown to have dramatic consequences on the

decoding of SCS, yielding very large probabilities of decoding error.
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Due to its relevance, several approaches have been proposed in the

literature to cope with this problem. They can be roughly classified

into two categories:
• Robust codebooks: in this case the typical SCS codebooks [3]

are replaced by codebooks implicitly robust against the gain

attack [5, 6, 7]. While [7] proposes to use phase-based code-

books (contrarily to magnitude-based ones), in [6] the infor-

mation is embedded by considering the maximum correlation

between the host signal and a pseudo-randomly generated set

of sequences, and in [5] a codebook that depends on the em-

pirical statistics of the watermarked signal is used.
• Gain equalization: in this case standard codebooks are used,

but the channel effect is equalized by estimating the gain

value and dividing the received signal by the estimate [8, 9].

Balado et al. [8] developed a method based on uniform

scalar quantizers and turbocodes that iteratively estimates the

gain factor, compensates its effect, and decodes the embed-

ded message. On the other hand, Shterev and Lagendijk [9]

proposed an exhaustive-search-based implementation of the

Maximum-Likelihood (ML) estimation of the gain factor;

again, this value is used for equalizing the observations, and

performing the decoding with the original codebook.

Despite these works, overcoming the gain attack is still an open

problem, as embedding distortion is difficult to be controlled in

phase quantization based techniques [7] and orthogonal dirty paper

coding [6] (which is also more computationally demanding than

SCS), the computational cost of [8, 9] is substantial, and the work

in [5] requires a sample buffer to be filled before decoding can be

performed in a robust way.

In this paper, we follow the equalization approach proposed in

[3] and later developed in [8, 9] for which an estimate of the channel

gain is needed. Our work is similar to [9] in that Maximum Like-

lihood (ML) estimation is performed, but instead of carrying out a

computationally prohibitive exhaustive search, we propose a com-

putationally efficient algorithm that considers a novel approximation

of the likelihood function. The advantages of our new approach are

shown on both scaled synthetic signals and filtered natural images.

The remaining of this paper is organized as follows: Sect. 2

overviews SCS, while Sect. 3 focuses on the description of the pro-

posed gain estimation; then, this scheme is adapted to deal with fil-

tered natural images in Sect. 4. Finally, experimental results are pre-

sented in Sect. 5, and conclusions are drawn in Sect. 6

1.1. Notation

Real random variables are denoted with capital letters (e.g., X)

and their outcomes with lowercase letters (e.g., x). Similarly, L-



dimensional real random vectors and their outcomes are denoted by

bold letters (e.g., X and x, respectively), and their jth component

is indicated by a subindex (Xj and xj). The probability density

function (pdf) of random variable X is denoted by fX (x), its mean

by E{X}, and its standard deviation by σX . Superscript S is used

for denoting variables/vectors in the spatial domain.

2. OVERVIEW OF SCS DATA HIDING

In the sequel we will focus on the binary implementation of SCS,

i.e., the case where two scalar quantizers (corresponding to the em-

bedded bit) are used. The binary vector m is embedded by mod-

ifying the host signal x (we assume X ∼ N (0, σ2
XIL×L)) to the

watermarked signal y, which is given by

yi = xi + α

(

Q∆

(

xi − di −mi
∆

2

)

−

(

xi − di −mi
∆

2

))

,

for all 1 ≤ i ≤ L, where Q∆(·) stands for the uniform scalar quan-

tizer with step-size ∆, α ∈ (0, 1] is the so-called distortion compen-

sation parameter, and d is the dither vector, which is a secret-key-

dependent realization of D ∼ U([−∆/2,∆/2]L). Therefore, the

watermark signal is w , y−x, and the mean embedding distortion

Dw , E
{

W2
}

/L is generally constrained in terms of a minimum

Document to Watermark Ratio (DWR) defined as σ2
X/Dw.

Under the fixed gain attack the received signal z is defined as

z = t0 (y+ n1) + n2, (1)

where t0 is a real gain factor, N1 ∼ N (0, σ2
N1

IL×L), N2 ∼

N (0, σ2
N2

IL×L), N1 and N2 are mutually independent and also

independent of Y. Be aware that in [8, 9] z corresponds to

z = t0 (y + n1); therefore, the model considered here is slightly

more general (its usefulness in modeling practical situations will be

shown in Sect. 4).

The most extended implementation of the decoder, estimates the

ith embedded bit as

m̂i = argmin
m∈{0,1}

∣

∣

∣

∣

Q∆

(

zi − di −m
∆

2

)

−

(

zi − di −m
∆

2

)
∣

∣

∣

∣

.

However, if t0 6= 1 the embedding and decoding codebooks will
be misaligned with the consequence of significantly increasing the
decoding error probability [5]. This problem could be easily solved
if the gain factor t0 were known; as this is not the case, it must
be estimated from the received samples. To this end, it is possible to
take advantage of the structure of the watermarked signal distribution
(which is induced by SCS embedding). The decoder can exploit this

estimate, denoted by t̂0(z), to equalize the received samples before
decoding. Specifically,

m̂i = argmin
m∈{0,1}

∣

∣

∣

∣

Q∆

(

zi

t̂0(z)
− di − m

∆

2

)

−

(

zi

t̂0(z)
− di − m

∆

2

)∣

∣

∣

∣

. (2)

3. GAIN FACTOR ESTIMATION

Since a priori knowledge of t0 is not available in general, we pro-

pose to obtain an approximation of the Maximum Likelihood (ML)

estimate of t0.1 Due to the componentwise independence of Z,

the ML estimate is calculated as t̂0(z) = argmint L(t, z), where

L(t, z) , −2
∑L

i=1 log fZ|T,K(zi|t, di), and the embedded bits are

modeled by M ∼ Binomial(L, 1/2).

1A similar algorithm was proposed in [10] for the complex flat fading
channel estimation problem.

Unfortunately, L(t, z) is an involved function, so we propose to
simplify the ML estimation by approximating the pdf of Z. Such

approximation is based on the following assumptions: a) σ2
X ≫

∆2/12 (verified for a wide range of real applications) in order to
use the flat-host assumption (see [11]); b) the scaled self-noise vari-
ance [12] is much smaller than the total channel noise variance, i.e.,
(1 − α)2t20∆

2/12 ≪ t20σ
2
N1

+ σ2
N2

; c) the variance of the total
noise (self-noise plus total channel noise) is larger than the second
moment of the scaled quantization lattice used at the decoder, i.e.,

(1− α)2t20∆
2/12 + t20σ

2
N1

+ σ2
N2

> t20∆
2/48; and d) the variance

of the total noise is much smaller than the variance of the scaled
host, i.e., (1− α)2t20∆

2/12 + t20σ
2
N1

+ σ2
N2

≪ t20σ
2
X . Under these

hypotheses, fZ|T,K(z|t, d) can be approximated as

fZ|T,K(z|t, d) ≈
e
− z2

2σ2
X

t2

√

2πσ2
X t2

×











1 + 2e
−

2π2

(

σ2
N2

+t2

(

σ2
N1

+
(1−α)2∆2

12

))

(∆/2)2t2 cos

(

2πz

∆/2t
−

2πd

∆/2

)











.

Under the assumptions introduced above, the absolute value of the

argument of the exponential is much larger than 1; consequently,

since log(1 + u) ≈ u for |u| ≪ 1, L(t, z) can be approximated as

L(t, z) ≈
‖z‖2

σ2
Xt2

+ L log(2πσ2
Xt2)

−4

L
∑

i=1

e
−

2π2

(

σ2
N2

+t2

(

σ2
N1

+
(1−α)2∆2

12

))

(∆/2)2t2 cos

(

2πzi
∆/2t

−
2πdi
∆/2

)

.(3)

The approximate L(t, z) has a large number of local minima, so

standard off-the-shelf optimization algorithms can not be used; fur-

thermore, brute-force minimization (as that proposed in [9]) is com-

putationally prohibitive. We thus propose an ad-hoc optimization

algorithm, which will be shown to be computationally efficient.

First, a search-interval for the absolute value of t0 is obtained

from the variance-based unbiased estimate of t20. Specifically,

t̂20,var(z) =
‖z‖2
L

− σ2
N2

σ2
X + σ2

W + σ2
N1

. (4)

If L is large enough to use the Central Limit Theorem (CLT), then

the distribution of t̂20(z)VAR can be approximated by N (t20, 2(t
2
0(σ

2
X+

σ2
W +σ2

N1
)+σ2

N2
)2/(L(σ2

X +σ2
W +σ2

N1
)2)), and t20 will be within

[t2−, t
2
+] with large probability, where

t2± , max
(

ǫ, t̂20,var(z)

±K2

√

√

√

√

2(t̂20(z)var(σ2
X + σ2

W + σ2
N1

) + σN2)
2

L
(

σ2
X + σ2

W + σ2
N1

)2



 ;

ǫ > 0 guarantees that both t2− and t2+ take positive values, and K2 ≥
0 controls the probability with which |t0| lies in the interval [t−, t+].

Once it is available, the search interval [t−, t+] is sampled, pro-

ducing a candidate set T +; this sampling must be fine enough to

guarantee that if a sample is within the main lobe of the target func-

tion, then at least one of its neighbors in the sampling set will be also

in the main lobe. This sampling criterion has a computational ratio-

nale: since the target function is convex in the main lobe, regular

convex optimization algorithms can be locally applied on the points

in the candidate set, and convergence to the global minimum will be

ensured.



Specifically, the sampling criterion is based on the factor in (3)

defining the lobes, i.e., the cosine function argument. Indeed, we

consider the variance of (z− td)mod(t∆/2)2 when t is in a neigh-

borhood of t0, and for t = t0; the sampled points t(l) are itera-

tively computed as t(l + 1) =
t(l)

(

α∆2

48
+σ2

X+ ∆
2
√

12
ν

)

σ2
X

+
∆2(1−K1)

48

, where ν ,

√

∆2/48 ((1− α)2 +K1(2α− 1)) +K1σ2
X , t(1) = t−, and the

iterative sampling stops when t(l) ≥ t+. Parameter K1 is intro-

duced to control the separation between consecutive points in T +

and, thus, the cardinality of such set; the larger K1, the smaller

|T +| (less computational cost), but the more likely it will be that

T + misses the main lobe of the target function, with a consequent

performance loss. Since t0 can be negative, by symmetry we define

T = T + ∪ −T +.

The centroid used at embedding is estimated for each t ∈ T ;

this is done by equalizing the received observation, i.e, cj =
Q∆/2 (zj/t − dj) + dj , j = 1, . . . , L. Then, given t ∈ T , the

vector of centroids c is estimated, and from this choice the mini-

mum mean square error gain factor, i.e., t∗ , argmint ‖z − tc‖2,

is computed. It is easy to show that t∗ = (zT c)/‖c‖2. We will

denote by T ∗ the set of local optimizers t∗ thus obtained. Note that

|T ∗| ≤ |T |. Since the sampling method guarantees that at least one

t ∈ T belongs to the main lobe, the ML estimate of t0 is finally

approximated by t̂0(z) ≈ argmint∈T ∗ L(t, z).

4. ADAPTATION TO FILTERED IMAGES

An interesting application of the technique introduced in the previ-

ous section goes beyond a pure scaling and considers a watermarked

image that is convolved with a linear filter. From the estimation re-

sult, the embedded bits must be reliably extracted. In this section we

assume the embedding to be performed in the full-frame Discrete

Cosine Transform (DCT)3 domain, and the considered filters to be

circularly symmetric; therefore, x will denote the coefficients in that

domain of a gray level image xS of size Nr ×Nc.

Typically, the energy of natural images is concentrated at the

low frequencies, which are the most perceptually significant com-

ponents. Therefore, an attacker could remove the high frequencies

without a large semantic distortion; consequently, most robust wa-

termarking schemes embed the messages at the low-middle frequen-

cies, excluding the DC component (e.g., [14]).

After embedding, the full-frame Inverse DCT (IDCT) of y is

calculated to obtain yS . The pixel values of the watermarked image

are rounded to the nearest integer and clipped; this operation, which

is modeled by the addition of n1 in (1), is denoted by rclip(·)

rclip(ys
i ) =







round(ys
i ) if ys

i ∈ [0, 2q − 1]
0 if ys

i < 0
2q − 1 if ys

i > 2q − 1,

where round(·) stands for the round function, and q denotes the

pixel depth. Then, the watermarked image is filtered (and subse-

quently rounded and clipped) in the spatial domain, yielding zS =
(yS+nS

1 )∗h
S+nS

2 , where ∗ denotes the convolution operation (we

consider zS to have the size of yS and nS
1 ), hS is an Nh

r ×Nh
c -sized

spatial filter, and nS
2 models the rclip(·) operation after filtering.

Assuming Nr ≫ Nh
r and Nc ≫ Nh

c , as customary, the filtering

border effect is neglected in our analysis; the spatial domain filtering

is approximated by a DCT domain frequency-dependent gain (al-

though one must be aware that the filtering effect is not purely mul-

2The modulo operation is defined as A mod B , A−QB(A).
3The definition proposed in [13] is used.

tiplicative). So, if one can estimate the gain factor corresponding to

each frequency, then the SCS decoder in (2) may be used.

This gain estimate will be performed blockwise, relying on the

assumption that the filter frequency response to be approximately

constant within each block. Non-overlapped NB ×NB-sized blocks

are used. If NB were too large, then the frequency response could

no longer be assumed constant within each block; on the other hand,

if NB were too small, then the estimate precision will be poor, due

to the small number of samples.

We assume the AC full-frame DCT coefficients used for embed-

ding to be i.i.d. zero-mean Gaussian distributed with known vari-

ance, and independent of the coefficients in other blocks. Further-

more, rclip(·) is modeled in the spatial domain by both NS
1 (round-

ing and clipping due to the pixel domain transformation of the water-

marked image, before filtering) and NS
2 (rounding and clipping due

to the pixel domain casting of the filtered image) following indepen-

dent U([−1/2, 1/2]L) distributions. If Nr ·Nc is large enough, the

CLT can be applied, and N1 and N2 can be approximated to be i.i.d.

zero-mean Gaussian distributed with variance 1/12.

5. EXPERIMENTAL RESULTS

In this section we compare, by using synthetic signals, the perfor-

mance of our proposed method with that of previous schemes in

the literature; we also illustrate the application to filtered images.

Throughout this section, the parameters of our method have been set

to K1 = 10−3, K2 = 10, and ǫ = 10−3. For the sake of com-

parison it will be useful to define the effective WNR as WNRe ,

t20σ
2
W /(t20σ

2
N1

+ σ2
N2

), and αCosta , WNRe/(WNRe + 1).
First, assuming that t0 > 0, we compare the performance in

terms of the Bit Error Rate (BER), of the scheme described in

Sect. 3 with that of Balado et al. [8]. The results are shown in

Fig. 1, where the turbo-code used in [8] is employed, i.e., a 1/15
turbo code based on the recursive systematic convolutional code

g = (31, 21, 25, 35, 23, 33, 27, 37) (octal coding) and interleaver

size of 103 uncoded bits (yielding L = 1.5 · 104) [15]. This coding

is also considered for the results of the current approach shown in

Fig. 1. It is worth noting that in order to reduce the complexity, our

gain factor estimation algorithm does not explicitly exploit the code

structure; in other words, for the results of the current method in

Fig. 1 the code error correcting capabilities are employed solely for

message decoding once the received signal is equalized by t̂0(z).
Hence, further improvements in the gain factor estimation would be

afforded by exploiting the code underlying structure at the expense

of a higher computational cost.

Fig. 1 shows that our scheme outperforms [8] for all the consid-

ered WNRe’s, except for WNRe ≈ 1.76 dB, where no decoding er-

rors were found for either.4 This is not surprising as this WNRe cor-

responds to t0 = 1. Indeed, the large sensitivity of [8] to gain attacks

even slightly different from 1 is shown by the authors in their original

paper; for the sake of numerical illustration, in Fig. 1 the gains cor-

responding to WNRe = 1 and 2 dB are t0 ≈ 0.850 and t0 ≈ 1.058,

respectively. Fig. 1 also shows the results obtained by initializing

the scheme in [8] with the variance-based estimate introduced in (4);

this initialization of Balado et al.’s method, newly proposed here,

achieves the best results among all three methods for very small val-

ues of WNRe (where the error in the variance-based estimate is very

small), but it is clearly outperformed by the scheme described in

Sect. 3 when larger WNRe’s are considered (corresponding to larger

values of the estimate variance).

4Be aware that also no decoding errors were found for our method when
WNRe = 1 and 3 dB.
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Fig. 1. BER as a function of WNRe for the method in [8], its varia-

tion when it is initialized by the variance-based estimate (4), and the

current proposal. DWR = 30 dB, L = 1.5 · 104, and α = αCosta.

Fig. 2 shows the BER as a function of WNRe for [9], the

variance-based estimate in (4), and our proposal when channel cod-

ing is not used, and t0 > 0. [9] is carried out by sampling finely

enough a search interval. Special attention was paid to reducing its

computational cost as much as possible (e.g., precomputing the pdfs

depending on a quantized version of the dither).

Since [9] uses the exact received signal pdf and exhaustive

search, it was expected to provide the best results, as it is indeed

the case. Furthermore, and similarly to Fig. 1, the variance-based

estimate outperforms our proposal for very low values of the WNRe,

as the structure on fY(y) induced by the watermark embedding is

no longer observable; however, for larger WNRe’s such structure is

made evident, and our scheme clearly improves the results of the

variance-based estimate. It is also interesting to note that Shterev

and Lagendijk’s method behaves almost exactly as the best result

among the variance-based estimate and our proposal, showing that

both schemes are good choices (depending on the WNRe) to be

used as alternatives to the method proposed in [9], with a dramatic

reduction in the computational cost over the latter. Specifically,

each Monte Carlo trial of [9] for WNRe = 6 dB carried out in

MatlabR2013b using a Core i5-2500 3.3GHZ 16 GB PC requires

around 50 s, while our proposal approximately needs only 0.3 s.

Finally, Fig. 3 shows the results of the filtered-image-targeted

adaptation proposed in Sect. 4 for a low-pass 5× 5 spatial Gaussian

filter with standard deviation 1, and a test set of 100 gray-converted

384 × 512-sized images pseudo-randomly selected from the UCID

v2 image database [16]. For the reasons given in Sect. 4, only the

first 10 zigzag-ordered DCT coefficient blocks of size 64 × 64 are

used for hiding data.

Fig. 3 shows the BER averaged over the test images for the con-

sidered blocks, when NB = 16, α = 1, and the Peak Signal to Noise

Ratio (PSNR), defined in this case as 2552/σ2
W , is set to 40 dB. Ac-

cording to the shown results, the block BER approximately takes

values between 10−1 and 10−2, which illustrates that our scheme

can be practically used in this demanding scenario. In addition, the

BER seems to depend on the actual value of h (its estimate ĥ is

shown in this figure) as one would expect since σ2
W , σ2

N1
, and σ2

N2

are approximately constant for all the watermarked blocks and, thus,

the WNRe only changes with h. These BER results are supported by

the accuracy of the obtained estimates; specifically, in this example

the mean square estimation error (MSE) of the gain factors takes val-

ues approximately around −30 dB in medium frequencies and less
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Fig. 2. BER as a function of WNRe for the method in [9], the

variance-based estimate (4), and the current proposal. DWR = 30
dB, L = 103, and α = αCosta.
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Fig. 3. Estimate ĥ of the block gain factor averaged over 100 images,

the mean square estimation error of the gain factor, averaged BER

per block, and WNRe for each watermarked DCT block following

the zigzag order. PSNR = 40 dB, NB = 16, α = 1, and Gaussian

spatial filter of size 5× 5 with standard deviation 1.

than −40 dB for low frequencies (where the energy of the images is

concentrated).

6. CONCLUSIONS

In this paper, a novel gain attack estimation algorithm based on ML

is used to equalize the effect of this attack on SCS. Preserving the

simplicity of SCS codebook, our proposal estimates the gain factor

by taking advantage of the watermark signal pdf structure induced

by the embedder; this estimate is used to equalize the received sig-

nal and decode the embedded message. The resulting method pro-

vides better results in terms of the BER than [8], partially due to the

sensitivity of the latter to its starting point. On the other hand, the

computational complexity of our scheme is substantially reduced in

comparison with [9]; nevertheless, whenever the watermarked sig-

nal pdf structure arises, the BER achieved by the current proposal

converges to that of [9], where the exact pdf of the received signal

and exhaustive search are used. Finally, experiments with filtered

real images ilustrate the usefulness of the proposed adaptation of

our scheme for dealing with this real application scenario.
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