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Abstract—In a wide range of practical multimedia scenarios
several correlated contents are available. The aim of this work is
to quantify the gain that can be achieved in forensic applications
by jointly considering those contents, instead of analyzing them
separately. The used tool is the Kullback-Leibler Divergence
between the distributions corresponding to different operators;
the Maximum Likelihood estimator of the applied operator is also
obtained, in order to illustrate how the correlation is exploited for
estimation. Our detailed analysis is constrained to the Gaussian
case (both for the input signal distribution and the processing
randomness) and linear operators. Several practical scenarios
are studied, and the relationships between the derived results are
established. Finally, the links with Distributed Source Coding are
highlighted.

I. I NTRODUCTION

In the last decades the number of multimedia contents
and their impact in our lives has dramatically increased. A
paradigmatic example of both the cost reduction and ubiquity
of capture devices and the growth of digital networks where
those contents can be published, shared and distributed, isthe
wide use of mobile devices (e.g., smart phones) that jointlyof-
fer the capturing and connectivity functionalities. Multimedia
contents have been converted not only in valuable evidence of
our personal evolution and social life, but also in a weapon
that can be used to harm the public image of individuals
and organizations. In fact, simultaneously with this growth,
a huge number of editing tools available in applications for
non-skilled users have proliferated, thus compromising the
reliability of those contents, and strongly constraining their
use in some applications, for example as court evidence.
As a consequence, trust on multimedia contents has steadily
decreased.

In this context, multimedia forensics, an area of multimedia
security, has appeared as a possible solution to the decrease of
confidence on multimedia contents. The target of multimedia
forensics can be summarized as assessing the processing,
coding and editing steps a content has gone through. Despite
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the large attention that multimedia forensics has deserved
during the last years (see, for instance, [1] and the references
therein), most of the previous works deal with single sources,
i.e., they perform the forensic analysis of video, audio or
still images, but they do not consider in a joint way several
correlated instances of those media. However, examples of
those correlated contents can be found in a number of practical
situations, for example:

• Multimodal content: one of the most interesting cases are
video files with audio tracks. For example, both the visual
and audio contents provide environment information that
should be coherent; otherwise, inconsistencies would
indicate that at least one of the modalities was tampered
with. This idea is explored in [2], where the volumetric
characteristics of the capture environment are estimated
both from the video and audio signals. Data from different
multimodal sources are fusioned in [3] for the purposes
of geo-location, and in Different nature contents are also
explored

• Multitrack files: obviously, the left and right channels
of stereo audio files are not independent; the correlation
between them could be exploited for forensic purposes.
The same idea is applicable to 3-D video, or multi-
channel audio. A somewhat related strategy is exploited
in [4], where the authors propose to complicate faker’s
task by recording a portion of the image preview.

Be aware that the common characteristic of those scenar-
ios is that a number (typically2) of correlated sources is
considered. In this work we will try to measure, by taking
a theoretical approach, the advantage of jointly considering
these contents for performing the forensic analysis of the total
multimedia contents; specifically, we will quantify the gain
that can be achieved by considering them in a joint way. Both
information-theoretic and estimation tools will be used.

The rest of the paper is organized as follows: Sect. II
introduces the used notation and the goals of the detection and
estimation forensic problems. The proposed target functions
and general strategies are introduced in Sect. III, while they
are particularized to the linear and Gaussian case in Sect. IV.



Numerical results are introduced in Sect. V, and conclusions
are summarized in Sect. VI.

II. N OTATION AND OBJECTIVES

Random vectors will be denoted by capital bold letters (e.g.,
Y), while their outcomes, and deterministic vectors in general,
will use lower case bold letters (e.g.,y). ΣX will be used
for denoting the covariance matrix of random vectorX, and
µX its mean. Subindices will be used for denoting the vector
component atith position (e.g.,Yi, or yi); for the sake of
notational simplicity

(

µX

)

i
= µXi

. The element at theith
row andjth column of a general matrixA will be denoted by
(A)i,j .

Let X1, X2, . . . , XL denoteL random variables, which
model the correlated sources we consider;X will be used
for denoting(X1, X2, . . . , XL). Throughout this work we will
assume the statistics (mean vector and covariance matrix) of
X to be perfectly known at the detector/estimator.

We assume that each of those variables goes through a
particular processingYi = gi(Xi), where1 ≤ i ≤ L, gi ∈ G,
andG denotes the space of memoryless processing operators.
In general, these operators can be randomized; this randomness
will be modeled by variablesZi, 1 ≤ i ≤ L, where the
statistics ofZ will be assumed to be also perfectly known
at the detector/estimator. For the sake of notational simplicity,
we will define everygi ∈ G by two sets of parameters, namely,
ϕi andφi, sogi(·) = g(·, ϕi, φi). These two sets of parameters
are used for making the distinction between those that we want
to estimate/detect, and those which we do not (typically known
as unwanted or nuisance parameters [5]), respectively.

For the study of the Maximum Likelihood (ML) processing
operator estimator,N independent observations ofZ will be
considered, i.e., we will assume each of thoseL sources and
the corresponding processing to be memoryless. Each of those
N observations ofZ will be denoted byZi, 1 ≤ i ≤ N . In
the information theoretic analysis, and due to the independence
among theN observations, the obtained results will be pro-
portional toN ; consequently, and for the sake of notational
simplicity, we will skip the superindex.

In this work we focus on two different problems:

• study of the distinguishability betweengi and hi, gi ∈
G and hi ∈ G. First, we analyze the case where only
the marginal probability density function (pdf) ofYi is
considered, and then we compare it with its counterpart
where the joint pdf ofY is exploited. Of course, one
would expect that whenever the joint pdf is employed,
the distinguishability is improved; in that sense, one of
the main contributions of the current work is to consider
several scenarios that model practical signal processing
operations, and to quantify the improvement achieved by
using the correlation between the sources (i.e., the joint
pdf instead of the marginal). The block diagram of this
scenario is plotted in Fig. 1 for the caseL = 2.

• estimate the applied operator. Again, intuition says that
the more data we consider, the better (or at least not
worse) the estimation will be. We analyze how the
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Fig. 1. Distinguishability problem framework forL = 2.
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Fig. 2. Estimation problem framework forL = 2.

correlation between sources is exploited by the processing
operator estimation. The block diagram of this scenario
is plotted in Fig. 2 for the caseL = 2.

III. G ENERAL CASE

Although already well-known in information theory, the
Kullback-Leibler Divergence (KLD), also known as relative
entropy, has been just recently proposed for distinguishing
between different sources [6], and processing operators [7],
[8] in multimedia forensics. The KLD for continuousL-
dimensional random variables is defined as

D(f0||f1) =

∫

RL

f0(x) log

(

f0(x)

f1(x)

)

dx,

wheref0 denotes the pdf under the null hypothesis, andf1
under the alternative one (the two hypotheses under analysis).
Its use is based on its asymptotical (when the dimensionality
of the problem goes to infinity) optimality, since it is asymp-
totically equivalent to the Neyman-Pearson criterion, which is
known to be the most powerful test for the binary hypothesis
problem. Indeed, Chernoff-Stein’s Lemma [9] states that the
false positive probability error exponent achievable for agiven
non-null false negative probability asymptotically converges
to the KLD between the pdfs under the null and alternative
hypotheses (as long as the KLD takes a finite value) when the
dimensionality of the problem goes to infinity.

In the case where we only want to distinguish between
the values of some of the applied signal processing operator
parameters (those that we have previously denoted byϕi), but
we are not interested in distinguishing between different values
of the remaining ones (i.e.,φi) we will follow a worst case
approach. Specifically, given that we are interested in studying
the distinguishability between the processing corresponding to
ϕi andϕ′

i, we will look for those values ofφi andφ′
i minimiz-

ing the relative entropy, i.e., to quantify the distinguishability
betweenfg(X,ϕi,·) andfg(X,ϕ′

i,·)
we compute

min
φi

min
φ′
i

D(fg(X,ϕi,φi)||fg(X,ϕ′
i
,φ′

i
)).

This approach resembles the strategy which is typically
followed in the literature for statistical detection theory with
unwanted parameters (c.f., [5]), since it maximizes the perfor-
mance of the system (by using the optimal distinguishability



measure, the KLD) for the worst case scenario, ensuring the
predicted performance. This strategy is also coherent withthe
approach proposed in [8] for quantifying the distinguishability
between different classes of processing operators.

On the other hand, the ML estimate of processinggi requires
the calculation ofĝi = argmaxgi∈G fY(y|gi). Again, if
we are interested in estimating only some of the parameters
defininggi, i.e. ϕi, then we must solve

ϕ̂i = argmax
ϕi

max
φi∈Φ

fg(X,ϕi,φi),

whereΦ is the feasible set of values ofφi. This framework
encompasses the case whereφi is known to have a fixed value
φ∗, as in such caseΦ = {φ∗}. Note that, since in this case
we are looking for the most probable operator, instead of a
maxmin, a maxmax strategy will be followed; in other words,
in the estimate problem it does not make sense to use a worst
case approach, as one does not have to consider the probability
of confusing with an alternative hypothesis.

Finally, we would like to mention that the improvement
on the performance of the estimation ofgi could be also
interpreted from an information-theoretic point of view. In-
deed, if one considersGi to be randomly chosen following
a given distribution, then, based on fundamental properties of
the entropy [9] we can boundh(Gi|Yi) ≥ h(Gi|Y) (where
h(·) stands for the differential entropy) i.e., the consideration
of the output of the other processing branches will reduce
(or at least not increase) the uncertainty about the processing
undergone byXi.

A. Links with Distributed Source Coding

In source coding, the exploitation of correlation between
sources has been extensively used for improving the per-
formance of the coding scheme in those scenarios where
the coders do not share access to their input data, i.e., the
Distributed Source Coding (DSC) problem [10], [11]. Indeed,
this correlation is typically modeled as a virtual channel,
and channel coding techniques are used for source coding
purposes. Nevertheless, due to the differences in the target
function between the current problem, where the processing
undergone by the different sources is to be detected/estimated,
and the DSC problem, where one wants to minimize the
transmitted data, the translation of the channel-coding based
techniques to the forensic application seems to be unfeasible.

Another related problem is the Distributed Hypothesis Test-
ing [12], where one wants to determine how the data should be
compressed in order to minimize the transmitted information
when the goal is not the reproduction, but the inference from
those data. Although in this case we have indeed a detection
problem, in the forensic application we are not interested in
reducing the transmitted data; consequently, the translation of
the results in [12] to the current problem appears to be very
difficult.

IV. GAUSSIAN SIGNALS AND LINEAR OPERATORS

In order to provide close formulas that allow a clear
comparison between the considered scenarios, we particularize

the proposed framework to the case where Gaussian variables
and linear processing is considered. Therefore, in this section
we will consider the processing defined byYi = aiXi + Zi,
where ai is a real constant,X ∼ N (µX,ΣX), and Zi ∼
N (µZi

, σ2
Zi
) is a Gaussian random variable independent ofX

and independent ofZj, 1 ≤ j ≤ L, j 6= i. Random variableZi

might model the randomness of the processing, for example,
the effect of quantizing the processed signal in a different
domain, e.g., an image operator that scales the8 × 8-block
DCT coefficients depending on the frequency location, and
then quantizes the image in the pixel domain; although the
quantization error is not independent of the DCT coefficients,
it is typically modeled as being so (see, for example, [13]),as a
lot of different contributions are summed up when performing
the DCT and IDCT.

Based on the definition ofY, and the distributions ofX
and Z, Y is also Gaussian, i.e.,Y ∼ N (µY,ΣY), where
µYi

= aiµXi
+ µZi

, and
(

ΣY
)

i,j
= aiaj

(

ΣX
)

i,j
+ σ2

Zi
δ[i− j],

whereδ[·] stands for the Kronecker delta.
The main advantage of the Gaussian case, that drives us to

consider this scenario with special detail, is the fact thatclosed
formulas exist for the KLD of two Gaussian multivariate
distributions. Indeed, if we considerY ∼ N (µY,ΣY) and
Y

′ ∼ N (µY′ ,ΣY′), then

D(fY||fY′) =
1

2

[

tr
(

Σ−1

Y
′ΣY

)

+
(

µY
′ − µY

)T
Σ−1

Y′

(

µY
′ − µY

)

− log

(

|ΣY|

|ΣY′ |

)

− L

]

, (1)

where tr(·) is the trace operator, and|Σ| is the determinant of
matrix Σ.

Taking into account the form ofYi considered in this
section,gi is entirely specified byai andσ2

Zi
. In most practical

scenarios we will be interested in estimatingai, whereasσ2
Zi

is an unwanted parameter; therefore, following the notation
introduced in the previous section,ϕi = ai, andφi = σ2

Zi
.

Consequently, the ML estimate of gainai requires the calcu-
lation of âi = argmaxai∈R

(

maxσ2
Zi

∈R+ LLR(y, ai, σ
2
Zi
)
)

,

where

LLR(y, ai, σ
2
Zi
) ,

(

y − µY

)T
Σ−1

Y

(

y − µY

)

+ log(|ΣY|).

On the other hand, if the unwanted parameter is indeed
known a priori, then that knowledge can be exploited in
the estimation. Continuing with the estimate ofai, but as-
suming thatσ2

Zi
is known to be, say,

(

σ2
Zi

)∗
, we have that

âi = argmaxai∈R LLR(y, ai,
(

σ2
Zi

)∗
).

In the following we consider3 particular scenarios forL =
2 and different definitions ofY2 (Sects. IV-B-IV-D), while
keeping the same definition ofY1. For all of them, we detail
the theoretical results of both the ML estimator and the KLD.
The target of this analysis is to illustrate how the knowledge



of Y2 helps to estimate/detect the processing undergone by
Y1 in comparison to the scenario where onlyY1 is available
(Sect. IV-A). In order to keep the mathematical tractability, we
will assumeΣ2

Zi
= µXi

= µZi
= 0, for i = 1, 2. The noisy

case (randomized processing operators) and non-zero mean
will be considered in Sect. V by numerical results.

The proposed scenarios can be linked with real applications
in the case of audio stereo files, where each audio channel goes
through an equalization filter; the samples of each channel are
windowed, frequency transformed, and then each frequency
coefficient is subjected to a different scaling. This effectcan
be roughly modeled by a frequency dependent scaling, and
the differences between this model and the real processing
(encompassing, for example, the windowing effect, the lackof
block periodicity, and the quantization of the filtered samples
in the time domain) will be modeled byZi. Of course the fre-
quency coefficients do not fit the theoretical model studied in
this section, but the consideration of this application scenario
showcases the power of the proposed methodology. We will
particularize this illustrating application for each scenario.

A. ScenarioY1 = a1X1 + Z1

Application Scenario: mono file, or only one of the stereo
channels is considered for processing estimation/detection.

Under the hypotheses mentioned above,

â1 = ±

√

√

√

√

∑N
i=1 (Y

i
1 )

2

N
(

ΣX
)

1,1

, (2)

that is, the variance-based estimator, which in general is
biased.

Concerning the KLD betweenY1 = a1X1 + Z1 andY ′
1 =

b1X1 + Z ′
1, one obtains

D(fY1
||fY ′

1
) =

1

2

(

−1 +
a21
b21

− log

[

a21
b21

])

. (3)

B. ScenarioY1 = a1X1 + Z1, Y2 = a2X2 + Z2, a2 = a1

Application Scenario: stereo case, when we know that the
same equalization is applied to both channels.

The ML estimator can be computed as

â1 = ±

√

√

√

√

√

√

∑N
i=1

(

Y i
1

)

2 (

ΣX

)

2,2
+

(

Y i
2

)

2 (

ΣX

)

1,1
− 2

(

Y i
1
Y i
2

)

(

ΣX

)

1,2

2N
[

(

ΣX

)

1,1

(

ΣX

)

2,2
−

(

ΣX

)

2
1,2

] .

Be aware that wheneverX1 and X2 are independent, i.e.,
(

ΣX
)

1,2
= 0, then the derived ML estimator is

â1 = ±

√

√

√

√

1

2N

[

∑N
i=1 (Y

i
1 )

2

(

Σ
X

)

1,1

+

∑N
i=1 (Y

i
2 )

2

(

Σ
X

)

2,2

]

, (4)

which is obvioulsy related to the ML estimator in (2).
Concerning the KLD between(Y1, Y2) = (a1X1 +

Z1, a2X2 + Z2) and (Y ′
1 , Y

′
2) = (b1X1 + Z ′

1, b2X2 + Z ′
2),

we obtain

D(f(Y1,Y2)||f(Y ′
1
,Y ′

2
)) = −1 +

a21
b21

− log

[

a21
b21

]

, (5)

which is nothing but twice (3). This result makes sense, since
we are considering the same processing for both channels and

the noiseless case, and consequently the correlation between
X1 and X2 does not provide any additional information;
therefore, from the KLD point of view one would expect to
have the same result that is achieved when two independent
realizations ofY1 are available. This result also makes sense
at the light of (4), although in the derivation of the latter we
assumed

(

ΣX
)

1,2
= 0.

C. ScenarioY1 = a1X1 +Z1, Y2 = a2X2 +Z2. a2 is known

Application Scenario: stereo, we know the equalization
applied to one channel, and want to estimate the other one.

The ML estimator is

â1 =

{

N
∑

i=1

−a2

(

ΣX
)

1,2
Y

i
1Y

i
2 +





(

N
∑

i=1

a2

(

ΣX
)

1,2
Y

i
1Y

i
2

)2

+ 4Na
4
2

[

(

ΣX
)

1,1

(

ΣX
)

2,2
−
(

ΣX
)2

1,2

]

(

ΣX
)

2,2

N
∑

i=1

(

Y
i
1

)2
]1/2







[

2Na
2
2

(

(

ΣX
)

1,1

(

ΣX
)

2,2
−
(

ΣX
)2

1,2

)]

−1

. (6)

Concerning the KLD between(Y1, Y2) = (a1X1 +
Z1, a2X2 + Z2) and (Y ′

1 , Y
′
2) = (b1X1 + Z ′

1, b2X2 + Z ′
2),

we obtain

D(f(Y1,Y2)||f(Y ′
1
,Y ′

2
)) = −1− 1

2 log
(

a2
1a

2
2

b2
1
b2
2

)

+
(a2

2b
2
1+a2

1b
2
2)

(

Σ
X

)

1,1

(

Σ
X

)

2,2
−2a1a2b1b2

(

Σ
X

)2

1,2

2b2
1
b2
2

[

(

Σ
X

)

1,1

(

Σ
X

)

2,2
−

(

Σ
X

)

2

1,2

] . (7)

Note that whenever
(

ΣX
)

1,2
= 0

D(f(Y1,Y2)||f(Y ′
1
,Y ′

2
)) =

1
2

[

−1 +
a2
1

b2
1

− log
(

a2
1

b2
1

)

−1 +
a2
2

b2
2

− log
(

a2
2

b2
2

)]

,

which also follows the intuition for the KLD of multivariate
Gaussian distributions of diagonal covariance matrices.

The scenarioY1 = a1X1+Z1, Y2 = a2X2+a3X1+Z2 (so
Y2 6= g2(X2)), wherea2 anda3 are known, was also studied,
although the obtained results are not shown here due to spatial
constraints. Let only mention that it corresponds to the stereo
case, where channel2 is not only equalized, but edited by
combining it with a filtered version of channel1. Our target
would be to estimate the equalizer undergone by output1, that
depends only on channel1 input.

D. ScenarioY1 = a1X1 + Z1, Y2 = a2X2 + Z2. a2 is not
known

Application Scenario: stereo, we want to estimate the
equalizer applied to one of the channels, but we do not know
about the equalization applied to the other one.

In this framework, the value ofa2 (as a function ofa1)
maximizing the ML target function is

−ξ+

√

ξ2+4Na1

[

(

Σ
X

)

1,1

(

Σ
X

)

2,2
−

(

Σ
X

)

2

1,2

]

∑

N
i=1

a1

(

Σ
X

)

1,1
(Y i

2 )
2

2Na1

[

(

Σ
X

)

1,1

(

Σ
X

)

2,2
−

(

Σ
X

)

2

1,2

] ,



whereξ ,
∑N

i=1

(

ΣX
)

1,2
Y i
1Y

i
2 , yielding the ML estimator

â1 = ±

√

√

√

√

√

√

√

(

Σ
X

)

2,2
κ−

√
(

Σ
X

)

2,2
(

Σ
X

)

1,1

(

Σ
X

)2

1,2
κ
[

∑N
i=1 Y

i
1Y

i
2

]2

N
[

(

Σ
X

)

1,1

(

Σ
X

)

2,2
−
(

Σ
X

)2

1,2

]

∑N
i=1 (Y

i
2 )

2
,

whereκ ,

[

∑N
i=1

(

Y i
1

)2
] [

∑N
i=1

(

Y i
2

)2
]

. Note that when-

ever
(

ΣX
)

1,2
= 0, then this estimator is equivalent to (2).

On the other hand, in the computation of the KLD, and
given that we study the distinguishability between the process-
ing corresponding toa1 andb1, we will look for those values
of a2 andb2 minimizing the KLD. In the current scenario, the
derivative of the KLD with respect toa2 is

−
1

a2
+

b1a2

(

ΣX
)

1,1

(

ΣX
)

2,2
− a1b2

(

ΣX
)2

1,2

b1b
2
2

[

(

ΣX
)

1,1

(

ΣX
)

2,2
−
(

ΣX
)2

1,2

] ,

which has roots with respect toa2 at
b2

(

a1

(

Σ
X

)

2

1,2
+γ

)

2b1
(

Σ
X

)

1,1

(

Σ
X

)

2,2

,

whereγ ,

√

a2
1

(

ΣX

)

4
1,2

+ 4b2
1

(

ΣX

)

1,1

(

ΣX

)

2,2

[

(

ΣX

)

1,1

(

ΣX

)

2,2
−

(

ΣX

)

2
1,2

]

.

If one replaces (IV-D) into the relative entropy, the resultdoes
not depend onb2, so the minimization over that variable is
indeed not necessary. The obtained value is

D(f(Y1 ,Y2)||f(Y ′
1
,Y ′

2
)) = − 1

2

+
a2
1

[

2
(

Σ
X

)

2

1,1

(

Σ
X

)

2

2,2
−

(

Σ
X

)

4

1,2

]

−a1

(

Σ
X

)

2

1,2
κ

4b2
1

(

Σ
X

)

1,1

(

Σ
X

)

2,2

[

(

Σ
X

)

1,1

(

Σ
X

)

2,2
−

(

Σ
X

)

2

1,2

]

− 1
2
log





a2
1

[

a1

(

Σ
X

)

2

1,2
+κ

]

2

4b4
1

(

Σ
X

)

2

1,1

(

Σ
X

)

2

2,2



 .

An interesting scenario, is that where
(

ΣX
)

1,2
= 0;

under that assumption, the derivative of the KLD with re-
spect to a2 is equal to − 1

a2
+ a2

b2
2

, yielding the condi-

tion a22 = b22. Indeed, in that particular framework the
KLD can be written as (check the obvious relationships
with (3)) D(f(Y1,Y2)||f(Y ′

1
,Y ′

2
)) =

1
2

(

−1 +
a2
1

b2
1

− log
[

a2
1

b2
1

])

+

1
2

(

−1 +
a2
2

b2
2

− log
[

a2
2

b2
2

])

, and consequently we can minimize

the KLD over a2
2

b2
2

; straightforwardly, the achieved solution is
a2
2

b2
2

= 1, providing a null contribution to the total KLD, whose
value will be

D(f(Y1,Y2)||f(Y ′
1
,Y ′

2
)) =

1

2

(

−1 +
a2
1

b21
− log

[

a2
1

b21

])

, (8)

i.e., the same value achieved in (3). The implications of this
result are evident:

• SinceX1 andX2 are independent, the consideration ofY2

andY ′
2 will not provide any knowledge that can improve

the distinguishability betweena1 andb1.
• So, if we look for those values ofa2 andb2 minimizing

the KLD, we will find thata22 = b22 (due to the symmetry
obtained by assuming zero-mean random variables).

• Consequently, we go back to the framework studied in
Sect. IV-A.

Another asymptotical scenario, that is also particularly
interesting, is that where

(

ΣX
)

1,2
→ ±

√

(

ΣX
)

1,1

(

ΣX
)

2,2
,

i.e., if X1 andX2 are (almost) deterministically related. It can
be checked that in that framework the KLD goes to infinity
whenevera2 6= a1b2

b1
. The intuition behind this result is also

interesting: sinceX1 and X2 are related by a fixed factor,
if we computeY1

Y2
= a1

a2
it will be trivial to distinguish that

scenario fromY ′
1

Y ′
2

= b1
b2

unlessa1

a2
= b1

b2
.1

Therefore, in order to follow our worst case approach, we
will choosea2 to be a1b2

b1
. By doing so, the resulting KLD

value isD(f(Y1,Y2)||f(Y ′
1
,Y ′

2
)) = −1 +

a2
1

b2
1

− log
[

a2
1

b2
1

]

, which
is nothing but twice (3) (and therefore twice (8)), and exactly
the same as (5), although in that case this value was obtained
for a generic covariance matrix.

Again, this result illustrates what one would intuitively
expect; the larger the correlation between the sources, the
easier it will be to distinguish between the operators. Indeed,
the two limit behaviors are also very enlightening:

• Whenever the considered sources are independent, the
achieved KLD is equivalent to that where onlyY1 is
considered. Of course in this frameworkY2 does not
provide any knowledge onY1, and consequently we can
just neglect that variable.

• Whenever the relationship between the sources is de-
terministic, the problem is equivalent to having two
independent observations, coming from a single source.

V. NUMERICAL RESULTS

In this section we will provide a glance at some of those
Gaussian linear cases that have not been studied in the previous
section due to their cumbersome mathematical expressions.
First of all, we will consider the effect of the processing noise
Z. The solid lines in Fig. 3 show the results obtained when
a2 = a1 (correspondingly,b2 = b1), i.e., the scenario studied
in Sect. IV-B. Be aware that in that framework, and as it was
previously discussed, the fact of considering twice the same
processing operator helps to our estimation. Nevertheless, if
the observations are noisy, the closer they are, the more dif-
ficult will be to appreciate the different information that each
observation provides; indeed, when they get very close (i.e.,
when

(

ΣX
)

1,2
→
√

(

ΣX
)

1,1

(

ΣX
)

2,2
) the distinguishability

will be equivalent to having a single observation (the KLD
decreases to half the value we have for

(

ΣX
)

1,2
= 0). This

illustrates that a very high correlation between sources isnot
always positive for distinguishability.

On the other hand, Fig. 3 also contains the results when
a2 and b2 are not known, i.e., the scenario considered in
Sect. IV-D; the curve obtained forσ2

Z = 0 corresponds to
the results derived there. As mentioned in Sect. III we have

1Take into account that we assume this equality to hold beforetaking
the limit

(

ΣX

)

1,2
→ ±

√

(

ΣX

)

1,1

(

ΣX

)

2,2
. In the limit the covariance

matrix of X becomes singular (with computational problems arising when
computing (1)), so it is important to note that by considering a1

a2
=

b1
b2

the
KLD does not depend on the covariance matrix ofX.



0 0.5 1 1.5 2 2.5
0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

(Σ
X
)
1,2

D
(f

1||f
2)

 

 

σ
Z
2 = 0

σ
Z
2 = 10−3

σ
Z
2 = 10−2

σ
Z
2 = 10−1

Fig. 3. KLD whena2 = a1 andb2 = b1 (solid lines) and whena2 andb2
are not known (dashed ones), for different values ofσ2

Z1
= σ2

Z2
= σ2

Z .
a1 = 1, b1 = 1.2,

(

ΣX

)

1,1
= 2,

(

ΣX

)

1,1
= 3,

(

ΣX

)

1,2
∈

[

0,
√

(

ΣX

)

1,1

(

ΣX

)

2,2

]

, µX = 0, µZ = 0.
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decided to follow a worst case approach for this scenario.
Indeed, for the noisy case the values ofa2 andb2 minimizing
the KLD area2 = 0 and b2 = 0; the intuitive idea behind
this result is also clear: in the worst case we cannot trust the
second observation, as it is only noise. In that case the KLD

is 1
2

[

a2
1

(

Σ
X

)

1,1
+σ2

Z

b2
1

(

Σ
X

)

1,1
+σ2

Z

− log

(
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1

(

Σ
X

)

1,1
+σ2

Z

b2
1

(

Σ
X

)

1,1
+σ2

Z

)

− 1

]

, which is

independent of the correlation term, as expected.
Finally, the influence of the mean of the original signal

on the distinguishability is illustrated in Fig. 4, which clearly
shows that the larger the mean of the signal, the easier will
be to distinguish the considered processing operators.

VI. CONCLUSIONS

In this work we have quantified the advantages of using
the joint distribution of composite objects for improving the
distinguishability between processing operators. Although for

the sake of tractability we have focused on the linear Gaussian
case, it is evident that the principles derived here would beap-
plicable to more general frameworks. Among these principles,
we can mention the behavior of the distinguishability measures
in different scenarios, and how, for example, the case where
the correlated sources are known to share their processing is
equivalent to having independent sources. It also interesting
to note that for the case where the unwanted processing is
unknown, for the noiseless case the distinguishability achieved
for deterministically correlated sources is double the one
obtained for independent sources, but for the noisy case the
obtained value is independent of that correlation, as the second
observation is considered to be pure noise. Finally, we would
like to mention thea priori striking result showing that a larger
correlation between sources does not always imply a better
distinguishability between operators.
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