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Abstract

With the shortage of spectrum in conventional cellular frequencies, millimeter-wave (mmWave)

bands are being widely considered for use in next-generation networks. Multihop relaying is likely to

play a significant role in mmWave cellular systems for self backhauling, range extension and improved

robustness from path diversity. However, designing scheduling policies for these systems is challenging

due to the need to account for both adaptive directional transmissions and dynamic time-division

duplexing schedules, which are key enabling features of mmWave systems. This paper considers the

problem of joint scheduling and congestion control in a multihop mmWave network using a Network

Utility Maximization (NUM) framework. Interference is modeled with an exact model and two auxiliar

simplified models: actual interference (AI), with a graph-based calculation of the Signal to Interference

plus Noise Ratio (SINR) depending on dynamic link activity and directivity, as well as upper and

lower bounds computed from worst-case interference (WI) and interference free (IF) approximations.

Throughput and utility optimal policies are derived for all interference models (AI, WI and IF) with

both deterministic Maximum Weighted and randomized Pick and Compare scheduling algorithms, jointly

with decentralized Dual Congestion Control. Results are evaluated with numerical simulations, using

accurate mmWave channel and beamforming gain approximations based on measurement campaigns.
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I. INTRODUCTION

A. Motivation

Demand for cellular wireless data has been growing rapidly [1]. With the severe shortage

of spectrum in conventional cellular frequencies below 3 GHz, millimeter-wave (mmWave)

bands, roughly between 30 and 300 GHz, are now being widely considered for next-generation

systems [2]–[5]. These bands have significant differences with respect to current micro-wave

(µWave) systems beyond the large amount of new spectrum. On the one hand, the higher

atmospheric absorption of mmWave greatly reduces received power and has been a major

drawback so far. On the other hand, shorter wavelengths allow large antenna arrays to fit into

current hand-held devices. These arrays implement highly directional beamforming gains that

alleviate the higher pathloss of mmWave. While propagation outside the main transmission

directions cause interference below the noise level, the interference generated by the main

transmission directions may be avoided by appropriate scheduling on a case-by-case basis. Fully

directive communications with little interference are the key enabler of highly flexible resource

allocation mechanisms in mmWave involving time, frequency and space domains. Conversely,

in current µWave cellular systems, there is simultaneous interference from many directions due

to omnidirectional transmissions, and hence more static subframe structures are required.

Even though directive transmissions may overcome the higher pathloss of mmWave bands,

solid obstacles may cause outages. In fact, recent measurement campaigns in [6] have led to

a three-state channel model with LOS, NLOS and outage probabilities that we apply in our

work. Mass deployment of access points (APs) is necessary to prevent these outages, and this

requires a wireless multihop (relaying) architecture in scenarios where fiber is not available

or is too expensive. Such architecture also provides range extension and path diversity against

intermittent outages in the mmWave range. A recent theoretical analysis in [7] also suggests that,

in very wideband regimes (as in the case of mmWave), multihop communications are necessary

to fully exploit all available degrees of freedom. Nonetheless, a key challenge in realizing the

full benefits of multihop relaying is the appropriate design of dynamic scheduling policies and

Congestion Control (CC) mechanisms.

µWave relaying in the context of 3GPP Long Term Evolution (LTE) [8], [9] has achieved

limited benefits in throughput improvement and is mainly considered for coverage extension.

The main reason for this is the global static duplexing scheme in current time-division duplex
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(TDD) cellular systems. This scheme requires all cells to perform either downlink (DL) or

uplink (UL) transmissions and is particularly troublesome for relay nodes (RNs), as they cannot

appropriately balance two-hop link resources and experience significant bottlenecks [10]. Static

duplexing is necessary in traditional µWave systems due to their inherent interference-limited

nature, i.e. they are Signal-to-Interference-plus-Noise Ratio (SINR) based networks. However,

due to their high directivity, mmWave networks have been observed to be noise-limited [6],

[11]–[13]. This allows full dynamic resource allocation in TDD mmWave systems – a technique

known as dynamic TDD [14], where the duplexing schedule at each frame can be adaptively

adjusted on a per link basis with no constraints on UL/DL operation.

This work studies joint scheduling and CC for a general class of mmWave networks with a

multihop backhauling mesh structure. The network consists of base stations (BSs), relay nodes

(RNs) and users (UEs), with both UL and DL traffic flows along arbitrary routes. Each node

is subject to two fundamental scheduling constraints: half-duplex communication, so that nodes

cannot transmit and receive at the same time, and one-to-one communication, so that a node

cannot use several links at a time, since analog beamforming is expected to be limited to one

direction at a time in the first generation of mmWave devices [15]. Dynamic duplexing consists

on link scheduling decisions, which are made on a slotted basis. The Actual Interference (AI) is

computed using a graph-based SINR model. Because spatial isolation reduces the importance of

interference and power control in mmWave, we opted for a simplified power allocation strategy,

and show in our results that optimal power control is unlikely to provide a significant throughput

improvement.

Our main contribution is a joint scheduling and CC policy that achieves maximum capacity

under fairness requirements within the AI model. In order to maximize the set of feasible UL/DL

rates per user and enforce fairness, we follow the classic Network Utility Maximization (NUM)

framework. Given that the AI model involves coupling across several layers of the protocol stack,

including the Physical (PHY), Medium Access Control (MAC), network, and transport layers,

the main problem is addressed using a cross-layer decomposition. This allows us to approach

the classic optimal solution of Maximum Weighed Scheduling (MWS), based on differential

backlogs over variable capacity links, using also the classic Pick-and-Compare (PaC) randomized

scheduling algorithm with a Dual CC (DCC) mechanism. In order to show that throughput-utility

optimality is achieved for the AI model, we adapt the proof in [16] to the case in which link

capacity experiences accurately calculated schedule-dependent mmWave interference.
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Unfortunately, the variation of queues requires MWS to be computed each frame, even with

constant link capacities across the time, which is a very time consuming task; this problem

becomes NP-hard each frame when the interference is scheduling-dependent, as it is in the

AI model. Considering recent work in mmWave that assumed negligible interference [11]–

[13], we also define simplified (but still topology-aware) Interference Free (IF) and Worst-case

Interference (WI) models. These models determine upper and lower bounds for the capacity

achieved by the AI model and are computationally simpler due to the assumption of static link

capacities. Our simulations under the AI model indicate that there are scheduling instances where

interference by simultaneously selected links significantly affects the capacity of a number of

those links. However, with our throughput-utility optimal network management, the simplified IF

model remains a very tight upper bound for the capacity in the AI results. This occurs because

optimal management prevents the scheduling of links with significant cross-talk, as a form of

implicit interference avoidance, suggesting that the simplified IF model allows for a realistic

evaluation of system capacity in mmWave cellular networks as long as we can guarantee that

the real network is operated with optimal throughput control. This represents a fundamental

difference with respect to traditional cellular and wireless systems, where a similar IF model

would be very inaccurate even with optimal control. A byproduct of this tightness is that a

significant part of ad-hoc and wireless graph-theory approaches may be applied realistically to

the new mmWave cellular paradigm. Traditional research areas pertaining to µWave cellular

networks, such as interference cancellation or power control, are less relevant in the mmWave

context.

The algorithms are validated by numerical simulations, using mmWave channel and beam-

forming models in [6] derived from the real-world New York City measurements in [3], [17].

Similar measurements have also been reported in [18].

The paper is organized as follows: In Section II we describe our mmWave network architecture

model. In Section III, we formulate the NUM problem and provide a solution for the PaC

algorithm with AI, which is the more general case and implies convergence also with the IF

and WI models. In Section IV we present numerical simulation results illustrating the optimality

of PaC under the AI model (IV-A), in which we compare the three models (AI, IF and WI) in

IV-B and the capacity of mmWave cells without RNs and with our multihop architecture (IV-C).

Finally, Section V summarizes the contributions of our model and describes future research lines.



5

B. Related Work

Previous analyses of self-backhaul, multihop relay mmWave networks have focused on either

stochastic geometric analyses [19], [20] or scaling laws [7]. These analyses characterize the

overall capacity as a function of the key system parameters such as base station and relay node

density, but do not explicitly optimize the scheduling policy. There has also been significant work

in multihop protocols for mmWave local area systems [21], [22]. Two other aspects of mmWave

communication that are critical to the design of multihop systems but are not considered here

are cell discovery [23] and channel estimation [24], [25].

The theoretical framework for this paper is derived from Kelly’s work in [26], [27], which

introduced the NUM approach. In the seminal work [28], the concept of imperfect scheduling

was first introduced, permitting sub-optimal instantaneous schedules at each decision point with-

out violating long-term throughput optimality (i.e. PaC). Subsequent extensions over the years

introduced multihop [16], [29]; reduced time complexity of control signaling with or without

trade-offs [30]; analyzed other QoS metrics beyond throughput and fairness [31], [32]; considered

fairness in heterogeneous networks with time-varying channels [33]; dealt with optimal power

allocation [34], [35]; and studied the effect of reconfiguration delays on network capacity [36].

We refer readers to [37], [38] for surveys on these topics. With the exception of some recent

studies that cover limited models, none of the work to date has considered beamforming or

mmWave communications. For instance, the recent work on video quality in [39] does not take

interference into account, provides a centralized solution, and only considers indoor scenarios.

We provide a random PaC scheduling algorithm and a distributed CC mechanism, which are

indirectly aware of the interference between links, and still reach the maximum throughput-utility

that any policy could obtain.

Many of the works mentioned above employ the family of K-hop interference models, in

which links can be active only if they lie within a K-hop distance to other active links in

the topology graph that represents the network. Thus, interference is considered merely as a

rule that prevents some simultaneous transmissions. Furthermore, the available capacity in a

link is always considered to be the same, regardless of the pairs of transmitters and receivers

chosen. This approach thus ignores inter-link interference between simultaneous transmissions

(i.e., SINR), but it is very common in the literature because the scheduling problem alone is

NP-hard in general.
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Whether or not K-hop interference models deliver good approximations depends on the

type of network. For instance, a 1-hop interference model is excessively optimistic for general

omnidirectional wireless networks, for which higher degrees (2-hop, 3-hop, etc.) are more

reasonable. Unfortunately, as K increases, the results underestimate achievable capacity, given

the spatial multiplexing loss due to the fewer concurrent links allowed.

However, the 1-hop schema may provide a reasonable approximation for calculating the

maximum capacity of mmWave systems, given their higher spatial isolation. We therefore use a

1-hop schema to model half-duplex and one-to-one communications, avoiding what we call

throughout this paper hard interference, i.e., interference conditions that prevent two links

from being simultaneously active, which is a typical consideration in the scheduling literature.

Nevertheless, on top of hard interference, we formulate the capacity of the scheduled links as a

function that depends on actual SINR, which affects link rates without blocking them completely.

Hereafter we will use the term soft interference to refer to the change in SINR of a link caused

by other links that may be simultaneously active, as is usually considered in physical layer

research. Our AI model is, therefore, a new mmWave hybrid interference model that combines

a 1-hop scheduling constraint and computation of SINR for simultaneously active links.

Even though in [16] it was demonstrated that PaC converges to a set of average rates that are

arbitrarily close to the optimum fair allocation under general graph-based interference models,

the authors only considered the hard interference constraints of a mmWave network, assuming

fixed link capacities. Furthermore, even though Lee et al demonstrated PaC throughput-optimality

for SINR interference models in [34], they considered omnidirectional transmissions, which do

not allow an accurate representation of mmWave directional transmissions or soft interference

in an mmWave network. In addition, although the result accounted for scheduling stability, it

did not reach the full NUM solution by completing it with CC.

As previously mentioned, our simplifications to obtain lower and upper bounds (the WI and IF

models) consider constant link capacities. Therefore, they remove the hybrid part of AI, leaving

only a pure 1-hop hard interference constraint, as in traditional scheduling analysis.

A related consequence of highly directional transmissions is a higher degree of spatial link

isolation. In other words, interference has a much weaker effect than in current small-cell

networks. Many recent works even assume that inter-link interference levels will be negligible in

mmWave networks, and that links can be approximated as pseudo-wires [11]–[13], [39]. In any

case, some interference mitigation technologies of the last decade, such as coordinated multi-
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point, inter-cell interference coordination and interference alignment, will lose the relevance they

had in traditional cellular systems [5].

We think that the question of whether the fully isolated pseudo-wired hypothesis is realistic

or not in certain scenarios remains open. If transmissions were truly spatially isolated, our three

interference models would converge to a plain IF model, and significant results from graph-

oriented scheduling research would be directly applicable to the realistic modeling of mmWave

networks. However, if soft interference happens to be non-negligible, the accuracy of 1-hop

models would be low, and our hybrid model would be essential. This paper does not assume the

pseudo-wired hypothesis. We employ the mmWave AI model with accurate schedule-dependent

representation of interference to derive our main result. Nonetheless, we do compare the WI, AI

and IF models to discuss the accuracy of the hypothesis.

II. SYSTEM MODEL

A. Network, connections, and traffic flows.

We built our model on the assumption that we avail of a sensing stage [23] in which each

node n (a BS, RN or UE) detects and identifies its set of neighbors Ω(n). We also consider

that all nodes remain at fixed locations for the period of interest of the scheduling algorithm.

We represent the network as a directed graph G(N ,L), where N is the set of nodes (BSs, RNs

and UEs), L is the set of links, indexed by n and ` respectively, and F is the set of traffic

flows in the network, indexed by f . We denote the cardinalities of these sets as N , L and F .

Admissible connections are UE
RN, UE
BS, RN
RN and RN
BS. Furthermore, due to

the half-duplex and one-to-one restrictions, only links without shared devices (i.e. edges with

no shared vertexes on the graph) can be active at the same time.

Dynamic duplex is modeled as synchronized discrete time frames (indexed by t), in which

transmissions between any valid pair of nodes can be allocated. For each pair of nodes that form

a link ` = (n,m), n,m ∈ N , we define the logic indicator πn→m(t) = 1 if node n transmits

towards node m at frame t, and πn→m(t) = 0 otherwise. Hence, the set of link pairs allocated

at frame t is represented by the binary vector π(t), also called a schedule1. The half-duplex

and one-to-one communication constraints limit the set of feasible schedules, denoted by Π

1Note that in this terminology schedule π(t) is simply the set of active links for frame t, and a scheduling policy is the

complete method for choosing schedules π(t) across all time frames in order to solve the desired scheduling problem.
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with cardinalityM. In our model, Π represents the hard-interference constraint according to the

1-hop interference rule.

We consider that UL flows are absorbed by BSs, and that each user can also receive data

flows from any BS (DL). We also define the set D ⊂ N of feasible destinations, comprising

all BSs and UEs, which coincides with the set of feasible sources S, as both BSs and UEs can

act as sources or destinations. Flow sources generate packets according to one of the following

distributions, depending on whether CC is present:

Definition 1. An inelastic packet arrival process by flow f in source node s is an i.i.d. stochastic

process with a constant mean arrival rate λfs bits/slot, where in each frame a random number

of packets afs (t) is generated, satisfying E[afs (t)] = λfs , where the process has finite first and

second moments.

Definition 2. An elastic packet arrival process by flow f in source node s is a stochastic

process with a controllable mean arrival rate injected into the network afs (t), with a long-term

mean arrival rate xfs = limT→∞
1
T

∑T
t=1 a

f
s (t).

Note that we commit a minor notation abuse by using afs (t) for both inelastic and elastic arrival

rates within a frame. The notion of elastic traffic permits the definition of a control system to

both avoid resource under-utilization when the state of the network allows data rate increases

and prevent instability when the state of the network requires sources to back-off momentarily.

The implementation of the CC combines these two practices.

Finally, we assume on/off power allocation for all nodes (BSs, RNs and UEs) for two main

reasons. On the one hand, previous research on non-mmWave ad-hoc networks with PaC can be

extended to arbitrary power allocation as in [34], but this obscures the analysis without providing

additional information, as the technique for integrating power allocation in the throughput-

optimality proof consists of modeling random power allocation. On the other hand, several recent

works [11]–[13] have assumed a pseudo-wired behavior for mmWave links, and the application

of a power control mechanism in such a context is less relevant. Unlike these recent works, we do

not assume that interference is negligible, but rather compute real mutual interference between

concurrent links within a frame. This allows us to check the accuracy of the pseudo-wired

assumption and evaluate the cost of the complexity of power allocation for future works.
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B. Directivity, interference and link capacity

A fundamental aspect of our models is that all nodes have adaptive beamforming capabilities

as in [18]. This is a realistic assumption given the decreasing costs of circuitry for mmWave

frequencies, which will allow high dimensional antenna arrays to fit in a small form factor. This

means that the antenna gain for a signal transmitted by a device will depend on the receiver

and the intended destination. We formulate the signal received at the destination according to

the following discrete channel model:

ym(t) = wr
n→mHn→mw

t
n→mgn→mxn(t)︸ ︷︷ ︸

intended signal

+
∑

d(i),i 6=n,m
d(i)�πi→d(i)=1

wr
n→mHi→mw

t
i→d(i)gi→mxi(t)︸ ︷︷ ︸

soft interference

+ z(t) (1)

where we denote the macroscopic pathloss and the normalized channel matrix from node n to

node m by gn→m and Hn→m, respectively. Vector wr
n→m denotes the receiver beamforming at

m when it is expecting a transmission from n; wt
n→m denotes the transmitter beamforming at

n when it is transmitting towards m; and i, d(i) denotes the interference transmitters and their

corresponding destinations. Note that the second term is the soft interference, where beamforming

vectors are not correctly matched to the channel matrix.

We only consider single-stream processing as a simplifying assumption, as explained above,

and hence y and x are scalar. We also assume that channel matrices remain constant for

the duration of a scheduling interval, and that transmitters design the beamforming vectors

to maximize SNR regardless of interference.

wr
n→m,w

t
n→m = arg max |wrHn→mw

t|2 (2)

Since the channel is essentially static and beamforming does not depend on interference in

scheduling, a node n can obtain all the necessary beamforming vectors for all the nodes in its

neighbor set during the sensing phase (wr
m→n,w

t
n→m,m ∈ Ω(n)).

For an accurate mmWave link capacity generation as a function of the distance between nodes,

we compute the macroscopic pathloss following the distribution in [6]:

gn→m = 75.85 + 37.3 log10(d(n,m)) + ξ, ξ ∼ logN (0, 8.36) (3)

We compute the beamforming gain in the direction of the desired link n→ m, denoted as

G(n→ m) = |wr
n→mHn→mw

t
n→m|2,
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SINRn→m =
Pmaxπn→m(t)G(n→ m)gn→m∑

∀i 6=n

∑
∀j 6=m

G(i→ m|i→ j, n→ m)gi→mPmaxπi→j(t) +WN0

(4)

and the secondary beamforming gain experienced by the interference path i → m when the

active links are n→ m and i→ d(i), which we denote as

G(i→ m|n→ m, i→ d(i)) = |wr
n→mHi→mw

t
i→d(i)|2,

With these data, the actual capacity of link n→ m at frame t is modeled as

cn→m(t) = min[α1W log (1 + α2SINRn→m) , Cmax] (5)

where the left-hand side of the minimum represents capacity as a function of SINR and the

right-hand side represents the fact that the physical layer has a finite maximum rate Cmax <∞.

This finite maximum property is usually required in scheduling convergence proofs [34].

In (5), W is always the full mmWave system bandwidth in Hz, because only one link per

transmitter is active per node. The power and bandwidth penalty factors α1, α2 < 1 of the physical

layer regarding the Shannon capacity must be obtained from empirical data. For illustration

purposes, these values take a −3dB SINR penalty in our simulations. Finally, SINRn→m is the

instantaneous SINR value of link n → m, which is computed based on the active links in the

current network schedule π(t). This ratio is defined in expression (37), where N0 is the noise

power spectral density and the pathloss and beamforming gains are defined above.

The main difference between mmWave models and the models described in previous literature

is high spatial isolation, which causes the average sum of interfering power in the denominator of

(37) to shrink, but also results in stronger variations due to changes in scheduling. To evaluate

the importance of adapting scheduling to these time-varying capacities in the AI model, we

formulated upper and lower network rate bounds using the fixed-capacity IF and WI models.

The IF model is simply the result of removing all soft interference in (37). If the pseudo-wired

hypothesis in the literature is correct, this model will be accurate.

cIFn→m(t) = cn→m(t), s.t. G(i→ m|n→ m, i→ d(i)) = 0∀(i, d(i)) 6= (n,m) (6)
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The WI model assumes that all devices transmit at the same time and applies a worst-case

beamforming vector for each interfering source,

GWI(i→ m|n→ m) = max
i,d(i) 6=m,n
d(i)∈Ω(i)

GWI(i→ m|n→ m, i→ d(i)) (7)

which we find through an exhaustive search within its neighbor set Ω(i). Simultaneous transmis-

sions by all nodes are prohibited by scheduling constraints Π, but they can be represented in a

binary vector, defined as πWIn→m /∈ Π, where active links correspond to the worst beamforming

found πWIn→m
i→d(i) = 1 ⇔ i → d(i) = arg max (7). Applying this vector to (37), we compute the

worst-case link capacities.

cWI
n→m(t) = cn→m(t), s.t. π(t) = πWIn→m (8)

Note that this worst-case representation differs when calculating the capacity of each link

n→ m.

As spatial isolation increases (G(i → m|n → m, i → d(i)) → 0), interference tends to zero

and the capacities of all three models converge to the IF case, since the pseudo-wired assumption

[11] holds. The WI model determined a lower bound on system capacity because AI is strictly

always smaller (the worst-case total-interference vector is not contained in the feasible set of

vectors allowed by the scheduling rules in Π).

Note that in the AI model we assumed on/off power allocation as a simplification, but for the

upper (IF) and lower (WI) bounds, where capacities do not change, the assumption is optimal.

Therefore, if both bounds are tight, on/off power allocation is reasonable for the AI model.

III. NETWORK UTILITY MAXIMIZATION (NUM)

A. Problem Statement

We consider a queued traffic network where at each node n there are F separate queues for

forwarding the packets for each flow. The evolution of the whole set of queues q(t) ∈ NN×F0

depends on the scheduling policy chosen, as this governs the set of transmitter-receiver pairs

allocated at each frame.

Specifically, the evolution of a given queue is given by:

qfn(t+ 1) = qfn(t) +

 ∑
m∈Ω(n)

c̆fn←m(t) + afn(t)

−
 ∑
m∈Ω(n)

c̆fn→m(t)

 (9)



12

where n sustains incoming or outgoing communications with one of its neighbors m ∈ Ω(n)

and c̆fn→m(t) = min(cfn→m(t), qfn) is the delivered data rate at time t, constrained by both the

remaining packets in the transmission queue and the fact that the dedicated link capacity per

flow, c̆fn→m(t), must satisfy the total link capacity budget
∑

f c̆
f
n→m(t) = c̆n→m(t) ≤ cn→m(t).

In addition, destination nodes satisfy qfd(f) = 0, where d(f) ∈ D is the destination node for flow

f , so that data reaching its destination is removed from the network.

We define the stability of the system essentially by requiring that any component qfn(t) of the

vector q(t) does not grow to infinity. Hence:

Definition 3. The network is stable if the queue lengths at the nodes are bounded [28], i.e.

lim sup
T→∞

1
T

∑T−1
t=0 E

[
qfn(t)

]
<∞ for all queues.

The capacity (or stability) region is derived from the previous condition of stability

Definition 4. The capacity (or stability) region Λ is the set of all mean flow rate vectors λ, or

long-term rate vectors x (for elastic traffic), for which there exists at least one scheduling policy

that makes the network stable (i.e., there is a policy that prevents the queues from growing to

an infinite size).

Next, we define a throughput-optimal scheduling policy:

Definition 5. A scheduling policy is throughput-optimal if it achieves stability for all λ ∈ Λ (or

x ∈ Λ for elastic traffic).

Finally, we can define our problem under the NUM framework as follows:

max
0≤xfn≤Amax

∑
n,f

Un,f (x
f
n) s.t., x ∈ Λ (10)

where Un,f (xfn) is the function that measures the utility of achieving an average rate xfn on flow

f .

The well-known utility framework measures the incentive of allocating a certain rate to each

terminal [26], [27]. These objective functions are typically required to be strictly concave, non-

decreasing, and twice differentiable [40]. Depending on the utility function chosen, different

types of fairness can be achieved (proportional, max-min, etc.). For example, log x can be used

for proportional fairness, as in our simulations.
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B. Cross-Layer Decomposition for NUM

We solve the above problem under the AI model to obtain the throughput capacity of the

mmWave network. We define the capacity vector c(t) = Φ(π(t)) as the application

π ∈ {0, 1}L×1 Φ()−−→ c ∈ [0, Cmax]L×1 (11)

of the PHY layer described in Section II-B, which returns the actual link rates given the schedule

vector π(t). We define the set of all achievable instantaneous link rate vectors as c(t) ∈ C =

{Φ(Π)}. The constraint x ∈ Λ in (10) can be expanded as in the following set of rules:

Flow constraint at each node (∀f, ∀n 6= d(f)):∑
m∈Ω(n)

cfn→m ≥
∑

m∈Ω(n)

cfn←m + xfn (12)

Interference constraint:[∑
f

cfn→m

]
∈ Co(C), ∀(n→ m) ∈ L (13)

Non-negative rates:

cfn→m ≥ 0, ∀(n→ m) ∈ L (14)

The convex hull Co(C) of all possible link-capacity values c(t) ∈ C enforces an average rate

constraint over the time-average effect of all individual schedules as opposed to just a single

schedule. This convex hull guarantees that the region Λ is a convex set [37]. Therefore, the primal

problem (10) - (14) has a unique optimum
∗
x (i.e. fair allocation) due to the strict concavity of

Un,f (x) and the convexity of domain Λ [40].

Based on the duality theory,
∗
x can be calculated by solving rate control, routing and scheduling

sub-problems separately. In the literature, cross-layer mechanisms have been extensively studied

for this purpose [37]. It was shown in [37] that the optimal solution can be found whenever the

dual problem of (10) - (14) exists. This requires Λ to be a convex set, as is the case. A Lagrange

multiplier is then associated with each rule (12)-(14), and the optimal solution of (10) can be

found by solving the following procedures [37], [38]:

Congestion Control [distributed]. The sources find a feasible average traffic data rate x ∈ Λ

with a CC policy on injected backlogged traffic that prevents source queue lengths from growing

to infinity. We consider the DCC formula in [40] given by:

afn(t) = min

{
max

[
U
′−1
n,f

(
qfn(t)

V

)
, 0

]
, Amax

}
(15)
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where V > 0 is a constant parameter.

Maximum Weighted Scheduling and Capacity Allocation [centralized]. At each frame t, the

network controller chooses π(t) ∈ Π, such that the corresponding c(t) under the current queue

state q(t) maximizes the following expression:

∗
π(t) = arg max

c∈Φ(π),π∈Π

(c(t)T
∗
w(t)) (16)

where super-index (·)T denotes vector transposing, and
∗
w(t) ∈ NL×1

0 and each component is

defined as
∗
wn→m(t) = maxf (max(qfn(t) − qfm(t), 0)). The components of c(t) are defined as

follows,

cfn→m(t) =

Φn→m(π(t)), if f = f ∗ and wf
∗
n→m(t) ≥ 0

0, otherwise

where f ∗ is the flow that maximizes the differential backlog wf∗n→m(t) at link n→ m.

Queue Update [distributed]. Let cfin(n)(t) =
∑

m∈Ω(n)

cfn←m(t) and cfout(n)(t) =
∑

m∈Ω(n)

cfn→m(t).

Then, queue evolution must satisfy:

qfn(t+ 1) ≤ max
[
qfn(t)− cfout(n)(t), 0

]
+ cfin(n)(t) + afn(t) (17)

This cross-layer mechanism allows calculation of the optimal fair allocation vector
∗
x, but,

depending on how interference is considered, the complexity of expression (16) will vary. On

this basis, we will take a closer look at the different steps to approach the solution of expression

(16) under each interference model.

Under the AI model each link capacity depends on the instantaneous schedule π(t) ∈ Π, and

to exhaustively search for the best schedule (16) in each instant it is necessary to compute all

the capacities in the system for all the M valid schedules (i.e., the total number of maximal

matchings in G), which is NP-hard and rapidly becomes intractable. Instead, we prove that

stochastic approximations using the PaC [16], [28], [29] algorithm (Alg. 1) converge to a point

arbitrarily close to the border of Λ, where the utility sum of all users is maximized. For this

it suffices that the picking process satisfies the condition that the random schedule π̃(t) has a

strictly nonzero probability of being the optimal schedule
∗
π(t). In our simulations, we found the

maximum throughput in mmWave networks by running this stochastic algorithm for a sufficiently

long number of frames.

Our main theoretical result is an adaptation of the traditional PaC convergence proof [16] to

our hybrid directive mmWave interference AI model.
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Algorithm 1 Pick And Compare
for all frame t do

Pick a random feasible schedule π̃(t).

for all (n→ m) ∈ π̃(t) do

Compute c̃n→m(t) = Φn→m(π̃(t))

end for

Compute the aggregate weight c̃(t)T
∗
w(t).

if c(t− 1)T
∗
w(t) ≥ c̃(t)T

∗
w(t) then

π(t) = π(t− 1)

else

π(t) = π̃(t)

end if

end for

Proposition 1. As the constant V in the DCC mechanism increases, the cross-layer mechanisms

described above and the PaC scheduling policy for approaching (16) achieve rates x that are

arbitrarily close to the fair allocation
∗
x for all the interference models considered (WI, AI, IF).

Proof. The proof is given in the appendix.

Our proof for PaC in the AI model also covers WI and IF because these simplified interference

models can be regarded as special cases of the AI model. The WI and IF approximations are

computationally simpler: the first term in the denominator of expression (37) is either removed

(in IF) or kept constant (in WI), so (16) can be solved deterministically with the classic Maximum

Weighted Matching (MWM) graph algorithm, with complexity O(L3).

Furthermore, regarding the pseudo-wired hypothesis in [11]–[13], we remark that as spatial

isolation between transmissions increases, i.e. G(i → m|n → m, i → d(i)) → 0, the capacity

regions of WI, AI and IF converge to the third model ΛWI → ΛAI → ΛIF . Hence, our analysis

is perfectly valid regardless of whether or not the hypothesis is fulfilled. In practice this will

depend on the quality of the MIMO hardware considered when computing the beamforming

gains.

IV. NUMERICAL RESULTS

In this section, we use simulation to study different aspects of our mmWave multihop schedul-

ing architecture. First, we illustrate PaC stability and convergence to optimum utility in a simple
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Table I

DEFAULT NETWORK PARAMETERS

Parameter Values

Carrier Frequency 28 GHz

System Bandwidth 1 GHz

Transmission Power 30 dBm (BS), 25 dBm (RN), 20 dBm (UE)

Noise Figure 5 dB (BS), 6 dB (RN), 7 dB (UE)

Antenna 8x8 (BS), 6x6 (RN), 4x4 (UE) λ/2 uniform planar array

Connectivity Pathloss < 164 dB

network that is small enough to compute the optimal MWS by brute force, and compare the

results. Second, we study the quality of the interference models, investigate the validity of the

pseudo-wired hypothesis, and discuss the need for power control. Third, we use the model to

study realistic mmWave deployments in two scenarios with different cell densities.

In our simulations we used the parameters in Table I, unless otherwise specified. All simula-

tions represent outdoor urban mmWave environments.

A. Optimality Results

We begin by illustrating the optimality and stability of PaC with DCC in the AI model. We

compared PaC with the MWS algorithm adapted to consider both the state of the queues in

the network and the schedule-dependent link capacities. Since there is no MWM algorithm for

this type of scenario with variable weights, we computed the adapted MWS by brute force in

a simple network scenario. Figure 1 shows the scenario (Figure 1(a)) and the variations in its

characteristics over time. Figure 1(b) shows the variations of the network queues, normalized

by their final values when the network reaches permanent-state stable operation, and Figure 1(c)

shows the growth of aggregated flow throughputs over time. This growth is essentially the same

for both algorithms. Figures 1(d),1(e) and 1(f) illustrate variations in DL/UL rates and their final

average values. Again the results of both algorithms matched. The oscillations in rate with PaC

were due to the random nature of the algorithm.

B. Interference Results

To analyze interference we tested the tightness of the IF and WI models as upper and lower

bounds of realistic network capacity (given by the AI model). We considered a large realistic
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scenario with 20 UEs and 11 RNs for a 73 GHz mmWave BS picocell in a dense urban area

of 160m2 to model mmWave interference. Figure 2 shows the urban scenario, which was made

publicly available in [41], and the location of the BS, RNs and UEs. High frequency operation

allows RNs and UEs to use an 8x8 λ/2 uniform planar array. The remaining parameters in Table

I are unchanged. Figures 3(a),3(b) illustrates the final permanent-state rates for all users for the

three interference models described in Section II-B. Interestingly, the permanent-state rates,

and thus the achieved capacity (i.e. the aggregated permanent-state flow rates) for the AI and IF

models, were significantly similar. We also observed a fair distribution of the resources in the AI

model. Each UE has ≈ 120 Mbps at both the UL and the DL, hence 120·2(UL/DL)·20(users) =

4800 Mbps, which is the maximum available sum-rate in any cell, limited by the cut-set bound

at the BS. As a consequence, the simplified IF model provided a tight upper bound on system

performance and allowed for a realistic estimation of the achievable capacity of the mmWave

system.

Additionally, the results for the WI model reveal that the pseudo-wired hypothesis does not

hold in general. Taking a closer at variations in a particular link using the AI model in Figure

3(c), it is evident that some schedules notably degrade link capacity due to interference. Hence,

the pseudo-wired hypothesis is highly optimistic.

The fact that interference is non-negligible is in apparent conflict with the tightness of the

bound provided by the IF model. To accommodate these seemingly contradictory observations we

note that the optimal long-term management of the network with the PaC algorithm accounts for
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Fig. 3. Interference results

instantaneous link capacities in the back-pressure weights, indirectly penalizing the selection

of links with high cross-interference. Therefore, this algorithm has an implicit interference

avoidance effect. Moreover, its optimality guarantees that no other selection of links would

result in better interference avoidance while maximizing throughput fairness among all users. In

other words, interference management is as good as possible in terms of utility maximization.

Furthermore, the high routing diversity of the mesh structure allows the network to route traffic

around conflictive links, thereby increasing the possibilities of interference avoidance.

Since we observed that different choices of simultaneous transmitter-receiver pairs do degrade

link capacity (sometimes in a very destructive way), we cannot claim that on/off power allocation

is optimal with the AI model. However, on/off power allocation is optimal by definition with

both the IF and WI models, and the former provides a very tight upper bound on real system

performance. Therefore, it follows that any type of power control added on top of the AI model,

despite improving user rates, will only achieve a minor advantage, at the cost of turning system

management into a non-convex problem. Therefore, the impact of power control techniques

on mmWave cellular networks will be minimal compared with their dramatic impact on the

performance of traditional omnidirectional µWave cellular networks. In the extreme case when



20

(a) mmWave UMi network in [6] (b) Extended UMi cells for cost reduction (c) Relaying in mmWave picocells for

throughput improvement

Fig. 4. Capacity evaluation scenarios.

spatial isolation of mmWave transmissions is perfect (with the introduction of denser antenna

arrays) simultaneous transmitter-receiver pairs would not experience any interference, and power

control would not add any value to the system in terms of throughput increase.

C. Capacity Results

We simulated two realistic mmWave cellular scenarios with multihop RNs. The reference for

our comparison was the Urban Micro-cell (UMi) deployment with fully wired backhauling in

[6]. This scenario is illustrated in Figure 4(a). The cells are distributed in a hexagonal grid

with an Inter Station Distance (ISD) of 200m. Our first approach was to add RNs as APs with

wireless backhauling to extend coverage. This scenario, represented in Figure 4(b), was designed

to reduce the fiber footprint of the network by eliminating some BSs and placing RNs to extend

the range of the other BSs. Our second approach consisted of enhancing capacity by adding intra-

cell RNs. This scenario, represented in Figure 4(c), was designed to improve cell throughput for

the same BS density as in Figure 4(a) by adding RNs halfway within the BS range. These RNs

provide wireless multihop routing diversity to improve the effective SINR of cell-edge users.

Inter-cell interference is negligible because, as already noted in [6], all links in the scenario

are limited by power. This means that for our purposes only intra-cell interference has to be

taken into account. Therefore, in our simulations we restricted the layout to a single cell in each

scenario, as delimited by the green hexagons in Figures 4(a)-4(c).
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1) Coverage Extension: We simulated the scenarios delimited by a green hexagon in Figures

4(a) and 4(b) to study the value of RNs for coverage extension. In the scenario without RNs

(Figure 4(a)), there is one BS every ISD = 200m, with 10 uniformly distributed users per BS.

To construct the coverage extension scenario in Figure 4(b), we removed two of every three BSs,

shown in a lighter color in Figure 4(a). The remaining BSs (one of every three), shown in red,

extend their cell coverage to a radius of 200m (ISD ≈ 346.4m) and provide service to the extra

users in the extended area. The total number of users is 30 per BS, and therefore user density

per Km2 remains the same. We assumed 8×8 antenna arrays at the RNs and always deployed

in BS Line of Sight (LOS).

Table II

UMI COVERAGE EXTENSION COMPARISON

ISD #RNs A.A.2 (UEs)
Cell Cap Cell Edge (P5) Mean Median

Outage
DL UL DL UL DL UL DL UL

200m 0 4x4 1688.40 1338.76 6.91 1.52 168.84 133.88 250.31 161.51 0%

346.4m 6 4x4 2470.30 1962.32 35.19 9.08 82.34 65.41 84.82 80.30 0%

200m 0 8x8 1750.28 1476.51 39.29 7.82 175.03 147.65 237.51 209.00 0%

346.4m 6 8x8 2529.26 2090.52 57.86 20.60 84.31 69.68 83.82 80.59 0%

The results of the simulation are presented in Table II. We considered the case of 4×4 and

8×8 antenna array at the UEs. The primary metrics of coverage extension are outage, which is

maintained, and cell edge rates, which improve in our simulations. Furthermore, the increased

number of users per cell requires a thinner splitting of cell sum-rate. It must be noted that

the maximum rate of the physical layer Cmax is 4.8 Gbps. A single BS connection with an

ideal SINR operating 100% of the time in either the UL or the DL would achieve this rate.

Accordingly, if we perform a cut-set bound on the sum-rate of the cell at the BS, the aggregated

UL and DL sum-rate will not be able to exceed this value. To this extent, the RN scheduling

scheme performs very close to the bound, with 92.35% in the case of the 4×4 antenna array

and 96.25% in the case of the 8×8 array, which is more than 1 Gbps above the aggregate rate

of the dense UMi deployment without RNs. However, since there are three times more users

per BS, sharing this aggregate rate leads to a smaller average rate per user. A notable property

of this scheme is that it distributes coverage more evenly among users, as can be observed by

the improvement in “cell-edge” rates (i.e., 5th percentile or P5).



22

2) Throughput Increase: We simulated the scenarios delimited by a green hexagon in Figure

4(c) to study the throughput increase using RNs for the same BS density. We departed again

from the scenario without RNs, with ISD = 200m and 10 uniformly distributed users per cell.

However, as previously mentioned, in this case we added RNs while keeping an ISD of 200

meters. RNs were distributed regularly in circumferences with a radius of 50m around the BSs,

and we assumed that they were always deployed in BS LOS. We performed simulations with 2

and 4 RNs per cell.

Table III

PERFORMANCE RESULTS FOR AN URBAN MMWAVE PICOCELL

#RNs
Cell Cap Cell Edge (P5) Mean Median

% Cmax
DL UL DL UL DL UL DL UL

0 2094.41 1894.80 10.09 3.40 209.44 189.48 292.83 290.34 83.1%

2 2369.51 2279.48 28.29 5.99 236.95 227.95 257.37 245.22 96.8%

4 2444.86 2334.11 238.56 185.25 244.49 233.41 242.98 239.70 99.6%

Table III shows the results of the simulation. The primary metric for throughput increase is

aggregate rate. As we discussed above, the sum-rate of the network is physically limited by

the cut set at the BS physical layer, which can process Cmax = 4.8 Gbps at most. In a UMi

scenario without RNs, the cell is inefficient by nearly 1 Gbps, or approximately 20% of Cmax.

With the addition of two RNs per cell, efficiency increases nearly to the maximum level and the

average cell edge rates are approximately doubled. However, cell edge rates might still experience

degradation if all the channel instances of certain UEs have a poor SINR. But when the number

of RNs is high enough for all UEs to be served by at least one link with a high SINR, the

“cell-edge” rates experience a dramatic improvement.

It is noteworthy that the DL/UL rates of the worst user in the cell are pretty close to those of a

mean user within the cell. Moreover, this effect is enforced by the fair operation of our algorithm,

which distributes full capacity evenly among all users in the cell. In this type of network, the

traditional concept of cell-edge looses relevance, as interference is not a fundamental limitation

and the bottom percentile of users is not even physically located at the border of the cells. In an

ideal scenario, with interference-free links with full available capacity Cmax (which is not the

case), all users would have 240 Mbps for both the DL and the UL, which is remarkably close

to the results in Table III for the 4 RNs.
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V. CONCLUSIONS AND FUTURE WORK

Among other technological enablers, future 5G networks will rely on mmWave bands to in-

crease capacity. Multihop architectures will help to reduce transmission distances and achieve full

exploitation of the extended spectrum. Highly directive beamforming transmitters and receivers

will also be required to overcome the higher pathloss of 5G bands, with the added benefit of

providing spatial isolation between transmissions. It will be possible to subsequently drop the

traditional limiting global duplex coordination of BSs and UEs. Propagation studies of early 5G

projects have been promising, and they are producing innovative physical layer solutions that

will bring major changes to the core philosophy of cellular network operation. These solutions,

in turn, will pose new research challenges for scheduling methods capable of harnessing the full

potential of the network. To leverage this potential, it will be of interest to review the work on

ad-hoc wireless networks, as this has traditionally dealt with multihop operation. This will be

challenging, since a careful revision of the physical layer hypotheses in the field will be required

to accurately address mmWave bands.

In this work we have addressed the problem of finding the maximum throughput of multihop

mesh cellular mmWave networks under fairness requirements, proposing a completely dynamic

duplexing resource allocation mode without UL/DL restrictions for simultaneous transmissions.

We solved the problem via the well-known cross-layer decomposition framework. Although some

recent works have assumed a pseudo-wired behavior for mmWave links, we studied the problem

by considering real interference between simultaneous transmissions. Our proposal is a hybrid

graph-oriented SINR interference model, which we call the Actual Interference (AI) model. We

have demonstrated that the stochastic PaC algorithm operates the network optimally.

Furthermore, we analyzed model variants to discuss the importance of interference, power

allocation, and the pseudo-wired hypothesis in previous mmWave works, by proposing upper

and lower bounds on capacity derived from simplified static capacity models with topology-

awareness: the SNR Interference Free model (IF), and the SINR Worst Interference model (WI).

Finally, we have provided several numerical evaluations of the analysis via simulation. Firstly,

we verified the throughput-utility optimality of PaC for the realistic AI model on a network

small enough for the deterministic optimal solution to be computable by brute force. Secondly,

we studied the impact of schedule-dependent interference on the capacity of the network; by

simulating the model with all three interference schemes (IF, AI and WI). We found that the
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hypothesis of a pseudo-wired link behavior does not hold in general, but the IF upper bound

provides a very tight approximation of the performance of the AI model. Our interpretation is

that the existence of high spatial isolation for some links is sufficient for optimal scheduling to

behave as an implicit interference avoidance mechanism, making interference negligible. Since

power allocation mainly permits the management of interference, power control may have a

much less relevant role in future mmWave multihop cellular networks. Thirdly, we simulated

the capacity of mmWave cellular architectures using RNs for two different purposes: coverage

extension (or backhauling cost reduction) and throughput increase. Our observations illustrate

that RNs help to improve usage of the BS physical layer, as the BS can transmit at maximum

spectral efficiency more often. In the coverage extension scenario, the BS sum-rate increases

moderately and is distributed very efficiently by the RNs among a large number of users. In the

throughput increase scenario, the BS sum-rate increases for a given coverage area and number

of users, and the gains translate into an increment in average rates and cell edge rates per user.

APPENDIX

A. Throughput Optimality

The proofs in this Appendix (A and B) are closely related to the proofs in [16], yet consid-

ering soft interference. In Appendix A we prove that network queues are stable for throughput

maximization with a PaC scheduling policy under the AI model. Note that this proof (like that in

Appendix B) also holds for the IF and WI schemes as simplified cases. In other words, the PaC

policy asymptotically achieves the same solution as MWS scheduling, as stated in Proposition

1.

Note also that the proof for MWS for the three schemes is a simplification of the proof in this

Appendix involving the removal of the error term introduced by PaC due to imperfect scheduling.

Queue evolution is given by,

qfn(t+ 1) ≤ max
[
qfn(t)− cfout(n)(t), 0

]
+ cfin(n)(t) + afn(t) (18)

(the inequality holds strictly when there is no data to send). To support subsequent calculations,

we use the following expression:

(qfn(t+ 1))2 ≤ ( max[qfn(t)− cfout(n)(t), 0]︸ ︷︷ ︸
max[a−b,0]=a−min[a,b]≤a−b, a,b≥0

+cfin(n)(t) + afn(t))2
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The state of the network s = (q, c) forms a Markov process whose stability we want to prove. Let

us define the Lyapunov function of the state L(s(t)) :=
∑

n,f (q
f
n(t))2. The single-step Lyapunov

mean drift function for a given s = (q, c) is:

∆(t) = E[L(s(t+ 1))− L(s(t))|s(t)] ≤ E[2qT (t)(cin(t) + a(t)− cout(t)) + b2|s(t)] + b1 (19)

where the unfinished service is bounded by b1 = NF (3Ω2
maxC

2
max + 4ΩmaxCmax + 2Amax) and

b2 = 2N2Cmax(AmaxF + Cmax) + A2
maxF

2N2 is a constant bound given that
∑

n,f a
f
n(t) ≤

AmaxFS and
∑

n,f

∑
m∈Ω(n) c

f
n←m(t) ≤ CmaxΩmaxN (the same for n → m), where S is the

total number of sources, Ωmax is the maximum degree of G, and the maximum capacity is

bounded by Cmax = max(cIF , which is the maximum interference-free link capacity across the

network.

Then, in order to study the expectation in (19), we consider the following. First, we introduce

the optimal scheduling term ± ∗
c which accounts for potential imperfect schedules during the

PaC policy. Given that E[a(t)] = λ we can write

q(t)T (cin(t)+λ(t)−cout(t)) = q(t)T (
∗
cin(t)+λ(t)−∗

cout(t))+q(t)T (
∗
cout(t)−

∗
cin(t)+cin(t)−cout(t))

Now, since λ ∈ Λε ⇒ ∃ c(Λε) \ λ = cout(Λε)(t)− cin(Λε)(t)− ε1, we have

= q(t)T (cin(Λε)(t) + λ(Λε)(t)− cout(Λε)(t))− εq(t)T1− q(t)T (
∗
cout(t)−

∗
cin(t))

+q(t)T (
∗
cout(t)−

∗
cin(t) + cin(t)− cout(t)) ≤ −εq(t)T1 + q(t)T (

∗
cout(t)−

∗
cin(t) + cin(t)− cout(t))

Given that 1 ≥ 1
CmaxΩmax

(
∗
cout(t)−

∗
cin(t)) and

∗
w(t) = q(t)T

∗
c(t), w(t) = q(t)Tc(t), ∃ c(Λε)\λ ≤

− ε
CmaxΩmax

∗
w(t) +

∗
w(t)− w(t), we can rewrite expression (19) as

∆(t) ≤ 2E[− ε

CmaxΩmax

∗
w(t) +

∗
w(t)− w(t)|s(t)] + E[b2|s(t)] + b1 (20)

Now, the T -step Lyapunov mean drift is,

∆T (t) = E[L(s(t+ T ))− L(s(t))|s(t)] ≤ −2
ε

CmaxΩmax

T−1∑
τ=0

E[
∗
w(t+ τ)|s(t)]

+2
T−1∑
τ=0

E[
∗
w(t+ τ)− w(t+ τ)|s(t)] +

T−1∑
τ=0

E[b2|s(t)] + b1 (21)

It can be shown from [16] that, when the comparison of the aggregated weights is correct and

there is a strictly positive probability δ of finding the optimal schedule
∗
π(t) at each frame t

(which is guaranteed by the on/off power allocation constraint),

∆T (t) ≤ −2TqT (t)
∗
c(t)

ε

CmaxΩmax

+ Tb2 + Tb1 ≤ −b4T
ε

CmaxΩmax

q(t) + b3 (22)
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where b4 > 0 stems from the fact that 1 ≥ 1
CmaxΩmax

∗
c(t) and b3 = T (b2 + b1) > 0. Considering

Foster’s criteria, expression (22) guarantees network queue stability. This means that for any

inelastic λ ∈ Λ, the PaC policy can handle the traffic in the AI model.

B. Utility Maximization

We will now show that PaC achieves an optimum solution of throughput-utility-optimality for

the AI model. For this purpose we will take advantage of the previous section and start from

expression (19), with t+ τ = tτ for notational convenience.

∆T (t) = E[L(s(t+T ))−L(s(t))|s(t)] ≤
T∑
τ=1

E[2q(t)T (cin(tτ )+a(tτ )−cout(tτ ))|s(t)]+b3 (23)

In order to introduce flow utility, we add and subtract the term 2V
∑T

τ=1 E
[∑

n,f Un,f (a
f
n(tτ ))|s(t)

]
in the previous expression. By reordering terms we get:

∆T (t) ≤ 2V
T∑
τ=1

E

[∑
n,f

Un,f (a
f
n(t+ τ))|s(t)

]

− 2
T∑
τ=1

E{E[V
∑
n,f

Un,f (a
f
n(tτ ))− q(tτ )

Ta(tτ )︸ ︷︷ ︸
(∗1)

|s(tτ )]|s(t)}

− 2
T∑
τ=1

E[q(tτ )
T (cout(tτ )− cin(tτ ))|s(t)] + b3 (24)

Considering the DCC, where the injected traffic will eventually be optimum, for any fraction of

the optimum we have (∗1) ≥ V
∑

n,f Un,f (
∗
x
f

n(Λε))− q(tτ )
T ∗x(Λε), and we can rewrite (24) as,

∆T (t) ≤ 2V
T∑
τ=1

E

[∑
n,f

Un,f (a
f
n(tτ ))|s(t)

]
− 2

T∑
τ=1

E

{
V
∑
n,f

Un,f (
∗
x
f

n(Λε))− q(tτ )
T ∗x(Λε)|s(t)

}

− 2
T∑
τ=1

E[q(tτ )
T (cout(tτ )− cin(tτ ))|s(t)] + b3 = 2V

T∑
τ=1

E

[∑
n,f

Un,f (a
f
n(tτ ))|s(t)

]

− 2V T
∑
n,f

Un,f (
∗
x
f

n(Λε)) + 2
T∑
τ=1

E[q(tτ )
T (
∗
x(Λε) + cin(tτ )− cout(tτ ))|s(t)]︸ ︷︷ ︸

We will apply results from Appendix A here

+b3

≤ 2V
T∑
τ=1

E

[∑
n,f

Un,f (a
f
n(tτ ))|s(t)

]
− 2V T

∑
n,f

Un,f (
∗
x
f

n(Λε))

+ 2

[
−b4T

(
ε

CmaxΩmax

)
q(t) + b3

]
+ b3 (25)
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Now, we apply expectations to eliminate conditioning and also apply a telescoping sum of Z,

E[L(s(ZT ))− L(s(0))] ≤ 2V
Z∑
k=1

TE

[∑
n,f

Un,f (a
f
n(k))

]
− 2V ZT

∑
n,f

Un,f (
∗
x
f

n(Λε))

− 2b4T

(
ε

CmaxΩmax

) Z∑
z=1

E[q(zT )] + 3Zb3 (26)

The desired result for utility optimality with queue stability is now achieved given that L(s) ≥

0 for all feasible s. First, network queues can be bounded by rearranging terms in (26):

1

Z

Z∑
z=1

E[q(zT )] ≤
(
V Umax +

3b3

2T
+
E[L(s(0))]

2ZT

)(
CmaxΩmax

εb4

)
(27)

given that L(s(ZT )) ≥ 0 and 2V ZT
∑

n,f Un,f (
∗
x
f

n(Λε)) ≥ 0 for all t. Furthermore, we also note

that, within k frames, queues become bounded as qfn(t+ k) ≥ qfn(t) + k(Amax + ΩmaxCmax), so

1

T

T∑
τ=1

E[q(zT + τ)] ≤ TFN(Amax + ΩmaxCmax) = b5 (28)

which, combined with (27), still satisfies network queue stability for elastic traffic:

lim sup
Z→∞

1

ZT

ZT∑
k=1

E[q(k)] ≤ lim sup
Z→∞

Z∑
z=1

E[q(zT )] + b5

≤
(
V Umax +

3b3

2T
+
E[L(s(0))]

2ZT

)(
CmaxΩmax

εb4

)
+ b5

(29)

We can now demonstrate utility optimality by rearranging the terms in a different way given

that −L(s(ZT ))
2ZT

≥ 0 and b4( ε
CmaxΩmax

)
∑Z

z=1 E[q(zT )] ≥ 0 for all t:

1

ZT

ZT∑
k=1

E[
∑
n,f

Un,f (a
f
n(k))] ≥

∑
n,f

Un,f (
∗
x
f

n(Λε))−
1

V

(
L(y(0))

2ZT
+

3b3

2T

)
(30)

By applying Jensen’s Inequality (E[U(X)] ≤ U(E[X])), we have∑
n,f

Un,f

(
1

ZT

ZT∑
k=1

E[afn(k)]

)
≥
∑
n,f

Un,f (
∗
x
f

n(Λε))−
b6

V
(31)

Given that Z →∞: ∑
n,f

Un,f
(
xfn
)
≥
∑
n,f

Un,f (
∗
x
f

n(Λε))−
b6

V
(32)

The results in expressions (29) and (32) prove that, as constant V increases, the long-term flow

rate vector x becomes closer to the optimum
∗
x, while queue stability is maintained (Prop. 1).
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