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ABSTRACT In the next section, we present the notation and the model used

In this work, we study the presence of almost cyclostationary field€0r the spatial transformation of images and then we introduce the
in images for the detection and estimation of digital forgeries. Thefyclostationarity theory needed for the estimation of the resampling
almost periodically correlated fields in the two-dimensional spacdactor. In Section 3, we explain the extension of the time-domain
are introduced by the necessary interpolation operation associatégft for presence of cyclostationarity to the two-dimensional space.
with the applied spatial transformation. In this theoretical contextS€ction 4 presents the results obtained with our method comparing
we extend a statistical time-domain test for presence of cyclostatio?0S€ obtained with the method of Mahdian and Saic [2]. Finally,
arity to the two-dimensional space. Section 5, provides the conclusions and further work.

The proposed method allows us to estimate the scaling factor
and the rotation angle of resized and rotated images, respectively. 2. PRELIMINARIES AND PROBLEM STATEMENT
Examples of the output of our method are shown and compara-
tive results are presented to evaluate the performance of the twd-hroughout the paper we will consider an original image as the out-
dimensional extension. put provided by an acquisition system after the operations of sam-
pling and quantization. The resulting digital imagér:, z2) is a
matrix of integer values (gray levels) defined on a discrete grid of
size N1 x N». The convention used for the coordinates, =2)
is thatz, € {0,...,N; — 1} represents the horizontal axis and
1. INTRODUCTION z2 € {0,..., No — 1} represents the vertical axis. We will denote

o . vectors and matrices by bold letters, for example: (z1, z2).
Nowadays, there are a lot of powerful and intuitive image editing

tools that facilitate the manipulation and alteration of digital images

With the aim of identifying the type of forgery, several blind (or

passive) techniques have been proposed in the past few years. Whehe spatial transformation of an original imagér:, z2) maps the

an image forgery is carried out, most of the time it is necessary tentensity value at each pixel locaticx:, z2) to another location

perform geometric transformations like scaling, rotation or skewing(yh y2) in the new imagey(y1, y2). The most commonly used is
The detection of these spatial transformations has been studigle affine transformation that combines several linear operations like

in [1] and [2]. The former uses an expectation-maximization (EM)translation, rotation, scaling, skewing, etc. The mapping can be ex-

algorithm to detect periodic patterns and then expose forgeries, bgtessed as:

the main problem lies in the correct initialization of the parameters { o } 4 { 1

Index Terms— Image forensics, spatial transformation, cyclo-
stationarity, interpolation, resampling factor estimation

2.1. Spatial Transformations

for the EM convergence. The latter is based on a derivative operator Yo

and Radon transformation that provides a blind and very fast method . . ) . .
capable of detecting traces of spatial transformations, but presen‘f@ereA is the matrix t_hat defines the linear transforma_ltlon and
resents the translation vector. In general, the pixels in the result-

some weaknesses in the estimation of the rotation angle and scalibhg" . . .
img image will not map to exact integer coordinates on the source

factor, due to the one-dimensional approach. . . : : -
bp mage, but rather to intermediate locations between source pixels.

Motivated by these shortcomings and the need of a theoretic herefore, when we perform any of the mentioned spatial transfor-
framework to explain why the interpolated images present a periodi- . ' P y ot the, -d spatial
ations we need to make use of a pixel interpolation algorithm. The

cally correlated field, we propose to use the cyclostationarity theor . ; .
for the estimation of the resampling factor. The method that we pro%:}ﬁépggtg?r}\?f a S(F])?t'al j;[frar)lsforEnLe(; ]{?a%@/l]{/}ﬂ)) C?na:);e;%rg'
= s154Vsy ) = 1 1, L2 2 -

pose is a two-dimensional extension of a statistical time-domainte&I d by the followi .
proposed by Dandawatand Giannakis in [3], allowing us to esti- eled by the following expression:

mate the resampling factor of a spatially transformed image, specif- oo oo

ically the scaling factor and the rotation angle. glar,x2) = > > f(i,j)h(x1 My —iLy,x2 Mz — jLs),

i=—00 j=—00
ue ¢ : (1)
07TIC012322PR (FACTICA), 2006/150 (Consolidation of Rasé Units), . .
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SENS (ref. CSD2008-00010) and SPROACTIVE (ref. TEC20009@8 interpolation kernel. Many different interpolation filters are avail-
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2.2. Cyclostationary approach In order to show the presence of almost cyclostationary fields in

a resampled image by a rational faci¥i;, we consider the single

Once we have mathematlcallly described .the resampling process Wse when the original image is a Gaussian field with zero mean and
can observe from (1), that an interpolated image can be seenas ar riance equal to one. In this situation the cyclic correlation is

dom field f(x1, z2) (the original image) that is periodically filtered

with the same kernél(z1, z2). Therefore, the resampled image will o >

exhibit periodically correlated fields (cf. [4]) with a period equal to  caz(m; T) = Z Z h(miMy —iL1,maMsz — jL2)

the resampling factoN, = (L./M;, L2/M>). Equivalently, the i=—o0 j=—o00

output image is cyclostationary with peridd,. X h((m1 + 71)My — iLy, (ma + 72)Ma — jLs)
In the one-dimensional case, Sathe and Vaidyanathan showed

in [5] that the output of a multirate system that performs samplingand it is easy to see that

rate conversion by a factdv, = L/M, produces a cyclostationary

signal with periodL/ gcd(L, M) if the input signal is wide sense  Caz((m1,m2); T) = Coa((ma + kL1 /My, m2 + 1Lz /Ms); )

stationary (the output becomes wide sense stationary only if the in-. . .
v ( P y only with k, 1 € Z. Hence, unless the kernel used is ideal, the output is al-

terpolation filter is ideal). They only consider pure cyclostatlonaryg]Ost cyclostationary with periall (Lt /M, Ly /Ms). The same

processes, i.e. with an integer cyclic period; nevertheless, for the e true f li havi K distributi hich mak
timation of the resampling factor it is more convenient to considef®> TU€ for real Images having an unknown distribution which makes

that the output can be an almost cyclostationary process more difficult the estimation of the cyclic period. For this reason,

This i reqarding multir m n ten hye ch_oose t(_) e_xtend the time-domain te;t proposed by D_an_élg\_/vat
s idea regarding multirate systems can be extended to tgnd Giannakis in [3] that allows the detection of almost periodicities

the concept of almost cyclostationarity to the two-dimensional spacé(\./IthOUt considering a specific distribution on the data.

As it is mentioned in [6], those time series that have an “almost in-

teger” period accept generalized (or limiting) Fourier expansions, so 3. EXTENSION OF THE TIME-DOMAIN TEST
following the definition in [4] of periodically correlated fields with

aninteger period, we introduce the concept of almost cyclostationaryhe calculation of the scaling factdy, or the rotation anglé of a

random fields. spatially transformed image can be achieved through the estimation

o i of the cyclic frequencie&, as we will see at the end of this section.
Definition 1 Let z(m) = z(mi,m2) be a real random field For an image block(m, ms») of size N x N and with zero mean,
with meany;(m) = E{z(m)} and covariancec..(m;7) =  the detection of the set of cyclic frequency pairs in (2) can be made
E{[z(m) — pe(m)][z(m + 7) — po(m + 7)]}, wherer = rough the estimation of the cyclic correlation:
(11, 72). The random fieldc(m1,m2) is strongly almost periodi-
cally correlated (equivalently, almost cyclostationary) with period 1 Nt ,
T = (T4,Tz), if and only if its mean and covariance functions Cu (o 7) = <5 > w(m)z(m + eI emtazm),
Satisfy m1,mo=0

3
e (M1, m2) = po(ma + kT1,m2 +1T2) This estimate is asymptotically unbiased according to Definition
Cza((Mm1,m2); T) = caa((m1 + kKT, mae + 1T2); T) 1. Thus, if we represent., (o; 7) as the estimation error and

. , Cze (a; T) as the ideal covariance, the estimation provides:
for all integersmy, ms, 11, 72, k, [ and rational number§y, T5.

Such random fields accept generalized Fourier expansions and Cuz (a;7) = Cuz (0 T) + €00 (3 T)

considering that:(m1, m2) has zero mean, the generalized Fourier

series pair for every is: wheree., (a; T) vanishes asymptotically & — oo. To make a

decision about the presence or absence of a given cyclic freqirency

Cox(m;T) = Z Coa(av; T)e? (G1m1Fo2m2) the image block, we build up a vector fraffy.,. (o; ) evaluated in
eyl asetofK lags{mw }: 1 = {71,..., Tk : Tk = (Thy, Thy) € Z2}:
1 Mj—1My—1 1 ra A
cr) = i : Coo = — |Coz (a;71),...,Coz (0;TK)
Cunlai) = lim g 30 0 caslmir) 75 |Cox (eim) (e 7x0)
m1=0 mao=
~ ~ T
« e~d(eamitazma) ) Crp(a;11),...,Chy (a;‘rK)] ,

wherea = (a1, a2) represents each frequency pair in the cyclic ang we consider the following hypothesis testing problem:
domain. The set of cyclic frequencigb,, = {a : Cyz(a;T) #

0,—7 < ai,a2 < m} must be countable and we assume that the Ho : o ¢ Ao, V{75 iy = Cpp = €uu
limit exists in the mean-square sense. To express those random field
in terms of the Fourier Transforms, we define the cyclic spectrum.

Definition 2 The cyclic spectrum for random field§m,, ms), is ~ Note thate., is the corresponding true value of the cyclic correlation

1€ Agg,forsome{mi e, = Goo = Cox + €0s. (4)

defined as: vector ande is the estimation error vector. From (4), if we know
- - the distribution of the estimation errer,.., we can seek a threshold
N . ) —j(wiTtwaTs) to detect the cyclic frequency paifs1, a2) given thate,, is deter-
Saa(a;w) = Z Z Coa(; T)e ’ ministic. Dandawat and Giannakis use the asymptotic properties of

T]=—00 Tg=—00

the cyclic correlation estimator to infer the asymptotic distribution of
wherew = (w1, ws2) represents each frequency pair in the frequencythe estimation error. In our case, considering that the extension to the
domain. spatial domain of the mixing conditiongi@ in [3]) is fulfilled, then



the cyclic correlation estimator in (3) is asymptotically normal and
thus the error estimation converges in distribution to a multivariate

normal, i.e.
lim Neso 2 N(0,2,.),
N —oo

where N represents a multivariate normal density a4, is the
asymptotic covariance matrix, which is defined as follows:

Soe = lim N2COVéun, élo}
N — oo

1| 8%.,(0,—a)
2| (Srm (205))"

ST?,)TI (2a; )
(S7pm (0; —ax))”

In the above expressiol,, -, (a,w) is a K x K matrix whose
(k, )™ entries are given by the cyclic cross-spectrum@f; ) =

z(m)z(m+7,) andy(m; ;) = x(m)z(m+m) for the different
K lags and, on the other hand, the maﬁi&:{ﬂ (av, w) is composed
by the cyclic cross-spectrum @f(m; 7) andy*(m;7;). Hence,
for N large enough, the vectdr,,, underH, andH; differs only

in the mean. In order to solve this detection problem, we use (in

and for S-, -, (2a; ) we take the same expression used for
84 (0; —av), but considering, (w) instead ofF, (w).

3. We calculate the test statisfic, = N2 3.1 ép0.

4. For a given probability of false alarfr, we setl".

5. We declare the frequency péit1, «2) as cyclic if7,, > T.

After the application of the method, we obtain the resampling factor
N, = (Ns,,Ns,) from the detected cyclic frequenciés, az),

due to the relation between these and the cyclic per{@dsTz),
i.e.a; = 2n/T; = 2w /N,, with i = {1,2}. However, because of
aliasing, we have the same cyclic frequencies for the scaling factors

N,, and Nljsil. So, despite this unavoidable ambiguity, the esti-

mated value of the resampling factor can be computed as follows:

s
G _ ) 2r—|ail’
Nsi = 2w '

(N,

IA

2)

(N,

A%

2)

the same way as in [3]) the norm of a weighted version of the cycliggy ; — {1,2}. On the other hand, if we consider thts the an-

correlation estimation vectoty(= N éfzflla} /2

then the likelihood ratio test with a threshdldcorrespond to:
. H1
Too = IyII* = N?&2 300 e 2 T,
Ho

), so the statisticand  gle of rotation of the image in a counterclockwise direction around

its center point, the estimation of this one from the detected cyclic
frequencieg i, a2) can be reached through the following relation:

([ = arctan <a2> mod ~
(65]) 2

whereX . is an estimate of the asymptotic covariance matrix. FI’OI’T\Nhere mod represents the modulo Operation and finaIIy, the esti-

Theorem 2 in [3], the statisti¢,, has the following asymptotic dis-

tribution underH,
lim Too 2 X3x
N—oo

wherex3 represents a chi-square distribution wtR degrees of

freedom. Undef; and for N large enough, the asymptotic distri-

bution is approximately Gaussian
Tow ~ N(N?, 30 00 AN 30 ) E00).

Once we know the asymptotic distribution of the stati§tic under
the two hypotheses, we can set the threslidior a fixed probability
of false alarmPr = P17, > T'|Ho) = Pr(x3x > T) and then
estimate the set of cyclic frequencids... Below, the fundamental
steps for the implementation of our method are presented.

After choosing an image block(m1, m2) for the analysis, we

apply the following algorithm for each frequency péir:, a2) de-
fined in the FFT grid:

1. From the data(m1, m2) and using (3), we compute the vector

é.- for a fixed set ofC lags {7} 7.

2. We estimate the asymptotic covariance madMx, using the
cyclic spectrum estimator.

mated angle is obtained by

) —20, if Oﬁﬁﬁﬁ
0 =< —arccos(k), if g—z <pLE
z 28, it gk

wherex = cos?(3)(y/2tan(3) — tan(8) + tan®(3)). Because of
the symmetry of the Discrete Fourier Transform, the cyclic frequen-
cies for the angle8 = —30 andd = —60 are the same and thus,
there is an ambiguity when estimating these precise angles.

4. EXPERIMENTAL RESULTS

With the aim of showing how is the output of our method, we present
in Fig. 1 the results obtained for two different spatial transforma-
tions. Figs. 1(a) and 1(d) show the analyzed block of sex 128

pixels in each spatially transformed image. The statigticis plot-

ted in Figs. 1(b) and 1(e), where we can distinguish the peaks indi-
cating the presence of possible cyclic frequencies. In both cases, the
spectral window used is a two-dimensional Kaiser window of param-

From the two options available€ter 1 with the size indicated in the caption. After using the threshold

for cyclic spectral estimation [6], we use the smoothed pe_F, we represent in Figs. 1(c) and 1(f) the detected cyclic frequencies

riodogram with a frequency domain windoW (w1, w2) of
size P x P (with P odd). So, considering thak: (w) =
S o gm0 T(m)z(m + r)ej“”lml*“?’m?), then we calcu-
late the elements of the matr®,, as

S.S.Z{.,.L (0;—)

(P-1)/2 (P—-1)/2

1
= (NP)2 Z Z W(r,s)

r=—(P—1)/2 s=—(P—1)/2
27r 2rs « 2rr 21rs
X Fr a1+ —,02 + —— F"’z 061+W,Oé2+7

N N

that make possible the identification of the applied transformation.

For the evaluation of our method, we use 40 TIFF format images
from the miscellaneous volume of the USC-SIPI image database (we
do not take into account the test pattern images) and we perform
two different experiments. In order to evaluate the performance of
our method, we compare our results with those obtained using the
method proposed by Mahdian and Saic in [2]. Since our main objec-
tive is to detect forgeries in a relatively small region of the image, we
use an image block of siz28 x 128 pixels for both methods. The
sizes of the tested images are66 x 256, 512 x 512 or 1024 x 1024
pixels, so whenever possible we apply both methods to four blocks
and take the average of the results obtained for each image.
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Fig. 1. Graphical results obtained with our method for two differentFig. 2. Comparative results obtained with both methods for different

spatial transformations. scaling factors and rotation angles.

In the first experiment we study the estimation accuracy forsented without considering these errors. All the experiments were

different scaling factors separated a distanc®.0f, i.e. N, ¢  carfied outin Matlab.
{1.05,1.1,...,2.2,2.25}. For every value ofN,, we apply the

same scaling factor for the horizontal and vertical axes of each im-

age and use a Lanczos-3 kernel (truncated sinc) as the interpolation

filter. We consider that the estimation is correct if the estimated/Ve have proposed a method to estimate the parameters of spatially
scaling factor satisfiesV, — N,| < 0.05, due to the distance be- transformed images that performs better than the method proposed
tween the analyzed scaling factors. In Fig. 2(a) we plot the averagé [2]. As a counterpart, our method is more time consuming, but the
estimation accuracy from the 40 images for both methods in termBrocessing in the two-dimensional space provides more information.
of percentage. We also represent the estimation accuracy of offor instance, we avoid some ambiguities caused by indistinguishable
method applying first a Laplacian operator to the whole image. Aeriodic patterns in the one-dimensional case.

we can see the performance of our method is worse if we do not Further research will focus on explaining the improvement af-
use the Laplacian prefilter, mainly for scaling factors close to 1forded by the Laplacian prefilter. Others aspects to be studied will
This is due to the use of a high pass filter like the Laplacian operbe the estimation of the covariance matrix, so as to get the optimum
ator that eliminates low-frequency components, where the spectriieighting matrix for the estimation of the parameters of the spatial
peaks corresponding to these scaling factors are located, and ttif@nsformations.
fact improves the results. It can also be observed that the method

of Mahdian and Saic cannot detect the resampling fadtor= 2,

which is not an issue for our method.

In the second experiment we analyze the performance of oUd] A.C. Popescu and H. Farid, “Exposing digital forgeries by de-
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