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Abstract

We address the problem of estimating the speed of a road vehicle from its acoustic
signature, recorded by a pair of omnidirectional microphones located next to the road.
This choice of sensors is motivated by their nonintrusive nature as well as low installation
and maintenance costs. A novel estimation technique is proposed, which is based on the
maximum likelihood principle. It directly estimates car speed without any assumptions on
the acoustic signal emitted by the vehicle. This has the advantages of bypassing troublesome
intermediate delay estimation steps as well as eliminating the need for an accurate yet general
enough acoustic traffic model. An analysis of the estimate for narrowband and broadband
sources is provided and verified with computer simulations. The estimation algorithm uses
a bank of modified crosscorrelators and therefore it is well suited to DSP implementation,

performing well with preliminary field data.

Keywords

Speed estimation, traffic monitoring, microphone arrays.

*Corresponding author. The work of R. Lépez-Valcarce is supported by a Ramdn y Cajal grant
from the Spanish Ministry of Science and Technology.

November 20, 2003 DRAFT



I. INTRODUCTION

Nowadays several alternatives exist for collecting numerical data about the tran-
sit of road vehicles at a given location. From these data, parameters such as traffic
density and flow are estimated in order to develop effective traffic management
strategies. Thus, traffic management schemes heavily depend on an infrastructure
of sensors capable of automatic monitoring traffic conditions. The design of such
systems must include the choice of the type of sensor and the development of ade-
quate signal processing and estimation algorithms [9]. Cheap sensor-based networks
enable dense spatial sampling on a road grid, so that meaningful global results can
be extracted; this is the so-called Collaborative Information Processing paradigm
[7], an emerging interdisciplinary research area tackling different issues such as data
fusion, adaptive systems, low power communication and computation, etc.

Traffic sensors commercially available at present include magnetic induction loop
detectors; radar, infrared or ultrasound-based detectors; video cameras and mi-
crophones. All of them present different characteristics in terms of robustness to
changes in environmental conditions; manufacture, installation and repair costs;
safety regulation compliance, etc. A desirable system would: i) be passive, to avoid
radiation emissions and/or operate at low power; ii) operate in all-weather day-
night conditions, and iii) be cheap and easy to install and maintain. Although these
objectives can be achieved by microphone-based schemes, commercially available
systems employ highly directive microphones which considerably increase the cost.
Alternatively, the use of cheap (i.e. omnidirectional) sensors must be compensated
for with more sophisticated algorithms. In addition, power-aware signal processing
methods are mandatory to meet the energy constraints of battery-powered sensors.

In this paper we address the problem of how to directly estimate the speed of
a vehicle moving along a known transversal path (e.g. a car on a road) from its
acoustic signature. Previous related work using a single sensor usually relied on
some sort of assumption on the source (e.g. narrowband signals of known frequency
[18] or time-varying ARMA models [8]). It is known, however, that an important
component of the acoustic signal emitted by a vehicle consists of several tones har-
monically related [2], as expected from a rotating machine. Furthermore, the noise
caused by the friction of the vehicle tires can also be relevant, especially for high
speeds, incorporating a broadband component which is hard to model [10]. As a
consequence, acoustic waveforms generated by wheeled and tracked vehicles may
have significant spectral content ranging from a few tens of Hz up to several kHz,
yielding a ratio of the maximum to the minimum frequency components of at least
100 [6]. These characteristics of road vehicle acoustic signals make robust modeling
a difficult task, given the great variability within the vehicle population [12].

This problem could be avoided by including a second sensor, which is the approach

we adopt: a pair of omnidirectional microphones are placed alongside the known
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path of the moving source. For a review on the topic of parameter estimation from
an array of sensors, see the excellent paper by Krim and Viberg [11]. However,
most research on array processing is devoted to the problem of direction of arrival
(DOA) or differential time delay (DTD) estimation of narrowband or broadband
sources for radar and sonar applications. Target motion is usually considered a
nuisance that must be compensated for [3], [4], or is studied through the analysis
of the time variation of the DTD over consecutive processing windows [15]. An
exception is the Stochastic Maximum Likelihood (SML) approach of Stuller [16],
[17], who assumed a random Gaussian source with known power spectrum and an
arbitrarily parameterized time-varying DTD, and then provided the generic form of
the likelihood function for the estimation of the DTD parameters.

As noted above, the Gaussian model does not seem adequate for acoustic traffic
signals. Therefore, we adopt a Deterministic Maximum Likelihood (DML) approach:
waveforms are treated as deterministic (arbitrary) but unknown within this frame-
work in order to estimate the only parameter we are interested in, i.e. vehicle speed,
which is assumed constant. The resulting (approximate) likelihood function can be
efficiently computed, and the geometric structure of the problem allows for an ap-
proximate analysis that reveals the influence of the different parameters such as
frequency, range, and sensor separation.

Two works directly studying the same problem as here are [5], designed for ground
vehicles, and [13] for airborne targets. Both use the same principle, namely, short
time crosscorrelations assuming local stationarity to extract the temporal variation
of the delay between the received signals. As opposed to these, ours is a direct
approach which estimates the speed in a single step, without intermediate time-
delay estimations which would increase the error in the final result.

Section II gives a detailed description of the problem, and a near maximum like-
lihood estimate is derived in Section III together with an efficient DSP oriented
implementation. Analyses are developed in Sections IV and V, followed by simula-

tion and experimental results in Sections VI and VII.

II. PROBLEM DESCRIPTION

Figure 1 illustrates the problem. The microphones M;, My are separated 2b m
and placed D m from the road center. The vehicle travels at constant speed vy on
a straight path along the road. The time reference is set at the closest point of
approach (CPA) so that ¢ = 0 when the vehicle is equidistant to M; and Mj. The
(time-varying) distances from the vehicle to the microphones are

1(t;v0) = /D2 + (vot + b)2, 2(t;v0) = /D2 + (vot — b)? (1)

so that the propagation time delays are 7;(¢;v9) = d;(¢;v9)/c, where c is the sound
propagation speed. The observation window is (—7'/2,7/2). We also define the
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Fig. 1. Geometry of the problem

angle and distance between the source and the array center respectively as

t D
a(t;vg) = atan %, d(t;vg) =

(2)

cos a(t;vg)’
and the ‘angular aperture’ oy denoting the observation limit in the angular domain:

A voT
= a(T/2: = atan —. 3
ap = a(T/2;vy) = atan 5D (3)
Let the sound wave generated by the vehicle be s(¢), which is assumed to be
deterministic but unknown. Taking into account the attenuation of sound with

distance, we can express the received signal at sensor M; as

A st —mi(tyvo)) _ st — 7i(t;v0))
T diltwe) T d(tve) @)

‘l"i(t) = Si(t) + ’U)Z'(t) with Si(t)

The approximation in (4) will be adopted throughout. The noise processes ws(-),
way(+) are assumed stationary, independent and Gaussian with zero mean. Assuming
an ideal antialiasing filter preceding the A/D conversion in the signal processor, we

model their power spectral density and autocorrelation respectively as

Ny/2 W/Hz, 2 /2 ’
oty = { NV IS B Nor

0, otherwise,

sinc(fs7),  (5)

where f; = 1/Ts denotes the sampling frequency. Hence, the samples w(kTy) are
uncorrelated zero-mean Gaussian with variance 02> = Nyf,/2. The problem is to

find an estimate of vy given the signals r;(¢), and without knowledge of s(t).
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Fig. 2. The differential delay A7(¢;vo) for different values of the source speed.

[6] proposes to estimate the differential time delay (DTD) between 71 (t) and ra(t)

Ar(tivg) 2 To(t;vo) — 71 (5 v0) (6)
2
~ —?bsina(t;'uo) ifb/D <« 1, (7)

using short-time cross correlations and peak picking. Then, noting that

0 A1 (t;v) 2b

ot =0 Dc

(see Fig. 2), it is seen that v can be estimated from the slope of the (itself estimated)
DTD at the CPA. [5] considers directional microphones and does not provide an
explicit method to extract the estimate of vy from that of the DTD. Instead we
derive a direct ML approach in the next section, which will be shown to compare
favorably to the indirect method of [5].

III. APPROXIMATE MAXIMUM LIKELIHOOD ESTIMATE
A. Derivation

Consider first the problem of estimating vy without knowledge about s(¢) and
with a single sensor Mj. Then the ML estimate is given by oy, = argmax, p(r1|v),
where ry is the vector of observations. However, since s(t) is completely unknown,
one cannot extract any information about vy from r;: any effect that we may expect
vo to produce on ry can be canceled by proper choice of s(t). Thus, without any
knowledge of s(t), p(ri|v) = p(r1), i.e. all values of v are equally likely.

With two sensors, one has 0y, = arg max, p(ry,ra|v). By the reasoning above,

p(r1,r2|v) = p(ra|ry, v)p(rifv) = p(rz|ry, v)p(ry). (8)
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Hence the ML estimate reduces to arg max, p(rz|ri,v). In order to obtain this pdf,
we must find a relation between the two received signals 7(t), m2(¢). Intuitively,
if we time compand () by an appropiate amount which will depend on v, then
the resulting signal should be time aligned with ro(¢). Letting f(¢) 24— T1(t;v0),
and neglecting the effect of small time shifts in 1/d(¢;vp) (since it varies much more

slowly than s(t)), the noiseless signals can be related via
s2(t) = s1(f 7 (t = Ta(t;00))) = s1(u(t)), (9)
where u(t) 2 f~H(t — m2(t;v0)). To find u, note from the definitions of f and u that

flw)=u—"m(u;vg) = t—71o(t;vg) (10)
= u—T1i(usvo) + T1(t;v0) = t— AT(t;v0)- (11)

Since u is close to t, it is reasonable to make the following first-order approximation:

or(t;v
rit50) i v0) + (¢ — ) 26N (12)
t=u
which is used to substitute 71 (¢, vp) in (11):
AT(t;v0)
u(t) i 1— 071 (t;3v0) (13)
ot t=u
Observe that for practical values of the speed (|vg| < ¢), one has
oT(t; +b
Tl( UO) _ U_O . (UOU‘ ) < M & 1’ (14)
ot i—u c \/D2 + (’U()u + b)2

so that u(t) ~ t—A7(t;v0), and we obtain the following fundamental approximation:
SQ(t) ~ Sl(t — AT(t; ’U())). (15)

Using this intuitively appealing relation, the ML estimate readily follows. Note that

TQ(t) = 32(t) + ’U)Q(t)
~ s1(t — AT(t;v0)) + wa(?)
= r1(t — A7(t;v0)) —wi(t — AT(t;v0)) + wa(t). (16)

Let w(t) = wa(t) — wi(t — A71(t;v0)). Since for all practical values of vy, b, D,
the DTD Ar(t;v0) varies much more slowly than ¢ (see Fig. 2), in view of (5) the
samples w(kTs) are approximately uncorrelated, with variance 202. Therefore the
conditional pdf p(ra|ri,v) is approximately normal, so that the ML estimate should
minimize the squared Euclidean norm ||ry — r1(v)||?, where r;(v) is the vector of

samples from the signal 7 (¢ — A7(¢;v)). Equivalently, it should maximize
1
(ri(v),r2) — 5|\P1(U)H2

_ / Pt — Ar(t0))rs (H)dt — % / r2(t — Ar(t;v))dt. (17)
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The second term in the right-hand side of (17) is approximately constant with v.
Therefore we propose the following estimator:

T/2

09 = arg max 9 (v) = arg ma.x/ r1(t — A7(t;v))ra(t)dt. (18)
v v —T/2

B. Discussion

It is seen that the ML estimate (18) does not require short-time based estimates
of the DTD. Instead it exploits knowledge of the parametric dependence of the DTD
with v in order to accordingly time-compand the signals that enter the crosscorre-
lation, which is computed over the whole observation window for each candidate
speed. It can be asked whether this approach may provide a substantial advantage
over the indirect one of [5]. To give a quantitative comparison, consider a simplified
model 71 (t) = s(t) + wi(t), ro(t) = s(t — A7(t;v0)) + wa(t) in which attenuations
have been neglected. Further, assume that the observation window is small so that
the DTD appears to be linear for all practical values of vy, i.e. A7(t;v9) = got for
|t| < T/2, with go = —2bvy/Dc. Under such conditions, estimating vy is equivalent
to estimating the relative time companding (RTC) parameter gp. This problem was
considered by Betz [3], [4] under Gaussianity of signal and noise. In that case, fol-
lowing his development it can be shown that the estimation accuracy of the indirect
approach with respect to the Cramer-Rao bound (CRB) is given by

varfgo] 1 /

where B is the signal bandwidth, 77 < T is the subwindow size used for short-time
DTD estimation in the indirect method, and Q(z) = 23/(sinz — z cosz). The loss
(19) is minimized when 7" is, for given B and go. Note that 7" should be at least
twice the value of the largest expected value of the DTD, which in our case is 2b/c
(=~ 3 ms for a typical sensor separation of 1 m). Fixing 7" = 6 ms, the loss (19) at
go = 0.04 (a typical RTC value for high speeds in arrays set close to the road) is of
2, 5 and 9 dB for bandwidths of 2, 3 and 4 kHz respectively.

These observations do favor the direct ML estimate over the indirect one. The
simulation and experimental results in Sections VI and VII (obtained under the

more general model (4)) will provide additional support for this claim.

C. Implementation issues
After sampling at a rate fs = 1/Ty, the score function 1(v) is approximated by
K
P(v) = T Z r1lk — ko(k; v)]ra[K], (20)
k=—K

where 7;[k] = ri(kTs), K = |T/2Ts| and

ko(k;v) 2 round [ (21)

AT(kTg;v)
T, '
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Fig. 3. A7(kTs;v) and ko(k;v) for v = 80 km/h, D = 13 m, 2b = 0.9 m and Ts = 5 ms.

The constellation of triangles constitutes the set K(v).

In practice, 9y is obtained by maximizing (20) over a finite set of candidate speeds.
Unfortunately, each of these requires full evaluation of the modified crosscorrelation
(20) being not possible to reuse computations for any other speed. On the other
hand, the implementation of (20) for each candidate v can be done very efficiently
in a DSP chip by noting that the operation k — ko(k;v) in (20) is equivalent to a
(slowly) time-varying delay. Since the slope of A7(kTs;v)/Ts is very small, for each
v it becomes advantageous to store the set K(v) of indices k where kg (k;v) changes
(by one), see Fig. 3. Then (20) can be implemented within a DSP in the customary
way, with two memory banks (each one associated to a different microphone) and
two pointers, with the only difference that every time the pointer to the sequence
r1[k] reaches a value in K(v), it is increased by one and thus, a sample is skipped.
It is important to remark that in arriving at the approximate ML estimate, the
CPA, the sound speed ¢, and the vehicle range D have been assumed known. Al-
though the actual ¢ and D in a practical implementation will vary around their nom-
inal values, these variations are not expected to be critical. With omnidirectional
microphones CPA estimation becomes a nontrivial task, although it is possible to
take advantage of the fact that signal power decreases as 1/d?(t;vg) to derive simple
(although suboptimal) algorithms [12]. Joint estimation of CPA and speed following
the ML paradigm, as well as analyses of the effect of uncertainty in the values of
¢ and D, constitute an ongoing line of research and are not pursued here. In the

remainder we will assume that the CPA, ¢ and D are all known.
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IV. ANALYSIS FOR NARROWBAND SOURCE

We now analyze the behavior of the proposed estimator for purely sinusoidal
sources. As stated in the Introduction, car-generated waveforms are wideband and
consequently do not fit in a tonal model; nevertheless, this simpler case will provide
us with meaningful conclusions regarding the various physical parameters. More-
over, Section V will show how these results generalize to the wideband source case.

For the purpose of analysis, vehicle movement during the propagation of its acous-
tic signature to the sensors must be taken into account. For this, we introduce the

following ‘delay error’ term:

&(t;vg,v) 2 T1(t — AT(t;v);v9) — 11 (85 v0) (22)
2b b
~ —C—ZO sin a(t; vo) + 7 ¢os a(t;vy) | sina(t;v), (23)

where the last approximation is valid near the true speed value (|v —wvg| small). This
term becomes necessary for the analysis because equality does not hold in (15), and
the accuracy of the approximation worsens with higher values of the speed.

A. Mean score function

It is shown in the appendix that the mean value of ¥ (v) is given by

T/2
Efp)] = / P AT (24)
- wh(v —vg)\ A2 [T/? cos[wé(t; v, )]
< a () T [, e e @
£ Q(v)

where Jj, is the zeroth-order Bessel function of the first kind. The effect of the
‘delay error’ £(t;vg, v) is perceived from its impact on Q(v). In view of (23), for low
frequencies and speeds such that 2wbvy/c?> < 27, the product |wé| remains small.
In that case, coswé = 1 and Q(v) is approximately constant and equal to the signal

energy per channel £ = [ s2(t)dt, so that

wh(v — v0)> | 26)

c/2v9v
Fig. 4 plots E[)(v)] and (26) for f = w/2r = 2 kHz, vy = 60 km/h. Several

properties of E[i(v)] can be derived from those of Jy: since (26) is maximized for

Bl =€+

v = vy, for low frequencies and speeds one could expect the bias of the estimate
to be small. Also, note that the width of the ‘main lobe’ is proportional to the
source speed vy, and inversely proportional to the source frequency and microphone
spacing. These observations, illustrated in Fig. 5, suggest that the variance of the
estimate will increase with increasing source speed (since the main lobe of the score

function becomes wider), and decrease as the source frequency and/or sensor spacing
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Fig. 4. Plots of E[¢(v)] and (26) for a 2 kHz narrowband source moving at 60 km/h.
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Fig. 5. Plots of E[¢)(v)] for a narrowband source. (a) vg = 60 km/h and different frequencies;
(b) f =2 kHz and different speeds.

increase (since the main lobe becomes narrower). In Fig. 5(b), the peak value of
E[1(v)] falls with increasing vy, as expected since the signal energy & is inversely
proportional to vy (For long observation intervals, £ ~ wA?/2|vg| D). The fall with
increasing frequency of the peak value of E[i(v)] shown in Fig. 5(a), however, is
not predicted by (26). Neither is the reduction of the main peak to side peak ratio
of E[(v)] as vp is increased, as seen in Fig. 5(b).

If |w¢| is not small enough, one cannot regard Q(v) as constant. Lacking an
accurate closed-form approximation of Q(v), suffice it to say that in general it does

not peak at v = vy, and hence the estimate will be biased. The bias will increase
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Fig. 6. Cramer-Rao bound for a narrowband source. 4%/0? = 3 dB, b= 0.45 m.

with source frequency and speed. Fortunately, numerical evaluation shows that this

bias remains small in the frequency and speed ranges of interest for our application.

B. Cramer-Rao lower bound

The CRB applies to the estimator (18) if the speed and frequency of the source
are small enough, since in that case the estimate is unbiased. Also, the CRB is
illustrative of the effect of the different parameters involved in the problem.

It must be noted that, if no assumptions on the acoustic waveform s(t) are im-
posed, it is not possible to derive a generic form of the CRB. In such situation, the
best that can be done is to obtain a CRB conditioned on every particular realiza-
tion of the received signals. Such bound would not be very informative; thus, we
derive the CRB assuming that s(¢) is known. Clearly, since the proposed estimator
is blind, its variance will be much higher than this CRB. (For example, knowledge
of the signal bandwidth would allow the designer to bandpass filter the received
signals, considerably reducing the noise power and hence the estimate variance.)

Assuming a narrowband source s(t) = Asinwt, it is shown in the Appendix that

the CRB for arrays with a small ‘aspect ratio’ /D < 1 is approximately given by

9 o3

= 27
7CR = 5DW?f,Go(an)[A2]0?]’ 27

where we have introduced the function

1 3

Go(a) 2 tana+ 1 sin 2 — 2@ (28)

1
~ gta,n5 a, la| < % (29)

Fig. 6 shows the variation of ocgr with v for T'=0.5 and 2 s, D = 13 and 4 m,

and different source frequencies.
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C. Small-error analysis

Bias and variance analyses can be pursued under a small error approximation,
for a narrowband source s(t) = Asinwt. The second-order Taylor series expansions

around v = vy corresponding to the terms depending on v in (18) read as

s1(t — A1(t;v)) = po(t) + (v —wo)p1(t) + %(’U — v9)°pa(t), (30)
wi(t — AT(tv)) = qo(t) + (v —vo)q1(t) + %(U —v9)%g2(2), (31)
where
oi(®) A 9" s1(t (—%%T(t;fu)) N () A OFw (t gva(tW)) . k=0,1,2.
- - (32)

These second-order expansions give a unique solution for the maximization problem
(18) in the local vicinity of vy at the point for which the derivative vanishes, i.e.
0Y(v)/0v|y, = 0, leading to the following expression for the error

SIS @) + a1 O[5 () + wa(ldt ) 4 N,

vy — f)() ~ = (33)
JIE o () + ax(D)[s2(t) + wa(B)]dt P2+ N2
where p;, p2 are deterministic values given by
N .
Pi= 3 pi(t)s2(t)dt,  i=1,2 (34)
A2 J_7)s

and Nj; are zero-mean Gaussian random variables with variances O'i2 , 4 =1,2. These
are computed in the Appendix, where it is also shown that oo < ps. Hence, one

has the following approximations for the bias and variance of the estimation error:

foo — b0} ~ 22 {0 —vo} ~ % (35)
FE{vg — g} =~ — var{iyg — vy} & —. 35
p2’ 03

Note that the bias p1/p2 that arises is not due to noise (it is independent of the
SNR) but to the approximation (15) implicit in the estimation algorithm. In the

Appendix, it is shown that p1, p2, 02 can be approximated as follows:

wb /ao sin a cos? a(1 D s ) sin[wé(a)]d (36)
~ no a(l — — sin @) sin[wé(a)]da

1 Dvdc | _q, ¢ ’
9 2b2 agQ

pr = _%802/—(10 sin? a cos? a cos[wé (a)]day, (37)
2 2

o _ mt fB2D 1

R Vs L o

where £(a) denotes the delay error term (22) for v = v in terms of the angle a:

vy . . b
€(a) =— 2 sin afsin « + 7 ¢os al. (39)
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It is not possible to find closed-form expressions for p; due to the presence of
this term in (36)-(37). However, if the product w¢ remains small enough in the

observation window, then sinwé ~ wé, coswé ~ 1 — %w2£2. Hence, after integrating,

31— 2bc sin ag

& ~ U_O Dvy «p 40
o 02 1_ 3 (m)Z’ ( )
8 c?
1 in4
162 g (1 Te) (41)
P2 3 Wb2[A2 /072 [1 o, (@)2]2
8 c

Observe that as wwvy approaches the value 7 a % %, these expressions tend to
infinity. Therefore for wvy — 71, the small error assumption on which the analysis
is based ceases to be valid. In the small wvg region, the bias is not very sensitive
to the source frequency, while the variance falls as 1/w?. If o is assumed constant

(e.g. for large observation windows), then both bias and variance increase as v3.

V. BROADBAND SIGNALS

Assume now that s(t¢) is a deterministic broadband signal with Fourier transform
S(w). It is shown in the Appendix that for low values of the speed vg, the mean
score function takes the following form:

By ~ gapor [ ISR (—“’”(ﬂ‘_)) o, (42)

This expression is also valid if s(t) is regarded as a wide sense stationary random
process with power spectral density |S(w)|?. Hence, for broadband signals the mean
score function approximately reduces to the superposition of those corresponding to
each frequency as computed in Section IV-A, weighted by the power spectrum of the
signal. Given the dependence with frequency of the variance of the estimate found
in the preceding sections, this suggests that in a practical implementation higher
frequency components of the received signals should be enhanced with respect to
lower ones. This will be verified by the experiments presented in Section VII.

The CRB in the broadband case, again for b/D < 1, is derived in the Appendix:

2T v o?

2
OCR — DstO(OlO) foo(>o (4)2|S((4))|2dw (43)

It is seen that U%R is inversely proportional to the power of the derivative of the
source signal. That is, the CRB will be lower for acoustic signals with a highpass
spectrum. The behavior of O'%R with respect to the remaining parameters (v, b, D,

T) is the same as that in the narrowband case.
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Fig. 7. Bias and standard deviation of ¥p: theoretical (lines) and estimated (circles).

f, =40 kHz, SNR =3 dB, T =25, D = 13m, b = 0.45 m.

VI. SIMULATION RESULTS

In order to test the performance of the estimation algorithm, several computer
experiments were carried out. For all of them we took ¢ = 340 m/s, and for each
data point, results were averaged over 1000 independent Monte Carlo runs.

First we considered narrowband sources s(t) = Asinwt, and array dimensions
D =13 m, b =0.45 m. With A 2 A/D the received signal amplitude at the CPA,
we define the signal to noise ratio per channel as

A2

SNR = 0—,3 (44)

In the first experiment we set fs = 40 kHz, 7' = 2 s and SNR = 3 dB. Source
speed and frequency varied from 10 to 100 km/h and from 1 to 3 kHz respectively.
Fig. 7 shows the bias and standard deviation of the estimate ¥y from the simula-
tions (circles), as well as the values predicted by the analysis in Section IV-C using
several degrees of accuracy in the approximations for p;. The dotted line values
were directly obtained from (40)-(41). For the dashed line values, we numerically
integrated (36)-(37). Finally, the solid line was obtained without using the far-field
approximation implicit in (36)-(37). This was done by numerical integration of (68)-
(69) in the Appendix, using the exact time domain expressions of the integrands
[i.e. without using the approximations in (63)-(65)]. The critical speed values n/w
are 240, 120 and 80 km/h for frequencies 1, 2 and 3 kHz respectively. The far field
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Fig. 8. Bias and standard deviation of 9. SNR = —10 dB (solid), 0 dB (dashed) and 10
dB (dotted). fs =10kHz, T =2s, D =13 m, b= 0.45 m.

approximations show good agreement with the simulations for small vy, losing ac-
curacy for higher speeds but still capturing the general trend of the estimate (bias
and variance increase sharply near the critical values).

It is seen that for low speeds (vy < 60 km/h) the bias remains very small for all
frequencies and the variance steadily decreases with frequency. For vy > 60 km/h
the bias becomes noticeable, increasing with frequency, while there seems to be an
optimal, speed dependent frequency value which minimizes the estimation variance.

In the second experiment, the sampling frequency was reduced to f; = 10 kHz,
while keeping T' = 2 s. Fig. 8 shows the statistics of the estimate 9, for differ-
ent frequencies and SNRs. With this reduced sampling rate, the variance of the
estimate presents and additional component due to the rounding operation (21) in
the computation of the score function. This effect was not considered in the anal-
ysis of Section IV-C, so that the predicted variance values tend to be smaller than
those obtained from the simulations for high SNR (in which case the rounding and
noise components of the variance become comparable). The data reveals that the
variance is inversely proportional to the SNR and to w?. The behavior of the bias
curves for —10 dB SNR is believed to be a result of insufficient averaging and/or the
aforementioned rounding effects (recall that the bias is expected to be independent
of the noise level). In any case, the bias remains within a few km/h.

The effect of the observation window T' was also studied. Fig. 9 shows the standard
deviation of 9y for fs = 10 kHz, SNR = 0 dB and different values of 7' and w. (The
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Fig. 9. Standard deviation of 0. T = 2 s (solid), 1 s (dashed), 0.5 s (dotted) and 0.25 s
(dashdot). fs =10 kHz, SNR =0dB, D =13 m, b=0.45 m.
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Fig. 10. Standard deviation of ¢y as a function of the sensor separation. SNR = 0 dB,

T=2s, fs =10kHz, D =13 m.

bias, not shown, remained within +2 km/h). Reducing T has a greater impact for
low speeds, as expected since in that case a significant part of the signal energy
is likely to lie outside |t| < T'/2. However, it is also seen that, for higher speeds,
increasing 1" beyond a certain speed-dependent value 7, has a negative impact on
performace. If T < T, performance quickly degrades; for T' > T,, the variance also
increases although not as sharply. Such ‘optimal window size’ effect is thought to
be due to the underlying approximation (15).

The influence of sensor separation can be seen in Fig. 10. We fixed D = 13 while
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Fig. 11. Standard deviation of 9y as a function of array to road distance. SNR = 0 dB,
T=2s, fs =10 kHz, b = 0.45 m.

varying b from 0.1 to 0.9 m, taking 7' = 2 s, f; = 10 kHz and SNR = 0 dB. Clearly,
placing the sensors too close to each other considerably worsens the performance,
while the improvement is marginal if b is increased beyond 0.6 m. This is fortunate
since achieving large separations may be problematic in practical settings.

Next, we fixed b = 0.45 m and varied the array to road distance D, keeping T = 2
s, fs = 10 kHz, and SNR = 0 dB. It is observed in Fig. 11 that the variance initially
falls as D is increased until a minimum is reached, after which a slow increase takes
place. The location of this minimum depends on the source speed, but not on its
frequency. Note that with the definition (44), varying D does not result in a change
in the effective SNR, and therefore the results truly reflect the effect of the geometry.
(On the other hand, if the source amplitude A is assumed constant, then the effective
SNR should decrease as 1/D? as the separation from the road is increased).

Simulations with wideband sources were also run. Samples of s(t) were generated
as independent Gaussian random variables with zero mean and variance D?, so that
the instantaneous received power per channel at the CPA is normalized to unity.
In this way, the SNR per channel is defined as SNR = 1/02. The delayed values
required to generate the synthetic received signals were computed via interpolation.

For comparison purposes we also tested an indirect approach based on DTD es-
timation, as in [5]. The observation window was divided in disjoint, consecutive
segments of length M samples over which the received signals were crosscorrelated.
By picking the delay at which the maximum of this crosscorrelation takes place, an

estimate A7(t) of A7(t;vg) is obtained. Then the speed estimate is chosen in order
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Fig. 12. Results for a wideband random source. T = 2 s, f; = 10 kHz, D = 13 m,
b = 0.45 m. (a) Proposed approach, bias; (b) Proposed approach, standard deviation;

(c) Indirect approach, bias; (d) Indirect approach, standard deviation.

to minimize the following weighted least squares (WLS) cost:

N 7(n ) — ATt(n i )]?
o e 37 [BHIMT) — AraMT;0)

d*(nMTs;v) ’

n=—N

where N 2 |T/2MTs|. (Since the shape of A7 is more sensitive to speed variations
near the CPA, a weighting factor of the form 1/dP(¢; v) seems reasonable. The choice
p = 4 was found to result in best performance.)

Fig. 12 shows the performance of both approaches using an array with D = 13
m, b = 0.45 m, processing parameters f; = 10 kHz, T'=2 s, and M = 128 samples.
Analogous results after reducing 7' to 0.5 s are shown in Fig. 13. The estimate
A7(t) in the indirect approach was smoothed by a 7th-order median filter before
WLS minimization. Both algorithms are given the exact CPA location. The bias of
the proposed method remains very small for low speeds, as in the narrowband case.
The variance increases with speed and decreases with the SNR, as expected. These
trends are also observed in the indirect approach, although this estimate seems to
be very sensitive to the additive noise with respect to both bias and variance. The
proposed method is much more robust in this respect. This is because it uses the

whole available signal at once in the estimation process, therefore providing a much

November 20, 2003 DRAFT



19

(CY (b)

1 4
—— SNR=6dB — SNR=6dB
- - 3dB - -3dB
0.5 0dB 3 0 dB ,
— —-6dB — —6dB /
< ' < 7
E o E2

-0.5 1

-1 (]
0] 20 40 60 80 100 120 (0] 20 40 60 80 100 120
v, km/h v, km/h
0 0
(© (d)
6 7
—— SNR=6dB
4 67 — — 3dB
5 0dB
2
< <4
€ 0 1]
< < 3 /1
-2
2
—— SNR =6 dB .
-4r| — — 3dB i 1
0 dB
-6 0
(0] 20 40 60 80 100 120 [¢] 20 40 60 80 100 120
Vo km/h Vo km/h

Fig. 13. Results for a wideband random source. T = 0.5 s, f; = 10 kHz, D = 13 m,
b= 0.45 m. (a) Proposed approach, bias; (b) Proposed approach, standard deviation;

(c) Indirect approach, bias; (d) Indirect approach, standard deviation.

more effective noise averaging. Decreasing T is seen to have a beneficial effect in the
bias of both estimates, while it does not substantially affect the variance behavior
of the indirect approach. As in the narrowband case, the variance of the proposed
estimate increases for low speeds when T is reduced but decreases for high speeds

(this effect is seen to become more pronounced with wideband signals).

VII. EXPERIMENTAL RESULTS

We have tested the estimation algorithm on acoustic signals recorded from real
traffic data. Two omnidirectional microphones were set up as in Fig. 1, separated
2b = 0.9 m and mounted on a 6.5 m pole whose base was 13 and 16 m from the center
of the two road lanes, yielding D =~ 14.5 m for the close lane and 17.3 m for the
far one. The sampling rate was f; = 14.7 kHz, and the signals were recorded with
16 bit precision. A videocamera was also mounted in order to have an alternative
means to determine the parameters of the traffic flow. The signals are available at
http://www.gts.tsc.uvigo.es/~valcarce/traffic.html .

Fig. 14 shows the waveform and the spectrogram of the signal produced by a bus
traveling along the close lane at a speed of approximately 40 km/h, as determined

from the video recording. Near ¢ = 0.86, 2.36 and 3.36 s, and for unknown reasons,
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the recording equipment zeroed out the output signals during approximately 20 ms.
However, the estimator is expected to be robust to such time-localized effects since
it is based on (modified) crosscorrelations over the whole observation window.

We computed the function 1(v) using different highpass filtered versions of the
recorded signals. The CPA was taken as t =~ 2.21 s, determined from the position of
the peak of the short-time autocorrelation of the signals using a 2048-sample (0.14
s) sliding window. Fig. 15 shows the results obtained with observation intervals of
T =1 and 2 s, using highpass filters with cutoff frequencies f. = 0 (no filtering),
60, 125 and 250 Hz. For each case, ¥(v) was computed for a range of speeds (v < 0
corresponding to a vehicle approaching the array from the right, in the notation of
Fig. 1) and normalized by its peak value. The estimated speed was ¢y = 41 km/h.
It can be observed that highpass filtering becomes necessary in order to ‘sharpen’
the lobe associated to the true speed vy.

In a second experiment we used the signals from a compact car moving along the
close lane at 50 km/h according to the video data. The waveform and spectrogram
of r1(t) are shown in Fig. 16. The corresponding score functions are depicted in
Fig. 17 for a CPA of t = 1.55 s. The estimate obtained with 7" = 2 s is 99 = 53
km/h. The beneficial effect of removing low frequency content is noted again.

Fig. 18 shows the waveform and spectrogram corresponding to a sedan traveling
at —80 km/h along the far lane. CPA was taken at ¢ = 3.75 s. The score functions
are depicted in Fig. 19. The estimate using T' = 2 s is 99 = —72 km/h. Conditions
were quite windy (notice the gust toward the end of the record), but fortunately it
was found that in most cases the effect of wind is concentrated in the low frequency
region and can be effectively suppressed by highpass filtering.

We must mention that, although we attempted to use the DTD estimation based
indirect approach with these recorded signals, in all of the cases and for a variety of
the crosscorrelation window size, the differential time delay estimate A7 exhibited
a highly irregular behavior, not resembling the expected S-shape of Fig. 2. This
could be due to the sensitivity of short-time DTD estimation to noise as well as
time localized (i.e. short duration) disturbances present in the records. Under these
conditions, this method was unable to produce a usable speed estimate: the use of

directional microphones as in [5] may be required for this approach to work.

VIII. CONCLUSIONS

The proposed approximate ML estimate is easily implemented, and its applica-
tion is quite general. Its main advantage is the ability to estimate car speed directly
without requiring a model for the emitted signal. Thus, intermediate delay estima-
tion steps and source modeling, which may be problematic, are avoided altogether.
The estimate is reasonably robust to noise and time localized disturbances since the
crosscorrelations involved are computed over the whole observation window. It is

expected as well to be robust to small uncertainties in the values of parameters such
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Fig. 14. Waveform and spectrogram of the acoustic signature of a passing bus.
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Fig. 15. The score function computed for a passing bus. T'=2 s (top) and 1 s (bottom).
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as the speed of sound ¢ and the array to road distance D.

Our analysis reveals the impact of the system parameters in the accuracy of the
estimate. Perhaps the most dramatic one is the harmful effect of low frequency
signal components, which has been confirmed by the experiments. Ongoing work
will try to determine the most adequate frequency band, taking into account the
spectral characteristics of road vehicles.

The presence of multiple vehicles within the observation window should be resolv-
able as long as their corresponding CPAs are sufficiently apart in time. In practice,
the location of the CPA has to be estimated. This problem is currently being inves-
tigated, as well as the robustness of the proposed estimate to uncertainties in CPA
determination. More extensive field tests of the algorithm are also under way. Other
open issues are the determination of the time window and sampling frequency as a

trade-off between complexity and performance.
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APPENDIX A: MEAN SCORE FUNCTION IN THE NARROWBAND CASE

With s;(t) given by (4), one finds that the time-shifted value of s;(¢) in (24) is
t— ATr(t;v) — 1 (t — AT(t;v);v0))
d(t — A7(t;v);v0) '

In the denominator of (45), we can make the approximation d(t — A7(t;v);v9) =

st — Ar(tv) = 2L (45)

d(t;vg). However, we must be more accurate with the analogous term appearing in
the argument of s(-). For s(t) = Asinwt, one has

sinfw(t — A7 (t;v) — T1(t;v0) — E(t;v0,v))]

s1(t — AT1(t;v)) = A At v0) (46)
with &(¢;vp,v) defined in (22). Therefore, the product of (46) with so(t) becomes
si(t= Arltosalt) = Lo x {eoslul@r(tiu,0) — €(6v0,0)
— cosw(2t — 74 (t;v0,v) — &(t;v0,0))]}, (47)
where
Ar(t;vp,0) 2 Ar(tvo) — AT(tv), (48)
T4 (t;v0,v) = AT(t;v) — [11(t;v0) + T2(t; v0)]- (49)

When integrating (47), the contribution of the ‘double-frequency’ term is small
compared to that of the second term in the right hand side of (47), so it can be
neglected. On the other hand,

cos[w(A%T(t;vg,v) — E(t;v0,v))] =  cos[w A%T(t; vg, v)] cos[wé (t;vg, v)]

+ sinfw A%7(t; vg, v)] sin[wé (t; vg, v)]. (50)
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At this point we need an approximation for the terms involving A%7(¢; vy, v). Note

that in view of the ‘far field’ approximation (7), one has
9 2b . .
A T(t;v9,v) = ?[Slna(t;v) — sina(t; vg)]. (51)

Although (51) is accurate, it still is too complicated for our purposes. Nevertheless,

by visual inspection of A2, the following approximation seems well suited:
A%7(t;v,v) ~ Rsin[2atan(zt)]. (52)

The values of R and z can be selected by imposing that the two sides of (52) have
the same slope at ¢ = 0, and that they peak at the same time instants. The first
condition reads as Rz = b(v — vg)/Dc. On the other hand, after some algebra one
finds that the extrema of the right hand side of (51) are approximately located at
t & +D/+/2vgv, while those of (52) take place at ¢ = +1/z. Hence

Rt —w) V2 (53)

c/2vv D

The advantage of (52) resides in that it allows to expand the sine and cosine terms

n (50), in view of the Fourier series

cos(r sinx) Z Jx (1) cos(kz), sin(rsinz) = Z Jg(r) sin(kz),  (54)

k=—00 k=—00

(see e.g. [1]), where Ji is the kth order Bessel function of the first kind. Hence,

after neglecting the double-frequency term, we have

? & T/2 COS atani{z
Bp0) ~ 5 Y wen) [ SR oo )l

A2 & T/2 gin[2k atan(zt)] . .
+ 2% LwR) / By St ). (65)

This sum is dominated by the k = 0 term, so that (25) follows. ]

APPENDIX B: DERIVATION OF THE CRB

Since the pdf of the observations conditioned on s(t) is Gaussian, the CRB for

the estimation of the source speed v is given by

‘2, (56)

where s;(v) are the vectors of samples of the noiseless signals s;(¢) impinging on the
microphones. With s;(¢) defined in (4), and with s'(¢) 2 0s(t)/0t, one has

s ot 4+ B\t s(t — (v
o = s [+ O
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Let S(w) be the spectrum of s(¢). Then (57) can be written in terms of S(w) as

831 (t) - (’Ut + b)t 1 o0 1 LW jw[t—n(t;’u)]
o d?(t;v) 21 J_o Sw) d;(t;v) +J cl® du
_(wt£b)t 5 / > jolt-—7i(t0))
2(:v) 2me ) o wS(w)e dw (58)

where the last approximation follows from 1/d;(¢;v) < 1/D <« w/c. Therefore,

2 / o (£)]2
| ~ 5[ |20

~T/2 ov
where we have introduced the functions

fs
(2mc)?
T/2 [ (vt £b)t]?
A v _ (4
I, RN (w1 —wa) [t (t50)]
(w1,0230) /T/z[d?(t;v)] ‘ a* (50)

8Si (’U)
ov

o
// 1S (1) S* (W) Ti(wr, wo; v)dwrdwn,  (59)
—00

which can be seen as the Fourier transform of the bracketed term, for T' large enough.
This bracketed term is a slowly varying function of time, so we can approximate
(w1, wa;v) & 6(w1 — w2)Bi(v), where

s 2y [ ” [Mrdt- (61)

T Jora | d2(t;v)

If b/D < 1 then one finds that £y (v) + B2(v) & 4DGo(aw)/(Tv?*), with ap and Gy
defined in (3) and (28) respectively. Substituting this into (59), we obtain

‘ & 4DGs(0)f, [ wseraw). @)

(2mc)2v3 | T |
and then (43) follows. For a narrowband source s(t) = Asinwyt, the bracketed term
in (62) equals (27)2A%w?2/2, so that (27) is obtained. n

852 (’U)
ov

852 (’U)
ov

2 ‘

APPENDIX C: ERROR ANALYSIS

Let £(t) = &(t;v0,v9) [see (22)], and define the functions

2b

A 0 ) )
t) = —AT(t; ~—— 63
71(t) g 7(t;v) - voc sin a cos” a, (63)
N 26 .5
t) = —SAT(t; POp— 64
Y2 (t) 502 T(t;v) - o sin® a cos” a, (64)
o) = 1- —gtn(t;vo) ~1- Dsina. (65)
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which have been written in terms of the angle @ = «a(t;vg). Then the functions

pr(t), k =1,2 in (32) can be computed as follows:

Acos|w(t — To(t;v0) — £(1))]

pt) ~ —wnglt - Ar(tse) et (66)
~ Acosleo(t — 7alt; v9) — (1))
pQ(t) ~ - wny(t) d(t,’l}())
_ PR — Ar(tsvg)) 23R TalEv0) ZEE)] 6y

d(t; vo)

The first term in the right hand side of (67) is much smaller than the second. Using
these and g(t — A7) = g(t), the constants p; in (34) become approximately

o w (TP yu(t)g()

pr = —5 /_T/2 W Sln[wﬁ(t)]dt, (68)
I M A G0

p R 1 cIiQ(t;'uo) cos|wé(t)]dt. (69)

In (69) it is possible to make g?(¢) ~ 1. Hence, after changing variables (tana =
vot/D), these lead to (36) and (37).
In order to compute o7 = var[N;], write Ny = Ny1 + Nio + Ni3 with

1 [T/2 1 [T/2
_m=p[mmmww,zm=pKWMWMM (70)
L (T2
Nis = / g1 (£)wa (1) d. (71)
—7/2

Ny, 1 = 1,2,3 are zero-mean, uncorrelated random variables with variances o%z-;

hence, 07 = 02, + 025 + 025. From (32), the stochastic process qi(t) is given by

q(t) = —n(t)wi (t — Ar(t;v0)). (72)

Under the approximation t; — to + A7(t;v9) — A7T(t1;v0) = t1 — t2, and in view of

(5), its autocorrelation is found to be

E{g(t)q(t2)} = myi(t)mn(t2) Ry (t —t2)
Nof3
2

=1 (t1)y1 (t2)sinc” (fs (t1 —t2)) (73)

where we have used the fact that R, (7) = —R. (1) [14], so that

sy { RO No/2 11 < £i/2 -

0, otherwise

With this, and since the signals of concern are narrowband, for a sufficiently high
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sampling frequency f; we can make the following approximations:

1 [T/ T/2
2 = o / () / p1(F) Rt — 7)drdt
A* ) 1o —1/2

NO T/2 9
m/_T/Qpl(t)dt

w? T2 ()
27,42 7] /m E(500) " (73)

Q

Q

1 (172 T/2
% = / sa(B)7(t) / 5o (7)1 () Ry (£ — )t
A% J 1) —1/2

Now? [1/2 ,
W/—T/Z [s2(t)y1(t)]” dt

Q

T/2 V2 (t

2fs[AQ/UQ] /T/2 *(t; vo)

Q

dt, (76)

1 [1/2 T/2
% = / ") / 1 (7) Ry ( — 7) Rug (t — 7)drdlt
A% J_1)2 —1/2

Mg [

oL 0
T2 T/2

= (P g O T

One has 0%, = 0%, < 07;. Hence, after integrating (77), we obtain (38).

The same approach can now be used in order to obtain 02 = var[Ny]. At the end

Q

of the process, one finds that
4 T/2 2 T/2
2 7 fs 4 7 fs / 2
N — t)dt. 78
) 5[A2/0'2]2 /T/2 N (t)dt + 3[A2/0'2]2 12 '72( ) ( )

For high values of the signal-to-noise ratio A2/0?, 09 < py in (69). Therefore,
vo — o = (p1 + N1)/p2, from which both the bias and variance in (35) follow. =

APPENDIX D: MEAN SCORE FUNCTION IN THE BROADBAND CASE

We can write s1(t — A7(t;v)), s2(t) in terms of the Fourier transform S(w) as

(1/2
s1(t— Ar(to) ~ t/y?;) / S(wy)eilt T (to)-Ar(t)l gy, (79)
(1/2 : .
so(t) = 1{ ,07; / S* (wg) eIz lt=m2 (B0l gy (80)

In (79) we have neglected the delay error term £(t;vg,v); thus, the analysis applies
only to low speeds. With these, the expected value of ¥ (v) becomes

Elp(v)] =~ ﬁ / _o; S(w1) 8™ (w2)¢ (w1, wa; vo, v)dwy dws, (81)
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where we have introduced

A
C(w1, wo3v0,v) =

T/2

/ 1 edlwaT2(two) —wiTi (tvo)] g —jwi AT(kw) | gi(wi—w2)t gy (82)
d?(t;vo) )

—T/2 y V0

Note that the right hand side of (82) is (approximately) the Fourier transform of

the bracketed term evaluated at we — wy. This bracketed term is a slowly varying

function of time, so that we can approximate its Fourier transform by an impulse

at the zero frequency, weighted by the mean integral of the signal:

Clonwmian) x oo —an) 1 [ it g ey
W1,W2;00,7V) =~ 0{W1 w2 T _T/Ze dz(t;’l]())’
A W
= k(w1;v0,v)

with A%7 as in (48). With this, (81) becomes

B0 % i [ 15() (i, s (84)

Using the approximation (52) and the development following it, we can make

. N wb(v —vo)> 1 /T/2 dt
H(w,'UO,IU) = JO ( Cy/ 2’[]()1) T —T/2 d2(t;’U0)’ (85)

which leads to (42). [
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