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ABSTRACT
The problem of detecting a Gaussian signal received with

multiple antennas through a time-varying channel and cor-
rupted by noise of unknown power is addressed by deriving
the Generalized Likelihood Ratio test. The channel is de-
scribed by means of a basis expansion model with determin-
istic unknown coefficients. Since the detection rule requires
the knowledge of the Maximum Likelihood estimates of the
channel and noise power, which lack closed-form expres-
sions, an Expectation-Maximization algorithm is proposed to
carry out such computation. Finally, simulations reveal that
the proposed detector successfully exploits spatial correlation
and time variation of the channel.

Index Terms— Spectrum sensing, cognitive radio, detec-
tion theory, time-varying channels

1. INTRODUCTION

The problem of detecting the presence of transmissions in a
particular frequency channel has been the subject of many re-
search works in the past, but interest has grown considerably
due to the proposal of dynamic spectrum access (DSA) [1],
commonly referred to as cognitive radio, in the last decade.
The presence of noise forces us to exploit properties of the
signal such as power, spatial correlation or cyclostationa-
rity [2]. In this work we exploit spatial correlation and time
variation of the channel.

Most existing detectors in the literature assume time-
invariant channels, but this may be unrealistic in cases like
those where the symbol period is comparable to the coherence
time of the channel (e.g. in narrowband communications) or
those where the signal-to-noise ratio (SNR) is very low so
that long observation windows are required. Conversely,
most works in time varying channels have not addressed ac-
tivity detection, with the exception of [3–5]. However, these
works do not exploit the spatial information that may be
present in multiantenna sensors.
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In this paper, we assume that the signal has been trans-
mitted using a single antenna and that its amplitude follows a
Gaussian distribution. The latter assumption is widespread in
the literature since it is well-motivated in communication sce-
narios. The channel is assumed frequency flat, and time varia-
tions are modelled using a basis expansion model (BEM) [6],
which considers that the time evolution of the channel coef-
ficient at a particular antenna can be described in terms of a
set of basis functions, which can be formed by discrete pro-
late spheroidal sequences [7], complex exponentials [6, 8, 9],
Karhunen-Loeve orthogonal expansion functions [10] or sim-
ply polynomials [11]. The model used in this paper is the
multiantenna BEM in [12], which uses decoupled coefficients
for the time variations at each antenna.

In applications like radar or DSA [1], we are interested
in decision rules maximizing the probability of detection for
a target probability of false alarm [13]. Unfortunately, in
the presence of unknown parameters no such rule can be
found and we are forced to resort to suboptimal schemes.
There exist sets of guidelines to design this class of detec-
tors, one of them being the Generalized Likelihood Ratio
(GLR) Test [13], which is known to exhibit good detection
performance in many cases. However, in order to evaluate
this test we need the Maximum Likelihood (ML) estimates of
the channel coefficients and noise power, which must be ob-
tained by numerical means. We propose the utilization of an
Expectation-Maximization (EM) algorithm [14] to find those
estimates. The resulting detector is seen to exploit both time
variations of the channel and the rank-one space structure of
the transmitted signal.

This paper is structured as follows: first, the observation
model is described in Sec. 2. Next, the Generalized Like-
lihood Ratio is presented in Sec. 3 and an EM algorithm is
proposed in Sec. 4 for its computation. Finally, performance
assessment is provided in Sec. 5 and some final remarks dis-
cussed in Sec. 6.

2. OBSERVATION MODEL

Assume that a spectrum sensor is monitoring a particular
frequency channel using M antennas and that, after sampling
and down-conversion, N samples per antenna are processed



to decide whether they contain a signal transmitted by a
single-antenna user, which is known as primary signal. We
collect the received samples in the matrix Y ∈ CM×N ,
where the m-th row corresponds to the m-th antenna and the
n-th column with the n-th time instant. The decision problem
is hindered due to the presence of noise. More specifically,
when a primary waveform is present, we may write the ob-
servations Y as

Y = HX + σW (1)

where HX and σW are, respectively, the signal and noise
terms, which are discussed next. First, X = diag {x} ∈
CN×N is a diagonal matrix containing the transmitted signal
x, which is a white complex Gaussian circularly symmetric
random vector with zero mean, i.e., x ∼ CN (0, IN ). Second,
H ∈ CM×N is a matrix whose (m,n)-th element hm,n is the
channel coefficient at antenna m and time sample n. Finally,
the noise is assumed spatially and temporally white, so that
the entries wm,n of the noise matrix W are independent and
identically distributed (i.i.d.) with wm,n ∼ CN (0, 1). Since
the elements ofW are normalized to unit variance, σ2 repre-
sents the (unknown) noise power.

Each row of H represents the evolution of the channel
at a particular antenna over time. This evolution is modeled
here using a BEM which is decoupled from antenna to an-
tenna [12]. In particular, if the m-th row of H is denoted as
hHm, where the superscritp H represents conjugate transpose,
we may apply the expansion

hm =

K−1∑
k=0

fkckm (2)

where fk ∈ CN are the basis functions (or vectors), which
are known to the sensor, and ckm is the associated coeffi-
cient, which is regarded as a deterministic unknown param-
eter. Expression (2) can also be written as hm = Fcm,
where F = [f0,f1, . . . ,fK−1] ∈ CN×K and cm =
[c0m, c1m, . . . , cK−1,m]T ∈ CK , or more compactly as
HH = FC, where C = [c0, c1, . . . , cM−1] ∈ CK×M .

It is also convenient to rewrite (1) by defining the column-
wise vectorizations y = vecY and w = vecW so that we
obtain the equivalent

y = Gx+ σw (3)

whereG ∈ CMN×N is given by

G =


g0 0 . . . 0
0 g1 . . . 0
...

...
. . .

...
0 0 . . . gN−1

 , (4)

with gn ∈ CM representing the n-th column of H . This
enables us to write the covariance matrix of the observations

as Σy = E
{
yyH

}
= GGH+σ2IMN , so that the likelihood

function of the parameters is given by

p(y;θ) =
exp

{
−yHΣ−1y y

}
πNM |Σy|

, (5)

where θ = [(vecC)T , σ2]T is a vector collecting all the un-
known parameters of the distribution.

3. GENERALIZED LIKELIHOOD RATIO

The problem of deciding over the presence of the transmit-
ted waveform can be stated as a binary hypothesis test with
hypotheses:

H0 : Y = σW H1 : Y = HX + σW . (6)

The Generalized Likelihood Ratio test is constructed by com-
paring the GLR statistic T against a threshold γ, which is
fixed so as to satisfy certain probability of false alarm/detection
constraint, deciding H1 when T > γ and H0 otherwise. The
GLR test can thus be written as

T =
p(y; θ̂1)

p(y; θ̂0)

H1

≷
H0

γ, (7)

where θ̂i is the ML estimate of the unknown parameters under
hypothesisHi, i.e., θ̂i is the maximizer of (5) underHi.

Since under H0 we have that G = 0, we only need to
find the ML estimate of σ2, which can be easily seen to be
σ2 = (MN)−1yHy = (MN)−1 Tr

(
Y Y H

)
. On the other

hand, the computation of the ML estimates under H1 is not
so simple and we are forced to resort to numerical methods.
In the next section we propose an EM algorithm to perform
such computation.

4. EM ALGORITHM

The EM algorithm is an iterative method proposed by Demp-
ster et al [15] that allows numerical ML estimation and en-
joys, as its most appealing property, local convergence. More-
over, as opposed to other methods like gradient descent, no
stepsize parameter needs to be tuned. The key observation is
the fact that the optimization of (5) with respect to θ would
be much easier if we knew the transmitted sequence x. We
thus may form the vector with the so-called complete data z:

z =

[
x
y

]
=

[
0N IN

σIMN G

] [
w
x

]
(8)

which is clearly Gaussian distributed with zero mean and co-
variance matrix given by

Σz = E
{
zzH

}
=

[
IN GH

G σ2IMN +GGH

]
(9)



and the associated likelihood function can be written as

p(z;θ) =
exp

{
−zHΣ−1z z

}
πN(M+1)|Σz|

. (10)

Given a guess θ̄ for the vector of true parameters, every itera-
tion of the EM algorithm obtains a refined estimate θ∗ as θ∗ =
arg maxθ Q(θ|θ̄), where Q(θ|θ̄) = E

{
log p(z|θ)|y; θ̄

}
.

This procedure is repeated by taking the output θ∗ of each
iteration as the input θ̄ of the next one. Throughout, the nota-
tion with the bar¯will be used to denote input parameter, and
the notation with the asterisk ∗ to denote output parameter.
The two above operations are referred to as the expectation
step (or E-step) and the maximization step (or M-step).

4.1. Expectation Step

In view of (10), it is clear that the expectation in Q(θ|θ̄) can
be expanded as

Q(θ|θ̄) = −N(M + 1) log π − log |Σz| − E
{
zHΣ−1z z|y; θ̄

}
On the other hand, using the properties of the Schur comple-
ment [16] we find that |Σz| = σ2MN , and it can also be seen
that the inverse of Σz is given by

Σ−1z =
1

σ2

[
σ2IN +GHG −GH

−G IMN

]
. (11)

Combining these expressions we obtain, after some algebra,

Q(θ|θ̄) ∝ −MN log σ2 (12)

−
Tr
(
GHGΥx|y

)
− 2 Re

{
µHx|yG

Hy
}

+ yHy

σ2

where Υx|y = E
{
xxH |y, θ̄

}
and µx|y = E

{
x|y, θ̄

}
.

Since y and z are jointly Gaussian, the values of Υx|y and
µx|y can be easily computed [14, Sec. 10.5]: on the one
hand,

µx|y = ḠH(σ̄2IMN + ḠḠH)−1y. (13)

Applying the Matrix Inversion Lemma [16] we obtain

(σ̄2IM + ḡnḡ
H
n )−1 =

1

σ̄2

[
IM −

ḡnḡ
H
n

σ̄2 + ||ḡn||2

]
(14)

so that (13) is also

µx|y = (σ̄2IN + ḠHḠ)−1ḠHy. (15)

For convenience, let us also define Ux|y = diagµx|y and

Z =


y0 0 . . . 0
0 y1 . . . 0
...

...
. . .

...
0 0 . . . yN−1

 , (16)

where yn is the n-th column in Y . Then, it is clear that

Ux|y = (σ̄2IN + ḠHḠ)−1ḠHZ. (17)

On the other hand

Υx|y = Σx|y + µx|yµ
H
x|y (18)

where [14, Sec. 10.5]

Σx|y = E
{

(x− µx|y)(x− µx|y)H |y, θ̄
}

= IN − ḠH(σ̄2IMN + ḠḠH)−1Ḡ, (19)

although, using (14) again, (19) simplifies to

Σx|y = σ̄2(σ̄2IN + ḠHḠ)−1, (20)

which is much easier to compute. Finally, since the cost func-
tion Q(θ|θ̄) only depends on the values on the diagonal of
Υx|y , we define

Υ̃x|y = Σx|y +Ux|yU
H
x|y (21)

which is equal to Υx|y on the diagonal and zero elsewhere.

4.2. Maximization Step

In this section we shall maximize (12) with respect to (w.r.t.)
σ2 and G, subject to the constraints that σ2 ≥ 0 and H =
CHFH for some C. For a given G, the maximizer w.r.t. σ2

is given by

σ2
∗ =

Tr
(
GHGΥ̃x|y

)
− 2 Re

{
µHx|yG

Hy
}

+ yHy

MN
(22)

and results in

max
σ2

Q(θ|θ̄) ∝ −Tr
(
GHGΥ̃x|y

)
+ 2 Re

{
µHx|yG

Hy
}
,

which can be written as

max
σ2

Q(θ|θ̄) ∝ −
M−1∑
m=0

[
hHmΥ̃x|yhm − 2 Re

{
rHmU

H
x|yhm

}]
,

where rHm denotes the m-th row in Y . Now, recalling that
hm = Fcm enables us to write the right hand side as

−
M−1∑
m=0

[
cHmF

HΥ̃x|yFcm − 2 Re
{
rHmU

H
x|yFcm

}]
Maximizing the previous expression with respect to cm yields

cm,∗ = (FHΥ̃x|yF )−1FHUx|yrm (23)

or, alternatively,

C∗ = (FHΥ̃x|yF )−1FHUx|yY
H . (24)

The resulting algorithm is summarized as Algorithm 1.



Algorithm 1 Expectation-Maximization

Initialize σ̄2 and H̄
while stopping criterion==FALSE do
• E-STEP:
Ux|y = (σ̄2IN + ḠHḠ)−1ḠHZ

Υ̃x|y = σ̄2(σ̄2IN + ḠHḠ)−1 +Ux|yU
H
x|y

•M-STEP:
H = Y UH

x|yF (FHΥ̃x|yF )−1FH

δ = Tr
(
GHGΥ̃x|y − 2 Re

{
UH
x|yG

HZ
}

+ZHZ
)

σ2 = δ/(MN)
• UPDATE:
σ̄2 ← σ2

H̄ ←H
end while

4.3. Initialization

The EM iteration described above can be initialized in a num-
ber of different ways. Fortunately, we have observed in all our
experiments that the detection performance does not depend
meaningfully on the particular choice among those described
here. One possibility stems from the assumption thatX = I .
In that case, the minimum-variance unbiased estimate for C
is given by C̄ = (FHF )−1FHY H . A different option is
to assume that the channel is time invariant, i.e., if the first
basis function f0 corresponds to a constant channel, that is,
f0 ∝ 1N , then the matrix C of a time invariant channel is of
the form C = [c0,0, . . . ,0]H . In that case, it is known [17]
that the ML estimate of c0 is given by ĉ0 = ν0 · v0, where
ν0 is a constant depending on the trace and largest eigenvalue
of the spatial sample correlation matrix R̂ = Y Y H/N , and
v0 is the principal eigenvector. As an initial value for σ2, it
seems reasonable to take

σ̄2 = max

[
ε,
||Y ||2F − ||FC̄||2F

MN

]
, (25)

where || · ||F denotes Frobenius norm and ε is a small positive
constant, required to avoid negative variance estimates.

5. SIMULATIONS

Since analytical evaluation of the performance of the algo-
rithm seems an extremely difficult task, in this section we re-
sort to Monte Carlo (MC) simulation. In all the experiments
here we consider that F is composed of the first (K + 1)/2
and the last (K − 1)/2 columns of the unitary Fourier ma-
trix, where K is an odd integer. The reason for doing so is to
equally consider positive and negative frequencies. Clearly,
this corresponds to a BEM with complex exponentials. The
coefficients of matrixC are generated at each MC run as real-
izations of independent zero-mean complex Gaussian random
variables with variance α2, where α2 is a constant adjusted to

set a given SNR. More specifically, the energy of the signal
term is given by

E
{
||HX||2F

}
= E

{
Tr
(
CHFHXXHFC

)}
= E

{
Tr
(
FHXXHFCCH

)}
= α2M Tr

(
FHINFIK

)
= α2MK

since X and C are uncorrelated. The average SNR per an-
tenna is thus given by

E
{
||HX||2F

}
E {||σW ||2F }

=
α2MK

σ2MN
=
α2K

σ2N
. (26)

Due to the mechanism used to generate C, the channel H is
actually complex Gaussian or, in other words, it is a Rayleigh
channel. It can also be seen that the Doppler spectrum of the
channel is flat, with bandwidth (i.e. Doppler spread) propor-
tional to K/N . Moreover, in order for the results to be as
general as possible, a different channel is generated for each
MC iteration. Since the probability of false alarm (PFA) does
not depend on the channel, this fact does not affect the choice
of the threshold γ and naturally averages the probability of
detection (PD) over the different realizations.

Fig. 1 shows the probability of detection vs. the parame-
terK controlling the Doppler spread of the channel. The case
K = 1 corresponds to time-invariant channels. The results
are compared with those obtained with the GLR test for time-
invariant channels [17] (TI-GLRT) and with the detectors for
single-antenna time-varying channels from [5]: the Gener-
alized Kurtosis (GK) detector with parameter ρ = ∞, the
eigenvalue (EV) detector and the Arithmetic Mean/Geometric
Mean (AM/GM) detector. We observe that when K > 1 the
time variation of the channel is exploited and the performance
is improved with respect to the TI-GLRT detector, which does
not exploit it. The gain resulting from using several antennas
is also noticed. However, for M = 1 and the parameters cho-
sen, the detector proposed here is not better than all the detec-
tors from [5], highlighting the fact that no detector exists that
is optimal for the whole range of unknown parameters.

Finally, Fig. 2 shows the Receiver Operating Characteris-
tics (ROC) of the proposed detector and the TI-GLRT detector
from [17], for N = 20 samples, M = 4 antennas and K = 5,
and three different SNR values. The improvement entailed by
exploiting channel time variations is clear.

6. CONCLUSIONS

A detector exploiting time variations in the channel and space
correlation was derived using the GLR approach. The chan-
nel was modeled using a BEM and the signal was assumed
Gaussian. Since the ML estimates required for evaluation of
the GLR statistic lack closed-form expression, an EM algo-
rithm was proposed to perform such computation. Finally,
MC simulations illustrated the advantage of exploiting both
temporal and spatial features of the received signal.
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