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Abstract—Spectrum sensing is a key component of the Cog-
nitive Radio paradigm. Typically, primary signals have to be
detected with uncalibrated receivers at signal-to-noise ratios
(SNRs) well below decodability levels. Multiantenna detectors
exploit spatial independence of receiver thermal noise to boost
detection performance and robustness. We study the problem
of detecting a Gaussian signal with rank-P unknown spatial
covariance matrix in spatially uncorrelated Gaussian noise with
unknown covariance using multiple antennas. The generalized
likelihood ratio test (GLRT) is derived for two scenarios. In the
first one, the noises at all antennas are assumed to have the same
(unknown) variance, whereas in the second, a generic diagonal
noise covariance matrix is allowed in order to accommodate
calibration uncertainties in the different antenna frontends. In
the latter case, the GLRT statistic must be obtained numerically,
for which an efficient method is presented. Furthermore, for
asymptotically low SNR, it is shown that the GLRT does
admit a closed form, and the resulting detector performs well
in practice. Extensions are presented in order to account for
unknown temporal correlation in both signal and noise, as well
as frequency-selective channels.

I. INTRODUCTION

Cognitive Radio (CR) has the potential to improve wireless
spectrum usage and alleviate the apparent scarcity of spectral
resources as seen today [[1], [2]]. The key idea behind CR is to
allow opportunistic access to temporally and/or geographically
unused licensed bands. Thus, spectrum sensing constitutes a
key component in CR, in order to identify vacant channels and
avoid interference to rightful license owners [3]].

The wireless medium makes reliable detection of these
users a very challenging task: due to fading and shadowing
phenomena, the received primary signal may be very weak,
resulting in very low signal-to-noise ratio (SNR) operation
conditions [4]]. Any structure in the primary signal, such as
the presence of pilots or cyclostationary features, could, in
principle, be exploited for detection purposes. However, most
such approaches require some level of synchronization with

D. Ramirez, J. Via and I. Santamaria are with the Department of Communi-
cations Engineering, University of Cantabria, 39005 Santander, Spain (e-mail:
{ramirezgd,jvia,nacho } @gtas.dicom.unican.es).

Gonzalo Vazquez-Vilar and Roberto Lépez-Valcarce are with the Depart-
ment of Signal Theory and Communications, University of Vigo, 36310 Vigo,
Spain (e-mail: {gvazquez,valcarce}@gts.uvigo.es).

This work was presented in part at the 2nd IAPR International Workshop
on Cognitive Information Processing (CIP 2010), Elba Island, Italy, June
2010 and at the 6th IEEE Sensor Array and Multichannel Signal Processing,
Jerusalem, Israel, October 2010.

the primary signal, which cannot be guaranteed in very low
SNRs [4]. In order to avoid these drawbacks, asynchronous de-
tectors can be considered. The simpler asynchronous detectors,
including the popular energy detector, require knowledge of
the noise variance in order to compute the detection threshold.
Any uncertainty regarding this parameter translates in severe
performance degradation, so that the detection/false alarm
requirements may not be satisfied [5].

This serious drawback motivates the search for asyn-
chronous detectors robust to noise uncertainty, one possibility
being the use of multiple—antenna sensors. Several authors
have explored this strategy in order to enhance detection
performance in the context of CR systems. Assuming a
temporally white Gaussian model for both signal and noise,
spatially white noise with unknown variance across antennas,
and an unknown rank-1 spatial covariance matrix for the
signal, several detectors have been proposed [6[—[12].

However, in practical scenarios, the spatial rank of the re-
ceived signals may be larger than one. This is the case, for ex-
ample, if multiple independent users (e.g. from adjacent cells)
simultaneously access the same frequency channel. Alterna-
tively, many state-of-the-art communication standards con-
sider the simultaneous transmission of different data streams
through multiple antennas to achieve multiplexing gain and/or
the use of space-time codes to enhance spatial diversity. For
these systems, the signal received at the multiantenna sensor
will exhibit a spatial rank equal to the number of independent
streams or the spatial size of the code, respectively. Examples
range from broadcasting standards, such as the european DVB-
T2 [[13]] which considers 2-antenna space-time Alamouti codes,
to point-to-multipoint standards, such as IEEE 802.11n [14],
IEEE 802.16 [15] or LTE [16], which support up to four
transmit antennas. Hence, it is of interest to develop detectors
for signals with spatial rank P > 1.

We focus on the generalized likelihood ratio test (GLRT) for
the detection of vector-valued rank-P signals when the noise
covariance matrix is unknown. In particular the contributions
of this paper are:

1) We derive the GLRT for vector-valued rank-P signals
and independent, identically distributed (iid) noises at
each antenna when both signal and noise are assumed
temporally white.

2) We formulate the GLRT for a similar scenario, but
with the noise components having different (unknown)



variances. This model is justified, for example, when
tolerances in the components of the analog frontends
at different antennas result in deviations of the noise
level from antenna to antenna. The GLRT for this case
requires solving a non-convex optimization problem.
We propose an efficient numerical method based on an
alternating minimization approach to compute the exact
GLRT statistic. Additionally we show that this detector
admits a closed-form expression in the asymptotic low
SNR regime.

3) The proposed GLRT detectors are generalized to signals
with unknown power spectral density (PSD), extend-
ing [17]-[19] to rank-P signals. This is of special
interest in applications with frequency selective channels
and/or temporally colored noise.

Our results are related to other works based on the GLRT
framework. When the signal covariance matrix is unstructured,
and the noise assumed iid, the GLRT is the well-known test
for sphericity [20], which was applied to CR in [21]], [22].
For P = 1 and iid noises the GLRT is derived in [|6] and its
application to CR was presented in [7], [9]. In [21], [22], the
authors derived the GLRT for P > 1 under the assumption
of iid noises with known variance. In [21]] the unknown noise
variance is handled heuristically, estimating this parameter as
the smallest eigenvalue of the sample covariance matrix.

In [23] the GLRT was derived for the case of an unstructured
signal covariance matrix for non-iid noises. This detector
was later applied to array signal processing in [24f, [25].
Other detectors which can handle different (unknown) noise
variances have been proposed in [8]], [26], [27]. However they
either assume rank-1 primary signals or unstructured signals.
A GLRT framework has also been applied in [28] assuming
certain prior information of the unknown parameters, however
the multiatenna setting is only marginally treated.

Notation: We use light-face letters for scalars, and bold-
face uppercase and lowercase letters for matrices and vectors,
respectively. The elements of matrix A and vector x are
denoted by [A]; ; and z; respectively. Calligraphic uppercase
letters denote block-Toeplitz matrices. diag(x) is a diagonal
matrix with the elements of vector x on its diagonal. Other
notation is summarized in Table [

II. PROBLEM FORMULATION

Consider a spectrum monitor equipped with L antennas
which is to sense a given frequency channel. The received
signals are downconverted and sampled at the Nyquist rate.
No synchronization with any potentially present primary signal
is assumed. Primary transmission, if present, is known to
have spatial rank P, and a frequency-flat channel is assumed.
Thus, for a single observation x € CZ, the hypothesis testing
problem can be written as

Hi:x=Hs+v,
Ho:x=V,

(D

where s € CP is the primary signal, H € CI*P is the
unknown multiple-input multiple-output (MIMO) channel be-
tween the primary user and the spectrum sensor, and v € C* is
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(T) Estimated matrices, vectors or scalars
det(A), tr(A) Determinant and trace of A
vec (A) Column-wise vectorization of A
0y, Zero L x 1 vector or L X L matrix
ay k-th column of matrix A
E[] Expectation operator
F() Discrete-time Fourier transform
X~ CN G R) | o covariance matix B
® Hadamard product
(h*s)[n] Convolution operation between h[n| and s[n]
d[m] Discrete delta impulse

TABLE I: Notation used in the paper.

the additive noise, which is assumed to be zero-mean, spatially
uncorrelated, circular complex Gaussian.

We model s as zero-mean circular complex Gaussian, which
is particularly accurate if the primary transmitter uses orthog-
onal frequency division multiplexing (OFDM). Even if this is
not the case, the Gaussian model leads to tractable analysis
and useful detectors. It is assumed that s is spatially white
and power-normalized, as any spatial correlation and scaling
of the primary signal can be absorbed in the channel matrix H.
For the time being, we will assume that the primary signal and
the noise are temporally Whiteﬂ Taking this into account, the
(spatial) covariance matrices of the primary signal and noise
are given by

E[ss"] =1p, E[vw!] =3 )

where Ip is the identity matrix of size P x P and X? is an
unknown diagonal covariance matrix. The detection problem
in (I) amounts to testing between two different structures
for the covariance of the vector-valued random variable x ~
CN (0 Ls R)

H,: R=HHY + 32,

/H()ZRZEQ. (3)

That is, under Hg the covariance matrix R is diagonal whereas
under H; it is a rank-P matrix plus a diagonal one. We shall
assume that H has full rank.

III. DERIVATION OF THE GLRT FOR IID NOISES

As a first step, we derive a detector for the simpler case
of iid noises, i.e., 32 = ¢2I, which amounts to saying that
all the L analog frontends are perfectly calibrated. As there
are unknown parameters under both hypotheses, the Neyman-
Pearson detector is not implementable for this composite test.
Therefore, we adopt a GLRT approach, since it usually results
in simple detectors with good performance [29].

We shall consider M > L snapshots xg, ..., Xp/—1-
Assuming that the channel remains constant during the sensing

IThese results will be extended in Section &] to the case in which noise
and primary signals are time series with unknown temporal structure.



period, these can be regarded as iid realizations of x ~
CN(0r,R). The likelihood is given by the product of the
individual pdfs, i.e.,

~7XJLI—1§R) -

7rLMde1t(R)M exp {—Mtr (RR*) } @

p(X(),..

S 1 M-1 H - . .
where R = 7 > .~ XX, is the sample covariance matrix.

The GLRT for Hy : R = 62T vs. H1 : R = HHY + 521 is
based on the generalized likelihood ratio .Z [29]

Hl%Xp (Xo,...,XM_l;O'z) Ho
- Z . 2 2 1, (5)
maxp (Xo,...,xp-1;H,02) 43
H,o2

with 7 a threshold. First, the maximum likelihood (ML)
estimate of the noise variance under H, is given by

62 = %tr (R) (6)
In order to obtain the ML estimates under H;, we consider
two cases depending on the rank P.

Lemma 1: If P > L — 1, the ML estimates of H and o2
satisfy HH? + 621 = R.

Proof: For P > L — 1, R = HHY + ¢°I has no
additional structure besides being positive definite Hermitian.
In that case, the log-likelihood is maximized for R = f{, as
shown in [30]. [ |
Thus, for P > L — 1, the GLRT is the well-known Sphericity
test [20]

det!/ (fi)
%trace (R)

When P < L —1, the low-rank structure of the primary sig-
nal can be used to further improve the detection. In that case,
to obtain the ML estimates under H;, let HHY = U®2UH
be the eigenvalue decomposition (EVD) of HH, with

log ¥ = M Llog @)

©? = diag(¢7, 93, ...,95,0,0,...,0), )
and Yy > 1pg > -+ > Pp.

Lemma 2: Let R = Wdiag (A1, ..., ) W be the EVD
of the sample covariance matrix, with Ay > Ao > --- > Ap.
For P < L — 1, the ML estimates of U, ¥2 and ¢2 under H;
are given by

L
N . 1
I_I:VV7 O'QZﬁ Z >\k7 (9)
k=P+1
02 =X\ —6% i=1,...,P (10)

Proof: This result was proved by Anderson in [31]. M
Taking into account (6) and Lemma [2] the log-GLRT for
P < L —1is given, after some straightforward manipulations,

by
I 1/L
log.% = ML <Hi:1 Ai)
0g2L = g |~V =1 ,
%Zi:l Ai
I 1/(L—-P)
(Hi:P+1 )‘i) Ho
_M(L_P)log 1 i3 2777 (11
TP 2icpi N |

Note that the logarithmic terms in (TI) are functions of
the ratio between the geometric and arithmetic means of
all eigenvalues and the L — P smallest eigenvalues of R,
respectively. The first term is the statistic of the sphericity
test , whereas the second term can be seen as a test for
the sphericity of the noise subspace, or as a reference for
sphericity due to finite sample size effects (since as M — oo,
then R — R and thus N —o2fori=P+1, ..., L,
so that the second term in (IT)) goes to zero). Thus, the log-
GLRT may be seen as a sphericity ratio (quotient between
the sphericity statistics of the sample covariance matrix and
its noise subspace).

Remark 1: The GLRT in (@ generalizes the results in [0],
[[7], [9]] obtained for the special case of P = 1.

IV. DERIVATION OF THE GLRT FOR NON-IID NOISES

In this section we derive the GLRT for the more involved
model of non-iid noises. In this case, the only constraint on
32 is being diagonal with positive entries. Let us start by the
ML estimate of X2 under H,, which is given by [24], [25]

,[R}L,L) - D.

Similar to the case of iid noises, we study first the effect of the
signal rank P on the ML estimate of the covariance matrix.

Lemma 3: If P> L —+/L, the ML estimates of H and X2
under H, satisfy HHY 4+ 32 = R.

Proof: The proof can be found in [18]], [24]. It hinges on
the fact that if P > L — V'L, then HH* + 32 has no further
structure beyond being positive definite Hermitian. [ ]
Hence, for P > L—+/L, the GLRT is given by the Hadamard
ratio of the sample covariance matrix [23[]-[25]:

det (R)
7= [Ty Rl (42

If P < L—+/L, the low-rank structure of the primary signal
can be further exploited. In order to simplify the derivation
of the ML estimates under H;, let Rg = ¥-IRy-! (the
whitened sample covariance matrix) and Hy = 37 'H. We
can rewrite the log-likelihood as

$2 — diag ([R}m, . (12)

logp (%0, ..., xp—1;Hg, B?) =
= —LMlogm — M logdet (HgHg + I)

~ Mlogdet (¥2) - Mur [Rs (HsHE +1) '] (14)

Let HyHZ = G®2G* be the EVD of HgHg. The ML
estimates of G and ®2 are given next.



Lemma 4: Let Ry = Qdiag (71, ...,7.) Q¥ be the EVD
of Ry, with v4 > -+ > ~r. The ML estimates of G and

&2 = diag (41, ...,¢r) (which are functions of X?) are
G=Q, (15)
72 %'—L izl,...,P,
d’i_{ 0, i=P+1,.... L. (16)

Proof: Once R and H have been prewhitened, the prob-
lem reduces to the iid case and, therefore, the proof follows
the same lines as those in [31]. [ |

Finally, replacing the ML estimate of HsHZ into (T4) we
obtain

logp (xo, . ,xM,l;EQ) =—LMlogm — MP
L
— M log det (f{) - M Z [vi —logy]. (17)
i=P+1

As previously mentioned, for unstructured covariance ma-
trices, i.e. P > L — /L, there does exist a closed-form GLRT
given by (13). However, to the best of our knowledge, the
maximization of (17) with respect to X2 does not admit a
closed-form solution if P < L—+/L. We present two different
approaches: an alternating optimization scheme and a closed-
form GLRT detector obtained in the limit of asymptotically
small SNR.

A. Alternating optimization
The ML estimation problem in can be written as
minimize ir (R='Rg'=)
— log det (2*2
subject to Ry =1y, + HgHg
=), > 0.

) +logdetRs,  (18)

While this optimization problem is non-convex, it is possible
to partition the free variables in two different sets to obtain an
alternating optimization scheme. Then, we will alternatively
perform the minimization over each set of parameters while
the remaining ones are held fixed. Since at each step the value
of the cost function can only decrease the method is guaranteed
to converge to a (local) minimum.

From @]) we note that the individual minimization with
respect to 3 (considering Hy; fixed) and with respect to Hyx;
(considering 3 fixed) can be easily written as convex problems
individually, and, therefore, they can be efficiently solved.

Minimization with respect to Hx. For fixed 3, the optimal
Hyx minimizing is (up to a right multiplication by a
unitary matrix) given by Lemma [4] that is

ve) —Ip) %0 (19)

Minimization with respect to 3. For fixed Hy the
minimization problem in (I8) reduces to

Hs = [ql qp] (diag (1, . .-

minjmize tx (Rz*lR;z*l) —logdet (£72)  (20)

subject to [X]; ; > 0.
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Algorithm 1: Iterative estimation of Hy and X via
alternating optimization.

Input: Starting point cv(g) and R.
Output: ML estimates of Hx, and 3.
Initialize: n =0

repeat
Compute E( = diag(a,)
Obtain R<”+1> = 1R2 and its EVD

(n) ( )
Compute H(n+ ) from (19)) (fixed E( ))
Solve to obtain a(,41) (fixed H("H))

Update n=n-+1
until Convergence

. T
Defining the vector a = [[27!1q,...,[E7 L], the
trace term in (20) can be reorganized to obtain an equivalent
minimization problem given by

L
minimize o’ (RT © Ry ) — Z log o (21

subject to a; > 0.

Note that, given the trace term in , the matrix R” ® Rgl
is positive semidefinite. Hence, the problem (ZI)) is convex
with respect to the parameter vector o and, therefore, it can
be efficiently solved using any convex optimization solver.

The proposed alternating minimization algorithm is summa-
rized in Alg. |1} While the alternating minimization approach
does not guarantee that the global maximizer of the log-
likelihood is found, in the numerical experiments conducted
this detector shows good performance.

B. Low SNR approximation of the GLRT

The usefulness of the detector given in Alg. || in practical
settings may be hindered by its complexity. In this context,
simpler closed-form detectors become of practical interest.
Now, we derive a closed-form expression for the GLRT in
the low SNR regime, of particular interest in CR applications.
As the SNR goes to zero, the covariance matrix will become
close to diagonal, and thus it is possible to approximate the
ML estimate of 2 as 332 ~ D, where D is defined in (T2).
Substituting this back into (I17), we obtain the final compressed
log-likelihood:

logp (X0, .- ,Xp—1) = —LMlogﬂ' — MP

—Mlogdet( ) M Z

i=P+1

—logBi]. (22

where ; is the i-th largest eigenvalue of the sample spatial
coherence matrix C = D~1/2RD~!/2. Then, the asymptotic
log-GLRT is

log & ~ MZlog,@, ,3,]+MP (23)

=1



Alternatively, (23) can be rewriten as

P
log ¥ ~ MP + MlogHBie_Bi‘
i=1

7, (24)

EYAVES

and, thus, the test statistic is seen to be given by the product
of the P largest eigenvalues of C, each equalized by an
exponential term. Note that Be? is maximum at 8 = 1.
Hence, the statistic H _, Bie —Pi measures, in some sense, how
far the vector of the P largest eigenvalues [ - -+ Bp] is from
the vector of all ones. Note that yields a closed-form test,
in contrast with the iterative scheme presented in the previous
section.

V. EXTENSION TO TIME SERIES WITH TEMPORAL
STRUCTURE

We extend now the detectors in Sections [[Ill and [V] in order
to deal with frequency-selective channels, as well as unknown
temporal correlation in signals and noise.

A. Problem formulation

The detection problem can be expressed now as

Hy:x[n]=MHxs)[n]+v[n], n=0,...,N—1,

Ho : x[n] = v[n], n=0,...,N—1, 25)

where s[n] € CF is the wide sense stationary (WSS) zero-
mean circular complex Gaussian primary signal; H[n] €
CL*P is the frequency-selective MIMO channel between the
primary user and the spectrum monitor; and v[n] € C* is
the additive noise vector, which is assumed to be WSS zero-
mean circular complex Gaussian and spatially uncorrelated,
i.e., E [v;[n]vi[m]] = 0 for i # k and Vn, m. No assumptions
are made about the temporal correlation of the primary signal
or the noise processes. Note, however, that any spatial and
temporal correlation present in the signal can be absorbed in
the unknown channel without altering the model. Therefore,
the matrix-valued covariance function of the primary signal
and the noise are given by

E [s[n]s"[n —m]] =16 [m], (26)
E [vin]vf[n—m]] = 22 m], 27
where X2 [m] is a diagonal matrix for all values of m.
Let us introduce the data matrix
X = [x[0] x[1] x[N —1]] € CH*N, (28)

where the ¢-th row contains N samples of the time series
{z;[n]} at the i-th antenna, and the n-th column is the
n-th sample of the vector-valued time series. The vector
z = vec(X) stacks the columns of X, and in view of
the WSS assumption, its block-Toeplitz covariance matrix
R € CINVXLN jg given by

R0 R[] R[-N + 1
R[1] R[0] - R|-N+2
R=| N )
RN —1] R[N —2] RI0]

where R[m] = E [x[n]x" [n — m]] is a matrix-valued covari-
ance function. Therefore, under the Gaussian assumption, the
hypothesis testing problem becomes

Hi:z~CN (0N, R1),
Ho:z~CN (0pn, Ro).

We are testing two different block-Toeplitz matrices where
each block has a different structure under each hypothesis.
Under H, each block R[m] = ¥2[m] is diagonal, whereas,
under H;4, it is given by

R[m] =Y H[EH" [k — m] + X*[m)].

(30)

B. Asymptotic log-likelihood

The structure of R, induced by the rank-P primary signal,
along with the block-Toeplitz structure, prevents the ML
estimation of Rq in closed-form, even in the case of iid
noises. In fact, the ML estimation of Toeplitz covariance
matrices is known to be a non-convex problem with no closed-
form solution [32]. To overcome this limitation, we introduce
Theorem [} which states the convergence (in the mean square
sense) between the log-likelihood and its asymptotic version.
This theorem allows us to work with the log-likelihood in
the frequency domain which, as we will see, simplifies the
derivation of the GLRT (actually, the asymptotic GLRT). The
asymptotic log-likelihood is now a function of the estimated
and theoretical power spectral density (PSD) matrices instead
of being a function of the estimated and theoretical covariance
matrices. Additionally, the proposed asymptotic log-likelihood
is an extension of Whittle’s likelihood [33]], [[34] to multivariate
Gaussian processes.

Let us introduce some definitions before presenting the
theorem. Consider an experiment producing M (M > L)
independent realizationsE] of the data vector z. Then, its log-
likelihood is given by

Zy—1;R) = — LNMlogm — M logdet (R)

— Mtr (RR‘l), 31)

logp (2o, - - -,

and the asymptotic (N — o0) log-likelihood is

logp (zo, e ZM—13S (eje)) = —LNM logm
m vy Al
_ Joy) 22
NM . log det (S (¢7%)) 5
~NM [ (S(e) 57 () %, (32)

-7

where R is the theoretical block-Toeplitz covariance ma-
trix, S(e?) = F(R[m]) is the theoretical PSD matrlx
and their sample estimates are R = - Zl 0 Y2,z and
S(eje) = MZM ', (e1%) x! (6]9), with x; (6]6) =

YN e o

2In this case, the snapshots are matrix-valued.



Theorem 1: As N — oo, the asymptotic log-likelihood
converges in the mean square sense to the true log-likelihood:

1
lim F HN [logp(zo,...,2pm—1;R)

N —o0

—logp (zo, cey N1 S (ejo))]

2
] =0. (33)

Proof: The proof can be found in Appendix [A] ]
As a direct consequence of Theorem [T} the hypothesis test
asymptotically becomes

Hy:x (ej‘g) ~CN (0,S1 (eje)) , (34)
Ho = x (e!?) ~ CN (0,80 (7)), (35)

where S; (ej(’) =H (eja) HH (6j9) + X2 (ejo), So (eje) =
32 (eje), H (eje) is the Fourier transform of the MIMO
channel and 32 (e/?) is a diagonal matrix which contains the
PSD of the noises. Therefore, under Hg the PSD matrix is
diagonal, whereas under H; it is the sum of a rank- P matrix
plus a diagonal one.

C. Derivation of the GLRT

Without imposing any temporal structure to the time se-
ries, the ML estimation of the unknown parameters can be
carried out on a frequency-by-frequency basis. Thus, we can
directly apply the results from Sections [[II] and [IV] First,
the log-GLRT for the case of noises with equal PSDs, i.e.,
32(e7%) = S, (e’)I and assuming P < L — 1, is given by

- [meoen)” o

log & = NML/ log ,
- I hi(e?) |27
o\ 1/ (L=P)
u (HiL:P-H Ai (eje))
_NM(L—P)/ log — ,9
- I—P Zi:PJrl Ai (€79)
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Fig. 1: Missed detection probability versus P.

and

D (e’?) = diag ([S (G IR S (eje)]L,L) . (39

The asymptotic log-GLRT is, again, the integral of the GLRT
for vector-valued random variables.

VI. NUMERICAL RESULTS

In this section we evaluate the performance of the proposed

o algorithms under different scenarios by means of Monte Carlo

simulations. First, we consider frequency-flat channels and

(36temporally white signals and noises. Unless otherwise speci-

where \; (¢/?) is the i-th largest eigenvalue of S (e7%). The
asymptotic log-GLRT for time series with unknown temporal
structure is the integral of the frequency-wise GLRT statistic
for white vector-valued time-series, derived in @)

For the case of noises with different PSDs along the
antennas, and assuming P < L — V'L, the log-GLRT in the
low SNR regiorﬂ is approximately given by

P
a0y 9
ZlogﬁZ (ej ) o

T =1

T

log ¥ ~ NM

P
T N
-~ NM (7)) — + NMP, (37
/wgﬁz(e)%+ . (37)
where [3; is the i-th largest eigenvalue of the coherence matrix

C (em) —D-1/2 (ejf)) S (ejf)) D-1/2 (ejf’) (38)

3For other SNR regimes, it would be possible to apply, on a frequency-by-
frequency basis, the alternating minimization algorithm presented in Section

fied, the noise level at each antenna is fixed for each experi-
ment, and for each Monte Carlo realization the entries of the
channel matrix H are independently drawn from a Gaussian
distribution (thus obtaining a Rayleigh fading scenario) and
scaled so that the SNR is constant during the experiment:
tr(HH)
tr(X2)
We evaluate two detectors derived under the iid noise
assumption: the proposed GLRT statistic in (TT) denoted
here by iid-GLRT, and the sphericity test or GLRT for non-
structured primary signals [20] (denoted as Sphericity). In
addition, three detectors derived for uncalibrated receivers
(X? diagonal with positive entries) are also evaluated: the
proposed alternating optimization scheme from Algorithm [T]
denoted here as altemtng—GLRTEI, the asymptotic closed-form

SNR (dB) = 10log;, (40)

4Given the observed convergence properties, the iterations are stopped when
the cost improvement between iterations is less than 105 with a maximum of
100 allowed iterations. As starting point we use an estimate given by the scaled

N N T
low SNR asymptotic solution oo = y/L/(L — P) [[D]i}, RPN [D]Z}L}
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Detection Probability

detector in (23) (asympt-GLRT), the Hadamard ratio test [23]
or GLRT for unstructured primary signals (I3) (Hadamard).
Additionally, we also include two heuristic detectors for com-
parison: the detector based on statistical covariances [27, Alg.
1] (Covariance) and that of Eqn. (32) in [21] (Lim et al.).

A. Detection performance for rank-P primary signals

First we compare the performance of the different schemes
in terms of the spatial rank of the signal. Figure [T] shows the
missed detection probability (for Pp4 = 0.01) in a scenario
with SNR = —6 dB, L = 6 antennas for primary signals
with rank P = 1, ..., 5, for iid and non-iid noises. The
number of samples is M = 64. Note that, for increasing P
the structure present in the covariance matrix decreases. This
effect translates into the performance degradation for all the
detectors under study.

From Figs. [Taland[Th we can see that both for iid and non-iid
noises the proposed GLRT detectors are the best performing
detectors for arbitrary values of P. While the GLRTs for
P =1 present poor performance if the actual rank of the signal
is larger than one, Sphericity and Hadamard ratio tests (which
do not assume any structure on the primary signal) degrade
for strong structure, i.e. small P. It is interesting to note
however that as the rank of the signal grows (for P > 4) the
Sphericity and Hadamard ratio tests offer similar performance
to that of the rank-based detectors at a lower computational
cost. Regarding the heuristic detectors, the covariance based
detector (Covariance) presents virtually the same performance
as the Hadamard ratio test and it was not included in the plot
for clarity. On the other hand, the poor performance of the
detector of Lim et al. [21] for all values of P is likely rooted
in the heuristic estimation of the noise variance.

Finally, it is interesting to note that for P > 1, the advantage
of the iterative scheme alterntng-GLRT over the asymptotic
GLRT decreases. This can be explained from the fact that,

e
o

o
%0

e
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-=. = Sphericity
alterntng-GLRT

Detection Probability

0.6 —— Lim et al. i
o asympt-GLRT
Hadamard
»  Covariance
0.5 L L L
0 0.1 02 0.3 04 0.5

False Alarm Probability

Fig. 3: ROC curve for the different detectors (SNR= -8
dB, L = 4 antennas, M = 128 samples) with noise power
mismatch (noise powers at each antenna equal to 0, —1, 1.5
and —0.5 dB respectively). Signal rank P = 1.

as the total SNR is divided among a growing number of
dimensions, the effective SNR per dimension decreases and
one gets closer to the asymptotic regime for which asympt-
GLRT was derived.

B. Noise mismatch effect on the detection performance

We now investigate the effect of a noise level mismatch
at the different antennas on the different detectors. In order
to focus on this effect we fix P = 1. Fig. 2] shows the
corresponding receiver operating characteristic (ROC) curves
in a scenario with iid noises. Note that the iid-GLRT test,
corresponding to the GLRT under this model (rank-1 signals
and iid noises), yields the best detection performance, whereas
the detectors designed for non-uniform noise variances suffer
a noticeable penalty. From the detectors designed for uncali-
brated receivers, it is seen that the GLRT based schemes, both
asymptotic and iterative, behave similarly and outperform the
Hadamard ratio detector. The heuristic detector based on statis-
tical covariances [27] presents almost the same performance
as the Hadamard ratio test, while the detector of Lim et al.
suffers a penalty compared to the GLRT for the same model.

Fig. 3] shows the ROC curves for a similar scenario to
that of Fig. 2] but with different noise variances across the
antennas, now given by 0, —1, 1.5 and —0.5 dB. Note that
the performance of the detectors designed for uncalibrated
receivers has not changed with respect to that in Fig. 2]
whereas that of the detectors based on the iid noise assumption
is severely degraded.

C. Asymptotic GLRT performance for finite SNR values

Although the asymptotic GLRT detector (asympt-GLRT)
given by (23) is appealing due to its computational simplicity,
it is not clear how much can be gained when the iterative
scheme (alterntng-GLRT) is used in order to implement the
exact GLRT. Fig. [] shows the missed detection probability
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detectors. Same scenario as in Fig.

of the detectors versus the SNR in a scenario similar to the
previous subsection (P = 1, L = 4, M = 128, different
noise levels at each of the antennas fixed to 0, —1, 1.5 and
—0.5 dB respectively). The probability of false alarm is fixed
to Pra = 0.01 and 0.1. In Fig. 4] it is seen that for very
low SNR values the asymptotic detector presents the same
performance as the alternating minimization scheme. However,
as the SNR increases, the GLRT outperforms the detector
derived for asymptotically low SNR, as it could be expected.
Note, however, that the performance loss of the asymptotic
detector is rather small, and therefore it offers a good tradeoff
between performance and complexity.

D. Detection performance in environments with unknown tem-
poral structure.

Now we evaluate the performance of the proposed detec-
tors in environments with unknown temporal structure. We
consider an scenario with primary signals of rank P = 2,
a receiver with L = 5 antennas, which captures M = 5
realizations of length N = 100 or N = 20 for the detection
process. The transmitted signals use OFDM modulation, have
a bandwidth of 7.61 MHz, and undergo propagation through a
5 x 2 uncorrelated frequency-selective channel with exponen-
tial power delay profile and delay spread 0.779 us [35]], which
is fixed through the experiment. At the receiver, temporally
white noises are added and the signals are sampled at 16 MHz.
The SNR, defined in a frequency selective environment as

7yt (B B (7)) 22
ff tr (X2 (ejf)))% , (41)

SNR (dB) = 10log,,

is given in the figures.

First, we assume iid noises. The ROC curves for the GLRT
(given by (TT)) and the frequency-domain GLRT for iid noises
(which assumes frequency-selective channels and is given
by (36)) are shown in Fig. [5al The advantage of exploiting the
temporal structure of the time series is clear. However, as can
be seen in the figure, this improvement becomes smaller when
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Fig. 5: Performance comparison of the frequency-domain
GLRT against the GLRT.

the number of available samples decrease. Similar conclusions
can be drawn from Fig. [5b] which shows the performance
of the two GLRT detectors for uncalibrated receivers, given
by @23) and (37). In this experiment the noise variance
values at the different antennas were drawn from a uniform
distribution in linear scale to obtain mismatches no larger than
7.5 dB.

VII. CONCLUSIONS

We have derived the GLRTs for the problem of detecting
vector-valued rank-P signals when the noise covariance is
assumed unknown. In particular, when the noise at each of
the components is assumed iid and for uncorrelated noises
non necessarily iid. As it turns out, detectors derived under
the assumption of iid noises are not robust to a mismatch in
noise levels across the antennas. Although the GLRT for the
more challenging non-iid noise case does not admit a closed
form, one can resort to numerical optimization techniques.
A closed-form low SNR approximation of the GLRT has
also been presented, providing a tradeoff between complexity
and performance. These detectors include as particular cases
several previous schemes derived either for P = 1 or for
large P. These results have also been extended to a model
considering vector-valued time series with unknown PSDs,
of interest in applications with frequency selective channels
and/or temporally colored noise.

All of the detectors considered here assume knowledge of
the signal rank P. While this may be reasonable in some
contexts, for example if the space-time coding scheme used
by primary transmitters is known, there are scenarios in which
P is unknown, for example if it is related to the number



of primary users simultaneously transmitting. Future research
should consider estimation of P [36]] and primary signal
detection jointly.

APPENDIX
In this appendix, we prove the mean square convergence
of the log-likelihoods, which can be seen as an extension of
Whittle’s likelihood [33]], [34] to multivariate processes. We
shall start by the conditions under which the theorem holds:
c.l The block-Toeplitz matrices are generated by continuous
symbols, i.e., each matrix block is given by the Fourier
coefficients of an L x L continuous matrix function.
c.2 The power spectral matrices are positive definite.
In order to proceed, let us rewrite @ as follows

logp (2o, - ,z2m-1;R) = —LNMlognm
M-1
— Mlogdet (R) — Z ziR 1z, (42)
m=0

where R is given by (29). Additionally, let us introduce the
block-Toeplitz matrix R which is given by

R[0] R[-1] R[-N +1]
N R[1] R/[0] R[-N + 2]
R=| . : : , (43)
RW —1] f{[z\f -2 R[0]

where R[m] = F~! [S7! (¢7%)]; and the sum of quadratic
forms of the matrix R

M—1 T a6
2Rz, = NM [ (S ()87 (7)) —. (44)
> [ )5

The mean square convergence of a random variable is defined
as follows (see e.g. [37]):

. 1
]\}E}looE HN [logp (2o, ... ,2pm-1;R)

—logp (zo, e ZN—13 S (eje))]

Substituting (31) and (@2) into the left-hand side of (#3]), one
has

2
] =0. 45)

M—1
. 1 _
ngnooE i [—Mlog det(R) — Z::OZZR L
i o\ df
70y 22
+ NM 7ﬂlogdet (S (e )) o
L N A I
~NM /_ u (S(”)s 1(@%}))%} ]
Q) 1 ’f oy 40
< ngnoo 2M ‘Nlogdet (R) — /_Tr log det (S (/%)) o
| M-l
. Hoy—
+ lim 25 ngozmn Y2m
™ 2
-M tr (S (eje) st (ej0)> % ] (46)

where (a) follows from [37, Th.8, p. 287]. We shall proceed
by splitting the proof in two parts, one for each term in the
right-hand side of (#6). It is easy to show that under c.1 and
c.2, the following holds (see [38, Th. 6]

1 i . do
. - . 0 w _
Jim <= log det (R) /_Trlog det (S (/7)) 5 =0 (47
Then, taking into account that
lim ay =0 = lim |an|* =0, (48)
N—o00 N—o0

where ay is any sequence of real numbers, it follows that
2

1 4 , do
. L . 0y Y1
J\/lgnoc 2M ‘ N log det (R) /_7T log det (S (¢7%)) o 0.
(49)
Now, taking into account ([@4), it is readily shown that
| M1
. Hop—1
J&E‘;EHN 2 ZnR o
L o\ do |2
-M t(S 79y g—1 39)7
(s @8 ()
| M1 2
T 1 H(p-1_ 5
= lim P |N mz::()zm (R R) Zom (50)

We now prove that (50) converges to zero. First, we must note
that it is a mean of the square of a sum of quadratic forms.
Therefore, taking into account that the quadratic forms are
uncorrelated and the formulas for the mean and variance of
a quadratic form of a multivariate normal distribution [39], it
follows that

‘ M-1 2

% Z z! (R’l —7~2) Zom,

m=0

= Jim 3 {7 (e R (R - R)])
+ 2Mur [R (R—1 —7%) R (R—1 —R)H —0 (51)

where we have applied [38 Th. 3 and Th. 5] and S).
Therefore, (50) converges to zero, i.e.,

| M1
~ L Hp—1
Mim B NMZOZWR “m
T (& oy 4917
_ 70 =1 (50 - —
v [T (85 () 27” 0. (52
Finally, the proof follows from (9) and (52). O
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