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ABSTRACT

Two sequential camera fingerprint detection methods are proposed.
Sequential tests implement a log-likelihood ratio test in an incremen-
tal way, thus enabling a reliable decision with a minimal number of
observations. One of our methods adapts Goljan et al.’s to sequential
operation. The second, which offers better performance in terms of
average number of test observations, is based on treating the alter-
native hypothesis as a doubly stochastic model. Finally, we validate
the performance of our methods with experiments and compare them
with the state of the art in fast camera fingerprint detection.

Index Terms— camera fingerprint, fast detection, photores-
ponse non-uniformity, sequential test

1. INTRODUCTION

The PhotoResponse Non-Uniformity (PRNU) is a spatial pattern that
acts as fingerprint or unique identifier of an image camera device.
The PRNU is caused by minute imperfections in the image sensor
manufacturing process, which remain constant over the life of the de-
vice. Since it is a variation in pixel responsivity, the PRNU is active
when the device is illuminated [1]. Despite the PRNU is generally
an extremely weak signal, given enough image samples and using
signal processing techniques, it is possible to estimate it and use it
as a robust fingerprint [2]. This fingerprint can be useful to address
several challenges in image forensics, such as source identification,
device linking, fingerprint matching, or forgery detection [3].

The problem of fast camera fingerprint detection has been tack-
led in previous works, often relying on a so-called fingerprint digest
instead of the whole PRNU. Works [4, 5] focus on the problem of
whether a given image was taken by a camera whose fingerprint is in
a large database of fingerprints, while [6] faces the problem of com-
mon source identification between images in a large database. In [7],
a fast algorithm based on both fingerprint binarization and digesting
was also proposed to deal with large fingerprint databases.

However, to the best of our knowledge, PRNU detection me-
thods are neither specialized in large image databases (as opposed
to large fingerprint databases) nor able to operate sequentially, that
is, capable of analyzing small blocks of image pixels until enough
reliability on the hypothesis test is accumulated, thus guaranteeing
that the minimum number of blocks is used to achieve a target accu-
racy. This is extremely valuable when checking very large amounts
of images for the presence of a specific PRNU from a given device.
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Of particular interest to us is the fast PRNU matching in huge image
databases used by the police to investigate child pornography and
other cybercrime forensic cases. As an important practical use, a re-
liable method is needed to search for images taken by a pedophile’s
camera impounded by the police in huge databases, social networks
or even across the Internet. This is the topic of the European Project
NIFTY [8] under which our work has been carried out.

In this paper, we revisit the PRNU estimation and detection
problems, and propose a fast algorithm for camera fingerprint de-
tection. Firstly, we derive a detector that improves the classical
PRNU detection. Next, a sequential algorithm working on blocks of
pixels sorted by their PRNU magnitude (i.e., the fingerprint digest
approach [4]) is proposed, performing the PRNU detection in a very
fast way. Finally, the proposed sequential detector is compared with
the fingerprint digest method in [4].

The paper is organized as follows: Sect. 2 reviews PRNU esti-
mation and detection, drawing connections with existing methods,
and proposing an improved detector. The fast sequential fingerprint
detection algorithm based on the improved detector is presented in
Sect. 3. Then, Sect. 4 shows experimental results on a dataset con-
taining images from several devices, while Sect. 5 gives our conclu-
sions.

Notation: Vectors are represented in boldface. Themth compo-
nent of x is denoted as xm. The scalar product of vectors x and y
is denoted by 〈x,y〉, while x ◦ y and ||x|| denote the sample-wise
product and the Euclidean norm, respectively.

2. MODEL

We assume that the sensor output at pixel (i, j), y(i, j), can be writ-
ten as y(i, j) = [1 + k(i, j)]x(i, j) + n(i, j) [9], where x(i, j) is
the incident light intensity, k(i, j) is the (possibly gamma-corrected)
PRNU, and n(i, j) subsumes a number of noise sources including
dark current, shot noise, read-out noise and quantization noise. As
x(i, j) is generally unknown, it is reasonable to obtain an estimate
x̂(i, j) from y(i, j) by applying some denoising procedure and ac-
counting for demosaicing [10]. In such case, we can write

y(i, j) = [1 + k(i, j)] · [x̂(i, j) + r(i, j)] + n(i, j), (1)

where r(i, j) is the denoising and demosaicing residue. For simplic-
ity, we assume that n(i, j) ∼ N (0, σ2

n) and r(i, j) ∼ N (0, σ2
i,j),

where the latter are mutually independent. For compactness, we also
introduce the shifted PRNU, which is κ(i, j)

.
= [1 + k(i, j)].

2.1. PRNU estimation

From the model in (1), it is possible to formulate the PRNU esti-
mation problem. We recall that in this case we have L available
images taken with the same device from which we want to estimate
the PRNU at every pixel. Assuming PRNU sample-wise indepen-
dence, we can solve the estimation problem independently for each



pixel. Let then ym and x̂m, m = 1, · · · , L, denote respectively
the observation and the denoised image for an arbitrary pixel of the
mth available image. Also let y, x̂ be the vectors formed by stack-
ing the L respective samples for the pixel under analysis. Then, the
log-likelihood becomes

L(κ, x̂,y) = −1

2

[
L∑

m=1

log(2πσ2
e,m) +

L∑
m=1

(κx̂m − ym)2

σ2
e,m

]
,

(2)
where σ2

e,m
.
= κ2σ2

m + σ2
n, with σ2

m the variance of the estimation
residue in image m for the analyzed pixel.

Taking the derivative of (2) with respect to κ and equating to
zero, it is possible to write a (nonlinear) equation that gives the max-
imum likelihood estimate (MLE) of κ.

A simpler approach consists in neglecting the first term in (2).
This gives a minimum weighted-MSE solution, namely

κ̂ = arg min
κ

L∑
m=1

(κx̂m − ym)2

σ2
e,m

. (3)

When σ2
m = σ2

r for all m = 1, · · · , L, then taking the derivative
with respect to κ and setting to zero, we obtain that κ̂ must be a
solution to the equation

κ̂2〈x̂,y〉σ2
r +

(
||x̂||2σ2

n − ||y||2σ2
r

)
κ̂− 〈x̂,y〉σ2

n = 0. (4)

Assuming that σ2
n � σ2

r , the solution to (4) becomes κ̂ =

〈x̂,y〉/||x̂||2 or equivalently, in terms of the PRNU k̂,

k̂ =
〈(y − x̂), x̂〉
||x̂||2 , (5)

which in fact resembles Chen et al.’s estimator k̂ = 〈(y − x̂),y〉/||y||2
in [9], as x̂ ≈ y.

2.2. PRNU detection

Once a PRNU estimate is available, it can be used for camera fin-
gerprint detection purposes. Given a set of L images which have
been taken from the same camera with PRNU k0, and a test image
yt, both arranged in vector form,1 we want to decide whether yt has
been taken from that camera or, in other words, if the PRNU k0 is
present in yt. As customary, we can formulate a binary hypothesis
test with the following two hypotheses:

- H0: Image yt does not contain the PRNU k0,

- H1: Image yt contains the PRNU k0.

We assume the existence of an unbiased estimate k̂ of k0 obtained
using the method proposed in the previous section, and we denote
by x̂t the image vector obtained from yt after denoising and de-
mosaicing. We have derived the corresponding distributions under
each hypothesis; this allows us to write Neyman-Pearson’s generic
detector for known k0, and later replace the needed statistics by their
estimates, as in the Generalized Likelihood Ratio Test (GLRT).

Thus, when H1 holds, we can see that the difference yt(i, j) −
x̂t(i, j) for the (i, j)th pixel is Gaussian with mean k0(i, j) · x̂t(i, j)
and variance σ2

H = [1 + k0(i, j)]2σ2
r + σ2

n ≈ σ2
r + σ2

n. When
H0 holds, the PRNU must be treated as unknown. Modeling it as
a zero-mean random variable, it follows that yt(i, j) − x̂t(i, j) is
approximately Gaussian with zero mean and variance approximately

1From now on, vectors contain pixel values from a single image.

σ2
H , because the influence of the variance of the PRNU in the total

variance is negligible. From this, the likelihood-ratio test becomes

〈(yt − x̂t),k0 ◦ x̂t〉
σ2
H

− ||k0 ◦ x̂t||2

2σ2
H

H1
>
<
H0

η (6)

for some threshold η that is chosen so as to produce the desired pro-
bability of false positive.

Implementation of (6) faces two practical problems: 1) The true
PRNU k0 is unknown; 2) σ2

H is unknown. Hence, focusing on the
first term of (6) produces one (generally, non-sufficient) statistic that
is very similar to which has been proposed by Goljan et al. [11]:2

u
.
= 〈(yt − x̂t), k̂ ◦ x̂t〉, (7)

and, as we argue above, the means for the respective hypotheses are
E{u|H0} = 0 and E{u|H1} = E{||k0 ◦ xt||2}.

Let us define the shift operator ∆(q1,q2) that applied to a vector
x representing an image, outputs the vector corresponding to a right
circular shift of (q1, q2) pixels of such image. Then, following [11],
an estimate of the variance of statistic u can be obtained as

σ̂2
u =

1

M − |A|
∑

(q1,q2)6∈A

〈∆(q1,q2)(yt − x̂t), k̂ ◦ x̂t〉2, (8)

where M is the number of available pixels, A is an exclusion set
defined as those (q1, q2) in a neighborhood (w.r.t. circular shifts) of
the origin (0, 0), and |A| denotes its cardinality.

Since E{u|H1} is difficult to obtain accurately, it may be rea-
sonable to assume that under H1 the statistic u has a positive but
unknown mean. Then, from Karlin-Rubin theorem [12], the test

u′
H1
>
<
H0

η2, (9)

where u′ .= u/σ̂u, is the uniformly most powerful test for a given
probability of false positive PF . However, notice that even though
the test threshold η2 can be set since PF is computable, we cannot
find the detection probability PD as the mean under H1 is unknown.
This has important implications for the tests discussed in Sect. 3.

2.3. Improved detector

Although µu,1
.
= E{u′|H1} is not known, we have experimentally

found that it can be modeled as a normal random variable whose
parameters depend on the statistic

v
.
= ||k̂ ◦ x̂t||2/σ̂u, (10)

so we will denote by µ(v) and σ2(v) the mean and variance of µu,1,
respectively. Thus, µu,1 ∼ N (µ(v), σ2(v)). Notice that the statis-
tic v resembles the second term in (6), but obtained from computable
quantities. However, the laws µ(v) and σ2(v) are device-dependent,
so they must be learned during the PRNU extraction phase, which
can be done concurrently with the estimation of k0, as it is described
in Sect. 2.4. Furthermore, although the distribution of u′ under H0

can be modeled by a Gaussian, a slight improvement is afforded by
employing a zero-mean generalized Gaussian distribution with scale
parameter α0 and shape parameter c0, which can be reliably esti-
mated using images from different cameras [13] (see Sect. 2.4). With
all these considerations, the test becomes(

|u′|
α0

)c0
− (u′ − µ(v))2

2σ2(v)

H1
>
<
H0

η3. (11)

2Goljan et al. use yt instead of x̂t in the second term of the scalar
product.



2.4. Model training
At this point, it is necessary to estimate the model parameters for
both hypotheses, which is done concurrently with the estimation of
k0. ForH1, µ(v) and σ2(v) must be estimated for the target camera,
while for H0 the parameters α0 and c0 are estimated from the uni-
verse of available images.

Let ytr be one of the L available images for training. Then, k̂ is
estimated from the remaining L−1 images by using (5), and pairs of
(u′, v) values are obtained from ytr and k̂ by taking blocks of pixels
with the same size as that used in the hypothesis test. This process
is repeated for each of the L images in the training set to produce a
collection of (u′, v) pairs that is used to estimate µ(v) and σ2(v).
This is done by binning the values of v and for each bin calculating
the mean and variance of the corresponding set of u′ values.

3. SEQUENTIAL TEST FOR FAST PRNU DETECTION

The Sequential Probability Ratio Test (SPRT) was proposed by A.
Wald in [14]. On a hypothesis testing problem, the main purpose
of the SPRT is to minimize the expected number of observations to
achieve error probabilities less than some pre-fixed target probabili-
ties of misdetection (P ∗M ) and false positive (P ∗F ).

Let x1, x2, . . . , xN be i.i.d. observations, with N its number,
and f(xj |Hi) the probability density function of the jth observation
conditioned on the ith hypothesis (i = 0, 1). In a SPRT, the likeli-
hood ratio is compared with two thresholds, and the test accepts one
hypothesis or continues processing another observation (a.o.) while

B
H0
>
<
a.o.

n∏
j=1

f(xj |H1)

f(xj |H0)

H1
>
<
a.o

A, (12)

where n is the number of processed observations which is set to 1 at
the beginning and increased step by step until the test accepts either
hypothesis, or n reaches the number of available observations N .

The thresholds are chosen so as to control the error probabili-
ties on each hypothesis. Following Wald’s approximation [14], the
relations between P ∗M , P ∗F , and the thresholds are

A ≤ 1− P ∗M
P ∗F

, B ≥ P ∗M
1− P ∗F

, (13)

where equalities are usually a good choice in practice.
Therefore, the hypothesis testing problem discussed in Sect. 2.2

and, hence, our proposed detector in (11), can be transformed into a
SPRT by taking logarithms in (12). Then, the resulting SPRT is

ηB(n)
H0
>
<
a.o.

n∑
j=1

Dj
H1
>
<
a.o.

ηA(n), (14)

where the thresholds are ηA(n)
.
= log(A) − n · log(2α0Γ(1/c0))

and ηB(n)
.
= log(B)− n · log(2α0Γ(1/c0)), and

Dj
.
=

(
|u′j |
α0

)c0
−

(u′j − µ(vj))
2

2σ2(vj)
− log

(
c0
√

2πσ2(vj)
)
. (15)

Figure 1 summarizes the proposed algorithm for fast camera fin-
gerprint detection. Let I .

= {1, · · · ,M} be the set of vector indices.
Then, the values of k̂ are sorted by decreasing magnitude, thus in-
ducing a permutation π : I → I which is then applied to any given
test image yt and its denoised counterpart x̂t. With some abuse of
notation to keep it simple, henceforth we denote by k̂, yt, x̂t, the re-
ordered vectors. Those vectors reordered according to π are divided

PRNU 
Detector

TRUE

TRUE

TRUE

FALSE

FALSE

FALSE

FALSE

TRUE

H1

H0

Test Image

PRNU 
Detector

Entire image
detector

SPRT

Fig. 1. Sequential test implementation.

into successive blocks Sj , j = 1, · · · , N , with T pixels each. The
jth pair of statistics (u′j , vj) is computed by using in (7) and (10)
only those pixels in block Sj . If n reaches N without a decision
being taken, then the entire image is analyzed with a non-sequential
test. In addition, those images classified as H1 by the SPRT are
retested using the whole image, in order to achieve the smallest PM .

3.1. Fixed-parameter PRNU Sequential Test
Here we propose an SPRT based on the well-known detection
method by Goljan et al. in [11]. Such method sets the detection
threshold on the basis of a target PF , but entirely disregards hypoth-
esis H1 and, consequently, PM . See (9). However, knowledge of
PM is necessary to implement a SPRT as is apparent from (13).

In contrast, our detector in (11) overcomes this issue, as now
the distribution of u′ under H1 is well defined. In order to quantify
how much is gained by learning µ(v) and σ2(v), we have studied
the performance of our detector in (11) when µ(v) and σ2(v) are
independent of v. The results are reported in Sect. 4.

3.2. Fast variance estimation
The variance estimator σ̂2

u in (8) is taken from [11], which is quite
time-consuming as it contains two nested sums (corresponding to the
scalar product and the averaging over the spatial shifts). Since one
of the aims of the methods proposed in this paper is to reduce the
detection time, we propose the following simpler estimator

σ̂
′2
u =

1

M
||k̂ ◦ x̂t||2||(yt − x̂t)||2. (16)

In terms of camera fingerprint detection performance, there is
no significant difference between both variance estimation methods,
since the Areas Under Curve (AUCs) for the respective Receiver Op-
erating Characteristic (ROC) curves are practically identical (diffe-
rences show up in the 4th significant digit).

However, if M is the total number of pixels in the image, the
estimator in (16) is M − |A| ≈ M times faster, which even for
small images results in huge savings.

4. EXPERIMENTAL RESULTS

The image database for the experimental results is a collection
of pictures from different sources. The database is composed of
TIFF images coming from our own cameras, the Dresden image
database [15], and the Raise database [16].

For PRNU extraction, L = 50 images are randomly selected
for those devices in Table 1 with more than 50 available images.
Extraction is done as described in Sect. 2.1. The experimental results



Table 1. Cameras used in SPRT experiments.
Camera Model Sensor Native

resolution
Devices Number of

images
Database

Canon 600D 22.3x14.9mm CMOS 5184x3456 1 241 Own

Canon1100D 23.2x14.7mm CMOS 4272x2848 3 316/122/216 Own

Nikon D60 23.6x15.8mm CCD 3872x2592 1 197 Own

Nikon D70 23.7x15.6mm CCD 3008x2000 2 43/43 Dresden

Nikon D70S 23.7x15.6mm CCD 3008x2000 2 43/47 Dresden

Nikon D90 23.6x15.8mm CMOS 4288x2848 1 250 Raise

Nikon D200 23.6x15.8mm CCD 3872x2592 2 48/43 Dresden

Nikon D3000 23.6x15.8mm CCD 3872x2592 1 230 Own

Nikon D3200 23.2x15.4mm CMOS 6016x4000 1 250 Own

Nikon D5100 23.6x15.6mm CMOS 4928x3264 1 250 Own

Nikon D7000 23.6x15.6mm CMOS 4928x3264 1 250 Raise

Table 2. Results for both SPRTs. P ∗D = 0.98 and P ∗F = 0.05.

Device
SPRT µ(v) and σ(v) SPRT with fixed µ and σ2

PD n̄dH1
PF n̄dH0

PD n̄dH1
PF n̄dH0

Canon 600D 1 1 0.001 1.51 1 1 0.0006 1.75

Canon 1100D #1 0.998 1.03 0.014 2.76 1 1.03 0.020 3.51

Canon 1100D #2 1 1.46 0.034 6.94 0.997 1.44 0.053 7.57

Canon 1100D #3 0.99 1.06 0.024 3.66 1 1.06 0.031 5.32

Nikon D60 0.981 1.71 0.031 6.60 0.984 1.68 0.034 7.06

Nikon D90 0.853 2.34 0.027 7.18 0.858 2.69 0.020 7.08

Nikon D3000 0.99 1.02 0.015 3.65 1 1.01 0.013 3.71

Nikon D3200 1 1 0.009 3.72 1 1 0.008 4.07

Nikon D5100 0.995 1.56 0.035 9.45 0.992 1.65 0.035 8.46

Nikon D7000 0.988 1.75 0.025 4.75 0.991 1.74 0.029 5.47

sequentially pick for hypothesis H1 each device with more than 50
images, and H0 all the images from the remaining devices.

In order to make the results independent of the specific choice
of L images and also to increase the number of test images corres-
ponding to H1, the reported results are the average of 5 different
random selections of the L images, using the remaining images of
each selection to test H1.

In all the experiments, the denoised images x̂t are obtained us-
ing the filter described in [10]. In addition, the estimated PRNU in
(5) is postprocessed to remove the artifacts discussed in [9], so mean-
removal and Wiener filtering in the Fourier domain are applied.

For each test image, non-overlapping successive blocks Sj of
size 1024 pixels, j = 1, · · · , N , are taken from the reordered ver-
sions y′t and x̂′t. The maximum number of observations N is fixed
to 256 because we have experimentally found that for TIFF images a
size of 512× 512 should be enough for successful PRNU detection.
The results obtained after the SPRT described in Sect. 3 are shown
in Table 2, where n̄dH0

and n̄dH1
denote the average number of obser-

vations that the SPRT needs in order to make a decision for H0 and
H1, respectively, and d = 1, · · · , D indexes the devices in Table 2.
The parameters for H0 were set to α0 = 1.22 and c0 = 1.84 for all
the experiments after applying maximum likelihood estimation. The
SPRT observation track for some images is shown in [17].

As Table 2 shows, the target probabilities P ∗D
.
= 1−P ∗M and P ∗F

are achieved, with the exception of Nikon D90. We conjecture that
this is due to Nikon D90 images showing a high saturation degree, as
confirmed by the metadata. Moreover, the improved detector based
on µ(v) and σ2(v) offers a small gain in terms of n̄H0 steps, so it is
slightly faster for the same target probabilities.

It is important to quantify the computational savings achieved
by the SPRT with respect to a full-image test. If OF is the cost of
classifying a full image, and OS that of our SPRT detector, both
are directly proportional to the respective number of pixels. The
total number of pixels is M , where as for the SPRT detector is
M ′ = n̄T , where n̄ = n̄0 ·pH0 +n̄1 ·pH1 , with n̄0

.
= 1/D

∑
d n̄

d
H0

,

Table 3. Fixed-length digest vs. SPRT. Numbers marked with † refer
to PD < P ∗D = 0.98.

Device
SPRT (µ(v), σ2(v)) Fixed-length Digest
`d PD PD(`d) PD(¯̀) PD(`+) PD(`−)

Canon 600D 1542 1 1 1 1 1

Canon 1100D #1 2809 0.998 0.998 0.998 1 0.993

Canon 1100D #2 7051 1 0.994 0.994 0.997 0.958†

Canon 1100D #3 3722 0.999 0.996 0.999 1 0.99

Nikon D60 6709 0.981 0.969† 0.962† 0.98 0.935†

Nikon D90 7303 0.853† 0.861† 0.849† 0.869† 0.82†

Nikon D3000 3711 0.999 1 1 1 0.998

Nikon D3200 3782 1 1 1 1 1

Nikon D5100 9597 0.995 0.99 0.981 0.993 0.92†

Nikon D7000 4834 0.988 0.974† 0.97† 0.989 0.88†

n̄1
.
= 1/D

∑
d n̄

d
H1

, and pH0 , pH1 = (1− pH0) the prior probabil-
ities of hypotheses H0, H1, respectively.

Hence, when testing a large database with the SPRT (see Fig. 1),
the computational cost is proportional to OS + [P ∗DpH1 +P ∗F pH0 ] ·
OF , where the term in brackets is the probability that the test gives
a (true or false) positive. Then, the saving is given by

OS
OF

= P ∗D · pH1 + P ∗F · pH0 + n̄T/M. (17)

For a database with images of size M = 2000 × 3000 pixels
and pH1 = 0.01, a sequential detector with blocks of size T =
1024, and the P ∗D, P

∗
F values of Table 2, the ratio in (17) is ∼ 0.3.

Moreover, the computation of the estimated variance following (16)
produces an additional reduction factor of 1/M ≈ 1.6 · 10−7.

Finally, in order to compare the proposed SPRT detector in
Sect. 2.3 with the fixed-length digest in [4], the length of an equiva-
lent digest for the latter is calculated as `d = dT ·(n̄dH1

·pH1 + n̄dH0
·

pH0)e for the dth device in Table 2, and PD is obtained by setting
PF as given by the SPRT. Thus, both algorithms are set to operate
with the same computational cost for each device and the same PF ,
and hence can be compared in terms of PD . The results are reported
in Table 3, together with the average (¯̀), the maximum (`+), and the
minimum (`−) digest lengths across all cameras. These values are,
respectively, ¯̀= 5106, `+ = 9597, and `− = 1542.

As seen in Table 3, for the same computational cost, our test
offers a slight advantage in terms of PD . However, such comparison
would not fully convey the real advantage of our method, as in a
practical scenario, the digest length in [4] must be set beforehand.
Hence, if a too-small length (e.g., `−) is used, the computational
cost is smaller than ours, but the target P ∗D is not achieved for half of
the cameras. Conversely, if a large length (e.g., `+) is chosen, a PD
similar to that of our test is achieved, but the average computational
cost increases by (`+ − ¯̀)/¯̀· 100 ≈ 88%. In contrast, our SPRT is
flexible and smart so as to stop as soon as P ∗D and P ∗F are achieved,
and without prior knowledge of the power of the device fingerprint.

5. CONCLUSIONS

In this paper we have shown how Wald’s sequential test can be im-
plemented for PRNU detection purposes, with the advantage of en-
abling a very fast test that makes a reliable decision with a mini-
mum number of observations.The proposed tests are especially use-
ful when very large image databases must be searched for device
verification, since they automatically adapt to the target detection
probabilities without prior knowledge of the power of the device fin-
gerprint, and resulting on a reduced computational cost to achieve
those target probabilities.
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