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Abstract—Given a small percentage of nodes whose actual
positions are known, the problem of estimating the locations of
the remaining nodes of a wireless sensor network has attracted
a large interest in the last years. The localization task is based
on the noisy estimates of the distances between pairs of nodes in
range of each other. The problem is particularly hard when the
network connectivity is not sufficiently high, the most attractive
case in real applications. In this paper, we propose to solve
the localization problem by using a two—objective evolutionary
algorithm which takes concurrently into account during the
evolutionary process both the localization accuracy and certain
topological constraints induced by the network connectivity.
The solutions generated by the evolutionary algorithm are
therefore refined by a gradient-based technique which further
reduces the localization error. The proposed approach is tested
with different network configurations and sensor setups, and
compared in terms of normalized localization error with a
state—of—the-art approach based on a regularized semi-definite
programming technique. The results show that, in all the
experiments, our approach achieves considerable accuracies,
thus manifesting its effectiveness and stability, and outperforms
the compared approach.

Keywords-Stochastic Optimization; Multi-objective Evolu-
tionary Algorithms; Range Measurements;

I. INTRODUCTION

A Wireless Sensor Network (WSN) may consist of hun-
dreds or even thousands of low—cost nodes communicating
among themselves for applications like environment moni-
toring, precision agriculture, vehicle tracking, logistics, etc.
In such applications knowledge about the location of sensor
nodes may play a key role [1], [2]. Although in principle the
use of a Global Positioning System (GPS) could enable such
“location awareness”, this solution is not always viable in
practice. The first reason is merely economic, as the cost of
GPS receivers is not negligible. The second reason is related
to the power consumption of a standard GPS receiver, which
is generally not affordable by battery—powered nodes. Last
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but not least, a technology-related reason arises in indoor
and underground WSN deployments: in these situations, in
fact, communication with satellites may be compromised.

These limitations have motivated alternative approaches
to the problem. Among these, fine—grained localization
techniques arise as a flexible option. In these schemes,
only a few nodes of the network (termed anchor nodes)
are endowed with their exact positions through GPS or
manual placement, while all nodes are able to estimate their
distances to nearby nodes by using some measurement tech-
nique. These distance-related techniques include Received
Signal Strength (RSS) measurements, Time of Arrival (ToA),
Time Difference of Arrival (TDoA), etc. (for a review of
these techniques the reader car refer to [1], [2]). Thus,
assuming that the coordinates of anchor nodes are known,
and exploiting pairwise distance measurements among the
nodes, the fine—grained localization problem is to determine
the positions of all non—anchor nodes. This task has proved
to be rather difficult, due to the following reasons: i)
determining the locations of the nodes from a set of pairwise
distance estimates is a nonconvex optimization problem; ii)
the measurements available to nodes are invariably corrupted
by noise; and finally, iii) even if the distance estimates were
perfectly accurate, sufficient conditions for the solution to be
unique are not easily identified [3]. We will briefly discuss
these issues in the following.

Assuming a statistical characterization of measurement
noise, which will usually depend on the kind of measurement
technique [1], Maximum Likelihood (ML) estimation is the
natural approach to the localization problem. However, as
previously mentioned, the ML formulation results in a mul-
tivariable nonconvex optimization problem. Three different
approaches to this task can be found in the literature, namely
multidimensional scaling, convex relaxation and stochastic
optimization. The first approach (MDS) [4] is a connectivity—
based technique that, in addition to distance measurements,
exploits knowledge about the topology of the network; this
information imposes additional constraints on the problem,
since nodes within communication range of each other
cannot be arbitrarily far apart. Although appealing, MDS



is not able to converge to sufficiently accurate solutions.
The second approach relaxes the original nonconvex ML
formulation in order to obtain a Semi-Definite Program-
ming (SDP) or a Second—Order Cone Programming (SOCP)
problems. Global solutions to these relaxed, convex prob-
lems can be then obtained with moderate computational
effort [5] [6] and constitute approximate solutions to the
original nonconvex problem. Since [6] has shown that the
solutions obtained by SOCP relaxation are less accurate than
those obtained by SDP relaxation, in this paper we will
compare the performances of the proposed algorithm only
against SDP. The third approach attempts to avoid local
maxima of the likelihood function by resorting to global
optimization methods, such as e.g. simulated annealing [7].
In [8] we have already shown that the proposed evolutionary
method is able to outperform a state—of—the—art localization
counterpart based on simulated annealing, thus we will not
consider comparisons with techniques belonging to the third
approach.

In the following we will describe the most accurate convex
relaxation approach, which is the regularized version of the
original FSDP proposed in [5]. Indeed, after having observed
that FSDP could still incur significant estimation errors, the
same authors proposed a regularized version (referred to as
FSDPr) and a gradient—descent refinement technique in [3]
and [9], respectively, in order to improve its performance.
FSDPr adds a regularization term to the objective function
in order to reduce the tendency of FSDP solutions to
have points crowded together. This tendency occurs when
projecting the high-rank SDP solution back onto the two—
dimensional plane in the last step. Thus, the regularization
term suggested in [3] penalizes small node separations. The
main issue in FSDPr is the choice of the regularization
value: if it is too low, then the effects of regularization
are negligible; on the other hand, if this value is too high,
then the regularization term will overwhelm the error term,
making the SDP either unfeasible or yielding a solution
whose points are too far apart. Although there is no way to
obtain a good regularization value a priori, in [3] the authors
proposed a heuristic method for its computation based on the
solution provided by FSDP without regularization. Finally,
the goal of gradient—based refinements is to improve the final
estimation given by a localization algorithm. Since gradient—
based methods generally do not deliver a global optimal
solution when the problem is not convex, this technique can
be applied as a fine—tuning phase once an approximation
of the global solution has been found [3], [9]. Thus, the
technique can be applied to any localization method.

In this paper we propose to tackle the localization prob-
lem by using a Multi-Objective Evolutionary Algorithm
(MOEA). In particular, we adopt two objectives: the first
objective, denoted CF, is given by the original noncon-
vex cost, that is, the sum of squared differences between
the estimated and the corresponding measured inter—node

distances. The second objective, denoted CV, exploits the
connectivity—based a priori information about the network,
and is especially useful in order to alleviate localizability
issues.

The proposed approach is tested with a variety of network
topologies, percentages of anchor nodes, and connectivity
ranges, and compared in terms of normalized localization
error with FSDPr, without and with a gradient-based refine-
ment stage. We show that the proposed evolutionary method
produces more accurate estimates of the node locations than
the FSDPr. The improvement is more significant for network
topologies with lower connectivity, for which the localiza-
tion problem becomes more difficult. Thus, the proposed
approach constitutes a good candidate for WSN applications
which do not demand highly—scalable or real-time solutions
but do require high localization accuracies.

The paper is organized as follows. In Section II, we
present the problem formulation. Section III introduces
our multi-objective evolutionary approach to the problem.
The experimental results of our performance analysis are
presented in Section IV. Finally, in Section V we draw some
conclusions.

II. PROBLEM FORMULATION

In this section we first introduce the system model, the
objective functions used in the evolutionary algorithm and
the performance metric adopted in the comparison. Then
we discuss certain geometrical constraints which can be
defined on each non—anchor node, exploiting the a priori
information (i.e. connectivity) about the network topology.

A. System model

We consider a WSN with n nodes deployed in 7 =
[0,1] x [0,1] C R% Among these, nodes 1 through m,
with m < n, are anchor nodes whose coordinates p; =
(xiyy;) € T, 4= 1,.., m, are known. We assume that if
two sensor nodes, say ¢ and j, are within the communication
range of each other, then their inter-node distance d;; can
be estimated by using some measurement technique (see
Section I). Distance measurements d;; are modeled as

dij =Tij + €ij ey

where 7;; = ||p; — p;|| is the actual distance between nodes
i and j (||-]] denotes the Euclidean norm). Similar to [3],
[51, [7], [9], we assume that measurement errors e;; follow
a zero—mean Gaussian distribution with variance o2. It is
also assumed that the random variables e;; and ey, are
statistically independent for (i, j) # (k,1).

A simple disk model is adopted for network connectivity:
nodes ¢ and j can communicate with each other if and
only if 7;; < R, where R is the connectivity radius. This
model is commonly used in the literature, although empirical
measurements on real WSNs have shown that it is only
an approximation in practice. On the other hand, different



connectivity models could be adopted by modifying the
geometrical analysis in Section II-C. We refer to nodes j
such that r;; < R as first-level neighbors of node 4. Further,
we refer to all nodes j which are not first-level neighbors of
node ¢, but which share at least a first-level neighbor with
node i, as second-level neighbors of node i. Let

Ni = {jel..nj#i:ry <R} 2)
N, = {jel...nj#i:ry >R} 3

be the set of the first-level neighbors of node 7 and its
complement, respectively. We assume that sets N; and N;
are known for all « = 1, ..., n. This is a reasonable
assumption, since each node can easily determine which
other nodes it can communicate with.

B. Objective functions and performance metric

Pursuing the goal of estimating the positions of the non—
anchor nodes as accurately as possible, we propose to
concurrently minimize two objective functions. Let p; =
(Zi, 9:),a=m+1,...,n be the estimated positions of the
non—anchor nodes 7. The first objective CF is defined as

> (Ciij - dij)2 ) C))

JEN;

n

CF= )

i=m-+1

where a?l-j is the estimated distance between nodes 7 and j
computed as follows:

\/(;%Z - 33]-)2 + (9 — Qj)2 , otherwise.

&)
Thus, CF is the sum of the squared differences between the
distances corresponding to the candidate geometry (as given
by the estimated positions p;, ¢ = m+1,...,n of the non—
anchor nodes and the positions of the anchor nodes) and the
measured data.

Given a set of data consisting of the set of anchor nodes
and the inter—node distance measurements, a network is said
to be localizable if there is only one possible geometry
compatible with the data. Localizability is a fundamental
problem which can be studied within the framework of
rigid graph theory. If the network is not localizable, then
multiple global minima will be present in the CF, with
only one of them corresponding to the actual geometry of
the deployment. Thus, in settings which are close to not
being localizable, any localization algorithm will become
extremely sensitive to these false minima of CF, resulting
in very large localization errors [10].

The simplest effect leading to lack of localizability is
the so—called flip ambiguity phenomenon, shown in Fig. 1.
The neighbors of node i (i.e. nodes j, k, [ and m) are
almost collinear (double line in the figure), and thus, it is
clear that if the location of node 7 is flipped with respect

\/(:ﬁl - xj)2 + (4; — yj)2 , if node j is an anchor,

to this line to the new position denoted by i/, then the
new geometry so obtained is almost compatible with the
original inter—node distance measurements (it would be fully
compatible if nodes j, k, [ and m were perfectly aligned).
In order to counteract this lack of localizability, connectivity
considerations are helpful: by analyzing Fig. 1, one can
observe that whereas the flipped position ¢’ is within the
communication range of node n (shown by the circle in
the figure), the actual position ¢ is not. If the network
is sufficiently dense, one would expect false minima of
CF to violate some connectivity constraints of this sort.
The number of these violations in a candidate topology
constitutes our second objective function CV.

Figure 1. The flip ambiguity problem.

Formally, CV counts the number of connectivity con-
straints which are not satisfied by the candidate geometry,
and is defined as

CV=> "> 6+ > 1-65)]. (6)

i=1 \jEN; jEN;

where 0;; = 1 if Jij > R and 0 otherwise.

In order to evaluate the accuracy of the estimates, we
consider the normalized localization error (NLE), defined
as

n

> (o= pal’) > 100%. D

i=m-+1

1 1
NLE ==, | ——
R\| (n —m)

Thus, assuming that the estimate is unbiased, NLE can be
interpreted as the ratio of the standard deviation to the
connectivity radius.

C. Geometrical constraints

The connectivity ranges and the positions of the anchor
nodes determine subsets of the overall search space where
each single non-anchor node can be positioned. These
subsets depend on the type of non—anchor node, and can
be defined by means of geometrical constraints. We adopt
the following classification based on the position of a non—
anchor node with respect to anchor nodes:

e Class I node: a non—anchor node which is first-level
neighbor to at least one anchor node.



If a node belongs to Class 1, then its position must
lie within the intersection of the circles of radius R
centered in the anchor nodes which it is neighbor to.
o Class 2 node: a non—anchor node which is second-level
neighbor to at least one anchor node.
If a node belongs to class 2, then its position must
lie within the intersection of the annuli with inner and
outer radii R and 2R, respectively, centered in the
anchor nodes which it is second-level neighbor to.
e Class 3 node: a non—-anchor node which belongs to
neither class 1 nor class 2.
If a node is a member of class 3, then its position must
lie outside the union of the circles of radius R centered
in all anchor nodes.

It is clear that, given a non—anchor node belonging to
one of the three classes, it is possible to restrict the space
where it can be located. This information can be exploited
both in the generation of the initial population of the MOEA
and, during the evolutionary process, in the application of
the mating operators. By avoiding the generation of solutions
which certainly cannot be optimal (since they violate the ge-
ometrical constraints determined by the connectivity ranges
and by the known anchor node positions), the execution
of the evolutionary algorithm can be sped up. Furthermore,
these constraints help alleviate the localizability issues and in
particular the flip ambiguity effect. Indeed, this phenomenon
is much more likely to occur if the candidate positions of the
non—anchor nodes are not constrained within the subspace
corresponding to its membership class.

III. THE OPTIMIZATION FRAMEWORK

MOEAs aim to search for optimal solutions to problems
that incorporate multiple performance criteria by generating
a family of equally valid solutions, where each solution tends
to satisfy a criterion to a higher extent than another. Different
solutions are compared with each other by using the notion
of Pareto dominance [11].

We have used PAES as MOEA in our experiments. PAES
probably represents the most elementary nontrivial algorithm
capable of generating diverse solutions in the Pareto optimal
front. Further, it is characterized by a lower computational
complexity than traditional niching methods. Due to space
limitation the details of the algorithm are omitted: the
interested reader car refer to [12].

In our optimization framework each chromosome encodes
the positions of all non—anchor nodes in the network. Thus,
each chromosome consists of n — m pairs of real numbers,
where each pair represents the coordinates & and g of a
non—anchor node. The variation range of each coordinate
is bounded by the geometrical constraints described in
Section II-C. We enforce compliance with these constraints
in the initial population. Further, whenever mutations are
applied during the evolutionary process, only mutated in-
dividuals satisfying these constraints are generated. Each

chromosome is associated with a vector of two elements,
which represent the values of the two objective functions
CF and CV (Egs. (4) and (6) in Section II-B).

We have defined two mutation operators. The first mu-
tation operator, denoted Node Mutation operator, performs
a uniform-like mutation: the position of each non—anchor
sensor node is mutated with probability Py = 1/(n — m).
Positions are randomly generated within the geometrical
constraints imposed on the specific node location. The
second mutation operator, denoted neighborhood mutation
operator, is applied when the first operator is not. The
neighborhood mutation operator mutates, with probability
Py = 1/(n —m), the position of each non-anchor sensor
node within the geometrical constraints determined for the
specific node, but unlike the first operator, it applies the same
rigid translation, which has brought the mutated node 7 from
the pre—mutation position to the post—mutation position, to
the neighbors of ¢ with a certain probability (denoted rigid
translation probability). As we have already discussed in [8],
this operator results to be particularly suitable for dealing
with specific topological configurations.

IV. SIMULATION RESULTS

In this section we show the effectiveness of the proposed
two—objective evolutionary algorithm in tackling the local-
ization problem in WSNs. We have built different network
topologies by randomly placing 200 nodes with a uniform
distribution in 7. We have varied the percentage of anchor
nodes to 8%, 10% and 12% (thus each topology consists
of 16, 20 and 24 anchor nodes and 184, 180 and 176
non—anchor nodes, respectively). Further, we have varied
the connectivity radius R in the interval [0.11,0.16] with
step 0.01. The distance measurements between neighboring
nodes were generated according to the model (1). We
assume that these distance estimates are derived from RSS
measurements, which are commonly affected by log—normal
shadowing with standard deviation of the errors proportional
to the actual r;; [1]. Thus, the variance of e;; is given by
0% = a®r};. A value of & = 0.1 was used in the simulations.

For each value of R, 10 random network topologies were
generated. For each topology, a different scenario was built
for each percentage of anchor nodes. Thus, we were able
to perform an evaluation on the effects of both the different
connectivity radii and the different percentages of anchor
nodes on the normalized localization error. Table I shows
the average values of some network indicators, namely the
node degree (considering anchor and non-anchor nodes),
the percentage of non—anchor nodes classified in Class 1
and Class 2 (the percentage of nodes in Class 3 can be
easily deduced from the first two), the percentage of non—
anchor nodes with no anchor node in their neighborhoods
and the percentage of non—anchor nodes having at least 3
anchor nodes in their neighborhoods. The analysis of Table I
reveals that, when the connectivity radius and the percentage



Table I
AVERAGE VALUES OF SEVERAL MAIN NETWORK INDICATORS FOR
DIFFERENT CONNECTIVITY RADII AND PERCENTAGES OF ANCHOR

NODES.
R node anchor ClL1 Cl.2 0 anch. | 3(or more)
degree (%) (%) (%) (%) anch.(%)
8 42.28 | 31.68 57.72 2.28
0.11 6.86 10 50.44 | 32.72 49.56 3.56
12 56.02 | 30.68 43.98 5.97
8 51.03 | 31.85 48.97 2.12
0.12 8.09 10 59.67 | 29.22 40.33 4.50
12 66.48 | 25.80 33.52 5.85
8 58.04 | 32.72 41.96 2.17
0.13 9.41 10 65.28 | 29.72 34.72 5.33
12 69.72 | 26.14 30.28 9.43
8 56.52 | 30.43 43.48 5.98
0.14 10.84 10 67.28 | 25.94 32.72 8.94
12 75.06 | 20.68 24.94 14.20
8 62.01 | 29.35 37.99 7.66
0.15 12.28 10 7094 | 24.11 29.06 12.78
12 75.74 | 21.42 24.26 17.16
8 67.83 | 26.20 32.17 11.09
0.16 14.16 10 74.17 | 22.72 25.83 17.22
12 81.36 | 16.76 18.64 24.55
Table 1T

PARAMETER SETUP OF PAES.

Parameter Value
Size of non—-dominated solution archive 20
Number of divisions of the objective space | 5
Number of fitness evaluations 4 x 10°
Node mutation probability 0.9
Rigid translation probability 0.3

of anchor nodes are low, the localization problem is very
complex: indeed, with a connectivity radius R = 0.11 and
8% of anchor-nodes, only a small fraction of non-anchor
nodes can rely on 3 or more anchor neighbors (2.28%), while
more than the half of them (57.72%) are in communication
with no anchor node. Moreover it is worth noting that,
even when the connectivity radius is increased to 0.16
and the percentage of anchor nodes to 12%, the average
percentage of non—anchor nodes with no anchor neighbor
is not negligible (18.64%), while the average percentage of
non—anchor nodes with 3 or more anchor neighbors is still
significantly low (24.55%). For each scenario, 15 trials of
PAES were executed, with parameter values summarized in
Table II.

Once the Pareto front approximation has been generated,
a solution must be chosen. In our experiments, we verified
that the variation interval of CF for the solutions on the
final Pareto front approximation is quite small. Thus, we
can assume that each solution on the Pareto front can
be acceptable with respect to the CF objective. We have
validated this hypothesis with a Wilcoxon test, by selecting
from each final archive the solutions characterized by the
minimum value of CV and the minimum value of CF
(in practice, the solutions on the extremes of the Pareto
front approximation). Since no statistical difference exists

in terms of NLE among the solutions in the final Pareto
front approximation, each solution can be actually selected
in order to perform a comparison with the FSDPr algorithm.
For the sake of brevity, we take the solution characterized
by the lowest value of CF.

Regarding the FSDPr algorithm, in order to select the
optimum value of the regularization term ()\) we have
adopted the following heuristic strategy. Given a scenario,
we first solve the non—-regularized problem and then exploit
the non—regularized solution to compute the upper bound of
A (A%), as suggested in [3]. \* is used as starting value in the
main tuning loop, where the regularized problem is solved;
if the current regularized solution is not feasible, then the
current value of ) is divided by two and the new regularized
problem is solved again, until a feasible solution is obtained
or a maximum number of tries (M1 = 5) is reached. In
the latter case, the regularized solution coincides with the
non-regularized one (i.e., A = 0).

In Fig. 2, we have plotted as solid lines the average
NLE obtained by FSDPr and PAES algorithms versus the
six values of radius R used in the experiments. Further,
we have shown as dotted lines the average NLE obtained
by applying the gradient refinement described in [3], [9]
to the final solutions computed by the two algorithms (we
denote these approaches as FSDPr+REF and PAES+REF,
respectively).

The analysis of the figures highlights that the gradient
refinement is able to improve the estimation only when it
is already sufficiently accurate. Indeed, if we consider the
solutions generated by FSDPr for the lowest connectivity
radius (R = 0.11), we realize that the gradient method
is unable to perturb the estimation out of the reached
local minimum. On the contrary, when the solutions are
characterised by a low NLE, the gradient method is able to
improve them. In particular, the almost constant gap between
the solid lines and the dotted lines for PAES suggests a stable
improvement introduced by the refinement phase.

The NLEs obtained by PAES are comparable to those
obtained by FSDPr+REF when the connectivity radii are
sufficiently high (R > 0.14), while they are slightly lower
when R < 0.14. Further, in all the experiments, PAES+REF
considerably outperforms FSDPr+REF. For example, when
the percentage of anchor nodes is 8% and the connectivity
radius is 0.11, from Fig. 2(a) we can derive that PAES+REF
provides estimations which are on average 36.57% more
accurate than FSDPr+REF. This percentage increases to
45.75% when the connectivity radius is equal to 0.16.
Similar conclusions can be deduced by analysing Figs. 2(b)-
2(c), which show the results obtained by using the 10% and
12% of anchor nodes: PAES+REF generate solutions which
are 57.84% and 53.72% (61.79% and 48.87%) more accurate
when the percentage of anchor nodes is equal to 10% (12%)
and the connectivity radius is 0.11 and 0.16.
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Figure 2. Comparison between PAES and FSDPr without (solid line) and
with (dotted line) gradient refinement (REF') using different percentages
of anchor nodes and different connectivity radii.

V. CONCLUSIONS

In this paper we have proposed a two—objective evolu-
tionary algorithm able to accurately solve the fine—grained
localization problem in WSNs. The problem is not new
in the literature, since several techniques have been pro-
posed in the last decade. The novelty of the approach
relies on a better exploitation of the connectivity graph
so as to define topological constraints to be used as a
second objective function in a multi—objective optimization
framework. The topological constraints define zones of the
space where each sensor can or cannot be located, thus
reducing the search space of the evolutionary algorithm
and contextually the chance of ambiguously flipping node
locations. Moreover we have discussed the possibility of
using a standard gradient-based technique able to refine the
final estimation produced by the evolutionary algorithm. We

have shown that the proposed approach is able to solve the
localization problem with high accuracy for a number of
different topologies, connectivity ranges and percentages of
anchor nodes. Further, we have discussed how our approach
outperforms the regularized version of the standard semi-
definite programming technique.
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