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ABSTRACT

In this work, we study the presence of almost cyclostationary fields
in images for the detection and estimation of digital forgeries. The
almost periodically correlated fields in the two-dimensional space
are introduced by the necessary interpolation operation associated
with the applied spatial transformation. In this theoretical context,
we extend a statistical time-domain test for presence of cyclostation-
arity to the two-dimensional space.

The proposed method allows us to estimate the scaling factor
and the rotation angle of resized and rotated images, respectively.
Examples of the output of our method are shown and compara-
tive results are presented to evaluate the performance of the two-
dimensional extension.

Index Terms— Image forensics, spatial transformation, cyclo-
stationarity, interpolation, resampling factor estimation

1. INTRODUCTION

Nowadays, there are a lot of powerful and intuitive image editing
tools that facilitate the manipulation and alteration of digital images.
With the aim of identifying the type of forgery, several blind (or
passive) techniques have been proposed in the past few years. When
an image forgery is carried out, most of the time it is necessary to
perform geometric transformations like scaling, rotation or skewing.

The detection of these spatial transformations has been studied
in [1] and [2]. The former uses an expectation-maximization (EM)
algorithm to detect periodic patterns and then expose forgeries, but
the main problem lies in the correct initialization of the parameters
for the EM convergence. The latter is based on a derivative operator
and Radon transformation that provides a blind and very fast method
capable of detecting traces of spatial transformations, but presents
some weaknesses in the estimation of the rotation angle and scaling
factor, due to the one-dimensional approach.

Motivated by these shortcomings and the need of a theoretical
framework to explain why the interpolated images present a periodi-
cally correlated field, we propose to use the cyclostationarity theory
for the estimation of the resampling factor. The method that we pro-
pose is a two-dimensional extension of a statistical time-domain test
proposed by Dandawaté and Giannakis in [3], allowing us to esti-
mate the resampling factor of a spatially transformed image, specif-
ically the scaling factor and the rotation angle.
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In the next section, we present the notation and the model used
for the spatial transformation of images and then we introduce the
cyclostationarity theory needed for the estimation of the resampling
factor. In Section 3, we explain the extension of the time-domain
test for presence of cyclostationarity to the two-dimensional space.
Section 4 presents the results obtained with our method comparing
those obtained with the method of Mahdian and Saic [2]. Finally,
Section 5, provides the conclusions and further work.

2. PRELIMINARIES AND PROBLEM STATEMENT

Throughout the paper we will consider an original image as the out-
put provided by an acquisition system after the operations of sam-
pling and quantization. The resulting digital imagef(x1, x2) is a
matrix of integer values (gray levels) defined on a discrete grid of
sizeN1 × N2. The convention used for the coordinates(x1, x2)
is that x1 ∈ {0, . . . , N1 − 1} represents the horizontal axis and
x2 ∈ {0, . . . , N2 − 1} represents the vertical axis. We will denote
vectors and matrices by bold letters, for examplex = (x1, x2).

2.1. Spatial Transformations

The spatial transformation of an original imagef(x1, x2) maps the
intensity value at each pixel location(x1, x2) to another location
(y1, y2) in the new imageg(y1, y2). The most commonly used is
the affine transformation that combines several linear operations like
translation, rotation, scaling, skewing, etc. The mapping can be ex-
pressed as:

»

y1

y2

–

= A

»

x1

x2

–

+ b,

whereA is the matrix that defines the linear transformation andb

represents the translation vector. In general, the pixels in the result-
ing image will not map to exact integer coordinates on the source
image, but rather to intermediate locations between source pixels.
Therefore, when we perform any of the mentioned spatial transfor-
mations we need to make use of a pixel interpolation algorithm. The
interpolation of a spatial transformed imagef(y1, y2) by a resam-
pling factorNs = (Ns1

, Ns2
) = (L1/M1, L2/M2) can be mod-

eled by the following expression:

g(x1, x2) =
∞

X

i=−∞

∞
X

j=−∞

f(i, j)h(x1M1 − iL1, x2M2 − jL2),

(1)
whereg(x1, x2) is the resampled image andh(x1, x2) represents the
interpolation kernel. Many different interpolation filters are avail-
able with different characteristics, but the most common are the near-
est neighbor, linear, cubic and truncated sinc.



2.2. Cyclostationary approach

Once we have mathematically described the resampling process we
can observe from (1), that an interpolated image can be seen as a ran-
dom fieldf(x1, x2) (the original image) that is periodically filtered
with the same kernelh(x1, x2). Therefore, the resampled image will
exhibit periodically correlated fields (cf. [4]) with a period equal to
the resampling factorNs = (L1/M1, L2/M2). Equivalently, the
output image is cyclostationary with periodNs.

In the one-dimensional case, Sathe and Vaidyanathan showed
in [5] that the output of a multirate system that performs sampling
rate conversion by a factorNs = L/M , produces a cyclostationary
signal with periodL/ gcd(L, M) if the input signal is wide sense
stationary (the output becomes wide sense stationary only if the in-
terpolation filter is ideal). They only consider pure cyclostationary
processes, i.e. with an integer cyclic period; nevertheless, for the es-
timation of the resampling factor it is more convenient to consider
that the output can be an almost cyclostationary process.

This idea regarding multirate systems can be extended to the
spatial domain with two dimensions, but before we have to extend
the concept of almost cyclostationarity to the two-dimensional space.
As it is mentioned in [6], those time series that have an “almost in-
teger” period accept generalized (or limiting) Fourier expansions, so
following the definition in [4] of periodically correlated fields with
an integer period, we introduce the concept of almost cyclostationary
random fields.

Definition 1 Let x(m) = x(m1, m2) be a real random field
with meanµx(m)

.
= E{x(m)} and covariancecxx(m; τ )

.
=

E{[x(m) − µx(m)][x(m + τ ) − µx(m + τ )]}, whereτ
.
=

(τ1, τ2). The random fieldx(m1, m2) is strongly almost periodi-
cally correlated (equivalently, almost cyclostationary) with period
T

.
= (T1, T2), if and only if its mean and covariance functions

satisfy

µx(m1, m2) = µx(m1 + kT1, m2 + lT2)

cxx((m1, m2); τ ) = cxx((m1 + kT1, m2 + lT2); τ )

for all integersm1, m2, τ1, τ2, k, l and rational numbersT1, T2.

Such random fields accept generalized Fourier expansions and
considering thatx(m1, m2) has zero mean, the generalized Fourier
series pair for everyτ is:

cxx(m; τ ) =
X

α∈Axx

Cxx(α; τ )ej(α1m1+α2m2)

Cxx(α; τ ) = lim
M1,M2→∞

1

M1M2

M1−1
X

m1=0

M2−1
X

m2=0

cxx(m; τ )

× e−j(α1m1+α2m2), (2)

whereα = (α1, α2) represents each frequency pair in the cyclic
domain. The set of cyclic frequenciesAxx

.
= {α : Cxx(α; τ ) 6=

0,−π < α1, α2 ≤ π} must be countable and we assume that the
limit exists in the mean-square sense. To express those random fields
in terms of the Fourier Transforms, we define the cyclic spectrum.

Definition 2 The cyclic spectrum for random fieldsx(m1, m2), is
defined as:

Sxx(α; ω)
.
=

∞
X

τ1=−∞

∞
X

τ2=−∞

Cxx(α; τ )e−j(ω1τ1+ω2τ2),

whereω = (ω1, ω2) represents each frequency pair in the frequency
domain.

In order to show the presence of almost cyclostationary fields in
a resampled image by a rational factorNs, we consider the single
case when the original image is a Gaussian field with zero mean and
variance equal to one. In this situation the cyclic correlation is

cxx(m; τ ) =
∞

X

i=−∞

∞
X

j=−∞

h(m1M1 − iL1, m2M2 − jL2)

× h((m1 + τ1)M1 − iL1, (m2 + τ2)M2 − jL2)

and it is easy to see that

cxx((m1, m2); τ ) = cxx((m1 + kL1/M1, m2 + lL2/M2); τ )

with k, l ∈ Z. Hence, unless the kernel used is ideal, the output is al-
most cyclostationary with periodT = (L1/M1, L2/M2). The same
is true for real images having an unknown distribution which makes
more difficult the estimation of the cyclic period. For this reason,
we choose to extend the time-domain test proposed by Dandawaté
and Giannakis in [3] that allows the detection of almost periodicities
without considering a specific distribution on the data.

3. EXTENSION OF THE TIME-DOMAIN TEST

The calculation of the scaling factorNs or the rotation angleθ of a
spatially transformed image can be achieved through the estimation
of the cyclic frequenciesα, as we will see at the end of this section.
For an image blockx(m1, m2) of sizeN × N and with zero mean,
the detection of the set of cyclic frequency pairs in (2) can be made
through the estimation of the cyclic correlation:

Ĉxx (α; τ ) =
1

N2

N−1
X

m1,m2=0

x(m)x(m + τ )e−j(α1m1+α2m2).

(3)
This estimate is asymptotically unbiased according to Definition
1. Thus, if we representexx (α; τ ) as the estimation error and
Cxx (α; τ ) as the ideal covariance, the estimation provides:

Ĉxx (α; τ ) = Cxx (α; τ ) + exx (α; τ )

whereexx (α; τ ) vanishes asymptotically asN → ∞. To make a
decision about the presence or absence of a given cyclic frequencyin
the image block, we build up a vector from̂Cxx (α; τ ) evaluated in
a set ofK lags{τk}K

k=1 = {τ1, . . . , τK : τk = (τk1
, τk2

) ∈ Z2}:

ĉxx =
1√
2

h

Ĉxx (α; τ1) , . . . , Ĉxx (α; τK) ,

Ĉ∗

xx (α; τ1) , . . . , Ĉ∗

xx (α; τK)
iT

,

and we consider the following hypothesis testing problem:

H0 : α /∈ Axx, ∀{τk}K
k=1 ⇒ ĉxx = exx

H1 : α ∈ Axx, for some{τk}K
k=1 ⇒ ĉxx = cxx + exx. (4)

Note thatcxx is the corresponding true value of the cyclic correlation
vector andexx is the estimation error vector. From (4), if we know
the distribution of the estimation errorexx, we can seek a threshold
to detect the cyclic frequency pairs(α1, α2) given thatcxx is deter-
ministic. Dandawat́e and Giannakis use the asymptotic properties of
the cyclic correlation estimator to infer the asymptotic distribution of
the estimation error. In our case, considering that the extension to the
spatial domain of the mixing conditions (A1 in [3]) is fulfilled, then



the cyclic correlation estimator in (3) is asymptotically normal and
thus the error estimation converges in distribution to a multivariate
normal, i.e.

lim
N→∞

Nexx
D
= N (0,Σxx),

whereN represents a multivariate normal density andΣxx is the
asymptotic covariance matrix, which is defined as follows:

Σxx
.
= lim

N→∞
N2cov{ĉxx, ĉH

xx}

=
1

2

"

S
(∗)
τk,τl

(0;−α) Sτk,τl
(2α; α)

(Sτk,τl
(2α; α))∗ (S

(∗)
τk,τl

(0;−α))∗

#

.

In the above expression,Sτk,τl
(α, ω) is a K × K matrix whose

(k, l)th entries are given by the cyclic cross-spectrum ofy(m; τk)
.
=

x(m)x(m+τk) andy(m; τl)
.
= x(m)x(m+τl) for the different

K lags and, on the other hand, the matrixS
(∗)
τk,τl

(α, ω) is composed
by the cyclic cross-spectrum ofy(m; τk) andy∗(m; τl). Hence,
for N large enough, the vector̂cxx underH0 andH1 differs only
in the mean. In order to solve this detection problem, we use (in
the same way as in [3]) the norm of a weighted version of the cyclic
correlation estimation vector (γ = N ĉH

xxΣ̂
−1/2
xx ), so the statistic and

then the likelihood ratio test with a thresholdΓ correspond to:

Txx = ‖γ‖2 = N2
ĉ

H
xxΣ̂

−1
xx ĉxx

H1

≷
H0

Γ,

whereΣ̂xx is an estimate of the asymptotic covariance matrix. From
Theorem 2 in [3], the statisticTxx has the following asymptotic dis-
tribution underH0

lim
N→∞

Txx
D
= χ2

2K

whereχ2
2K represents a chi-square distribution with2K degrees of

freedom. UnderH1 and forN large enough, the asymptotic distri-
bution is approximately Gaussian

Txx ∼ N (N2
ĉ

H
xxΣ̂

−1
xx ĉxx, 4N2

ĉ
H
xxΣ̂

−1
xx ĉxx).

Once we know the asymptotic distribution of the statisticTxx under
the two hypotheses, we can set the thresholdΓ for a fixed probability
of false alarmPF = Pr(Txx ≥ Γ|H0) = Pr(χ2

2K ≥ Γ) and then
estimate the set of cyclic frequenciesAxx. Below, the fundamental
steps for the implementation of our method are presented.

After choosing an image blockx(m1, m2) for the analysis, we
apply the following algorithm for each frequency pair(α1, α2) de-
fined in the FFT grid:

1. From the datax(m1, m2) and using (3), we compute the vector
ĉxx for a fixed set ofK lags{τk}K

k=1.

2. We estimate the asymptotic covariance matrixΣxx using the
cyclic spectrum estimator. From the two options available
for cyclic spectral estimation [6], we use the smoothed pe-
riodogram with a frequency domain windowW (ω1, ω2) of
size P × P (with P odd). So, considering thatFτ (ω) =
PN−1

m1,m2=0 x(m)x(m + τ )e−j(ω1m1+ω2m2), then we calcu-

late the elements of the matrix̂Σxx as

Ŝ(∗)
τk,τl

(0;−α)

=
1

(NP )2

(P−1)/2
X

r=−(P−1)/2

(P−1)/2
X

s=−(P−1)/2

W (r, s)

× Fτk

„

α1 +
2πr

N
, α2 +

2πs

N

«

F ∗

τl

„

α1 +
2πr

N
, α2 +

2πs

N

«

and for Ŝτk,τl
(2α; α) we take the same expression used for

Ŝ
(∗)
τk,τl

(0;−α), but consideringFτl
(ω) instead ofF ∗

τl
(ω).

3. We calculate the test statisticTxx = N2ĉH
xxΣ̂

−1
xx ĉxx.

4. For a given probability of false alarmPF , we setΓ.

5. We declare the frequency pair(α1, α2) as cyclic ifTxx ≥ Γ.

After the application of the method, we obtain the resampling factor
Ns = (Ns1

, Ns2
) from the detected cyclic frequencies(α1, α2),

due to the relation between these and the cyclic periods(T1, T2),
i.e. αi = 2π/Ti = 2π/Nsi

with i = {1, 2}. However, because of
aliasing, we have the same cyclic frequencies for the scaling factors
Nsi

and
Nsi

Nsi
−1

. So, despite this unavoidable ambiguity, the esti-

mated value of the resampling factor can be computed as follows:

N̂si
=

8

>

<

>

:

2π

2π − |αi|
, −π ≤ αi ≤ π (N̂si

≤ 2)

2π

|αi|
, −π ≤ αi ≤ π (N̂si

≥ 2)

for i = {1, 2}. On the other hand, if we consider thatθ is the an-
gle of rotation of the image in a counterclockwise direction around
its center point, the estimation of this one from the detected cyclic
frequencies(α1, α2) can be reached through the following relation:

β = arctan

„

α2

α1

«

mod
π

2

where mod represents the modulo operation and finally, the esti-
mated angle is obtained by

θ̂ =

8

<

:

−2β, if 0 ≤ β ≤ π
12

− arccos(κ), if π
12

< β ≤ 5π
12

π
2
− 2β, if 5π

12
< β ≤ π

2

whereκ
.
= cos2(β)(

p

2 tan(β) − tan(β) + tan2(β)). Because of
the symmetry of the Discrete Fourier Transform, the cyclic frequen-
cies for the anglesθ = −30 andθ = −60 are the same and thus,
there is an ambiguity when estimating these precise angles.

4. EXPERIMENTAL RESULTS

With the aim of showing how is the output of our method, we present
in Fig. 1 the results obtained for two different spatial transforma-
tions. Figs. 1(a) and 1(d) show the analyzed block of size128× 128
pixels in each spatially transformed image. The statisticTxx is plot-
ted in Figs. 1(b) and 1(e), where we can distinguish the peaks indi-
cating the presence of possible cyclic frequencies. In both cases, the
spectral window used is a two-dimensional Kaiser window of param-
eter 1 with the size indicated in the caption. After using the threshold
Γ, we represent in Figs. 1(c) and 1(f) the detected cyclic frequencies
that make possible the identification of the applied transformation.

For the evaluation of our method, we use 40 TIFF format images
from the miscellaneous volume of the USC-SIPI image database (we
do not take into account the test pattern images) and we perform
two different experiments. In order to evaluate the performance of
our method, we compare our results with those obtained using the
method proposed by Mahdian and Saic in [2]. Since our main objec-
tive is to detect forgeries in a relatively small region of the image, we
use an image block of size128 × 128 pixels for both methods. The
sizes of the tested images are of256×256, 512×512 or1024×1024
pixels, so whenever possible we apply both methods to four blocks
and take the average of the results obtained for each image.
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Fig. 1. Graphical results obtained with our method for two different
spatial transformations.

In the first experiment we study the estimation accuracy for
different scaling factors separated a distance of0.05, i.e. Ns ∈
{1.05, 1.1, . . . , 2.2, 2.25}. For every value ofNs, we apply the
same scaling factor for the horizontal and vertical axes of each im-
age and use a Lanczos-3 kernel (truncated sinc) as the interpolation
filter. We consider that the estimation is correct if the estimated
scaling factor satisfies|N̂s − Ns| < 0.05, due to the distance be-
tween the analyzed scaling factors. In Fig. 2(a) we plot the average
estimation accuracy from the 40 images for both methods in terms
of percentage. We also represent the estimation accuracy of our
method applying first a Laplacian operator to the whole image. As
we can see the performance of our method is worse if we do not
use the Laplacian prefilter, mainly for scaling factors close to 1.
This is due to the use of a high pass filter like the Laplacian oper-
ator that eliminates low-frequency components, where the spectral
peaks corresponding to these scaling factors are located, and this
fact improves the results. It can also be observed that the method
of Mahdian and Saic cannot detect the resampling factorNs = 2,
which is not an issue for our method.

In the second experiment we analyze the performance of our
method when the 40 images from the database are rotated by an an-
gle in the setθ ∈ {−89,−87.5, . . . ,−2.5,−1} (the distance be-
tween different angles is2.5, except for the extremes). In this case,
we use a bicubic interpolation kernel and consider that the estimation
of the angle is correct for our method if the estimated angle satisfies
|θ̂ − θ| < 2.5. For the method of Mahdian and Saic we use other
criterion because we can only determine the angle from the position
of the corresponding spectral peak, so in this case, we consider that
the angle is correct if|N̂ (θ)

s − N
(θ)
s | < 0.015. The threshold used

in both cases is equivalent because it corresponds to the minimum
distance between the theoretical values for the considered set of an-
gles. Fig. 2(b) shows the comparative results for both methods. The
best results are obtained when our method is combined with the use
of a Laplacian operator. We have to notice that the output of the
method of Mahdian and Saic presents the spectral peaks in the same
positions for anglesθ and−90 − θ, soN̂

(θ)
s = N̂

(−90−θ)
s . Hence,

their method shows more ambiguities than ours, which just fails for
θ = −30 andθ = −60. Despite of this, the shown results are pre-
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Fig. 2. Comparative results obtained with both methods for different
scaling factors and rotation angles.

sented without considering these errors. All the experiments were
carried out in Matlab.

5. CONCLUSIONS

We have proposed a method to estimate the parameters of spatially
transformed images that performs better than the method proposed
in [2]. As a counterpart, our method is more time consuming, but the
processing in the two-dimensional space provides more information.
For instance, we avoid some ambiguities caused by indistinguishable
periodic patterns in the one-dimensional case.

Further research will focus on explaining the improvement af-
forded by the Laplacian prefilter. Others aspects to be studied will
be the estimation of the covariance matrix, so as to get the optimum
weighting matrix for the estimation of the parameters of the spatial
transformations.
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