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Abstract—In many applications based on Wireless Sensor
Networks (WSNs) with static sensor nodes, the availability
of accurate location information of the network nodes may
become essential. The node localization problem is to estimate
all the unknown node positions, based on noisy pairwise
distance measurements of nodes within range of each other.
Maximum Likelihood (ML) estimation results in a non-convex
problem, which is further complicated by the fact that sufficient
conditions for the solution to be unique are not easily identi-
fied, especially when dealing with sparse networks. Thereby,
different node configurations can provide equally good fitness
results, with only one of them corresponding to the real
network geometry. This paper presents a novel soft-computing
localization technique based on hybridizing a Harmony Search
(HS) algorithm with a local search procedure whose aim is to
identify the localizability issues and mitigate its effects during
the iterative process. Moreover, certain connectivity-based
geometrical constraints are exploited to further reduce the
areas where each sensor node can be located. Simulation results
show that our approach outperforms a previously proposed
meta-heuristic localization scheme based on the Simulated
Annealing (SA) algorithm, in terms of both localization error
and computational cost.

Keywords-Wireless Sensor Networks, localization, flip ambi-
guity, Harmony Search.

I. INTRODUCTION

Recently, Wireless Sensor Networks (WSNs) have
emerged as an efficient and cost-effective means for monitor-
ing physical or environmental conditions in many different
scenarios. For many existent and novel WSN applications,
such as vehicle or animal tracking, control of machinery,
agriculture, location-aware route selection and environment
monitoring, the availability of information about sensor
locations is necessary in order for collected data to be mean-
ingful [1]. However, traditional localization techniques based
on installing a Global Positioning System (GPS) device on
each sensor unit are not always feasible in practice, because

of the excessive cost and the high power consumption of
such devices. Furthermore, GPS is generally not suitable for
indoor deployments. Based on this rationale, localization in
WSNss is considered as an important technical challenge by
the research community.

In this regard, the majority of efforts so far have been
devoted to the anchor-based scenario where only some
nodes of the network (referred to as anchor nodes) know
in advance their coordinates (either through GPS or set
beforehand). The main goal is then to obtain the position
of all non-anchor nodes, assuming that each sensor can
obtain (noisy) estimates of the distances to their neighboring
nodes, possibly by resorting to distance-based techniques,
such as the Received Signal Strength Indicator (RSSI) [2];
time-based methods, such as Time of Arrival (ToA) or Time
Difference of Arrival (TDoA) [3]; Angle of Arrival (AoA)
[4]; or hyperbolic trilateration [5]. It turns out that, for
this framework, the Maximum Likelihood (ML) estimation
paradigm results in a non-convex optimization problem, for
which different approaches have been extensively proposed.
These techniques can be broadly classified into centralized
and distributed localization algorithms. In centralized local-
ization algorithms, such as those proposed in [13], [6], [7],
the nodes send their data to a fusion center, where they
are further processed in order to solve the problem, thus
reducing the computational load required at each node. On
the other hand, in distributed schemes [8], [9] sensor nodes
autonomously process the available distance measurements
and eventually communicate with neighboring nodes to
further improve their estimated positions.

In this paper we will focus on a centralized localization
technique which relies on a stochastically-driven, yet intelli-
gent, search procedure able to efficiently explore the solution
space of the underlying optimization problem. This tech-
nique, despite its suboptimality, allows a computationally



efficient method for locating the nodes of a WSN with full
coverage of their constituent anchor nodes. Unfortunately,
as the node connectivity is reduced, the underlying network
may become not uniquely localizable. In such situations the
optimization problem may fail to obtain accurate solutions,
due to the so-called flip ambiguity phenomenon, by which
multiple configurations are compatible with the inter-node
distance measurements [13]. The effects of the flip ambigu-
ity can be catastrophic, from a localization point of view,
when the localization algorithm relies on some previously
estimated node locations that may have been flipped [12].

In this context, a recently proposed algorithm has tack-
led the localization problem with flip ambiguity risks, by
using a two-stage Simulated Annealing (SA) optimization
framework [13]. There, in the first stage SA is applied to
obtain an initial estimate of the node locations, while in the
second stage a refinement phase exploits the neighborhood
information to identify and relocate those nodes that had
been flipped in the first stage. In this paper we take a step
forward in this direction by proposing an hybridization of a
Harmony Search (HS) algorithm with a novel local search
procedure acting at flipped node locations and exploiting
certain geometrical constraints. In particular, the localization
problem is formulated as the combination of two terms
into a fitness function to be minimized. The first term
represents the squared error between the estimated and the
measured inter-node distances, whereas the second estab-
lishes a penalty for all the neighborhood violations in the
estimated network topology. Some preliminary simulation
results will show that the proposed approach outperforms
the SA scheme, in terms of Normalized Localization Error
(NLE) and computational complexity.

The remaining of the paper is structured as follows:
Section II formally defines the node localization problem,
whereas Section III presents the proposed hybrid HS algo-
rithm. Next, Section IV shows a simulation-based compari-
son between our hybrid HS approach and the SA algorithm
in [13]. Finally, in Section V we draw some concluding
remarks.

II. PROBLEM STATEMENT

The node localization problem can be formulated as
follows: given n nodes uniformly deployed in T £ [0, 1] x
[0,1] € R2, from which the first m nodes (with m < n)
represent the anchor nodes and whose coordinates p; =
(vi,y;) € R? (i = 1,...,m) are fixed and known a priori,
we are interested in estimating the positions of the remaining
n — m non-anchor nodes of the network as p; = (Z;, §;),
Vi € {m + 1,...,n}. We define a binary connectivity
matrix C such that each entry ¢;; = 1 iff sensor nodes
1 and j are within the connectivity range of each other
(i.e., rj; < R, where r;; denotes the real distance between
nodes ¢ and j and R is the circular transmission range
common to any sensor node). Without loss of generality,

we assume that C is available as a priori information for
the localization algorithm, as each node can determine which
other nodes it can communicate with. The measured inter-
node distances d;;, which can be obtained by resorting to
any of the measurement techniques mentioned in Section I,
can be modeled as

g 4T if (4,5)e{1,...,m}x{1,...,m}, 0
Y7 \rij +e;; otherwise,

where 7;; £ ||p; — p,||, and e;; denotes the measurement
error. Let us define the set of nodes which are neighbors of
node 7 as

N;&2{je{l,...,n},j#i:ry; <R}, 2

and the corresponding complementary set \/; containing the
nodes located outside the connectivity range of node 7. It
is worth to observe that the positions of the anchor nodes,
together with the connectivity range and the connectivity
matrix C, can be exploited to define regions of the network
where some non-anchor nodes can (or cannot) be located.
Indeed, those nodes inside the coverage area of the generic
anchor node ¢ € {1,...,m} must lie in the circular area
centered in p; = (x;,y;) and with radius R, whereas all
nodes with no connection with any anchor node must be lo-
cated outside the union of the circular areas of radius R and
centered in all anchor nodes. This information is exploited
by the proposed algorithm during both the generation of the
initial population and the iterative refining process.

Our goal is to accurately estimate the non-anchor posi-
tions by minimizing a global metric, which is the sum of two
objective functions. The first function, namely Cost Function
(CF), refers to the squared error between the estimated and
the measured inter-node distances between nodes within
range of each other, and is defined as

n

CF & Z (Z(d” —di;)?), 3)

i=m+1 jeN;

A

where d;; and d;; £ \/(Z; — @;)2 + (§; — §;)° represent
the measured and estimated distance between node ¢ and
j, respectively. The second objective function, namely Soft
Constraint Violation (SCV), takes into accounts the connec-
tivity neighborhood violations of the non-anchor nodes in
each candidate topology. In words, if a node j has been
placed in the neighborhood of node ¢, while j € N; or,
equivalently, if a node j has been placed in a position such
that ciij > R, while j € N, then it is likely to have a
constraint violation and a constant error term (cf” — R)? is
added to SCV. Formally,



It is important to remark that as argued in [13], the
term (cfij — R)? represents the minimum error due to a
localization flip. Finally, in order to assess the quality of
the final estimate, the Normalized Localization Error (NLE)
is calculated as

n

> llpi — pil[? x 100,

1=m-+1

1 1
NLEZ2 = | —
R\| (n-m)

(%] (5)
where clearly, a value of NLE close to 0% would correspond
to the asymptotic case of error-free estimation.

III. PROPOSED HARMONY SEARCH ALGORITHM

The Harmony Search algorithm, originally formulated in
[14], is a meta-heuristic population-based optimization pro-
cedure which mimics the improvisation process of musicians
when seeking the best harmony. In essence, this technique
iterates on a set of K candidate solutions {{pF}",}&
(referred to as harmonies or melodies) to the optimization
problem at hand, to whose compounding elements (2%, §¥)
(correspondingly, notes) several combinatorial operators are
applied so as to progressively refine their associated fitness
CF+SCV. This refinement procedure is repeated until a max-
imum number of iterations Z is reached. The HS algorithm
has been so far utilized for a wide variety of communication-
related optimization problems, e.g. multicast routing [15],
engineering design [16], multiuser detection [17], [18], or
radio resource allocation in OFDMA networks [19]. To the
authors’ knowledge, this work embodies the first attempt to
apply HS to node localization.

The steps of the proposed HS-based localization algorithm
can be summarized as follows:

1) The initialization process is only considered at the first
iteration. At this step, the first m notes {#F gF}m,

corresponding to the anchor nodes are filled, Vk =

1,..., K, with the actual node positions {x;,y; }7,
of such anchor nodes. The remaining n — m notes
are chosen at random, again Vk = 1,..., K, from

the areas of the network resulting from the constraints
imposed by their connectivity to the m anchor nodes.

2) At each iteration of the algorithm, the improvisa-
tion process is applied sequentially to each note
{aF, gk} .1 of the total set of melodies. This
improvisation method is driven by three different
probabilistic parameters:

o The Harmony Memory Considering Rate, HMCR
€ [0, 1], sets the probability that the new value for
a certain note (¥, §¥) is drawn uniformly from
the values of this same note in all the remainder
K — 1 melodies.

o The Pitch Adjusting Rate, PAR € [0, 1], refers to
the probability that the new value for a given note
(2% %) is taken randomly from its coverage area.
Geometrical constraints posed by anchor nodes

for the sensor at hand are also considered in this
operator.

o The Random Selection Rate, RSR € [0, 1], estab-
lishes the probability to pick the value for the new
note (2, §¥) randomly from the subset T; C T' =
[0, 1] x [0, 1], which is defined by the intersection
of all geometrical constraints established by the
coverage region of anchor nodes. Notice that, as
opposed to the PAR procedure, the RSR parameter
operates network-wide, i.e. an estimated position
for a node could be moved beyond its coverage
area.

3) An additional local search method aims at improving
the fitness of the candidate with potentially lowest
metric value'. This local search procedure is carried
out for every node ¢ 1) lying outside the coverage
region of any anchor node; and 2) whose any of
its neighbors in the estimated topology violates the
connectivity constraints imposed by the i-th row of
C. In this case, those anchor nodes located within
the connectivity range R of its real neighbors (if any)
are first selected. The node at hand is then moved
to the intersection of the annuli with inner and outer
radii R and 2R respectively, centered in these selected
anchor nodes, under the condition that the number
of suspicious’ neighbors decreases. The rest of real
neighbors, which are not connected to any anchor, are
randomly set inside the coverage region centered on
the new location of this node.

4) The evaluation of the new generated candidate so-
lutions and the update of the harmony memory are
performed at each iteration based on the global metric
function CF+SCV. To this end, only those harmonies
improving the fitness of those from the previous
iteration are included in the next harmony memory.
Once this has been done, the harmony memory is
sorted in ascending order of the fitness values of its
compounding melodies.

5) After a fixed number of iterations Z the algorithm is
halted, and the set of estimated positions is given by
the first melody {#},¢;}? ; in the harmony memory.

IV. SIMULATION RESULTS

In order to assess the performance of the proposed
approach, this section presents some preliminary, though
encouraging, simulation results and a comparison with the
SA-based localization technique proposed in [13]. In all
experiments, the inter-sensor distance measurement error
is modeled as Gaussian-distributed with zero-mean and

variance o2.

n the first iteration no metric evaluation has been done at this point.
Nevertheless, the local search is applied to the first melody in the memory.

2Fake neighbors in the estimated network that violate the connectivity
constraints posed by C.



First, for the sake of completeness, we briefly summa-
rize the SA-based approach used as comparison. SA is a
stochastic optimization algorithm inspired to the physical
process of temperature annealing in metallurgy. In contrast
with gradient-based search methods that aim at performing
each optimization step using the idea of steepest descent, SA
probabilistically allows uphill perturbations, thus accepting
worse candidate solutions to avoid getting stuck in local
minima. At the beginning, a control temperature 7 is initial-
ized at a high value to allow an initial random search of the
space. Then, as the iteration counter ¢ increases, 1, and the
perturbation distance AD are slowly decreased according to
T.(1) = aT.(i—1) and AD(i) = 8-AD(i—1), respectively
(with @ < 1 and 8 < 1). At each temperature value, the SA-
based algorithm perturbs (n — m) - P - Q random selected
non-anchor nodes positions and evaluates the perturbed con-
figuration, where P and () are operational parameters to be
set beforehand. If the perturbed estimation is characterized
by a better fitness value, then it is accepted, otherwise
its acceptance is subject to the probability exp{%&m},
where A(C'F) represents the difference between the current
and previous values of the metric function. As the number of
iterations increases, the temperature cools and fewer worse
candidate estimations are allowed, leading to a progressive
refinement of the final solution.

The SA localization approach presented in [13] performs
a two-stage optimization procedure. In the first phase, a
naive SA is used to estimate the positions of the non-anchor
nodes minimizing the objective function defined in (3). The
first phase ends once the value of this function is below a
predefined threshold, or an arbitrary final temperature T ¢
is reached. Then, the goal of the refinement phase is to
identify the non-uniquely localizable nodes that cause flip
ambiguities, and elevate to virtual anchor nodes those that
keep their correct neighborhood in the estimated network
deployment. In this stage, simulated annealing is performed
again in order to minimize a new cost function, which is

formulated as
n

CFsa® Y (Y (dij—diy)*+ Y (dij— R)*). (6)
i=m+1 jEN; JEN;

di;<R

Table I
PARAMETERS USED IN THE SIMULATIONS.

SA in [13] Proposed HS
Tei 0.1
T.; | 10711 || HMCR | 0.9
P 10 PAR 0.01
Q 2 RSR 0.01
Do 0.1 K 50
«a 0.80 z 2000
0.94

Table I summarizes the values of the parameters used in
SA and HS, respectively. The operator values used in each

case are based on an exhaustive optimization study for a
large combination of the parameter set.

To compare the performance of both algorithms, we have
built three different network topologies by uniformly placing
n = 200 nodes in a square region of 1 x 1. A fraction (10%,
hence m = 20) of these nodes corresponds to the anchor
nodes set, whose fixed positions are known a priori. Different
connectivity ranges R € {0.13,0.15,0.17} are considered to
model different network sparsity levels. For each scenario,
20 Monte Carlo runs of the algorithms are executed. The
noisy distance measurements defined in (1) are assumed to
be based on RSSI, which is generally affected by log-normal
shadowing [20]. Therefore, the variance o2 of the error €ij
is given by )\27’12]», where ) is set to 0.1 in all simulations. At
this point it is also important to note that the proposed HS
local search procedure is applied every 100 iterations, rather
than at each iteration; we have verified that this complexity-
reduction strategy does not degrade the performance of the
algorithm.

Table 11
NLE STATISTICS OBTAINED BY THE HS-BASED AND SA-BASED
ALGORITHMS.
R SA HS

0.13 | 24.52/77.03/26.83
0.15 | 9.78/89.35/30.48
0.17 | 6.91/46.15/31.88

17.22/31.88/16.09
10.70/16.78/6.01
7.92/12.18/3.96

We asses the performance of the proposed HS algorithm
over the three network topologies in terms of NLE defined
in (5), and compare the results with the ones achieved by
the the SA-based algorithm, for the different values of R.
Table II summarizes the results in the format best/mean/std
NLE value (averaged over 20 experiments). The first thing to
observe is that the mean and standard deviation of the NLE
obtained by the HS-based algorithm are significantly lower
with respect to the ones achieved by the two-stage SA-based
approach. Furthermore, the respective best NLE values (i.e.,
the minimum) are quite similar. In light of these preliminary
results, one may conclude that the localization estimation
obtained by SA is on average much less accurate and stable
with respect to the one achieved by HS. This conclusion is
further buttressed by a Wilcoxon two-sided rank sum test
performed on all the obtained result sets, which verifies that
the medians of the NLE distributions corresponding to HS
and SA are statistically different with a confidence level of
95%.

As a further performance assessment, we compare the
number of fitness evaluations computed by the two approach,
in order to characterize them in terms of computational
complexity. SA performs (n —m) - P - @ fitness evaluations
at each iteration of the first optimization phase, whereas in
the refinement phase the number of fitness evaluations can
not be determined in advance, as the number of non-anchor
nodes elevated to virtual anchor nodes is not predictable.
Anyway, we have verified that the average number of fitness



evaluations needed by SA to run to completion over the 20
trials of each network topology is 710000. On the other
hand, HS employs a fixed number of Z = 2000 iterations,
at each of which the objective function is evaluated for each
of the ' = 50 newly improvised melodies. Therefore, the
number of fitness evaluations equals K - Z = 100000 in all
cases, thus drastically reducing the computational load with
respect to the SA counterpart (in a approximated 7:1 ratio).

Figure 1. Node positioning for HS with R = 0.15 and for the experiment
corresponding to the minimum value of NLE.

In order to visually show the improvement in the ob-
tained results, we depict the estimated network deployment
obtained for R = 0.15 by both algorithms in Figs. 1-3.
The following notation is adopted: the anchor nodes are
represented with diamonds (4) and their coverage areas
with empty circles. The real non-anchor nodes positions
are plotted with filled triangles (¥) and connected to the
estimated positions (represented by empty squares [J) by
solid lines. Fig. 1 shows the estimated positions of non-
anchor nodes obtained by the HS-based algorithm for the
experiment characterized by the minimum value of NLE
(10.695%). On the other hand, Figs. 2-3 depict the estimated
node deployment for the highest values of NLE achieved by
SA (112.49%) and HS (37.69%), respectively. The reader
may observe that HS, jointly with the proposed local search
procedure, is able to alleviate the flip ambiguity effects
and to estimate the positions of isolated non-anchor nodes
significantly better than the SA approach.

Figure 2. Node positioning for HS with R = 0.15 and for the experiment
corresponding to the maximum value of NLE.
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Figure 3. Node positioning for SA with R = 0.15 and for the experiment
corresponding to the maximum value of NLE.

V. CONCLUSION

This paper has presented a novel iterative localization
technique for anchor-based WSN, based on hybridizing a
Harmony Search algorithm with a local search procedure to
mitigate the so-called flip ambiguity phenomenon. Besides,
the algorithm takes into account the geometrical constraints
imposed by the connections between nodes to further limit
the zones of the network where some sensor nodes can be



located. We have shown that the proposed approach outper-
forms a previously proposed algorithm based on simulated
annealing, in different transmission ranges, in terms of the
localization error, stability and computational complexity.
Current ongoing research is being conducted towards ex-
tending this work to localization based on multi-objective
criteria.
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