
Robustness analysis of beamforming based designs
for mmWave Full-Duplex Amplify-and-Forward

relays
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Abstract—We consider the robust design of a millimeter wave
MIMO two-hop system in which source, relay and destination are
equipped with large antenna arrays. The relay implements the
amplify-and-forward protocol and operates in full-duplex mode,
thus being subjected to self-interference (SI). Imperfect channel
state information (CSI) is assumed in all involved links, including
the SI channel, with a deterministic isotropic bounded model
on CSI errors. The proposed robust design seeks to maximize
the worst-case spectral efficiency, accommodates both digital and
phase shifter-based analog beamforming, and is computationally
simple; moreover, it does not require knowledge of the size of
the CSI uncertainty regions.

Index Terms—Amplify-and-forward relay, millimeter wave
communication, robust beamforming, full-duplex.

I. INTRODUCTION

Relaying in general, and Amplify-and-Forward (A&F) re-
laying in particular, is an appealing way to extend wireless
coverage and improve link reliability with low complexity
[1], [2]. In Half-Duplex (HD) mode, the relay transmits and
receives either in different frequency channels or different time
slots, whereas in Full-Duplex (FD) transmission and reception
occur simultanously in the same channel. FD relaying has
the potential to improve spectral efficiency, although this
requires careful management of self-interference (SI) [3], [4].
SI cancellation is usually applied first in the RF analog
domain to avoid frontend/ADC saturation, together with a
second cancellation stage in the baseband digital domain.
With multiple-input multiple-output (MIMO) systems, analog
SI cancellation scales poorly in terms of complexity, making
spatial SI suppression appealing for FD MIMO relays [5],
[6], especially at millimeter wave (mmWave) frequencies, for
which large antenna arrays are used to overcome the severe
path losses [7], [8]. For such large arrays, using an RF chain
per antenna is infeasible due to cost and power consumption
constraints, and alternative architectures are preferred, e.g.,
beamforming by means of analog phase shift networks [8], [9].
The ensuing constraints make beamformer design challenging
for spatial SI suppression-based FD MIMO [11].
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Most previous designs for FD MIMO relays [5], [6], [12],
[13] assume perfect channel state information (CSI), with a
few exceptions. Under a Decode-and-Forward (D&F) protocol,
[14] considers imperfect CSI in all involved links, assumes
deterministic ellipsoidal uncertainty regions for the channel
errors, and seeks a worst-case optimization design. In [15],
imperfect CSI is considered only in the A&F relay-destination
(R→D) link, also under a deterministic (isotropic) uncertainty
model. Both [14], [15] assume digital beamforming, whereas
[16] considers a robust A&F FD relay design under a hy-
brid digital-analog architecture, with a probabilistic CSI error
model for the R→D link. These robust designs result in
optimization problems with significant complexity.

We focus on the robust design of A&F FD MIMO relays
using digital or analog beamforming. Diferently from [14],
[15], [16], which consider multiple single-antenna users, in
our setting the destination is a single multiantenna node as in
[13]. We adopt a deterministic isotropic CSI error model for all
links and maximize the worst-case spectral efficiency of the
network. The resulting design has low complexity and does
not require explicit knowledge of the size of the uncertainty
regions. Simulation results show that the robust FD designs
outperform their HD counterparts even in the presence of
significant CSI errors.

II. SIGNAL MODEL

Consider the mmWave network in Fig. 1, comprising nodes
S (source), R (relay), and D (destination). Using an array
of NS antennas, S sends a data stream to R, which is
equipped with receive and transmit arrays of respective sizes
NR and NT, whereas D uses a receive array of size ND. It
is assumed that the S→D link is absent, and that channels
are frequency-flat. The matrices for the S→R and R→D links
are HSR ∈ CNR×NS and HRD ∈ CND×NT , respectively.
The SI channel is present in FD mode, and is denoted
by HRR ∈ CNR×NT . The designs considered are model-
independent; specific channel models will be presented in
Sec. V.

The beamforming vector applied by S is f ∈ CNS , whereas
v ∈ CND is the combiner applied by D. Similarly, w ∈ CNR

and b ∈ CNT denote the corresponding beamformers at R.
The entries of f , w, b and v have constant magnitude when
phase-shifter based analog beamforming is considered. The
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Fig. 1: Analog beamforming-based FD relay network. With digital beamforming, a dedicated RF chain is present at each
antenna of every node.

noise vectors nR, nD at R and D are zero-mean Gaussian with
respective covariance σ2

RINR
and σ2

DIND
, and the average

transmit power at S is ρS.
With s the symbol sent from S, the received signal at R is

yR = wH(
√
ρSHSRfs+

√
ρSIHRRbz + nR), (1)

where z is the SI affecting R and ρSI quantifies SI strength, as
both s and z have unit variance. Due to hardware imperfections
and processing delay at R, z is a distorted and delayed replica
of the signal transmitted by R, plus transmit noise. Note that
z is to be understood as residual SI left over by any passive
and/or active SI cancellation stages.

Under the A&F protocol, R amplifies its received signal yR
and then retransmits it. Thus, the signal at D is given by

yD = vH(
√
gHRDbyR + nD), (2)

with g the power gain of R. Denoting by ρR the available
transmit power at R, it must hold that gE{|yR|2} ≤ ρR. We
will assume w.l.o.g. that all beamformers f , w, b, v have
unit norm, and that the network has channel estimates ĤSR,
ĤRD, ĤRR. Denoting the corresponding estimation errors as
∆SR, ∆RD, ∆RR, the true channel matrices are then given
by H∗ = Ĥ∗ + ∆∗, where ‘*’ stands for SR, RD or RR.
Define the power gains of the different channels as

h2SR(w,f) , |wHHSRf |2

= |wH(ĤSR + ∆SR)f |2, (3)
h2RD(v, b) , |vHHRDb|2

= |vH(ĤRD + ∆RD)b|2, (4)
h2RR(w, b) , |wHHRRb|2

= |wH(ĤRR + ∆RR)b|2, (5)

which will be simply denoted as h2SR, h2RD, h2RR for brevity.
In addition, let us introduce the variables

εR ,
ρS
σ2
R

, εD ,
ρR
σ2
D

, εSI ,
ρSI
ρS
, q ,

σ2
R

σ2
D

g. (6)

Assuming Gaussian codebooks and treating SI as noise, the
achievable rate (in bits/s/Hz) of this network is found [13]:

RFD = log2

(
1 +

qεRh
2
SRh

2
RD

1 + qh2RD(1 + εRεSIh2RR)

)
, (7)

whereas the relay power constraint can be written as

q(1 + εRεSIh
2
RR + εRh

2
SR) ≤ εD. (8)

III. ROBUST DESIGN

We consider a robust design against the worst-case chan-
nel estimation errors, under the relay power constraint and
appropriate beamformer constraints: in a digital design, each
of the vectors f , w, b, v is constrained to be unit-norm
(UN), whereas in a phase shifter-based analog design they are
constrained to be unit-norm with constant amplitude (UNCA).

Since RFD in (7) is a monotonically increasing function
of q, the optimum strategy is for the relay to transmit at full
power, so that equality holds in (8). This can be achieved
in practice even in the presence of channel estimation errors
by using an automatic gain control (AGC) loop at the relay.
Substituting this optimum value of q in (7), we obtain

RFD = log2

(
1 +

εRh
2
SR · εDh2RD

(1 + εRεSIh2RR)(1 + εDh2RD) + εRh2SR

)
.

(9)
The robust design is then formulated as

max
{f ,w,b,v}

min
{∆SR,∆RD,∆RR}

RFD, (10)

where the beamformers are constrained to be either UN (digital
case) or UNCA (analog case), and in addition we impose the
following isotropic uncertainty bounds, as in, e.g., [15]:

‖∆SR‖F ≤ µR, ‖∆RD‖F ≤ µD, ‖∆RR‖F ≤ µSI. (11)

The constants µR, µD, µSI reflect our confidence in the quality
of the channel estimates; note that without the constraints (11),
the worst-case rate would equal zero. The inner minimization
in (10) is solved with the aid of the following result, whose
proof can be found in Appendix A.

Theorem 1: Given z ∈ C and vectors x ∈ Cn, y ∈ Cm, let
h(∆) = |z + xH∆y|, for ∆ ∈ Cn×m. Then, for any µ ≥ 0,

max
‖∆‖F≤µ

h(∆) = |z|+ µ‖x‖2‖y‖2, (12)

min
‖∆‖F≤µ

h(∆) = max{ 0, |z| − µ‖x‖2‖y‖2 }. (13)

Note that RFD in (9) is decreasing in h2RR, hence minimiz-
ing RFD w.r.t. ∆RR subject to ‖∆RR‖F ≤ µSI amounts to



maximizing h2RR = |wHĤRRb+wH∆RRb|2 under the same
constraint; by Th. 1, the maximum is h2RR = (|wHĤRRb|+
µSI‖w‖2‖b‖2)2. On the other hand, RFD in (9) is increasing
in h2SR, h2RD. By Th. 1, and since under either the UN
or UNCA constraints the beamformers have unit norm, the
minimum RFD is obtained when

hSR = h̄SR , max{ 0, |wHĤSRf | − µR }, (14)
hRD = h̄RD , max{ 0, |vHĤRDb| − µD }. (15)

Note that if either hSR = 0 or hRD = 0, then the solution
of the inner minimization in (10) is zero, regardless of the
beamforming vectors, in which case the worst-case robust
design problem ceases to be of use. This is due to the fact that
if the magnitude of the channel estimation errors is allowed
to be sufficiently large, then it is always possible to find a
particular instance of such CSI errors resulting in zero spectral
efficiency. To avoid this situation, we need to assume that
the zero solution is not attained in (14)-(15), i.e., that there
exist unit-norm f , w, b, v such that |wHĤSRf | − µR > 0
and |vHĤRDb| − µD > 0. This, in turn, is equivalent to the
following (see Appendix B):

Assumption 1: Let σ1(A) denote the largest singular value
of A. Then µR < σ1(ĤSR) and µD < σ1(ĤRD).

Assumption 1 effectively determines the range of relative error
magnitude in the S→R and R→D channel estimates since, in
view of (11), it implies that

‖∆SR‖F
σ1(ĤSR)

< 1 and
‖∆RD‖F
σ1(ĤRD)

< 1. (16)

Again, the robust design becomes meaningless unless Assump-
tion 1 is adopted, in which case it reduces to

max
f ,w,b,v

log2

(
1+

εRh̄
2
SR · εDh̄2RD

(1+εRεSIh̄2RR)(1+εDh̄2RD)+εRh̄2SR

)
(17)

with h̄SR, h̄RD as in (14)-(15), and

h̄RR , |wHĤRRb|+ µSI. (18)

Problem (17) does not admit a closed-form solution ei-
ther under UN or UNCA constraints. However, it can be
approached in the same way as in [13] by noting that the
objective is monotonically decreasing in |wHĤRRb|, and in-
creasing in |wHĤSRf | and |vHĤRDb|. The idea is to impose
an additional zero-forcing (ZF) constraint wHĤRRb = 0 on
the SI term, as this yields the minimum value of h̄2RR = µ2

SI.
Then the terms h̄2SR and h̄2RD are maximized cyclically subject
to the ZF constraint and the appropriate constraints (UN
or UNCA) on beamformers. Maximizing h̄2SR (resp. h̄2RD)
amounts to maximizing |wHĤSRf | (resp. |vHĤRDb|). Thus,
the low-complexity UN/UNCA beamformer designs from [13]
can be directly applied in this setting, with the analysis above
showing their robustness in that they seek to maximize a worst-
case lower bound to spectral efficiency. Note that, apart for
Assumption 1, no knowledge about the specific values of µR,
µD, µSI is explicitly needed in this approach.

IV. HALF-DUPLEX CASE

For completeness, and in order to provide a meaningful
benchmark, we consider the HD mode, for which ρSI = 0
in (1). If the available bandwidth is split in half between the
S→R and R→D links, then for the same noise psd as in FD the
corresponding noise powers become σ2

R

2 and σ2
D

2 . If orthogonal
time slots of equal duration are used instead, then for the same
energy per symbol as in FD the corresponding transmission
powers become 2ρS and 2ρR. In either case, the SNR values
εR, εD become 2εR and 2εR. Taking also into account that (i)
the transmission of a symbol takes now two channel uses, (ii)
the ratio σ2

R

σ2
D

(hence the scaled gain q) remains the same, and
(iii) εSI = 0, the achievable rate and power constraint of the
HD relay network become

RHD =
1

2
log2

(
1+

2qεRh
2
SRh

2
RD

1 + qh2RD

)
, q(1 + 2εRh

2
SR) ≤ 2εD,

(19)
with h2SR, h2RD given by (3)-(4). Since RHD is maximized
w.r.t. q for full power transmission, the robust design becomes

max
f ,w,b,v

min
∆SR,∆RD

1

2
log2

(
1 +

2εRh
2
SR · 2εDh2RD

1 + 2εRh2SR + 2εDh2RD

)
, (20)

under UN/UNCA constraints on beamformers and constraints
(11) on error matrices. Following steps analogous to those in
Sec. III, under Assumption 1 problem (20) reduces to

max
f ,w,b,v

1

2
log2

(
1 +

2εRh̄
2
SR · 2εDh̄2RD

1 + 2εRh̄2SR + 2εDh̄2RD

)
, (21)

with h̄2SR and h̄2RD as in (14)-(15). There is no coupling
between S→R and R→D variables now, so (21) amounts to

max
f ,w
|wHĤSRf |, max

b,v
|vHĤRDb|. (22)

Under UN constraints, the solution is the largest singular value
of ĤSR and ĤRD, respectively. Under UNCA constraints,
there is no closed-form solution to (22). Nevertheless, if either
w or f is held fixed, then |wHĤSRf | can be maximized in
closed form in terms of the other, so that a cyclic maximization
approach seems natural; and similarly for |vHĤRDb|. Again,
knowledge of µR, µD is not required.

V. RESULTS

The S, R and D nodes are equipped with 16-antenna
λ
2 -spaced uniform linear arrays. For the S→R and R→D
channels, the Saleh-Valenzuela narrowband clustered model
[17] is assumed, with Ncl scattering clusters and Nray rays
per cluster:

HSR/RD =

Ncl∑
k=1

Nray∑
`=1

βk,`ar(ϕk,`)a
H
t (θk,`), (23)

where for the `-th ray in the k-th cluster, at(θk,`) and
ar(ϕk,`) are the antenna array steering and response vectors
at the transmitter and receiver, respectively, evaluated at the
corresponding azimuth angles of departure from transmitter,
θk,`, or arrival at receiver, ϕk,`; and βk,` is the complex gain.
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Fig. 2: Spectral efficiency vs. SNR at R. Dashed: perfect CSI.
Solid: imperfect CSI (σγ = 0.3, σφ = 10◦). Thin solid: FD
digital upper bound (no SI and perfect CSI).

The SI channel has a near-field line-of-sight (LOS) component,
and a far-field one due to SI reflections in nearby scatterers:

HRR =

√
κ

κ+ 1
HLOS +

√
1

κ+ 1
HREF, (24)

with κ the Rice factor. For the far-field term HREF the same
model as in (23) is adopted, whereas the LOS component
follows the near-field model [10], [11]

[HLOS]pq =
1

dpq
e−j2π

dpq
λ , (25)

with dpq the distance from the p-th antenna of the TX array to
the q-th antenna of the RX array, and λ the wavelength. For
the arrays at R the geometry of [11, Fig. 2] is assumed, with
distance d = 2λ and angle ω = π

2 .
We assumed Ncl = 6, Nray = 10 and κ = 10 dB.

Such relatively large value of the Rice factor is realistic,
given the proximity between the TX and RX arrays at the
relay. Departure/arrival angles are random, with mean cluster
angle uniformly distributed in [0, 360◦] and angular spreads
of 16◦. Path gains are i.i.d. complex circular Gaussian with
the same variance. Channel matrices are normalized so that
their squared Frobenius norms equal the number of their
entries. For a given H , CSI errors are introduced entrywise as
[Ĥ]pq = [H]pq(1 + γpq)e

jφpq , with γpq and φpq independent
zero-mean Gaussian random variables with variances σ2

γ and
σ2
φ, respectively. Regarding the SI channel, we assume that its

LOS component HLOS can be accurately obtained in an initial
calibration stage, whereas the far-field component HREF is
subject to estimation errors as above.

The spectral efficiency was computed by averaging over 500
channel realizations. First we fixed the SNR at D as εD = −10
dB, and with a rather large self-interference to signal ratio at
the relay of εSI = 20 dB. CSI errors were generated with
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Fig. 3: Spectral efficiency vs. SI strength. Dashed: perfect CSI.
Solid: imperfect CSI. Thin solid: FD digital bound.

σγ = 0.3, σφ = 10◦ for HSR, HRD and HREF. Fig. 2 shows
that the FD relay is more sensitive than the HD designs, due
mainly to incomplete SI cancellation due to errors in the SI
channel estimate. Nevertheless, even with these relatively large
CSI errors and SI strength, the degradation is not too severe.

Next we fixed εD = −10 dB and εR = −5 dB. For HSR and
HRD, CSI errors were generated with σγ = 0.3, σφ = 10◦ as
before; whereas for HREF, we took σγ = 0.3 and swept over
σφ ∈ {10◦, 20◦, 30◦, 40◦} to check the effect of incomplete
SI cancellation in the FD designs. Although the importance
of accurate estimation of the SI channel is clear, Fig. 3 shows
that performance degradation is graceful, as expected from
the robustness analysis of Sec. III. Even for values as large as
σφ = 40◦, the digital and analog FD designs still outperform
their corresponding HD counterparts for values of εSI up to 26
and 25 dB, respectively. Imperfect CSI in the S→R and R→D
links seems to be much less detrimental in comparison. This
is further illustrated in Fig. 4, which shows the degradation
of the spectral efficiency for each design under four different
settings: (a) perfect CSI in all links; (b) CSI errors in the
S→R link only; (c) CSI errors in the R→D link only; (d) CSI
errors in the far-field term of the SI channel only. CSI errors
were generated with σγ = 0.3 and varying σφ. The larger
sensitivity to CSI errors in the SI channel of the FD designs
is clear; errors in the R→D link have a larger impact than
those in the S→R link because the latter has a larger SNR.

VI. CONCLUSION

The HD/FD digital/analog beamforming designs discussed
are inherently robust to CSI errors; moreover, they have low
complexity and do not require knowledge of the sizes of
uncertainty regions, which is a very appealing feature in
practice. In particular, FD designs still outperform their HD
counterparts even in the presence of significant CSI errors.
Future work will address extensions to nonisotropic error



0 10 20 30 40

 , degrees

1

1.5

2

2.5

3

S
p

ec
tr

al
 e

ff
ic

ie
n

cy
 (

b
it

s/
s/

H
z)

D
 = -10 dB

R
 =   -5 dB

SI
 = 25 dB

HD digital

HD analog

FD analog

FD digital

Fig. 4: Spectral efficiency vs. CSI errors. Dashed: perfect CSI.
Thin solid: FD digital bound. Errors in S→R link (◦), R→D
link (M), Self-Interference channel (�).

models, as well as to hybrid analog/digital architectures with
finite-resolution phase shifters, handling multiple data streams.

APPENDIX

A. Proof of Theorem 1

Using the triangle inequality,

h(∆) ≤ |z|+
n∑
i=1

m∑
j=1

|xi||yj ||∆ij |. (26)

At the maximum of the right-hand side of (26) subject to
‖∆‖2F =

∑n
i=1

∑m
j=1 |∆ij |2 ≤ µ2, the constraint must hold

with equality. Using Lagrange multipliers, such maximum is
found to take place at

|∆ij | = µ
|xi|
‖x‖2

|yj |
‖y‖2

, i = 1, . . . , n, j = 1, . . . ,m, (27)

hence (26) yields h(∆) ≤ |z| + µ‖x‖2‖y‖2; the bound is
achieved by

∆ =
x

‖x‖2
yH

‖y‖2
µej∠z, (28)

which proves the first part of the theorem. To prove the
second part, assume first that |z| ≤ µ‖x‖2‖y‖2. Then ∆ =

−z x
‖x‖22

yH

‖y‖22
is feasible and yields h(∆) = 0, which is clearly

minimum.
Assume then |z| ≥ µ‖x‖2‖y‖2. As seen above, for all ∆

for which ‖∆‖F ≤ µ, it holds that |xH∆y| ≤ µ‖x‖2‖y‖2,
and thus |z| − |xH∆y| ≥ 0. By the triangle inequality,

h(∆) ≥
∣∣|z| − |xH∆y|

∣∣ = |z| − |xH∆y|
≥ |z| − µ‖x‖2‖y‖2, (29)

and the bound is achieved by

∆ = − x

‖x‖2
yH

‖y‖2
µej∠z. (30)

B. On Assumption 1

Given a matrix H and a constant µ > 0, we shall show the
equivalence of the following statements:

1) There exist unit-norm vectors x, y such that |xHHy|−
µ > 0.

2) µ < σ1(H).
Assume 1) is true. Since

σ1(H) = max
‖u‖2=1,‖v‖2=1

|uHHv|, (31)

it follows that

µ < |xHHy| ≤ σ1(H). (32)

Now assume 2) is true. Let x, y be the (unit-norm) princi-
pal left and right singular vectors of H , respectively. Then
|xHHy| = σ1(H) > µ, so that |xHHy| − µ > 0. Therefore
both statements are equivalent.
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