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Abstract—In a wide range of practical multimedia scenarios the large attention that multimedia forensics has deserved
several correlated contents are available. The aim of thiserk is  during the last years (see, for instance, [1] and the rete®n
to quantify the gain that can be achieved in forensic applicons therein), most of the previous works deal with single sosyrce

by jointly considering those contents, instead of analyzig them . th f the f . \vsis of vid di
separately. The used tool is the Kullback-Leibler Divergene I.€., they periorm the forensic analysis of video, audio or

between the distributions corresponding to different opeators; Still images, but they do not consider in a joint way several
the Maximum Likelihood estimator of the applied operator isalso  correlated instances of those media. However, examples of
obtained, in order to illustrate how the correlation is exploited for  those correlated contents can be found in a number of pahctic
estimation. Our detailed analysis is constrained to the Gassian ; ; .

; . 2 BE 3 situations, for example:
case (both for the input signal distribution and the procesig P

randomness) and linear operators. Several practical scemas « Multimodal content: one of the most interesting cases are
are studied, and the relationships between the derived re$ts are video files with audio tracks. For example, both the visual
established. Finally, the links with Distributed Source Caling are .

and audio contents provide environment information that
should be coherent; otherwise, inconsistencies would
indicate that at least one of the modalities was tampered
with. This idea is explored in [2], where the volumetric
In the last decades the number of multimedia contents characteristics of the capture environment are estimated
and their impact in our lives has dramatically increased. A hoth from the video and audio signals. Data from different
paradigmatic example of both the cost reduction and ulyiquit  multimodal sources are fusioned in [3] for the purposes
of capture devices and the growth of digital networks where  of geo-location, and in Different nature contents are also
those contents can be published, shared and distributétk is explored
wide use of mobile devices (e.g., smart phones) that jobftly , Multitrack files: obviously, the left and right channels

fer the capturing and connectivity functionalities. Muigdia of stereo audio files are not independent; the correlation
contents have been converted not only in valuable evidehce 0 petween them could be exploited for forensic purposes.

our personal evolution and social life, but also in a weapon The same idea is applicable to 3-D video, or multi-
that can be used to harm the public image of individuals  channel audio. A somewhat related strategy is exploited
and organizations. In fact, simultaneously with this gtowt in [4], where the authors propose to complicate faker’s

a huge number of editing tools available in applications for a5k by recording a portion of the image preview.

non-skilled users have proliferated, thus compromising th -
reliability of those contents, and strongly constrainihgit Be aware that the common characteristic of those scenar-

use in some applications, for example as court evidend@S IS that a number (typicallg) of correlated sources is

As a consequence, trust on multimedia contents has steadffpSidered. In this work we will try to measure, by taking
decreased. a theoretical approach, the advantage of jointly consideri

In this context, multimedia forensics, an area of multiraedfhese contents for performing the forensic analysis of ol t

security, has appeared as a possible solution to the decméaénummedt')a COE.tentz; bspeuﬁczlly,. WehW'" .quar_mlfy the gg' h
confidence on multimedia contents. The target of muItimed'i at car][_ € ?hc |evte_ ydcon;s_| e:_lngi elm |n_|¢|’:1kJJO|nt wgy. ot
forensics can be summarized as assessing the proces§ rmation-theoretic and estimation tools will be used.

coding and editing steps a content has gone through. Despit he rest of the paper is organized as follows: Sect. Il
introduces the used notation and the goals of the deteatidn a

o estimation forensic problems. The proposed target funstio
MMSP’13, Sept. 30 - Oct. 2, 2013, Pula (Sardinia), Italy. and general strategies are introduced in Sect. Ill, whiéy th
?7?7?-?2-2277-22772-2/118P?.?? (©2013 IEEE. are particularized to the linear and Gaussian case in Séct. |

highlighted.

I. INTRODUCTION



Numerical results are introduced in Sect. V, and conclussion Xy g, Y,

are summarized in Sect. VI. SOURCE Detect

Y,

g2 - gl/g,l

Xz

Y

II. NOTATION AND OBJECTIVES

Random vectors will be denoted by capital bold letters (e.g.
Y), while their outcomes, and deterministic vectors in gaher
will use lower case bold letters (e.gy). Xx will be used

Fig. 1. Distinguishability problem framework fdt = 2.

for denoting the covariance matrix of random vec¥y and X1 - J; Y1 ~ Eetimate 9,
px its mean. Subindices will be used for denoting the vector SOURCE X v -
component atith position (e.g.,Y;, or y;); for the sake of CERN Y« P 2| 9
notational simplicity(uX)i = ux,. The element at theth
row and;jth column of a general matrid will be denoted by Fig. 2. Estimation problem framework fdt = 2.
(A). ..
Lléqc X1,Xs,..., X denote L random variables, which
model the correlated sources we considgr;will be used correlation between sources is exploited by the processing
for denoting(X1, X2, ..., X). Throughout this work we will operator estimation. The block diagram of this scenario

assume the statistics (mean vector and covariance matfrix) o is plotted in Fig. 2 for the casé = 2.
X to be perfectly known at the detector/estimator.

We assume that each of those variables goes through a
particular processing; = ¢;(X;), wherel <i < L, g; € G, Although already well-known in information theory, the
and G denotes the space of memoryless processing operatégllback-Leibler Divergence (KLD), also known as relative
In general, these operators can be randomized,; this raregsnientropy, has been just recently proposed for distingugshin
will be modeled by variablesZ;, 1 < i < L, where the between different sources [6], and processing operatdys [7
statistics ofZ will be assumed to be also perfectly knowrd8] in multimedia forensics. The KLD for continuous-
at the detector/estimator. For the sake of notational saiygl dimensional random variables is defined as
we will define everyy; € G by two sets of parameters, namely,

w; andg;, s0g;(-) = g(-, i, ¢;). These two sets of parameters D(follf1) = /RL fo(x)log <;(1)EX§) dx,

are used for making the distinction between those that we warh .

to estimate/detect, and those which we do not (typicallykmo where fo denotes_the pdf under the null hypothesis, giid .
as unwanted or nuisance parameters [5]), respectively. under the alternatlvg one (the tW.O hypotheses under ag)alys_l

For the study of the Maximum Likelihood (ML) processing’ts use is based on its &_‘SY”.‘ptO“C"’?' (when Fhe d_mensnynaht
operator estimator)N independent observations &f will be of _the prOb'?m goes to infinity) optimality, since ',t IS asymp
considered. i.e., we will assume each of thdssources and totically equivalent to the Neyman-Pearson criterion,chhis

the corresponding processing to be memoryless. Each o th§30Wn 10 be the most powerful test for the binary hypothesis
N observations ofZ will be denoted byZ’, 1 < i < N. In problem. Indeed, Chernoff-Stein’s Lemma [9] states that th

the information theoretic analysis, and due to the indepeod false pc|)|SIft|\|/e probab!l|ty err%r ‘E’FIPO”em achleyatl)lle fghen
among theN observations, the obtained results will be pror_mn—nu alse negative probability asymptotically corges

portional to N; consequently, and for the sake of notation%]P the KLD between the pdfs under the _ngll and alternative
simplicity, we will skip the superindex. ypotheses (as long as the KLD takes a finite value) when the

In this work we focus on two different problems: dimensionality of the problem goes to i”f"_“tY- :
o . In the case where we only want to distinguish between
« study of the distinguishability betweep and h;, g; €

) the values of some of the applied signal processing operator
G andh; € G. First, we analyze the case where OnI%arameters (those that we have previously denotegd; but
we are not interested in distinguishing between differahties
L . . Yt the remaining ones (i.e¢;) we will follow a worst case
where the joint pdf ofY is expl0|.te_d. of course, one pproach. Specifically, given that we are interested inystigd
would expect that whenever the joint pdf is employe Pe distinguishability between the processing correspuit

the distinguishability is improved; in that sense, one Ocpi and.z!, we will look for those values of; andg] minimiz-

the main contn_butmns of the current worl_< Is to conmdqh the relative entropy, i.e., to quantify the distinguibhiity
several scenarios that model practical signal proces&gﬁt

; . . . ween .y and /.y wWe compute
operations, and to quantify the improvement achieved by fo(xX.00) Joxet) P

Ill. GENERAL CASE

using the correlation between the sources (i.e., the joint minmin D(fy(x,p;.60) [ fa(x.00.60)-
pdf instead of the marginal). The block diagram of this b @
scenario is plotted in Fig. 1 for the cage= 2. This approach resembles the strategy which is typically

« estimate the applied operator. Again, intuition says th&dllowed in the literature for statistical detection theavith
the more data we consider, the better (or at least nawanted parameters (c.f., [5]), since it maximizes thdqgper
worse) the estimation will be. We analyze how thenance of the system (by using the optimal distinguishabilit



measure, the KLD) for the worst case scenario, ensuring e proposed framework to the case where Gaussian variables
predicted performance. This strategy is also coherentthigh and linear processing is considered. Therefore, in thisesec
approach proposed in [8] for quantifying the distinguishigb we will consider the processing defined by = a; X; + Z;,
between different classes of processing operators. whereq; is a real constantX ~ N(ux,¥Yx), and Z; ~

On the other hand, the ML estimate of procesgingequires N(NZ”CT%J is a Gaussian random variable independerXof
the calculation ofg; = argmaxycg fy(ylg:). Again, if and independent of;, 1 <j<L,j+# i Random variable;
we are interested in estimating only some of the parametengght model the randomness of the processing, for example,

defining g;, i.e. ¢;, then we must solve the effect of quantizing the processed signal in a different
A domain, e.g., an image operator that scales&he 8-block
vi = a“"gniflxg?é?é Fo(x.pu6:)s DCT coefficients depending on the frequency location, and

K then quantizes the image in the pixel domain; although the

where ® is the feasible set of values @f;. This framewor L ; 4 2
ot guantization error is not independent of the DCT coeffigent

encompasses the case wheyés known to have a fixed value " ) :
¢, as in such casé — {¢*}. Note that, since in this caselt 1S typically modeled as being so (see, for example, [1&8)a

we are looking for the most probable operator, instead ofl%\t of different contributions are summed up when perforgnin
maxmin, a maxmax strategy will be followed; in other wordst,he DCT and IDCT. _— S
in the estimate problem it does not make sense to use a wor&ased on the def|n|t|qn OY’ and the distributions oK
case approach, as one does not have to consider the prqbakﬁf?d Z,Y is also Gaussian, i.eY ~ N(py,Yy), where
of confusing with an alternative hypothesis. fy, = aipix; + piz,, and

Finally, we would like to mention that the improvement (Sy), , = aia; (x), 0% i — 4],
on the performance of the estimation gf could be also - J ’
interpreted from an information-theoretic point of viem-1 whered[-] stands for the Kronecker delta.
deed, if one consider§; to be randomly chosen following The main advantage of the Gaussian case, that drives us to
a given distribution, then, based on fundamental propedfe consider this scenario with special detail, is the fact thaded
the entropy [9] we can bound(G;|Y;) > h(G;|Y) (where formulas exist for the KLD of two Gaussian multivariate
h(-) stands for the differential entropy) i.e., the considerati distributions. Indeed, if we consid& ~ N (uv, ¥y ) and
of the output of the other processing branches will redudé’ ~ N (v, Xy), then
(or at least not increase) the uncertainty about the proagss

undergone byXj;. D(fyllfy) = %[tr (E_I/EY)
A. Links with Distributed Source Coding

. . | + (wy —my)" By (hy — my)
In source coding, the exploitation of correlation between Syl
sources has been extensively used for improving the per- 1 < Y ) —L}, (1)
formance of the coding scheme in those scenarios where >yl
the coders do not share access to their input data, i.e., {fi€ere tx-) is the trace operator, ar#l| is the determinant of
Distributed Source Coding (DSC) problem [10], [11]. Indeegnatrix 3.
this correlation is typically modeled as a virtual channel, Taking into account the form of; considered in this
and channel coding techniques are used for source codifigtion g, is entirely specified by, ando? . In most practical
purposes. Nevertheless, due to the differences in thettargganarios we will be interested in estimating whereasr2
function between the current problem, where the processiggan unwanted parameter; therefore, following the nomatio
undergone by the different sources is to be detected/estimajntroduced in the previous sectiop; = a;, and ¢; = o2 .
and the DSC problem, where one wants to minimize thgonsequently, the ML estimate of gain requires the calcu-
transmitted data, the translation of the channel-codirggtha lation of a;
techniques to the forensic application seems to be unﬂeaSik\J/vhere
Another related problem is the Distributed Hypothesis -Test

ing [12], where one wants to determine how the data should b& R(y, a;,0% ) £ (y — Hy)T 2; (y — py) +log(|Zy )
compressed in order to minimize the transmitted infornmatio ) o
when the goal is not the reproduction, but the inference from©n the other hand, if the unwanted parameter is indeed
those data. Although in this case we have indeed a detectfiPWn & priori, then that knowledge can be exploited in
problem, in the forensic application we are not interested {1€ estimation. Continuing with the estimate @f, but as-
reducing the transmitted data; consequently, the traaslaf SUMINg thato? is known to be, an("%i) , we have that
the results in [12] to the current problem appears to be vefy = arg maxa,er LLR(y, ai, (03,)").

_ 2
= argmax,,cr (maxgzzi er+ LLR(y, a;, Uzi)) ,

difficult. In the following we consideB particular scenarios fof =
2 and different definitions oft, (Sects. IV-B-1V-D), while
IV. GAUSSIAN SIGNALS AND LINEAR OPERATORS keeping the same definition &f,. For all of them, we detail

In order to provide close formulas that allow a cleathe theoretical results of both the ML estimator and the KLD.
comparison between the considered scenarios, we partmlaThe target of this analysis is to illustrate how the knowkedg



of Y5 helps to estimate/detect the processing undergone thg noiseless case, and consequently the correlation detwe

Y7 in comparison to the scenario where oMy is available X; and X, does not provide any additional information;

(Sect. IV-A). In order to keep the mathematical tractapilite therefore, from the KLD point of view one would expect to

will assume22Z1 = ux, = pz, = 0, fori = 1,2. The noisy have the same result that is achieved when two independent

case (randomized processing operators) and non-zero mesalizations ofY; are available. This result also makes sense

will be considered in Sect. V by numerical results. at the light of (4), although in the derivation of the lattee w
The proposed scenarios can be linked with real appIicatiozﬂrﬁ,sumec(EX)1 , = 0.

in the case of audio stereo files, where each audio channgl goe

through an equalization filter; the samples of each chameel &+ Scenarioy: = a1 Xy + Z1, Yo = ax Xs + Z5. a is known

windowed, frequency transformed, and then each frequencyApplication Scenario: stereo, we know the equalization

coefficient is subjected to a different scaling. This effeeh applied to one channel, and want to estimate the other one.

be roughly modeled by a frequency dependent scaling, andrhe ML estimator is

the differences between this model and the real processing N N 2

(encompassing, for example, the windowing effect, the laick ¢, = {Z —as (EX)L2 Y'Y, + [(Z as (EX)L2 YfY;)

block periodicity, and the quantization of the filtered sdesp i=1 i=1

in the time domain) will be modeled hy;. Of course the fre-

quency coefficients do not fit the theoretical model studied i+ 4Naj [(EX)L1 (Ex),. — (Ex); 2}

this section, but the consideration of this applicatiomsei® i=1

showcases the power of the proposed methodology. We wiill 2 2 \1°!

particularize thispillustrating apf)plicpation for each sa%i)(/). [QNGQ ((EX)l 1 (x5, = (5, 2)] ' ©)

A. Scenarioty = a1 Xy + 2y Concerning the KLD between(Yi,Y:) = (ayX; +
Application Scenario: mono file, or only one of the stereo 7, ., x, + 7,) and (Y], Y]) = (X1 + Z], b2 X + Zb),
channels is considered for processing estimation/detecti \ye optain
Under the hypotheses mentioned above,

ZN (YL)Q D(f(Y1,Y2)||f Y)) - 110g ((ZIUQ)
a1 = =+ i=1 1 2
a1 Nox), L (2) (a%berafbg)(EX)l)l( X) ~2a1azb1b5 (2 ) @
that is, the variance-based estimator, which in general is Qb%bg[(EX)l,l( 22 }
biased.
. Note that whenevefX =0
Concerning the KLD betweel; = a; X7 + Z; andY{ = ( X)l 2
b1 X1 + Z1, one obtains 2
e , , D(fvi v llfoviyvy) = { 1+ 3 —log (—%)
1 aj
Dwllig) =3 (-1+ 3 -1e[3]). @ _1+;;_§_10g(g)},
B. ScenarioY: = a1 X1 + Z1, Yo = aaXo + Zz,a2 = 1y which also follows the intuition for the KLD of multivariate
Application Scenario: stereo case, when we know that théaussian distributions of diagonal covariance matrices.
same equalization is applied to both channels. The scenarid’; = a1 X1+ 71, Y2 = a2 X2 +a3 X1+ Z3 (s0
The ML estimator can be computed as Ys # go(X>)), wherea, andas are known, was also studied,
L [ e a0 Ex)l - 2(‘/1“/2) Ex)ra although the obtained results are not shown here due tabpati
4 = N [(Ex>1,1 Sx)2s 2.] : constraints. Let only mention that it corresponds to theeste

case, where channél is not only equalized, but edited by
combining it with a filtered version of channgl Our target
would be to estimate the equalizer undergone by outptitat
depends only on channglinput.

Be aware that wheneveX; and X, are independent, i.e.
(ZX)1 , = 0, then the derived ML estimator is

L 1 Zr ) SN ()
ali\jﬁ[ o4 27|, (4)

(EX)11 (EX)22 D. ScenarioY; = a1 X1 + Z1, Yo = a2 Xs + Z5. as iS not
’ ’ known
which is obvioulsy related to the ML estimator in (2). o ) )
Concerning the KLD between(Yi,Ys) = (a1X; + Application Scenario: stereo, we want to estimate the

Z1,asXs + Zs) and (Y{,Y]) = (b X1 + Z},b2X, + 2}), €qualizer applied to one of the channels, but we do not know
we obtain about the equalization applied to the other one.
2 In this framework, the value of, (as a function ofa;)
D(f(Y17Y2)||f(Y;,Y2')

2 L . .
)= 14 ch ~log [52} ’ ) maximizing the ML target function is
1 2 i\2
which is nothing but twice (3). This result makes sense,esinc 7”%\/5%4“1 [(ZX)l,l(EX)m*(ZX)m] = (3x),, (%) 7
we are considering the same processing for both channels and 2Nay {(EX)M(EX)”—(EX)2 ]

1,2




where¢ 2 S (EX)L2 Y|'Y3, yielding the ML estimator ~ Another asymptotical scenario, that is also particularly
interesting, is that wher€Xx ), , — i\/(ZX)l L (%),

(>x) 2 N vrivi]? i.e., if X; and X, are (almost) deterministically related. It can
3 _ 2,2 » ! Yivi Gy 1 2 y .
- (x),, % \/(ZX)1 ] (Ex), % [2221 ! 2} be checked that in that framework the KLD goes to infinity
al = - b a1b2 H 1+ H H H
N (s S —(yu)? Ny wheneveray # “>2. The intuition behind this result is also
[( X)l,l( X)2,2 ( X)1,2] 2= (V) interesting: sincei(l and X, are related by a fixed factor,

if we compute% = o& it will be trivial to distinguish that

where s 2 [vazl (Yf)z} {Zf;l (YQZ)Q} Note that when- a
scenario from b1

- ) ; . — = 7+ unless =
ever (X = 0, then this estimator is equivalent to (2). Yy b a
On( tr)é) BtQher hand. in the computatiog of the KLI(D )and Therefore, in order to follow our worst case approach, we
! ! H aib ; :
given that we study the distinguishability between the psse Will chooseas to be 422, By doing so, the resulting KLD

ing corresponding ta; andb;, we will look for those values ygjue is D b)) = -1+ % —log %] . which
of as andbs minimizing the KLD. In the current scenario, the. ) (f(yl’y%)||f(yl’y2)) + b %8 %]
derivative of the KLD with respect ta is is nothing but twice (3) (and therefore twice (8)), and elact

, the same as (5), although in that case this value was obtained
1 ha (Ex),, (Ex),, —arb2 (Ex); , for a generic covariance matrix. o
as 02 (3 > (52 Again, this result |IIustrates_what one would intuitively
2 [( X)11 (5%~ X)“} expect; the larger the correlation between the sources, the
by <a1<2 )2 H) easier it will be to distinguish between the operators. éutje
X/ the two limit behaviors are also very enlightening:

Y, _ b
b2

which has roots with respect @, at

by (S b)) ’ . .
2 ( X)m( X)m « Whenever the considered sources are independent, the
W one replacss (VD) nto the relatie snifopy, the redds  2chieved KLD is equivalent 1o that where only is
not depend orby, so the minimization over that variable is con§|dered. Of course in this framewolk does not
indeed not necessary. The obtained value is provide any knowledge of;, and consequently we can
) just neglect that variable.
D(forn vollfvyvp) = =2 « Whenever the relationship between the sources is de-
2 2 4 2 H—. H H H H
af[z(zx)m(zx)mf(zx)m]fa] (EX)l,z"’ terministic, the problem is equivalent to having two

independent observations, coming from a single source.
5(5%), 4 (5% 2| 5%, %) 2~ (%)) P J J

2 n]z ) V. NUMERICAL RESULTS
1

—Llog i {a] (2)2() 2
A ex),, (%),
Gaussian linear cases that have not been studied in thepsevi
An interesting scenario, is that wher@lx)1 ) 0; section due to their cumbersome mathematical expressions.
under that assumption, the derivative of the KLD with reFirst of all, we will consider the effect of the processingseo
spect toap is equal to —7- + 42, yielding the condi- Z. The solid lines in Fig. 3 show the results obtained when
tion a3 = b3. Indeed, in that particular framework theas = a; (correspondinglyb, = b1), i.e., the scenario studied
KLD can be written as (check the obvious relationshigs Sect. IV-B. Be aware that in that framework, and as it was
with (3)) D(fv,,vo)llfevrvy) = i (—1 + ‘;—% —log {‘;—%} -+ previously discussed, the fact of considering twice theesam
eprocessing operator helps to our estimation. Nevertheless
the observations are noisy, the closer they are, the more dif
the KLD over‘;—g; straightforwardly, the achieved solution isficult will be to appreciate the different information thato
Z—§ =1, providir?g a null contribution to the total KLD, Whoseobservation provides; indeed, when they Qet_ ver_y cIoss (e
value will be when (ZX)L2 — \/(EX)M (EX)M) the distinguishability
) o2 o2 will be equivalent to having a single observation (the _KLD
D(fev o) llforyvp) = 5 (—1 + b—; —log {b—;D , (8) decreases to half the value we have (&YX)LQ = 0). This
1 1 illustrates that a very high correlation between sourcasis
i.e., the same value achieved in (3). The implications & thalways positive for distinguishability.
result are evident: On the other hand, Fig. 3 also contains the results when
« SinceX; andX, are independent, the consideratiortef a2 and b, are not known, i.e., the scenario considered in
andY; will not provide any knowledge that can improveSect. IV-D; the curve obtained far}, = 0 corresponds to
the distinguishability between, andb,. the results derived there. As mentioned in Sect. IlIl we have
« So, if we look for those values af; and b, minimizing

In this section we will provide a glance at some of those

2 2
1 a a e e
5 (—1 + é — log {b—g}) , and consequently we can minimiz
2

1Take into account that we assume this equality to hold betaking

i i 2 _ 12
the KLD’ we wil fmq thata; = b; (due to the SYMMENry o jimit (%), 5 = £/ (2%), 1 (%), In the limit the covariance
obtained by assuming zero-mean random variables). . ’ . 2" -
matrix of X becomes singular (with computational problems arising rwhe

« Consequently, we go back to the framework studied Wmputing (1)), so it is important to note that by considgrit = ’;—; the
Sect. IV-A. KLD does not depend on the covariance matrixof
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Fig. 3. KLD whenas = a1 andbs = by (solid lines) and whemy and bz
are not known (dashed ones), for different values<7§f1 = 0%2 = o%.

1, bh = 12 (EX)Ll = 2 (EX)1,1 = 3 (ZX)LQ €
[07 (Ex)14 (EX)2,2]' px =0, pz =0.

a; =

0.2

T
— =3

0.18p u,=2
—n =1
0.16 | —— K, =0

0_04/// 1
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Fig. 4. KLD whenas and bo are not known, fora%1 = 0222 = 0 and
different values ofux, = pux, = px.- a1 =1,b1 =12, (¥x), , =2

(ZX)1,1 =3 (EX)l,z € [07 (ZX)1,1 (EX)Q,Q]' mz =0.

decided to follow a worst case approach for this scenaridfl

Indeed, for the noisy case the valuesugfand b, minimizing

the KLD area, = 0 and by = 0; the intuitive idea behind
this result is also clear: in the worst case we cannot triest th
second observation, as it is only noise. In that case the KLE!

i l a%(EX)lJJrazZ _ a%(EX)l,lJrazZ

2 | p2 (EX)1,1+"2Z b2 (EX)1,1+"2Z
independent of the correlation term, as expected.

— 1|, whichis

the sake of tractability we have focused on the linear Gaussi
case, it is evident that the principles derived here wouldfpe
plicable to more general frameworks. Among these prinsiple
we can mention the behavior of the distinguishability measu

in different scenarios, and how, for example, the case where
the correlated sources are known to share their processing i
equivalent to having independent sources. It also intieigst

to note that for the case where the unwanted processing is
unknown, for the noiseless case the distinguishabilityeetul

for deterministically correlated sources is double the one
obtained for independent sources, but for the noisy case the
obtained value is independent of that correlation, as tberse
observation is considered to be pure noise. Finally, we @oul
like to mention thea priori striking result showing that a larger
correlation between sources does not always imply a better
distinguishability between operators.
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