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ABSTRACT

The demand for methods to protect the Intellectual Property Rights
(IPR) associated to Deep Neural Networks (DNNGs) is rising. Water-
marking has been recently proposed as a way to protect the IPR of
DNNs and track their usages. Although a number of techniques for
media watermarking have been proposed and developed over the
past decades, their direct translation to DNN watermarking faces
the problem of the embedding being carried out on functionals
instead of signals. This originates differences not only in the way
performance, robustness and unobtrusiveness are measured, but
also on the embedding domain, since there is the possibility of
hiding information in the model behavior. In this paper, we discuss
these dissimilarities that lead to a DNN-specific taxonomy of wa-
termarking techniques. Then, we present four challenges specific
to DNN watermarking that, for their practical importance and the-
oretical interest, should occupy the agenda of researchers in the
next years. Finally, we discuss some bad practices that negatively
affected research in media watermarking and that should not be
repeated in the case of DNN.
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1 INTRODUCTION

Thanks to the outstanding performance they achieve, Deep Neural
Networks (DNN) are increasingly deployed and commercialised in
virtually all applications dealing with data and signals for which pre-
cise statistical models do not exist. Training a DNN model, however,
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is a difficult and computational intensive piece of work, requiring
an extensive training procedure that may easily go on for weeks,
even on powerful workstations equipped with several GPUs. A
good deal of domain-specific know-how accompanied by a deep
knowledge of the mechanisms underlying the training process is
also necessary. For this reason, the demand for methods to protect
the Intellectually Property Rights (IPR) associated to DNN is rising.
Borrowing from similar efforts pertaining to media protection [22],
watermarking has recently been proposed as a way to protect DNN
IPRs and track the legitimate or illegitimate usage of DNN models.

Despite the large number of watermarking techniques developed
in the past decades, addressing different media in a wide variety
of application scenarios characterised by different requirements,
the watermarking process always exploits some forms of redun-
dancy present in the host document, thanks to which the document
can be modified without impairing its informative or perceptual
meaning. The same idea holds for DNN watermarking. The very
large number of parameters (the network weights) that define DNN
models, confers to the network a capability of processing the input
data that often exceeds the difficulty of the task the network is
trained for, hence leaving enough degrees of freedom in the choice
of the model weights. The weights, then, can be modified or directly
generated, in such a way to host the watermark.

In addition to the above basic principle, DNN and media water-
marking share other common features. To start with, the require-
ments that any watermarking scheme must satisfy still follow the
so-called watermarking trade-off triangle (see Figure 1), depicting
the necessity of finding a good balance among three opposite re-
quirements, namely: capacity, robustness (sometimes security) and
unobtrusiveness. In DNN watermarking, unobtrusiveness refers to
the capability of the watermarked network to accomplish the task
it is thought for. Robustness is related to the possibility of correctly
extracting the watermark from a modified version of the model
(e.g. after fine tuning, or model pruning), while capacity (more cor-
rectly indicated as payload) measures the number of information
bits conveyed by the watermark. Another concept applying to both
DNN and Media watermarking regards the distinction between
zero-bit and multi-bit watermarking. The former refers to a situa-
tion wherein watermark extraction (usually indicated as watermark
detection) corresponds to deciding whether a given model contains
a certain watermark or not, while in the multibit case, the water-
mark bits are extracted from the host model without knowing them
in advance. Other characteristics applying to media watermarking
as well as to DNN watermarking, include the distinction between
robust and fragile watermarking, and the possible use of a key (usu-
ally referred to as the watermarking key) to prevent watermark
extraction (as well as embedding and removal) by non-authorized
users.


https://doi.org/10.1145/3437880.3460399
https://doi.org/10.1145/3437880.3460399

Robustness

Unobtrusiveness Capacity

Figure 1: The watermarking trade-off triangle.

Notwithstanding the above similarities, embedding a watermark
into a DNN and retrieving it from a marked model is quite a differ-
ent piece of work with respect to media watermarking, as will be
discussed in the following.

In the above framework, the goal of this paper is threefold:

e to discuss some characteristics of DNN watermarking that
clearly distinguish it from media watermarking, leading to a
DNN-specific taxonomy of DNN watermarking techniques
(Sect. 2) ;

e to present 4 challenges specific to DNN watermarking that,
for their practical importance and theoretical interest, should
occupy the agenda of researchers for the next years (Sect. 3);

o to highlight some errors that negatively affected research in
media watermarking, and that should not be repeated in the
DNN case (Sect. 4).

We are confident that this paper will contribute to further raise
the interest in DNN watermarking, helping researchers to focus on
the most interesting open issues and opportunities associated to
this field, and treasure on the wealth of theoretical and practical
insights stemming from traditional media watermarking.

2 DNN-SPECIFIC WATERMARKING ISSUES

As we mentioned in the introduction, although the main features
of DNNs and media watermarking are the same, there are some
significant dissimilarities between media and DNN watermarking,
stemming from the different nature of the application scenario.
Before discussing them in Sect. 2.2, we briefly introduce some basic
formalism of DNNs and watermarking models.

2.1 DNN models and watermarking

The strength of DNNs is their ability to (automatically) learn com-
plex features and characteristic patterns directly from the input
data. Let x € R" denote the input. The function learned by the
DNN can be written as @(x; HL) € R™ where 0L = [61,62,---,01]
is the vector of the network parameters, that is, the weights and
biases associated to the neurons. The output dimension m depends
on the task: in DNN classification, m is the number of classes; in
DNN estimation or generative models, m denotes the output do-
main dimension (typically, m = n). The parameters are learned
from training data and optimized in such a way to minimize some
loss function between the prediction and the ground truth. The

number of parameters L the network consists of is typically huge
(this is especially the case with modern architectures). The idea be-
hind DNN watermarking is then to exploit the redundancy of these
parameters to embed additional information, without degrading
the performance for the to-be-accomplished task. In the following,
we denote the watermarked DNN function with ¢,,(x) = ¢(x; 9@),
where 0L is the set of the parameters of the watermarked DNN
model.

2.2 Dissimilarities between Media and DNN
watermarking

A noticeable difference between DNN watermarking and media
watermarking regards the embedding procedure. While in classical
media watermarking the watermark is embedded into the document,
called host” document, by minimizing the amount of introduced
distortion, in the case of DNNs, the effect of a modification of
the parameters (typically the weights) on the performance of the
network is not easy to identify. Therefore, the injection of the
watermark can not be performed through the direct modification
of the weights of the model, but it has to be carried out during
the learning phase, contextually to the learning procedure for the
primary task, by properly designing the loss function. In this way,
the desired behavior for the task and the watermark are learned
simultaneously!. Therefore, the traditional concept of original non-
watermarked asset does not apply to DNN watermarking. The
solution found when the network is watermarked can be very
different from the one obtained in the non-watermarked case, that
is, the local minimum of the loss function 6L which the network
converges to can be very far away from 6~

Another important dissimilarity pertains to the concept of wa-
termark domain. With classical image watermarking algorithms,
embedding can be carried out either in the original domain or in
a convenient transformed domain, e.g. the frequency domain, In
contrast, in DNN watermarking, the embedder chooses the to-be
watermarked layer(s) of the network: the watermark can be em-
bedded directly into the weights by modifying the parameters 6; of
one or more layers (static watermarking), or associated to behavior
of the network in correspondence to some specific inputs (dynamic
watermarking). More precisely, static watermarking methods typi-
cally embed the watermark into the weights of the model [4, 25];
then, the watermark is recovered, as in classical watermarking,
reading the weights and exploiting the knowledge of a secret key
K, known to both the embedded and the decoder. The extraction
function is then a function of 0%, and K. In dynamic watermarking
instead, the secret key is the input data xg, and the watermark
is extracted by looking at the behavior of the network, e.g. at the
status of the activation maps or at the final output. Notably, when
the watermark is read from the network output, the watermark can
be extracted in a black-box setting [29], without requiring access
to the internal layers of model. In this case, the extraction function
is a function of ¢, (xg). Dynamic DNN watermarking has also im-
mediate connections with DNN backdooring and backdoor attacks

!We stress that, even when the embedding is performed by fine-tuning the model
already trained, the loss function should be designed in such a way to also take into
account the primary task of the network.



[12]. Actually, when the backdoor is injected by the network de-
signer himself, DNN backdooring can be regarded to as a particular
kind of dynamic watermarking. In this case, the triggering event,
that has the same role of the watermark key, is often a signal that
is superimposed to the image. Obviously, the distinction between
static and dynamic watermarking is a peculiarity of DNN water-
marking and does not apply to media watermarking, where only
static approaches are viable.

Another possible characterization of DNN watermarking schemes
pertains to the way watermark extraction is carried out. In white-box
schemes, the watermark is read from the internal parameters/status
of the network (be them the weights, as in [19, 25] or the activation
maps as in [23]), thus the decoder is assumed to have access to the
model. In contrast, black-box watermarking schemes assume that
the decoder can only access the final output of the network (e.g. a
remote service API), and the watermark is recovered by querying
the model with some specific inputs and looking at the output.
Obviously, in this case, the maximum number of bit that can be ex-
tracted with a query depends on the dimensionality of the network
output.

3 FOUR CHALLENGES FOR FUTURE
RESEARCH

Due to the differences with traditional media watermarking, DNN
watermarking techniques have to be developed facing the new
challenges posed by the DL application scenario. We identified four
main challenges that are discussed below.

3.1 Robust watermarking

The robustness requirement for the watermark regards the possi-
bility of recovering the watermark from a perturbed version of the
model. The model is perturbed for instance when it is fine-tuned
on a different training set of images. In this case, in fact, even if
the classification task remains the same and the input data are
of the same type, the retraining process alters the parameters of
the network and this may affect the watermark. More robustness
against fine-tuning is expected when the watermark is embedded
from scratch, together with the training on the main task of the
model. Some works have shown that the watermark can be easily
retained after fine-tuning if the network is trained for few epochs
or iterations [16], but when the number of epochs increases, the wa-
termark tends to disappear. Yet stronger perturbations occur when
the model is used in a transfer-learning scenario, that is, when the
model parameters are just the initial point for training on a different
classification task, exploiting the fact that the knowledge acquired
for one task can help to solve related ones.

Given the huge amount of resources required for training deep
architectures, pre-trained models (usually made available by big
providers) are often exploited to initialize other training processes,
since this speeds up the learning process and permits to obtain
better solutions (with respect to training from scratch). In many
transfer-learning scenarios, a well behaving model is obtained by
retraining only the fully-convolutional layers, since the features
learned for the original problem in the convolutional part can also
work for the task at hand. Obviously, in this case, a watermark

embedded into the weights of the convolutional layers of the pre-
trained model is not affected and then will also be present in the
new model. However, when this is not the case (e.g. in an adver-
sarial setting), transfer learning represents a serious threat, and
researchers should strive to design watermarking algorithms that
are robust to transfer-learning to the largest possible extent. A
possibility in this direction, is to play with the sensitivity of the
loss function to weight variations. Being the network trained to
simultaneously learn the classification task and the watermark, part
of the weights (those wherein the watermark is embedded) could
be made more sensitive to loss variations, by properly defining
the loss function. Therefore, when retraining is performed starting
from the watermarked model, changes to the weights bearing the
watermark will be penalized. Such an approach has recently been
considered in [24] to design a watermarked model with improved
robustness against fine-tuning on the same training set. However,
it is not obvious how to extend the approach to make it effective in
a more general fine-tuning scenario and in the more challenging
case of transfer-learning.

The watermark should also be robust against model pruning
[17], often performed in order to reduce the size of the trained
models. Pruning can be performed randomly, or, more often, based
on the parameters’ contribution to the loss, by removing the least
important parameters according to some criterion [18]. A water-
marking approach that takes into account parameters pruning while
performing watermark embedding during training, could help in
this direction, e.g., by ensuring that the watermarked/embedded
parameters are also relevant for the main task.

As for media watermarking, robustness can be improved by
spreading the watermark over more parameters, i.e. reducing the
payload (see again the trade-off triangle). However, the development
of algorithms that can effectively control the trade-off between
payload and robustness, in order to achieve improved robustness
at the expense of a lower payload, is still a major challenge of DNN
watermarking.

Another interesting aspect pertains to the robustness against
query-based black-box attacks (often called surrogate model at-
tacks). Such attacks aim at building a substitute model that mimics
the original network by querying it and accessing its output labels.
The local model is trained using adversarial data augmentation
[21]: the target is first queried with test data and the classifier is
trained based on the target label; then, to better approximate the
boundary, white box adversaries targeting the substitute model
are performed and evaluated on the target at every iteration. We
might expect that, if the substitute model is a good approximation
of the target one, and the classification boundary is learned with
good approximation, the watermark can also be transferred to the
substitute model. In this scenario, the transfer capability of the
watermark could be linked to the number of queries made to build
the surrogate model.

3.2 A theory for dynamic watermarking

As we already observed in Sect. 2.2, dynamic watermarking is a
brand new opportunity offered by DNN watermarking that was
not available in the multimedia case. With dynamic methods, the
DNN is regarded as a functional rather than a static object and the



watermark is associated to the behaviour of the functional in corre-
spondence to a set of properly selected inputs (watermark triggers),
or even in correspondence to all the inputs. This perspective offers
a wide range of new opportunities that are not available in the static
case, all the more that, at least in the white-box case, the behaviour
of the functional can also be defined at the intermediate levels of
the network. The degrees of freedom the watermark designer has
are virtually endless: i) choice of the level wherein the behaviour
of the network is observed, ii) choice of the observed behaviour,
which can range from a classical spread spectrum approach wherein
the correlation of an activation map with a secret sequence is con-
sidered, to more sophisticated schemes observing the activation
of specific neurons or the appearance of otherwise unexplainable
errors, iii) choice of the input data used to reveal the presence of the
watermark, iv) adoption of a specific training procedure to induce a
specific behaviour, and so on. At first sight, the number of possibili-
ties is so large that one could imagine the possibility of embedding
an extremely high payload, or an extremely robust watermark, by
simply increasing the number of triggers. Nevertheless, one should
always remember that even if the watermark is read/detected by
looking at the behaviour of the functional implemented by the
DNN, its presence is ultimately dictated by the weights and biases
of the network, and hence watermarking ultimately relies on the
exceeding capabilities of the network with respect to the task it is
thought to accomplish. In this sense, the presence of the watermark
naturally conflicts with the capability of the network to handle dif-
ficult tasks while at the same time exhibiting good generalization
capabilities. To clarify this point, let us consider the admittedly
imperfect analogy with polynomial interpolation. Suppose with
want to watermark a polynomial p(x) of degree n — 1, by ensuring
that the polynomial assumes desired values {y1...yg} ink < n
points {xi ...x}}. Given that n > k, there are 00" ¥ polynomi-
als for which p(x;) = y;. To define the watermarked polynomial
pw(x), we may choose n — k additional points {x7 .. .x;‘l_k} and
values {yy ...y, , } and further impose that pw(x;f) = y;f. The
watermark will be associated to the behaviour of p,,(x) on the
particular inputs {xj...x} , }, but it will ultimately depend on
the coefficients of the polynomial, hence making it impossible to
specify the behaviour of the polynomial on more that n — k inputs.
The robustness requirement can also be understood through the
polynomial interpolation analogy. Let us assume that we are given
a watermarked polynomial p,,(x) and suppose that we want to
slightly modify the values it assumes on the points {x7 . .. x;}, thus
obtaining a new polynomial p,(x). To what extent will the new
polynomial satisfy the watermark conditions p,, (x;f) = y]*f? If the
new polynomial is computed from scratch, the watermark of course
will disappear, but if the new polynomial is computed by slightly
modifying p,, (x), it is possible, in principle, that the values assumed
by the polynomial on the triggering inputs {x; ...x _, } do not
change much. Figure 2 provides an illustration for the case n = 5,
with k = 3. The values taken by p?,(x) in correspondence of the
triggering inputs {x], x}, x; } are similar to those taken by p,,(x),
while those taken by p(x) (a general polynomial passing through
the perturbed points, representing the training from scratch case)
are very different, especially in x] and x3.
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Figure 2: The polynomial interpolation analogy. p,,(x) is the
watermarked polynomial passing through {yi,y2,y3} and
{y], Y5,y } (solid circles), p;,(x) is the polynomial obtained by
slightly modifying the values taken by p/,(x) in {x1, x2,x3}
(empty circles), while p(x) is a general polynomial passing
through these three new points.

Going back to DNN, it is clear that the possibility of dynamically
watermarking a network depends on the exceeding dimensionality
of the parameter space %, however several questions need to be
answered to clarify the potentialities of dynamic (vs static) water-
marking: i) how many triggering inputs can we define without
affecting the capability of the network to solve the problem it is
designed for? ii) Assuming the expressive capability of the network
is large enough, how should we design the training procedure to
make sure that we find a suitable solution to the watermarking
problem? iii) What is the impact of fine-tuning, retraining, pruning,
on the behaviour of the network in correspondence to the water-
mark triggering inputs? iv) Is it preferable that the triggering inputs
are chosen in the vicinity of the standard inputs or should they be
alien to the task the network is asked to solve?

Given that the theory developed for media watermarking cannot
provide a satisfactory answer to the above questions, the necessity
of developing a sound and rigorous theory of dynamic watermark-
ing is a pressing one, if we want that DNN watermarking establishes
as a solid and well founded field.

3.3 DNN watermarking capacity

An important property of any multi-bit scheme algorithm is its
payload, that is, the number of bits the watermark message consists
of. Such a property is often, and misleadingly, associated to the
concept of watermarking capacity. Given a multimedia object, or
a DNN model, or even better, a class of models, the watermarking
capacity, indicates the maximum payload that can be achieved by
any watermarking algorithm assuming a certain level of robustness
and unobtrusiveness (here we are not interested in giving a precise
definition of robustness and unobtrusiveness, such an exact defini-
tion being part of the challenge we are discussing in this section).
This problem has been deeply investigated in the case of media
watermarking [1]. Despite its theoretical nature, the solution of the
capacity problem (though limited to highly ideal scenarios) has liter-
arily revolutionised the watermarking field, opening the way to the
development of new classes of watermarking algorithms, greatly



outperforming the early solutions proposed previously [3, 14]. A
similar question applies to DNN watermarking. How many bits
can be reliably hidden within a DNN model consisting of a certain
number of parameters and thought to solve a given task? Is there a
difference, on this respect, between static and dynamic schemes?
Some experiments regarding static watermarking [16, 25] show
that watermark embedding acts as a regularisation term on the loss
function used for training and may even result in a better generali-
sation capability of the network. We expect, though, that such an
effect will be a limited one and that increasing the payload beyond
a certain limit will impact negatively the network accuracy.

In media watermarking, achieving the watermarking capacity
passes through quantization index modulation (QIM [3]), whereby
the watermark is embedded by quantizing the coefficients hosting
the watermark with one between two (or more) evenly spaced
quantizers according to the watermarking bits. A scheme following
such an approach has been proposed for DNN watermarking in
[16], however it is not clear if QIM watermarking may also be
used in DNN watermarking to increase the watermark payload
and up to which extent. A closely related question regards the role
of channel coding. While it is pretty obvious that channel coding
may help to increase the robustness of DNN watermarking, the
way channel coding should be incorporated within the embedding
process during the training phase is not clear. Also unclear, it is the
kind of channel codes that fits better the DNN scenario.

Following our experience with media watermarking, we deem
that looking for theoretically sound answers to the above questions,
and finding good theoretical models to eventually estimate the
watermarking capacity of DNNs, will help developing practical
solutions indicating the general guidelines that the design of a high
capacity watermarking system should follow.

3.4 Joint DNN and media watermarking

Black-box models and white-box models are not necessarily mutu-
ally exclusive: for instance, the model can be treated as a black-box
while querying it with a certain input (acting as a key) that is ex-
pected to trigger a certain response observable by the verifier; this
would be sufficient to initiate further actions (e.g., a court order) to
get white-box access to the weights in order to read a fingerprint
embedded in them and trace the source that infringed the copyright.

Inputs that elicit a telltale output when querying the model
might be detectable inside the black-box and then routed to a lower-
performance non-copyrighted model also contained in the box.
One appealing alternative would be to embed a watermark in every
output of the DNN so that it is possible to carry out the copyright
verification without having direct access to the black-box thereby
raising less suspicion. Naturally, for this to happen, the output needs
to reach a minimum entropy so that a distortion/performance con-
straint is met while being altered by the presence of the watermark.
However, DNNs meeting this requirement are becoming more and
more common, e.g. in multiclass ranking or networks that produce
images. The latter, which offer ample possibilities for watermark-
ing, are becoming more popular with the success of convolutional
neural networks in applications like deblurring [20], denoising
[30], superresolution [5], demosaicing [15], compression [13] or
inpainting [27], to name a few.

We will focus here on the case of output images. Of course,
one trivial way of watermarking the output would be to place a
classical embedder after the DNN and totally uncoupled from it. The
advantage of such an approach would be that all the vast existing
knowledge about image watermarking would straightforwardly
apply here. But this would not exploit the flexibility of the model in
accomplishing additional tasks to its original purpose. Moreover, the
uncoupling of the watermarking subsystem would make it prone
to reverse engineering attacks aimed at removing or impairing it.
It is clear then, that it would be desirable to require the DNN to
produce an output containing a watermark. This watermark should
not only be robust to conventional attacks such as compression,
geometric distortions, cropping, filtering, etc, but also to attacks
to the DNN itself, such as surrogate models (see Sect. 3.1). For the
reasons given in the first paragraph of this section, it would also be
advisable that the weights contain a directly decodable watermark
(usually, a fingerprint) in case the black-box is to be opened-up.
Then, with this approach there would be two types of watermark
detectors/decoders: one directly applicable to the weights (white-
box mode), another to the outputs (black-box mode). In a sense,
models that watermark the output could be considered as box-free,
as the detection/decoding could be done without accessing the box
nor choosing the inputs. However, any proof of ownership will
ultimately require querying the model (with no particular input)
and examining the output in a verifiable setting.

Examples of networks for image processing that embed the wa-
termark either in the weights [7] or in the outputs [28], [26] already
exist, but to the best of our knowledge a solution to the joint prob-
lem is not available.

Also missing is a theory for watermarking images using DNNGs.
In principle, there are two possible approaches regarding the de-
tector/decoder: the simplest one is to use a conventional decoder
(e.g., spread-spectrum of side-informed) and train the network so
that the output of the decoder is the desired one (e.g, through the
cross-entropy of the embedded information), including a range of
attacks in the loop. Another approach is to jointly train a DNN
that performs the detection/decoding. Unfortunately, no theoretical
support exists in either approach. For instance, a very interesting
challenge would be to train the network for those cases in which
theoretical limits and practical code constructions are available (e.g.,
Costa’s writing on dirty paper scenario [8], where the host image
and the channel are additive white Gaussian) and measure how
close the codes produced by the DNN are to the optimal. In fact,
one would expect the model to learn the principle of side-informed
watermarking. This would in turn allow us to establish a beachhead
to explore the uncharted field of watermarking with DNNs.

As a final note, we mention that embedding a watermark in
every output of the network would also make it possible to verify
the integrity of the images. For instance, it would be possible to
check whether an image denoised with a proprietary deep network
has not been tampered with at a later stage. For this to happen, a
fragile or semi-fragile watermark must be embedded, which may be
compatible with other watermarks targeted at copyright protection.



4 A FUNERAL

Or should we rather say funerals? For many years, both as review-
ers and associate editors, we have observed a series of bad practices
that, now that watermarking resurfaces on the occasion of the
boom of DNNs, we should bury and organize their funeral. Inter-
estingly, at the 2011 IEEE WIFS Ton Kalker, one of the pioneers of
watermarking, gave a keynote titled "Watermarking: Quo Vadis?"
which is an excellent starting point for deciding what to put in the
coffin. We first discuss Kalker’s contributions and adapt them to
the case of DNNs with illustrative examples.

Confusing watermarking security with cryptographic se-
curity. In data-hiding, security should not be measured as the
difficulty in reading the hidden information, because it is evident
that if it is encrypted with a good cryptographic algorithm, it will
not be possible to access the content without the cryptographic
key. It is necessary to understand that most of the existing water-
marking schemes also use a key for embedding; this helps giving
them true security and makes them more host and (in the multi-bit
case) message agnostic. But contrary to cryptography, in water-
marking the threat model involves being able to erase or overwrite
the watermark, especially if we are talking about IPR protection. In
zero-bit watermarking the goal is to erase or alter the watermark
in such a way that the detector returns a negative result. In multi-
bit watermarking it is about eliminating or distorting the hidden
message.

In multimedia watermarking researchers managed in the second
half of the 2000s to propose different security metrics in various sce-
narios related to the amount of information that system outputs (in
this case, the watermarked media) contain about the secret param-
eters derived from the embedding key (for example, the sequence
used in spread-spectrum or the dithered lattice of side-informed
methods) [2], [6]. In other words, how much can we learn from the
secret parameters by looking at n pairs of inputs/outputs from the
network? Although more formalization would be necessary for the
DNN watermarking problem, the basic security measures are still
valid, especially because in many black-box scenarios it is possible
to obtain a large number of input/output pairs.

TEMIT. This is the acronym suggested by Kalker to denote
"Transform-Embed-Inverse Transform. In the case of multime-
dia content watermarking, a huge number of papers have been
published that offer no other novelty than working in a new trans-
formed domain. As the number of invertible transformations is
infinite, the number of possible papers with this methodology is
also infinite. There are two problems with this approach: 1) there is
nothing really innovative, because practically all TEMITs use well-
known embedding algorithms, prominently spread-spectrum [9];
2) most of the transformations are not sufficiently studied, so that
the distortion measurement (which in multimedia contents must
follow perceptual principles) is done in unknown terrain. Unless
this funeral is successful, a similar explosion is foreseeable in the
watermarking of DNNs with varying applications or topologies,
even if the model on which they rely is conceptually similar. For
example, the discovery that watermarking all layers of a network
makes it more robust should happen only once.

Misunderstanding performance. The performance of a multi-
bit watermarking algorithm should not be measured by hiding spe-
cific contents but pseudo-random binary sequences. Many papers
have been published in which the information that is hidden is a
logo of the authors’ institution and the information retrieval gets
help from the human eye because the logo continues to be seen de-
spite the noise. The performance in the case of data-hiding should
be measured with the Bit Error Rate, which is the ratio between
the number of correctly recovered bits divided by the total of bits,
and no human eye should intervene in the process. In the case of
zero-bit watermarking, performance should be measured with a
Receiver Operating Characteristic (ROC) and not with respect to a
specific operating point (e.g., Equal Error Rate, EER), a synthesis
parameter (e.g., Area Under Curve, AUC) or a proxy (e.g., the Nor-
malized Cross Correlation, NCC). In the case of DNN, especially if
they are used to classify images (where there is the possibility of
watermarking via backdoors), there is a risk that we will see logos
again acting as the keys that open the backdoors. From a crypto-
graphic point of view, this is as bad an idea as using a birthday as
password. In any case, a good practice would be to not demonstrate
effectiveness with a particular image, but use a random selection of
images taken from an existing database as a backdoor triggers. A
promising (and challenging) alternative would be to use as triggers
invisible watermarks embedded in input images as they would be
harder to detect inside a forged blackbox that routes suspicious
inputs to a non-copyrighted lower-performance model.

In our opinion, Kalker did not emphasize enough another bad
practice that due to its importance should have been buried first:

Paying too little attention to existing theory. Relatively
shortly after the first multimedia watermarking methods were pro-
posed, a very comprehensive theory was available that included
fundamental limits on the amount of information that could be
hidden as a function of the embedding distortion and of attacks.
Although the theory was exact only in ideal scenarios, the formal-
ization allowed researchers to discover how to efficiently implement
the “writing on dirty paper theorem” proposed by MH Costa in the
80’s [8]. The result, known as Quantization Index Modulation (QIM)
[3], which employed the key concept of distortion compensation,
not only opened the door to the use of lattices in watermarking,
but also found a long-sought solution to the problem of channel
coding with lattices for traditional Gaussian channels in communi-
cations [11]. Step by step, researchers were putting the pieces of
the puzzle together, finding intermediate solutions between QIM
and the traditional spread spectrum and finding the corresponding
capacity formulas. The result is a beautiful and coherent theory
on which it is possible to build pragmatic embedding codes that
can reach rates very close to Costa’s capacity [10]. Unfortunately,
many authors have continued to publish papers with the old spread
spectrum ideas as if none of this theory existed, combining them
with TEMIT described above and showing a superiority that is not
theoretically justifiable.

The exciting possibility of developing a theory for DNN water-
marking now opens before us. Although some concepts and con-
structions are directly importable from multimedia watermarking,
the scenario is different because it is no longer about watermarking
signals but functionals, and because dynamics is essential to the



extent that training data is often part of the information to be pro-
tected. Furthermore, redundancy in the parameter space can lead to
multiple equivalent minima, something that does not usually occur
in multimedia watermarking. Considering how easy it is to take off-
the-shelf DNN models and start fiddling with them, and given our
own experience, we strongly advise practically-oriented researchers
to follow and build on the latest theoretical developments.

5 CONCLUSIONS

Twenty five years after multimedia watermarking started gaining
momentum, a new opportunity is emerging in the field of DNNs.
From a practical point of view, there is a need for tools to protect
IPR of deep models, and watermarking is an excellent candidate
to be part of the answer, as it has already been proved useful in
protecting software, digital layouts or IP cores. Some existing publi-
cations that propose watermarking for DNNs anticipate what might
be a new golden age for watermarking research. As discussed in
our paper, despite the similarities with media watermaking, DNN
watermarking is quite different for two main reasons: the huge
amount of degrees of freedom afforded by the weights of the model,
and the fact that instead of embedding information in signals, here
the hosts are functionals. The latter reason has already opened
the venue for dynamic watermarking, that is, triggering model
actions by presenting specific inputs that serve as secret keys. In
turn, dynamic watermarking naturally leads to black-box detec-
tion/decoding in which it is possible to learn whether the model is
watermarked by simply querying it without looking inside.

Leveraging on these differences, in this paper we have presented
four challenges for future research. All of them, to a greater of lesser
extent, call for new theoretical perspectives and tools, since if and
how the existing theory for media watermarking can be translated
to this new scenario is yet unclear. This need is clear for dynamic
watermarking and in assessing the capacity of DNN watermarks;
in turn, the latter requires being able to define the range of pos-
sible attacks and the interplay with practical methods to achieve
robustness. On the other hand, the fact that watermarking is now
applied to functionals, generates a richer space of interactions with
their inputs and outputs; indeed, it is both possible to use water-
marked inputs in order to trigger desired outputs and to produce
watermarked outputs to carry over the copyright protection.

We hope that these challenges will foster new research in this
promising new area. To avoid repeating past bad practices, we have
added a section in which we bury them down and discuss where
the focus should be. Let us bear in mind that “those who cannot
remember the past are condemned to repeat it”.
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