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Abstract—Given a small percentage of nodes whose actual
positions are known, the problem of estimating the locations of
the remaining nodes of a wireless sensor network has attracted
a large interest in the last years. The localization task is based
on the noisy estimates of the distances between pairs of nodes in
range of each other. The problem is particularly hard when the
network connectivity is not sufficiently high, the most attractive
case in real applications. In this paper, we propose to solve
the localization problem by using a two–objective evolutionary
algorithm which takes concurrently into account during the
evolutionary process both the localization accuracy and certain
topological constraints induced by the network connectivity. The
proposed method is tested with different network configurations
and sensor setups, and compared in terms of normalized lo-
calization error with two approaches based on semi–definite
programming. The results show that, in all the experiments,
our approach achieves considerable accuracies, thus manifesting
its effectiveness and stability, and outperforms the compared
approaches.

I. INTRODUCTION

A Wireless Sensor Network (WSN) may consist of hun-
dreds or even thousands of low–cost nodes communicating
among themselves for applications like environment moni-
toring, precision agriculture, vehicle tracking, logistics, etc.
[1]. Generally speaking, tiny nodes are deployed in an area
to be monitored, spanning a potentially large geographical
region. The small size and low cost of sensor nodes impose
several practical limitations: as they mount small and cheap
memory and microprocessor units, tasks such as large data
storing and complex computations become unfeasible. At the
same time, since nodes are usually battery–powered, network
lifetime usually constitutes an important issue [2], [3].

In the aforementioned applications, knowledge about the
location of sensor nodes may play a key role (we refer the
interested reader to [4] and the references therein). Although in
principle the use of a Global Positioning System (GPS) could
enable such “location awareness”, this solution is not always
viable in practice. The first reason is merely economic, as the
cost of GPS receivers is not negligible. The second reason is
related to the power consumption of a standard GPS receiver,
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which is generally not affordable by battery–powered nodes.
Last but not least, a technology–related reason arises in indoor
and underground WSN deployments: in these situations, in
fact, communication with satellites may be compromised.

These limitations have motivated alternative approaches to
the problem, as reviewed in [5]–[7]. Among these, fine–
grained localization techniques arise as a flexible option. In
these schemes, only a few nodes of the network (termed
anchor nodes) are endowed with their exact positions through
GPS or manual placement, while all nodes are able to estimate
their distances to nearby nodes by using some measurement
technique. These distance–related techniques include Received
Signal Strength (RSS) measurements, Time of Arrival (ToA),
Time Difference of Arrival (TDoA), etc. (for a review of these
techniques the reader is referred to [6], [7]). Thus, assuming
that the coordinates of anchor nodes are known, and exploiting
pairwise distance measurements among the nodes, the fine–
grained localization problem is to determine the positions of all
non–anchor nodes. This task has proved to be rather difficult,
due to the following reasons: i) determining the locations of
the nodes from a set of pairwise distance estimates is a non-
convex optimization problem; ii) the measurements available
to nodes are invariably corrupted by noise; and finally, iii) even
if the distance estimates were perfectly accurate, sufficient
conditions for the solution to be unique are not easily identified
[8]. We will briefly discuss these issues in the following.

Assuming a statistical characterization of measurement
noise (which will usually depend on the kind of measure-
ment technique [6]), Maximum Likelihood (ML) estimation
is the natural approach to the localization problem. However,
as previously mentioned, the ML formulation results in a
multivariable nonconvex optimization problem. Three different
approaches to this task can be found in the literature, namely
stochastic optimization, multidimensional scaling, and convex
relaxation. The first approach attempts to avoid local maxima
of the likelihood function by resorting to global optimization
methods, such as e.g. simulated annealing [9]. Multidimen-
sional scaling [10], [11] is a connectivity–based technique
that, in addition to distance measurements, exploits knowledge
about the topology of the network; this information imposes
additional constraints on the problem, since nodes within
communication range of each other cannot be arbitrarily far



apart. The third approach relax the original nonconvex ML
formulation in order to obtain a Semi–Definite Programming
(SDP) or a Second–Order Cone Programming (SOCP) prob-
lems. Global solutions to these relaxed, convex problems can
be then obtained with moderate computational effort [12] [13]
and constitute approximate solutions to the original nonconvex
problem. In [13] it was shown that the solutions obtained by
SOCP relaxation are less accurate than those obtained by SDP
relaxation. Moreover, in order to improve the computational
efficiency of the original SDP approach proposed in [12],
further relaxations have been recently proposed. For instance,
in [14], [15] examples of such relaxations were presented,
which are able to handle much larger–sized problems, at the
expense of an increase in localization error with respect to the
original SDP approach. Basically, all of these methods aim
to relax the original problem at the modeling level, so as to
maintain the sparsity of the graph by limiting the amount of
selected edges connected to each sensor or anchor node.

In the following we will consider the most accurate convex
relaxation approach, i.e. the original full–SDP formulation
proposed in [12] (we will refer to this method as FSDP). It
should be mentioned that FSDP may still incur in significant
estimation errors, and that a regularized version (referred
to as FSDPr) and a gradient–descent refinement technique
have been proposed in [8] and [16], respectively, in order to
improve its performance. FSDPr adds a regularization term
to the objective function in order to reduce the tendency of
SDP solutions to have points crowded together, which occurs
after the last step of projecting the high–rank SDP solution
back onto the two–dimensional plane. Thus, the regularization
term suggested in [8] penalizes small node separations. The
main issue in FSDPr is the choice of the regularization
value: if it is too low, then the effects of regularization are
negligible; on the other hand, if this value is too high, then
the regularization term will overwhelm the error term, making
the SDP either unfeasible or yielding a solution whose points
are too far apart. Although there is no way to obtain a good
regularization value a priori, in [8] the authors proposed a
method for its computation based on the solution provided by
FSDP without regularization. Finally, the goal of gradient–
based refinements is to improve the final estimation given
by a localization algorithm. Since gradient–based methods
generally do not deliver a global optimal solution when the
problem is not convex, this technique can be applied as a fine–
tuning phase once an approximation to the global solution has
been found [8], [16]. Thus, the technique can be applied to
any localization method.

In this paper we propose to tackle the localization problem
by using a Multi–Objective Evolutionary Algorithm (MOEA).
In particular, we adopt two objectives: the first objective,
denoted CF, is given by the original nonconvex cost (the
sum of squared differences between the estimated and the
corresponding measured inter–node distances). The second
objective, denoted CV, exploits the connectivity–based a priori
information about the network, and is especially useful in order
to alleviate localizability issues.

The proposed approach is tested with a variety of network
topologies, percentages of anchor nodes, and connectivity
ranges, and compared in terms of normalized localization
error with FSDP and FSDPr, without and with a gradient–
based refinement stage. It will be shown that the proposed
evolutionary method consistently produces more accurate es-
timates of the sensor locations than convex relaxation–based
approaches. The improvement is more significant for network
topologies with lower connectivity, for which the localization
problem becomes more difficult. Thus, the proposed approach
constitutes a good candidate for WSN applications which
do not demand highly–scalable or real–time solutions but do
require high localization accuracies.

The remainder of this paper is organized as follows. In
Section II, we present the problem formulation. Section III
introduces our multi–objective evolutionary approach to the
problem. The experimental results of our performance analysis
are presented in Section IV. Finally, in Section V we draw
some conclusions.

II. PROBLEM FORMULATION

The goal of this section is to introduce the system model as
well as the objective functions for the evolutionary algorithm
and the performance metric. We also discuss certain geometri-
cal constraints which can be defined on each non–anchor node,
exploiting the a priori information (i.e. connectivity) about the
network topology.

A. System model

We consider a WSN with n nodes deployed in T = [0, 1]×
[0, 1] ⊂ R2. Among these, nodes 1 through m, with m < n,
are anchor nodes whose coordinates pi = (xi, yi) ∈ R2,
i = 1,. . . , m, are known. We assume that if two sensor
nodes, say i and j, are within communication range of each
other, then their inter–node distance dij can be estimated by
using some measurement technique (see Section I). Distance
measurements dij are modeled as

dij = rij + eij (1)

where rij = ‖pi − pj‖ is the actual distance between nodes i
and j (‖·‖ denotes the Euclidean norm). Similarly to [8], [9],
[12], [16], we assume that measurement errors eij follow a
zero–mean Gaussian distribution with variance σ2. It is also
assumed that the random variables eij and ekl are statistically
independent for (i, j) 6= (k, l).

A simple disk model is adopted for network connectivity:
nodes i and j can communicate with each other if and
only if rij ≤ R, where R is the connectivity range. This
model is commonly used in the literature, although empirical
measurements on real WSNs have shown that it is only an
approximation in practice. On the other hand, different connec-
tivity models could be adopted by modifying the geometrical
analysis in Section II-C. We refer to nodes j such that rij ≤ R
as first–level neighbors of node i. Further, we refer to all nodes
j which are not first–level neighbors of node i, but which share



at least a first–level neighbor with node i, as second–level
neighbors of node i. Let

Ni = {j ∈ 1 . . . n, j 6= i : rij ≤ R} (2)
N i = {j ∈ 1 . . . n, j 6= i : rij > R} (3)

be the set of the first–level neighbors of node i and its
complement, respectively. We assume that sets Ni and N i are
known for all i = 1, . . . , n. This is a reasonable assumption,
since each node can easily determine which other nodes it can
communicate with.

B. Objective functions and performance metric

Pursuing the goal of estimating the positions of the non–
anchor nodes as accurately as possible, we propose to concur-
rently minimize two objective functions. Let p̂i = (x̂i, ŷi), i =
m + 1, . . . , n be the estimated positions of the non–anchor
nodes i. The first objective CF is defined as

CF =

n∑
i=m+1

∑
j∈Ni

(
d̂ij − dij

)2 , (4)

where d̂ij is the estimated distance between nodes i and j
computed as follows:

d̂ij =


√
(x̂i − xj)2 + (ŷi − yj)2 , if node j is an anchor,√
(x̂i − x̂j)2 + (ŷi − ŷj)2 , otherwise.

(5)
Thus, CF is the sum of squared differences between the
measured data and distances corresponding to the candidate
geometry (as given by the estimated positions p̂i, i = m +
1, . . . , n of the non–anchor nodes and the positions of the
anchor nodes).

Given a set of data comprised by the set of anchor nodes and
the inter–node distance measurements, a network is said to be
localizable if there is only one possible geometry compatible
with the data. Localizability is a fundamental problem which
can be studied within the framework of rigid graph theory
[17]. If the network is not localizable, then multiple global
minima will be present in the cost function, with only one of
them corresponding to the actual geometry of the deployment.
Thus, in settings which are close to not being localizable, any
localization algorithm will become extremely sensitive to these
false minima of CF, resulting in very large localization errors
[18], [19].

The simplest effect leading to lack of localizability is the
so–called flip ambiguity phenomenon, shown in Fig. 1. The
neighbors of node i (i.e. nodes j, k, l and m) are almost
collinear (double line in the figure), and thus, it is clear that
if the location of node i is flipped with respect to this line
to the new position denoted by i′, then the new geometry
so obtained is almost compatible with the original inter–node
distance measurements (it would be fully compatible if nodes
j, k, l and m were perfectly aligned). In order to combat this
lack of localizability, connectivity considerations are helpful:
observing Fig. 1, one notices that whereas the flipped position

i


i'


j
 k


l

m


n


Fig. 1. The flip ambiguity problem.

i′ is within the communication range of node n (shown by
the circle in the figure), the actual position i is not. If the
network is sufficiently dense, one would expect false minima
of CF to violate some connectivity constraints of this sort. The
number of these violations in a candidate topology constitutes
our second objective function CV.

Formally, CV counts the number of connectivity constraints
which are not satisfied by the candidate geometry, and is
defined as

CV =

n∑
i=m+1

∑
j∈Ni

δij +
∑
j∈Ni

(1− δij)

 , (6)

where δij = 1 if d̂ij > R and 0 otherwise.
In order to evaluate the accuracy of estimates, we consider

the normalized localization error (NLE), defined as

NLE =
1

R

√√√√ 1

(n−m)

n∑
i=m+1

(
(xi − x̂i)2 + (yi − ŷi)2

)
×100%.

(7)
Thus, assuming that the estimate is unbiased, NLE can be
interpreted as the ratio of the standard deviation to the con-
nectivity radius.

C. Geometrical constraints

The connectivity ranges and the positions of the anchor
nodes determine subsets of the overall search space where
each single non–anchor node can be positioned. These subsets
depend on the type of non–anchor node, and can be defined
by means of geometrical constraints. We adopt the following
classification based on the position of a non–anchor node with
respect to anchor nodes:
• Class 1 node: a non–anchor node which is first–level

neighbor to at least one anchor node.
If a node belongs to Class 1, then its position must lie
within the intersection of the circles of radius R centered
in the anchor nodes which it is neighbor to.

• Class 2 node: a non–anchor node which is second–level
neighbor to at least one anchor node.
If a node belongs to class 2, then its position must lie
within the intersection of the annuli with inner and outer
radii R and 2R, respectively, centered in the anchor nodes
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(b) node i is neighbor to nodes m and n,
which in their turns are neighbors to
anchor nodes j and l, respectively.

Fig. 2. Constraints imposed on class 2 nodes.

which it is second–level neighbor to. Fig. 2 shows two
examples of class 2 nodes.

• Class 3 node: a non–anchor node which belongs to
neither class 1 nor class 2.
If a node is class 3, then its position must lie outside the
union of the circles of radius R centered in all anchor
nodes.

It is clear that, given a non–anchor node belonging to one
of the three classes, it is possible to restrict the space where
it can be located. This information can be exploited both in
the generation of the initial population of the MOEA and,
during the evolutionary process, to constrain the application
of the mating operators. Thus, by avoiding the generation of
solutions which certainly cannot be optimal (since they violate
the geometrical constraints determined by the connectivity
ranges and by the known anchor node positions), it is possible
to speed up the execution of the evolutionary algorithm.
Furthermore, these constraints help alleviate the localizability
issues and in particular the flip ambiguity effect. As it turns
out, this phenomenon is much more likely to occur if the
candidate positions of non–anchor nodes are not constrained
within the subspace corresponding to its membership class.

III. THE OPTIMIZATION FRAMEWORK

MOEAs aim to search for optimal solutions to problems that
incorporate multiple performance criteria. MOEAs generate
a family of equally valid solutions, where each solution
tends to satisfy a criterion to a higher extent than another.
Different solutions are compared with each other by using the
notion of Pareto dominance. A solution x associated with a
performance vector u dominates a solution y associated with

a performance vector v if and only if, ∀i ∈ {1, . . . , I} with
I the number of criteria, ui performs better than, or equal to,
vi and ∃i ∈ {1, . . . , I} such that ui performs better than vi
, where ui and vi are the ith elements of vectors u and v,
respectively. A solution is said to be Pareto optimal if it is not
dominated by any other possible solution. The set of Pareto–
optimal solutions is denoted as Pareto front. Thus, the aim of
a multi–objective search algorithm is to discover a family of
solutions that are a good approximation of the Pareto front
[20].

MOEAs have been investigated by several authors in recent
years [21]. Although there exist a number of recently proposed
MOEAs with different peculiarities, we have focused our
attention on some of the most popular, namely the Strength
Pareto Evolutionary Algorithm (SPEA) [22] and its evolution
(SPEA2) [23], the Niched Pareto Genetic Algorithm (NPGA)
[24], the different versions of the Pareto Archived Evolution
Strategy (PAES) [25], and the Non–dominated Sorting Genetic
Algorithm (NSGA) [26] and its evolution (NSGA–II) [27]. On
the other hand, the main aim of this paper is not to compare the
performances obtained by different MOEAs on the localization
problem in WSNs, but rather to prove that this problem can
be successfully tackled by using an MOEA. We have used the
jMetal [28] implementation of PAES in our experiments.

In the following subsections, we describe the chromosome
coding, the objective functions, the genetic operators and the
PAES algorithm.

A. Chromosome coding and objective functions

In our optimization framework each chromosome encodes
the positions of all non–anchor nodes in the network. Thus,
each chromosome consists of n − m pairs of real numbers,
where each pair represents the coordinates x̂ and ŷ of a
non–anchor node. The variation range of each coordinate
is bounded by the geometrical constraints described in Sec-
tion II-C. We enforce compliance with these constraints in
the initial population. Further, whenever mutations are applied
during the evolutionary process, only mutated individuals
satisfying these constraints are generated.

Each chromosome is associated with a vector of two
elements, which represent the values of the two objective
functions CF and CV (Eqs. (4) and (6) in Section II-B).

B. Genetic operators

PAES exploits only mutation during the evolutionary pro-
cess. We have defined two mutation operators [29]. The first
mutation operator, denoted node mutation operator, performs a
uniform–like mutation: the position of each non–anchor sensor
node is mutated with probability PU = 1/(n−m). Positions
are randomly generated within the geometrical constraints
imposed on the specific node location.

The second mutation operator, denoted neighborhood muta-
tion operator, mutates, with probability PU = 1/(n−m), the
position of each non–anchor sensor node within the geometri-
cal constraints determined for the specific node, but unlike the
first operator, it applies the same translation, which has brought



the mutated node i from the pre–mutation position to the post–
mutation position, to the neighbors of i with probability PN .
Fig. 3(a) shows an example of application of the neighborhood
mutation operator. Let i be the sensor node to be mutated.
In the figure, we denote with p̂i and p̂′i the positions of i
before and after the application of the mutation operator. The
translation applied to node i for shifting this node from p̂i to
p̂′i is also applied to the nodes k and m, which are randomly
selected from the set {j, k, l,m} of neighbors of i.

The neighborhood mutation was introduced to deal with
particular topological configurations such as the one shown in
Fig. 3(b). Here, the actual positions pi and pj of nodes i and
j are marked with squares, while the estimated positions are
marked with circles. We note that the distance ‖pi − pj‖ be-
tween the actual positions is similar to the distance ‖p̂i − p̂j‖
between the estimated positions, thus resulting in a low
contribution to CF . Let us suppose that node i is moved
from position p̂i to position p̂′i by applying the node mutation
operator. By analyzing the figure, we can realize that, though
p̂′i is closer to pi than p̂i, the distance ‖p̂′i − p̂j‖ between the
estimated positions is much larger than that between the actual
positions, thus resulting in a considerable increase of CF . This
increase will probably lead to discarding the solution with i′,
even though this solution is certainly better than the one with
i. On the other hand, applying the neighborhood mutation,
node j would have been translated, with a certain probability,
together with i into j′ and i′, respectively, as shown in
Fig. 3(b), thus leaving the distances between estimated and
actual positions unchanged. It follows that the solution with i′

and j′ has the same contribution to CF (as far as these two
nodes are concerned) as the solution with i and j, and thus
the previous problem is avoided. We experimentally verified
that this mutation operator performs better when not all the
neighbors are translated with the mutated node. Indeed, if the
estimated positions of the neighbors of a mutated node are
very close to the actual positions, then translating all of them
would considerably worsen the solution. Thus, the translation
is applied only to a randomly chosen subset of neighbors.

C. PAES

The PAES algorithm was introduced in [25] and probably
represents the simplest possible nontrivial algorithm capable of
generating diverse solutions in the Pareto optimal set. Further,
PAES is characterized by a lower computational complexity
than traditional niching methods [25], [30].

PAES consists of three parts: the candidate solution genera-
tor, the candidate solution acceptance and the non–dominated
solution archive. The candidate solution generator maintains a
single current solution c, and, at each iteration, produces a new
solution m from c, by using a mutation operator. The candidate
solution acceptance compares m with c. Three different cases
can arise:

1) c dominates m: m is discarded;
2) m dominates c: m is inserted into the archive and

possible solutions in the archive dominated by m are
removed; m replaces c in the role of current solution;
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tation on the CF objective

Fig. 3. The behavior of the neighborhood mutation operator.

3) neither condition is satisfied: m is added to the archive
only if it is dominated by no solution contained in the
archive; m replaces c in the role of current solution only
if m belongs to a region with a crowding degree smaller
than, or equal to, the region of c.

The crowding degree is computed by firstly dividing the
space where the solutions of the archive lie into a number
(numReg) of equally sized regions and then by counting the
solutions that belong to the regions. The number of these
solutions determines the crowding degree of a region. This
approach tends to prefer solutions which belong to poorly
crowded regions, so as to guarantee a uniform distribution
of the solutions along the Pareto front.

PAES terminates after a given number maxEvals of eval-
uations. The candidate solution acceptance strategy generates
an archive which contains only non–dominated solutions. On
PAES termination, the archive (at most archSize). includes
the set of solutions which are an approximation of the Pareto
front. At the beginning, the archive is empty and the first
current solution is randomly generated. For more details on
PAES the reader should refer to [25], [30].

IV. SIMULATION RESULTS

A. Simulation setup

In this section we show the effectiveness of the proposed
two–objective evolutionary algorithm in tackling the local-
ization problem in WSNs. We have built different network
topologies by randomly placing 200 nodes with a uniform
distribution in T = [0, 1] × [0, 1] ⊂ R2. We have varied the
percentage of anchor nodes to 8%, 10% and 12% (thus each
topology consists of 16, 20 and 24 anchor nodes and 184, 180
and 176 non–anchor nodes, respectively). Further, we have
varied the connectivity range R in the interval [0.11, 0.16]



TABLE I
AVERAGE VALUES OF SEVERAL MAIN NETWORK INDICATORS FOR

DIFFERENT CONNECTIVITY RANGES AND PERCENTAGES OF ANCHOR
NODES.

R
node anchor Cl.1 Cl.2 0 anch. 3(or more)

degree (%) (%) (%) (%) anch.(%)

0.11 6.86
8 42.28 31.68 57.72 2.28

10 50.44 32.72 49.56 3.56
12 56.02 30.68 43.98 5.97

0.12 8.09
8 51.03 31.85 48.97 2.12

10 59.67 29.22 40.33 4.50
12 66.48 25.80 33.52 5.85

0.13 9.41
8 58.04 32.72 41.96 2.17

10 65.28 29.72 34.72 5.33
12 69.72 26.14 30.28 9.43

0.14 10.84
8 56.52 30.43 43.48 5.98

10 67.28 25.94 32.72 8.94
12 75.06 20.68 24.94 14.20

0.15 12.28
8 62.01 29.35 37.99 7.66

10 70.94 24.11 29.06 12.78
12 75.74 21.42 24.26 17.16

0.16 14.16
8 67.83 26.20 32.17 11.09

10 74.17 22.72 25.83 17.22
12 81.36 16.76 18.64 24.55

TABLE II
PARAMETER SETUP OF PAES.

Parameter Value
Size of non–dominated solution archive (archSize) 20
Number of regions (numReg) 5
Number of fitness evaluations (maxEvals) 4× 105

Node mutation probability (PM ) 0.9
Node rigid translation probability (PN ) 0.3

with step 0.01. The distance measurements between neigh-
boring nodes were generated according to the model (1). We
assume that these distance estimates are derived from RSS
measurements, which are commonly affected by log–normal
shadowing with standard deviation of the errors proportional
to the actual range rij [6]. Thus, the variance of eij is given by
σ2 = α2r2ij . A value of α = 0.1 was used in the simulations.

For each value of R, 10 random network topologies were
generated. After this step, different scenarios were built by
varying the percentage of anchor nodes. Thus, we were able
to obtain a better control on the effects of both the different
connectivity ranges and the different percentage of anchor
nodes on the normalized localization error. Table I shows
the average values of some network indicators, namely the
node degree (considering anchor and non–anchor nodes), the
percentage of non–anchor nodes classified in Class 1 and Class
2 (the percentage of nodes in Class 3 can be easily deduced
from the first two), the percentage of non–anchor nodes with
no anchor node in their neighborhoods and the percentage
of non–anchor nodes having at least 3 anchor nodes in their
neighborhoods. The analysis of Table I reveals that, when the
connectivity range and the percentage of anchor nodes are
low, the localization problem becomes very complex: indeed,
with a connectivity range R = 0.11 and 8% of anchor–
nodes, only a small fraction of non–anchor nodes can rely
on 3 or more anchor neighbors (2.28%), while more than
the half of them (57.72%) are in communication with no

1: procedure FSDPR(s)
2: NRsol = FSDP SOLVER(s)
3: λ∗ = UPPERBOUND(s,NRsol)
4: λ = λ∗

5: tries = 0
6: repeat
7: [feasible, RegSol] = FSDPR SOLVER(s, λ)
8: tries = tries+ 1
9: if feasible then

10: return RegSol
11: end if
12: λ = λ/2
13: until tries ≤MAX TRIES
14: return NRsol
15: end procedure

Fig. 4. The heuristic strategy used to tune λ in FSDPr.

anchor node. Moreover it is worth noting that, even when the
connectivity range is increased to 0.16 and the percentage of
anchor nodes to 12%, the average percentage of non–anchor
nodes with no anchor neighbor is not negligible (18.64%),
while the average percentage of non–anchor nodes with 3 or
more anchor neighbors is still significantly low (24.55%).

For each scenario 15 trials of PAES were executed, with
parameter values summarized in Table II.

Once the Pareto front approximation has been generated,
a solution must be chosen. In our experiments, we verified
that the variation interval of CF for the solutions on the
final Pareto front approximation is quite small. Thus, we can
assume that each solution on the Pareto front can be acceptable
with respect to the CF objective. We have validated this
hypothesis with a Wilcoxon test, by selecting from each final
archive the solutions characterized by the minimum value of
CV and the minimum value of CF (in practice, the solutions
on the extremes of the Pareto front approximation). Since
no statistical difference exists in terms of NLE among the
solutions in the final Pareto front approximation, each solution
can be actually selected in order to perform a comparison with
the two SDP algorithms. For the sake of brevity, we take the
solution characterized by the lowest value of CF .

Regarding the FSDPr algorithm, in order to select the
optimum value of the regularization term (λ) we have adopted
the following heuristic strategy (see Fig. 4). Given a scenario
s, we first solve the non–regularized problem (line 2) and
then exploit the non–regularized solution (NRsol) to compute
the upper bound of λ (denoted λ∗ in line 3), as suggested
in [8]. λ∗ is used as starting value in the main tuning loop
(line 6-13), where the regularized problem is solved; if the
current regularized solution is not feasible, then the current
value of λ is divided by two and the new regularized problem
is solved again, until a feasible solution is obtained or a
maximum number of tries (MAX TRIES) is reached. In
the latter case, the regularized solution coincides with the non–
regularized one (i.e. λ = 0). In our experiments we have fixed
MAX TRIES = 5.
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Fig. 5. Comparison among PAES, FSDP and FSDPr without (solid line)
and with (dotted line) gradient refinement (REF ) using 8% of the nodes as
anchor nodes.

B. Performance analysis

In Figs. 5-7, we have plotted as solid lines the average NLE
obtained by the FSDP, FSDPr and PAES algorithms versus
the six values of radius R used in the experiments. Further,
we have shown as dotted lines the average NLE obtained by
applying the gradient refinement described in [8], [16] to the
final solutions computed by the three algorithms.

The analysis of the figures highlights that, as expected,
FSDPr slightly outperforms FSDP. Further, we observe that
the gradient refinement is able to improve the estimation
only when it is already sufficiently accurate. Indeed, if we
consider the solutions generated by FSDP and FSDPr for
the lowest connectivity ranges (R = 0.11 and R = 0.12
for FSDP, and R = 0.11 for FSDPr), we realize that the
gradient method is unable to perturb the estimation out of the
reached local minimum. On the contrary, when the solutions
are characterised by a low NLE, the gradient method is able to
improve them. In particular, the almost constant gap between
the solid lines and the dotted lines for PAES suggests a stable
improvement introduced by the refinement phase.

The NLEs obtained by PAES are comparable to those
obtained by FSDPr+REF when the connectivity ranges are
sufficiently high (R ≥ 0.14), while they are slightly lower
when R < 0.14. Further, in all the experiments, PAES+REF
considerably outperforms FSDPr+REF. For example, when the
percentage of anchor nodes is 8% and the connectivity range
is 0.11, from Fig. 5 we can derive that PAES+REF provides
estimations which are on average 36.57% more accurate than
FSDPr+REF. This percentage increases to 45.75% when the
connectivity range is equal to 0.16. Similar conclusions can
be deduced by analysing Figs. 6-7, which show the results ob-
tained by using the 10% and 12% of anchor nodes: PAES+REF
generate solutions which are 57.84% and 53.72% (61.79% and
48.87%) more accurate when the percentage of anchor nodes
is equal to 10% (12%) and the connectivity range is 0.11 and
0.16.
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Fig. 6. Comparison among PAES, FSDP and FSDPr without (solid line)
and with (dotted line) gradient refinement (REF ) using 10% of the nodes as
anchor nodes.
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Fig. 7. Comparison among PAES, FSDP and FSDPr without (solid line)
and with (dotted line) gradient refinement (REF ) using 12% of the nodes as
anchor nodes.

V. CONCLUSIONS

In this paper we have proposed a two–objective evolutionary
algorithm able to accurately solve the fine–grained localization
problem in WSNs. The problem is not new in the literature,
since several techniques have been proposed in the last decade.
The novelty of the approach relies on a better exploitation of
the connectivity graph so as to define topological constraints
to be used as a second objective function in a multi–objective
optimization framework. The topological constraints define
zones of the space where each sensor can or cannot be
located, thus reducing the search space of the evolutionary
algorithm and contextually the chance of ambiguously flipping
node locations. Moreover we have discussed the possibility
of using a standard gradient–based technique able to refine
the final estimation produced by the evolutionary algorithm.
We have shown that the proposed approach is able to solve
the localization problem with high accuracy for a number of
different topologies, connectivity ranges and percentages of
anchor nodes. Further, we have discussed how our approach
outperforms the standard SDP–based technique and its regu-
larized version.
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