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Abstract

Signal-to-noise ratio (SNR) estimation is an important task in many digital communication systems.

With nonconstant modulus constellations, the performance of the classical second- and fourth-order

moments estimate is known to degrade with increasing SNR. A new non-data-aided estimate is proposed,

which makes use of the sixth-order moment of the received data, and which can be tuned for a particular

constellation in order to extend the usable range of SNR values. The advantage of the new method is

especially significant for constellations with two different amplitude levels, e.g. 16-Amplitude-and-Phase-

Shift Keying (16-APSK).
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Sixth-Order Statistics-Based Non-Data-Aided

SNR Estimation

I. INTRODUCTION

Knowledge of the signal-to-noise ratio (SNR) is a requirement in many communication systems in

order to perform efficient signal detection and/or link adaptation. A number of non-data-aided (NDA)

SNR estimators [1], [2] have been proposed for constant modulus (CM) constellations. Most of them,

however, cannot be applied to non-CM constellations. An important exception is the so-called M2M4

estimator [2], [3], [4], which has been recently shown to belong to a wider family of schemes that obtain

the SNR as a function of ratios of the form M q
p/M

p
q , where Mp denotes the pth moment of the observed

data [5]. An advantage of moments-based estimators is their robustness to carrier frequency and/or phase

offsets.

The M2M4 estimator performs quite well with CM constellations: its normalized (to the true SNR)

variance approaches a constant with SNR → ∞, as shown in [5]. However, in the non-CM case it

increases as the SNR squared, clearly an undesirable phenomenon. One possible approach to avoid this

is to partition the set of observations in subsets corresponding to symbols of equal modulus and then

perform SNR estimation only on one of these subsets [6]. However, unless the SNR is sufficiently high,

many errors may occur in the partition step, with an ensuing performance loss.

We propose a novel SNR estimator that makes use of the second, fourth and sixth moments of

the observations. Although its normalized variance eventually rises with increasing SNR for non-CM

constellations, the range of SNR values with acceptable performance is larger than that of the M2M4

estimator when the new scheme is properly tuned. In particular, for sources with two distinct amplitude

levels, the rate of increase is linear (rather than quadratic) in the SNR.

II. MOMENTS-BASED SNR ESTIMATION

Assuming a quasistatic flat-fading channel model, the sampled (at the symbol rate) matched filter

output is given by

rk =
√
S · xk + nk, k = 1, . . . ,K, (1)

where xk are the complex-valued transmitted symbols,
√
S is the unknown channel gain, and the

complex-valued noise samples nk are independent, zero-mean and circular Gaussian with variance N .

The constellation moments are denoted as cp
.
= E{|xk|p}; energy normalization is assumed, i.e. c2 = 1.
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Given the K samples {rk}, the goal is to estimate the SNR defined as ρ .
= S/N , or equivalently the

normalized SNR z
.
= S/(S +N) = ρ/(1 + ρ); note that z ∈ (0, 1). Moments-based SNR estimators are

functions of the sample moments

M̂p
.
=

1

K

K∑
k=1

|rk|p, (2)

which in turn are unbiased and consistent estimators of the true moments Mp
.
= E{|rk|p}. Using the fact

that E{|nk|2m} = m! ·Nm, the even-order moments M2n are seen to admit closed form expressions in

terms of S, N , and c2m, 0 ≤ m ≤ n:

M2n =

n∑
m=0

(n!)2

(n−m)! (m!)2
c2mS

mNn−m (3)

For example, one has

M2 = S +N, M4 = c4S
2 + 4SN + 2N2, (4)

and thus 2M2
2 −M4 = (2− c4)S2, or 2− (M4/M

2
2 ) = (2− c4)z2. This results in the M2M4 estimate

ẑ =

√
2− M̂4/M̂2

2

2− c4
, ρ̂ =

ẑ

1− ẑ
. (5)

III. A NEW ESTIMATE USING SIXTH-ORDER STATISTICS

The M2M4 estimate is obtained via a combination of moments that depends only on the normalized

SNR z. Carrying this idea one step further, one can write

M6 = c6S
3 + 9c4S

2N + 18SN2 + 6N3, (6)

M3
2 = S3 + 3S2N + 3SN2 +N3, (7)

M2M4 = c4S
3 + (4 + c4)S

2N + 6SN2 + 2N3. (8)

We seek a linear combination of (6)-(8) in which as many N -dependent terms as possible should be

removed. Thus, let D .
= M6 − aM3

2 − bM2M4. We note that by choosing a = 2(3 − b), the terms in

SN2 and N3 cancel out, yielding

D = M6 − 2(3− b)M3
2 − bM2M4

= [(c6 − 6)− b(c4 − 2)]S3 + (9− b)(c4 − 2)S2N. (9)

Now we substitute N =M2 − S and divide both sides of (9) by M3
2 to obtain

D

M3
2

= (c6 − 9c4 + 12)z3 + (9− b)(c4 − 2)z2. (10)
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Hence, with D̂ .
= M̂6 − 2(3− b)M̂3

2 − bM̂2M̂4, an estimate ẑ can be obtained by solving for the root in

(0, 1) of

(c6 − 9c4 + 12)ẑ3 + (9− b)(c4 − 2)ẑ2 − D̂

M̂3
2

= 0. (11)

For a given b and a given constellation, this root can be tabulated in terms of D̂/M̂3
2 . Alternatively, the

following iterative rule will find such root in a few steps:

ẑ(n+1) =

√
D̂/M̂3

2

αẑ(n) + β
, (12)

where α .
= c6 − 9c4 + 12 and β .

= (9− b)(c4 − 2). Either ẑ(0) = 0 or 1 can be used as starting point.

Observe that for large |b| the reference statistic satisfies D̂/M̂3
2 ≈ b(2−M̂4/M̂

2
2 ), whereas the solutions

of (11) approximately satisfy b(2−c4)ẑ2−D̂/M̂3
2 ≈ 0. From these, it follows that the proposed estimator

will approach the M2M4 estimator (5) for sufficiently large |b|. On the other hand, if b = 0 then

D/M3
2 = M6/M

3
2 − 6, and the resulting estimator is a particular case (k = 6, l = 2) of the family

proposed in [5]. The choice of the free parameter b should be tailored to the particular constellation, as

the variance analysis will show.

IV. VARIANCE ANALYSIS

Since ρ̂ = ẑ/(1− ẑ), we can write ρ̂ = f(m̂), where m̂
.
= [M̂2 M̂4 M̂6]

T , f(m̂)
.
= g(m̂)/(1−g(m̂)),

and the function g is implicitly given by

αg3 + βg2 − h = 0, h(m̂)
.
=

D̂

M̂3
2

=
M̂6

M̂3
2

− b M̂4

M̂2
2

− 2(3− b). (13)

Let m .
= [M2 M4 M6]

T be the vector of the true moments. A first-order Taylor expansion of f about

the point m̂ = m yields the small error approximation ρ̂ ≈ ρ + vT (m̂ −m), where v
.
= ∇f |m̂=m.

Hence the estimation variance is approximately given by Var {ρ̂} ≈ vTCv, where C is the covariance

matrix of m̂, with elements Cij = (M2(i+j) −M2iM2j)/K, for i, j ∈ {1, 2, 3}.

Note that ∇f = (1− g)−2 · ∇g. Using this, and taking partial derivatives in (13), one finds that

∇g = − 1

3αg2 + 2βg
∇h ⇒ v = − (1 + ρ)4

(3α+ 2β)ρ2 + 2βρ

× 1

M4
2


3M6 − 2bM2M4

bM2
2

−M2

 . (14)
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With this, it is straightforward but tedious to compute the approximate variance vTCv. It turns out that

vTCv depends only on the normalized moments M2n/M
n
2 , 1 ≤ n ≤ 6, which are seen from (3) to be

functions of S and N through ρ only. The final expression of the variance is found to be

Var {ρ̂} ≈ 1

K
· A8ρ

8 +A7ρ
7 + · · ·+A1ρ+A0

B4ρ4 +B3ρ3 +B2ρ2
, (15)

where Ai, Bj are constants depending on b and the constellation moments only. In particular, one has

B4 = (ζ1b+ ζ0)
2, B3 = 2ζ1(b− 9)(ζ1b+ ζ0), B2 = ζ21 (b− 9)2, (16)

where ζ0
.
= 3(3c4 − c6) and ζ1

.
= 2(c4 − 2). The numerator coeficients are also quadratic in b:

Am = κ
(m)
2 b2 + κ

(m)
1 b+ κ

(m)
0 , m = 0, 1, . . . , 8, (17)

with κ(m)
i polynomial functions of c4, c6, . . . , c12.

A. CM constellations

For CM sources, cp = 1 for all p, and one finds that A8 = A7 = 0 for all b, whereas A6 = 8(b− 3)2,

A5 = 48(b2 − 9b+ 19). On the other hand, B4 = 4(b− 3)2, B3 = 8(b− 9)(b− 3) and B2 = 4(b− 9)2.

Note that for b = 3, B4 = B3 = 0 but A5 6= 0, B2 6= 0. Thus, as long as b 6= 3, the variance of the

proposed estimator is O(ρ2), with leading coefficient A6/B4 = 2 (it will be O(ρ3) for b = 3). In addition

b should be chosen outside the interval (3, 9) or otherwise the variance will exhibit a sharp peak near

ρ = (9 − b)/(b − 3), the positive root of the denominator of (15). For b < 3 or b ≥ 9 the behavior is

quite similar to that of the M2M4 estimator for CM signals, derived in [5] (recall that for large |b| the

proposed method approaches the M2M4 estimator).

B. Non-CM constellations

The coefficients determining A8 are found to be

κ
(8)
0

.
= c12 − 4c26 + 9c4c

2
6 − 6c6c8, (18)

κ
(8)
1

.
= −2c10 + 4c4c8 + 6c26 − 12c24c6 + 4c4c6, (19)

κ
(8)
2

.
= c8 − 4c4c6 + 4c34 − c24. (20)

From (16), B4 = 0 implies B3 = 0 as well. In that case, if A8 6= 0, then the variance is O(ρ6). On the

other hand, if B4 6= 0 then the variance is O(ρ4) in general, similarly to that of the M2M4 estimator [5].

In order to extend as much as possible the usable SNR range of the new estimator, b can be tuned for
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a given constellation. We propose to pick b to minimize the leading coefficient A8/B4. This is achieved

for

b = b?
.
=

2ζ1κ
(8)
0 − ζ0κ

(8)
1

2ζ0κ
(8)
2 − ζ1κ

(8)
1

. (21)
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Fig. 1. Mean value and sucess rate of several SNR estimators for K = 1000 and 16-APSK modulation.

Unfortunately, the equation κ
(8)
2 b2 + κ

(8)
1 b + κ

(8)
0 = 0 has no real roots in general, meaning that A8

cannot be made zero. However, a special situation is found when the constellation has only two different

amplitude levels, R1 and R2, with associated probabilities p and 1− p respectively. Then

c2n =
p+ (1− p)w2n

(p+ (1− p)w2)n
, (22)

with w
.
= R2/R1 the ring ratio. Using (22) one can show that (κ(8)1 )2 − 4κ

(8)
2 κ

(8)
0 = 0, so that A8 =

κ
(8)
2 (b − b?)

2, where b? given by (21) simplifies to b? = −κ(8)1 /(2κ
(8)
2 ). This means that for these

constellations, A8 can be made zero via (21), so that the variance will be O(ρ3). This constitutes a

sizable improvement over the M2M4 estimate, whose variance is O(ρ4). In terms of p, w, the optimum

value b? is given by

b? =
2(1− p)w4 + (1− 2p)w2 − 2p

(1− p)2w4 − p2
. (23)

V. SIMULATION RESULTS

We show the results obtained via Monte Carlo simulation (104 runs for each point) for a 16-APSK

constellation such as those specified in the DVB-S2 standard [7], consisting of an inner and an outer
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ring with 4 and 12 symbols respectively. DVB-S2 specifies six possible ring ratios for 16-APSK, ranging

from w = 2.57 to w = 3.15 depending on the code rate.

Fig. 1 shows the mean value of the M2M4, the newly proposed, and the partition based [6] estimators

when K = 1000 samples and w = 3.15. Also shown is the success rate of each method, estimated as

the fraction of Monte Carlo trials for which the algorithm did not run into a negative radicand1 (see (5)

and (12)). The M2M4 scheme is seen to be useful for SNR < 15 dB only. The partition based method,

on the other hand, is severely biased for SNR < 10 dB due to the increasing number of decision errors

when partitioning the observation data set as the SNR decreases. The proposed method uses an optimal

value b? = 2.75, extending the usable range of the M2M4 scheme into higher SNR values without the

large bias observed for the partition based method for low SNR.
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Fig. 2. MSE and theoretical variance (normalized to true SNR) of several SNR estimators for K = 1000 and 16-APSK

modulation.

Fig. 2 shows the MSE of the three schemes, normalized to the true SNR. The new estimator is

slightly worse than the M2M4 scheme below 5 dB, but the improvement for high SNR is evident. The

linearized normalized variances for the M2M4 (from [5]) and the proposed method (from (15)) are in

good agreement with the simulation results. For high SNR both methods become noticeably biased, with

the corresponding MSE increase with respect to the theoretical variance.

1Note that the probability of a negative radicand for a given realization is always nonzero due to Gaussianity of the noise.
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VI. CONCLUSION

A new NDA SNR estimator has been proposed which extends the usable range of the well-known

M2M4 estimator for non-CM constellations, particularly for two-amplitude-level sources. It is based on

the moments of the observations and therefore can be applied before carrier recovery has been established.

Complexity of the new method is about 33% higher than that of the M2M4 scheme, due to the need

to compute an additional moment. A topic for further research is whether performance can be further

improved by including other higher-order moments (e.g. M8) in the estimator.
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