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Abstract—Multiple-antenna detection of a Gaussian signal
with spatial rank one in temporally white Gaussian noise with
arbitrary and unknown spatial covariance is considered. This
is motivated by spectrum sensing problems in the context of
Dynamic Spectrum Access in which several secondary networks
coexist but do not cooperate, creating a background of spatially
correlated broadband interference. When the temporal correla-
tion of the signal of interest is assumed known up to a scale factor,
the corresponding Generalized Likelihood Ratio Test is shown to
yield a scalar optimization problem. Closed-form expressions of
the test are obtained for the general signal spectrum case in
the low signal-to-noise ratio (SNR) regime, as well as for signals
with binary-valued power spectrum in arbitrary SNR. The two
resulting detectors turn out to be equivalent. An asymptotic
approximation to the test distribution for the low-SNR regime is
derived, closely matching empirical results from spectrum sensing
simulation experiments.

Index Terms—GLR test, detection, multiantenna array, corre-
lated noise, noise uncertainty, cognitive radio, spectrum sensing,
spectral flatness measure, Capon beamformer

I. INTRODUCTION

Array processing for signal detection and parameter esti-
mation has been a topic of deep research interest for decades.
Many techniques have been proposed under the assumption
that the noise is Gaussian and spatially uncorrelated (or has
a known spatial structure that allows prewhitening) [1]–[5].
However, in many practical cases the noise field may present
unknown spatial correlation, due to co-channel interference in
communications applications, and to clutter and jamming in
radar array processing [6]–[10]. Our main motivation stems
from the problem of spectrum sensing for Dynamic Spectrum
Access (DSA) in licensed bands [11], [12]. DSA aims at a
more efficient usage of spectrum by allowing unlicensed (or
secondary) users to opportunistically access channels in those
bands, as long as interference to licensed (or primary) users
is avoided; this can be achieved by dynamically tuning to
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different carrier frequencies to sense the radio environment for
unused channels. Spectrum sensing schemes must be robust to
wireless propagation phenomena such as large- and small-scale
fading as well as to interference. The first two issues can be
dealt with by resorting to cooperative detection strategies [13]
and multiantenna detectors [14]–[17], respectively.

Multiantenna spectrum sensing methods usually exploit
spatial correlation of the signal, assuming a spatially uncor-
related noise field. Whereas this assumption may be adequate
in early stages of DSA-based schemes, in which a single
secondary network coexists with the primary system, this is not
necessarily so when several independent secondary systems
access the same frequency band. Unless strict coordination
among such systems is imposed, no quiet periods will be
available in order to sense primary activity in a given channel.
Hence, such activity will have to be detected in the presence
of a background noise consisting not only of thermal noise,
but also the aggregate interference from the rest of secondary
networks. The physical layer of secondary systems is likely
to make use of channel fragmentation, aggregation, and/or
bonding in order to enhance spectrum utilization (such is the
case for e.g. the IEEE 802.22 standard for opportunistic access
to TV white spaces [18]), so that the background interference
will likely be broadband (with respect to the bandwidth of
a primary channel), and potentially correlated in space, due
to the well-localized origin of secondary transmissions. Other
potential sources of broadband interference of course exist, e.g.
the emissions of Broadband over Power Line (BPL) systems in
the HF and VHF bands [19]. After bandlimiting by the channel
selection filter of the receiver, the contribution due to the
broadband interference will tend to be Gaussian distributed,
and will be modeled as temporally uncorrelated in this work.
More sophisticated noise models, e.g. autoregressive in time
and/or space [20], may be of interest in certain scenarios but
fall out of the scope of this paper.

On the other hand, it may well be possible for the spec-
trum sensor to have knowledge about the (normalized) Power
Spectrum Density (PSD) of primary signals, as the emission
masks of many licensed services (e.g., broadcast and cellular
networks) are in the public domain. Knowledge of the signal
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PSD has been exploited in [21] assuming a single antenna
and known noise variance; and in [22], [23] for multiple an-
tennas with spatially uncorrelated noise with known common
variance, and respectively known and unknown channel gains.

Motivated by the above considerations, we derive the Gen-
eralized Likelihood Ratio (GLR) detector and its Receiver
Operating Characteristic (ROC) for a random signal with
spatial rank one and known PSD in temporally white Gaussian
noise of arbitrary spatial covariance. The nuisance parameters
are the unknown antenna gains for the signal of interest and
the unknown spatial covariance of the noise. No structure is
assumed on the latter, thus avoiding artificial constraints on
the unknown spatial rank of the interference, for the sake of
robustness and detector complexity. With this model, intuition
suggests that detection should be feasible as long as the
temporal correlation of the signal differs from that of the
noise process, i.e., the signal is not temporally white. Indeed,
the performance of the GLR detector will be shown to be
dependent on the spectral flatness measure at the output of
the minimum variance beamformer.

Following common practice, the Gaussian model is adopted
for the primary signal. The resulting model is tractable and
leads to useful detectors even under different signal distri-
butions. In addition, if the primary system uses multicarrier
modulation, the Gaussian assumption becomes quite accurate
for the number of subcarriers usually found in practice [24].

Previous works in the literature on signal detection are
related to the scheme presented in this paper. The single-
antenna scenario considering real- rather than complex-valued
data in the proposed signal model has been treated in [30]
using the Expectation-Maximization (EM) algorithm. On the
other hand, the problem of signal detection with multiple an-
tennas and spatially correlated noise has been addressed by the
Generalized Multivariate Analysis of Variance (GMANOVA)
approach [25] when the signal is deterministic dependent
on unknown parameters. Adaptive subspace detectors can
be used if the signal has low spatial rank and signal-free
training data are available for estimating the unknown noise
covariance; see [26] for the case of deterministic signals,
and [27] for Gaussian signal components. Other approaches
for the Gaussian signal model exploit rotational invariance of
the noise field (if it exists) [28] or assume a parametric model
of the noise [20]. When the spatial correlation of noise is
unstructured, and lacking training data, as in our model, it
may be possible to exploit the temporal correlation properties
of signal and noise as in [29], where it is assumed that noise
has a much shorter temporal correlation length than that of
the signals. However, none of these works derives the GLR
test under the proposed signal model. Moreover, the detector
herein described can be validated with the result in [30] in
the single antenna setting, leading to a simpler univariate
optimization scheme, and can significantly outperform other
detectors which apply under the same model, as shown by
simulation results for that from [29].

The paper is structured as follows. The signal model is
given in Sec. II, together with a summary of the main
results to be developed in the sequel. The derivation of the
exact GLR detector is carried out in Sec. III. The resulting

scheme involves the optimization of a data-dependent term
with respect to a scalar variable, which cannot be solved in
closed form in general. Nevertheless, in Sec. IV two important
particular instances are considered that will result in a closed-
form scheme, namely the low-SNR and binary-valued signal
PSD cases. The asymptotic performance of the GLR detector
is analytically derived in Sec. V. Numerical results are given
in Sec. VI, and Sec. VII presents some closing remarks.

Notation: lower- and upper-case boldface symbols denote
vectors and matrices, respectively. The 𝑘-th unit vector is
denoted by 𝒆𝑘. The trace, determinant, transpose, conjugate,
conjugate transpose (Hermitian), adjoint, and Moore-Penrose
pseudoinverse of 𝑨 are denoted by tr𝑨, det𝑨, 𝑨𝑇 , 𝑨∗,
𝑨𝐻 , adj(𝑨) and 𝑨† respectively. diag(𝑨) is a diagonal
matrix with diagonal equal to that of 𝑨. The Kronecker
product of 𝑨 and 𝑩 is denoted by 𝑨⊗𝑩. The column-wise
vectorization of 𝑨 is denoted by vec(𝑨). For Hermitian 𝑨, its
largest (resp. smallest) eigenvalue is denoted by 𝜆max[𝑨] (resp.
𝜆min[𝑨]); if 𝑨 is positive (semi)definite, 𝑨1/2 denotes its
unique Hermitian square root. The natural (base 𝑒) logarithm
is denoted by log. Finally, 𝒙 ∼ 𝒞𝒩 (𝝁,𝑷 ) indicates that 𝒙 is
circularly complex Gaussian with mean 𝝁 and covariance 𝑷 .

II. PROBLEM FORMULATION

A. Signal Model

The general signal model considered in this paper is as
follows:

𝒚𝑛 = 𝒉𝑠𝑛 + 𝒛𝑛 ∈ ℂ𝑀 , 𝑛 ∈ {1, ⋅ ⋅ ⋅ , 𝑁}, (1)

where 𝒚𝑛 represents a snapshot (sample of sensor outputs at
time 𝑛) from an array of 𝑀 sensors, 𝒉 ∈ ℂ𝑀 is the unknown
spatial signature vector, and {𝑠𝑛} ∈ ℂ, {𝒛𝑛} ∈ ℂ𝑀 are
independent zero-mean complex circular Gaussian processes.
The signal vector 𝒔

.
= [ 𝑠1 ⋅ ⋅ ⋅ 𝑠𝑁 ]𝑇 ∈ ℂ𝑁 is zero

mean with known temporal covariance 𝑪
.
= 𝔼[𝒔𝒔𝐻 ], i.e.,

𝒔 ∼ 𝒞𝒩 (0,𝑪). The process {𝑠𝑛} is assumed wide-sense
stationary with PSD 𝑆𝑠𝑠(𝑒

𝑗𝜔); thus, 𝑪 is Hermitian Toeplitz.
In addition, we assume that 𝔼[∣𝑠𝑛∣2] = 1 without loss of
generality (since any scaling factor can be absorbed into 𝒉),
so that 𝑪 has an all-ones diagonal. On the other hand, the
process {𝒛𝑛} models the background noise and interference.
It is assumed to be temporally white1, but spatially correlated
with unknown and unstructured spatial covariance matrix Σ:
𝔼[𝒛𝑘𝒛

𝐻
𝑙 ] = Σ if 𝑘 = 𝑙, and zero otherwise. Therefore,

defining the 𝑀𝑁 × 1 data and noise vectors respectively as
𝒚

.
= [ 𝒚𝑇

1 ⋅ ⋅ ⋅ 𝒚𝑇
𝑁 ]𝑇 and 𝒛

.
= [ 𝒛𝑇

1 ⋅ ⋅ ⋅ 𝒛𝑇
𝑁 ]𝑇 , one

can rewrite (1) as

𝒚 = 𝒔⊗ 𝒉+ 𝒛, (2)

which is Gaussian with covariance 𝑹
.
= 𝔼[𝒚𝒚𝐻 ] = 𝑪 ⊗

𝒉𝒉𝐻 + 𝑰𝑁 ⊗Σ.
The problem considered is the detection of the presence

of signal 𝒔 given the data vector 𝒚. Thus, the corresponding

1If 𝒛𝑛 is temporally nonwhite but with known temporal correlation, the
proposed model can be obtained after a temporal prewhitening step.
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hypothesis test is given by

ℋ0 : 𝒚 ∼ 𝒞𝒩 (0,𝑹0), 𝑹0 = 𝑰𝑁 ⊗Σ, (3)

ℋ1 : 𝒚 ∼ 𝒞𝒩 (0,𝑹1), 𝑹1 = 𝑪 ⊗ 𝒉𝒉𝐻 + 𝑰𝑁 ⊗Σ

𝒉 ∕= 0, (4)

where Σ is an unknown, unstructured, Hermitian positive
definite matrix under both hypotheses.

Observe from (3)-(4) that a necessary condition for the
problem to be well-posed is that 𝑪 ∕= 𝑰𝑁 . Otherwise, the
covariance matrix under ℋ1 could be written as 𝑰𝑁 ⊗ Σ̃ with
Σ̃ = 𝒉𝒉𝐻 + Σ; the fact that both Σ and Σ̃ are unknown,
together with the lack of structure in these matrices, yields
the same admissible set of covariance matrices under both
hypotheses, which then become indistinguishable.

In order to cope with the unknown parameters 𝒉 and Σ, a
sensible approach is the Generalized Likelihood Ratio (GLR)
test [31], in which these parameters are substituted by their
Maximum Likelihood (ML) estimates under each hypothesis:

𝑇 =
maxΣ,𝒉 𝑓(𝒚 ∣Σ,𝒉)
maxΣ 𝑓(𝒚 ∣Σ,0)

ℋ1

≷
ℋ0

𝛾, (5)

where the probability density function (p.d.f.) 𝑓 is given by

𝑓(𝒚 ∣Σ,𝒉) = 1

𝜋𝑀𝑁 det𝑹
exp{−𝒚𝐻𝑹−1𝒚}. (6)

B. Summary of Main Results

Before delving into the derivation of the GLR test (5), we
summarize and discuss our main results. To this end, let us
introduce the data matrix 𝒀 ∈ ℂ𝑀×𝑁 and its (economy-size)
singular value decomposition (SVD):

𝒀
.
= [ 𝒚1 ⋅ ⋅ ⋅ 𝒚𝑁 ] = 𝑼𝑺𝑽 𝐻 , (7)

where 𝑼 ∈ ℂ𝑀×𝑀 is unitary, 𝑺 ∈ ℂ𝑀×𝑀 is positive definite
diagonal, and 𝑽 ∈ ℂ𝑁×𝑀 is semi-unitary, i.e., 𝑽 𝐻𝑽 = 𝑰𝑀 .
Note that 𝒀 is related to the data vector 𝒚 ∈ ℂ𝑀𝑁 by 𝒚 =
vec(𝒀 ). Then we have the following.

Theorem 1: The GLR test (5) can be written as follows,
with 𝛾 a suitable threshold:

𝑇 = max
𝜌≥0

𝑡(𝜌)
ℋ1

≷
ℋ0

𝛾, 𝑡(𝜌)
.
=
𝜆−𝑁

min

[
𝑽 𝐻(𝑰𝑁 + 𝜌𝑪∗)−1𝑽

]
det(𝑰𝑁 + 𝜌𝑪∗)

,

(8)
which involves a scalar optimization problem in the variable
𝜌.

Note that the dependence of (8) with the data is only
through the semi-unitary matrix 𝑽 , which is related to the
temporal dimension of the data. This is due to the lack of
knowledge about the spatial covariance of the noise-plus-
interference process 𝒛𝑛. In addition, it is readily checked that if
𝑪 = 𝑰𝑁 then the statistic in (8) becomes 𝑇 = 1 independently
of the data, reflecting again the fact that white signals are not
detectable under this model.

The parameter 𝜌 featuring in (8) is related to the Signal-
to-Noise Ratio (SNR), as will be shown in the sequel. To the
best of our knowledge, there is no closed-form solution for the
general maximization problem (8). Nevertheless, the following
result applies in the asymptotic regime of low SNR.

Lemma 1: For vanishingly small SNR, the GLR test (8)
becomes equivalent to the following test:

𝑇 ′ .= 𝜆max[𝑽
𝐻𝑪∗𝑽 ]

ℋ1

≷
ℋ0

𝛾′. (9)

In order to illustrate the meaning of (9), let 𝑪 = 𝑭Λ𝑭𝐻

with Λ = diag(𝜆0, ⋅ ⋅ ⋅ , 𝜆𝑁−1) be an eigenvalue decomposi-
tion (EVD) of 𝑪 . It is well known [31] that as 𝑁 → ∞ the
eigenvalues of 𝑪 approach 𝜆𝑘 → 𝑆𝑠𝑠(𝑒

𝑗 2𝜋𝑘
𝑁 ), 0 ≤ 𝑘 ≤ 𝑁−1,

whereas the matrix of eigenvectors 𝑭 approach the 𝑁 × 𝑁
orthonormal Inverse Discrete Fourier Transform (IDFT) matrix
(this can be formally justified in terms of the asymptotic
equivalence between sequences of matrices and the asymptotic
eigenvalue distribution of circulant and Toeplitz matrices [32]).
Let us now write 𝑽 ∗ = [ 𝒗1 ⋅ ⋅ ⋅ 𝒗𝑀 ]. The (𝑖, 𝑗) element
of 𝑽 𝐻𝑪∗𝑽 is therefore 𝒗𝐻

𝑗 𝑪𝒗𝑖 = (𝑭𝐻𝒗𝑗)
𝐻Λ(𝑭𝐻𝒗𝑖),

which for 𝑁 → ∞ can be thought of as a spectrally weighted
frequency-domain crosscorrelation between the outputs of
the 𝑖-th and 𝑗-th orthonormalized data streams (since 𝑭𝐻𝒗𝑖

approaches the 𝑁 -point DFT of 𝒗𝑖). The spectral weights
are given by the eigenvalues of 𝑪 , i.e., the sampled PSD
of the signal process. Thus, the test statistic 𝑇 ′ in (9) is
the largest eigenvalue of this spectrally weighted frequency-
domain correlation matrix. The discussion above also shows
that an approximation to 𝑽 𝐻𝑪∗𝑽 for 𝑁 large can be ef-
ficiently computed by means of the FFT operation, similarly
to [21], with no significant performance loss even for moderate
values of 𝑁 .

If 𝑀 = 1, i.e., only one antenna is available, then it is
readily checked that

𝑇 ′ =
𝒚𝐻𝑪𝒚

𝒚𝐻𝒚
, (10)

which is the ratio of the spectrally weighted energy to total
energy, and can be seen as a generalization to the unknown
noise power case of the spectral correlation-based detector
from [21].

The following result gives the exact expression of the
GLR test in closed form for a particular family of temporal
covariance matrices 𝑪 .

Lemma 2: Assume that {0, 𝜆} are the only eigenvalues of
𝑪 , with 𝜆 > 0. Then the GLR test (8) is equivalent to the
closed-form test (9), independently of the SNR value.

Thus, for the case of a process {𝑠𝑛} with a flat bandpass
PSD, the asymptotic (for low SNR) GLR test is also the
corresponding GLR test for all SNR values. This suggests that
the loss incurred by the detector (9) with other types of signal
spectra at moderate SNR may be small. Numerical results will
attest to this remark.

To close this section, we note that it is possible to analyti-
cally derive the asymptotic distribution of the test statistic 𝑇
under both hypotheses. The corresponding expressions will be
presented in Sec. V.

III. DERIVATION OF THE GLR TEST

In this section we obtain the required ML estimates for the
derivation of the GLR detector (5).
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A. Preliminaries

Under ℋ0, (6) can be written as

𝑓(𝒚 ∣Σ,0) =
[
exp{− tr(Σ−1𝑹̂)}

𝜋𝑀 detΣ

]𝑁

, (11)

where we have introduced the sample covariance matrix

𝑹̂
.
=

1

𝑁
𝒀 𝒀 𝐻 . (12)

It is well known [5] that (11) is maximized for Σ̂0 = 𝑹̂,
yielding

max
Σ

𝑓(𝒚 ∣Σ,0) = [(𝜋𝑒)𝑀 det 𝑹̂]−𝑁 . (13)

Obtaining the ML estimates under ℋ1 is more involved. Let
us begin by introducing

𝒖∥
.
= Σ−1𝒉, 𝜌

.
= 𝒉𝐻Σ−1𝒉, 𝑮(𝜌)

.
= (𝑰𝑁 + 𝜌𝑪)−1.

(14)
Vector 𝒖∥ is the Capon beamformer [33], whereas 𝜌 is the
maximum SNR that can be obtained at the output of a linear
combiner 𝑥𝑛 = 𝒘𝐻𝒚𝑛, attained precisely at 𝒘 = 𝒖∥. Note
that 𝑮(𝜌) and 𝑪 share the same eigenvectors, and therefore
they commute. It will be also convenient to introduce the unit
norm vectors

𝒉̄
.
=

𝒉√
𝒉𝐻𝒉

, 𝒖̄∥
.
=

𝒖∥√
𝒖𝐻
∥ 𝒖∥

. (15)

Now we need expressions for the determinant and inverse of
𝑹1 = 𝑪⊗𝒉𝒉𝐻+𝑰𝑁⊗Σ, featuring in the p.d.f. (6). Applying
Sylvester’s determinant theorem [37] and the properties of the
Kronecker product,

det𝑹1 = (detΣ)𝑁 det(𝑰𝑁 + 𝜌𝑪). (16)

Regarding the inverse of 𝑹1, it is shown in Appendix A that

𝑹−1
1 = 𝑰𝑁 ⊗Σ−1 −𝑪𝑮(𝜌)⊗ 𝒖∥𝒖𝐻

∥ . (17)

With this, the quadratic form 𝒚𝐻𝑹−1
1 𝒚 can be written as (see

Appendix B):

𝒚𝐻𝑹−1
1 𝒚 = tr[𝑾⊥𝒀 𝒀 𝐻 ] + tr[𝑾∥𝒀 𝑮∗(𝜌)𝒀 𝐻 ], (18)

where the matrices 𝑾∥, 𝑾⊥ are defined as

𝑾∥
.
= 𝜌−1𝒖∥𝒖𝐻

∥ (19)

= Σ−1
[
𝜌−1𝒉𝒖𝐻

∥
]
, (20)

𝑾⊥
.
= Σ−1 − 𝜌−1𝒖∥𝒖𝐻

∥ (21)

= Σ−1
[
𝑰𝑀 − 𝜌−1𝒉𝒖𝐻

∥
]
. (22)

Note that Σ−1 = 𝑾∥ +𝑾⊥, and that 𝑾∥ has rank one and
is positive semidefinite. In addition, 𝑾⊥𝒉 = 0, and thus the
rank of 𝑾⊥ is at most 𝑀 − 1. The geometric interpretation
of these matrices is as follows. For any 𝒙 ∈ ℂ𝑀 , write 𝒙 =
𝑐𝒉+ 𝒙̃ for some 𝑐 ∈ ℂ, 𝒙̃ ∈ ℂ𝑀 with 𝒙̃𝐻𝒖∥ = 0. Note that
as long as 𝜌 = 𝒖𝐻

∥ 𝒉 ∕= 0, this decomposition exists and is
unique. (This condition means that the Capon beamformer is
not orthogonal to the spatial signature, i.e., it does not block

the signal at its output completely. It is satisfied for full rank
Σ, as 𝜌 = 𝒉𝐻Σ−1𝒉 > 0). Then[

𝜌−1𝒉𝒖𝐻
∥
]
𝒙 = 𝑐𝒉,

[
𝑰𝑀 − 𝜌−1𝒉𝒖𝐻

∥
]
𝒙 = 𝒙̃, (23)

i.e., Π
.
= 𝑰𝑀 −𝜌−1𝒉𝒖𝐻

∥ is the oblique projector along 𝒉 onto
the subspace orthogonal to 𝒖∥.

Note that 𝒙𝐻Σ−1𝒙 = ∣𝑐∣2𝒉𝐻Σ−1𝒉 + 𝒙̃𝐻𝑾⊥𝒙̃, which is
positive for 𝒙 ∕= 0. Then for 𝑐 = 0, one has that 𝒙 = 𝒙̃ is in a
subspace of dimension 𝑀−1, and 𝒙𝐻Σ−1𝒙 = 𝒙̃𝐻𝑾⊥𝒙̃ > 0
for 𝒙̃ ∕= 0, showing that 𝑾⊥ is positive semidefinite of rank
𝑀 − 1.

For completeness, we provide an expression for Σ in terms
of these matrices, given by

Σ = Π𝑾 †
⊥Π

𝐻 + 𝜌−1𝒉𝒉𝐻 , (24)

which is proved in Remark 2 (Appendix D).
The procedure whereby two different orthogonal spaces

are considered for the signal and the noise plus interference
subspaces in the spatial domain for this non-collaborative spec-
trum sensing scenario constitutes a recurrent and successful
approach in multiantenna detection [30] [34], array signal
processing [35] as well as in spectral estimation contexts [36].
The use of suitable parameter transformations in detection
schemes has also been addressed in [30].

B. A convenient change of variables

The decomposition of the unstructured inverse spatial co-
variance Σ−1 = 𝑾∥ + 𝑾⊥ into two structured positive
semidefinite matrices will be useful in order to obtain the ML
estimates. To this end, we introduce a change of variables
in order to replace the original set of unstructured unknown
parameters Ω

.
= {𝒉,Σ} by another set Ω′ based on 𝑾∥ and

𝑾⊥. In order to account for the structure of these matrices,
let us introduce the following (economy-size) EVDs:

𝑾∥ = 𝛾∥𝒖̄∥𝒖̄𝐻
∥ , 𝑾⊥ = 𝑼⊥Γ⊥𝑼𝐻

⊥ , (25)

where 𝛾∥ ∈ ℝ is positive, 𝒖̄∥ ∈ ℂ𝑀 has unit norm (note from
(19) that 𝒖̄∥ is the unit-norm Capon beamformer and 𝛾∥ the
inverse of the noise power at its output), Γ⊥ ∈ ℝ(𝑀−1)×(𝑀−1)

is positive definite diagonal, and 𝑼⊥ ∈ ℂ𝑀×(𝑀−1) has or-
thonormal columns. In addition, we require that (i) 𝑼𝐻

⊥ 𝒉̄ = 0
(to ensure that 𝑾⊥𝒉̄ = 0); and (ii) 𝒖̄𝐻

∥ 𝒉̄ ∕= 0 (to ensure that
𝑾∥ + 𝑾⊥ has full rank). Note that [𝑼⊥ 𝒉̄ ] ∈ ℂ𝑀×𝑀 is
unitary.

With these, the new parameter space we consider is given
by

Ω′ .= {𝜌, 𝒉̄, 𝛾∥, 𝒖̄∥,Γ⊥,𝑼⊥}. (26)

It is readily checked that under the standing assumptions 𝒉 ∕=
0, Σ = Σ𝐻 full rank, there is a one-to-one correspondence2

between the parameter spaces Ω and Ω′, which is summarized
in Table I. Hence, the maximization of the likelihood function
can be carried out over either Ω or Ω′ with identical result.

2Apart from irrelevant rotational ambiguities in 𝒉̄ and 𝒖̄∥, and rota-
tional/ordering ambiguities in the EVD of 𝑾⊥.
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In order to write the likelihood function in terms of the new
parameters, note from (16) and (18) that

− log 𝑓(𝒚 ∣Σ,𝒉)
= 𝑀𝑁 log 𝜋 +𝑁 log detΣ− log det𝑮∗(𝜌)
+ 𝑁 tr[𝑾⊥𝑹̂] + tr[𝑾∥𝒀 𝑮∗(𝜌)𝒀 𝐻 ]. (27)

The following result links the determinant of the unstructured
spatial covariance matrix with the new parameters; see Ap-
pendix C for the proof.

Lemma 3: Under the parameterization (25)-(26), it holds
that det(Σ−1) = 𝛾∥

∣∣𝒉̄𝐻 𝒖̄∥
∣∣2 det(Γ⊥).

Then (27) becomes

− log 𝑓(𝒚 ∣Σ,𝒉)
= 𝑀𝑁 log 𝜋 −𝑁 log 𝛾∥ −𝑁 log

∣∣𝒉̄𝐻 𝒖̄∥
∣∣2

− 𝑁 log detΓ⊥ − log det𝑮∗(𝜌)
+ 𝑁 tr[𝑼⊥Γ⊥𝑼𝐻

⊥ 𝑹̂] + 𝛾∥𝒖̄𝐻
∥ 𝒀 𝑮∗(𝜌)𝒀 𝐻 𝒖̄∥. (28)

C. ML estimation under ℋ1

We proceed now to minimize (28) with respect to the
parameters in (26). The optimum values of 𝛾∥ and Γ⊥ are
readily found:

𝛾∥ =
𝑁

𝒖̄𝐻
∥ 𝒀 𝑮∗(𝜌)𝒀 𝐻 𝒖̄∥

, Γ̂⊥ =
[
diag(𝑼𝐻

⊥ 𝑹̂𝑼⊥)
]−1

.

(29)
Substituting (29) back in (28), we obtain3

− log 𝑓

= 𝑁

(
𝑀 + log

𝜋𝑀

𝑁

)
−𝑁 log

∣∣𝒉̄𝐻 𝒖̄∥
∣∣2 − log det𝑮∗(𝜌)

+ 𝑁 log det
[
diag(𝑼𝐻

⊥ 𝑹̂𝑼⊥)
]

+ 𝑁 log
(
𝒖̄𝐻
∥ 𝒀 𝑮∗(𝜌)𝒀 𝐻𝒖̄∥

)
. (30)

The optimum value of 𝑼⊥ is provided by the following result,
whose proof is given in Appendix D:

Lemma 4: Let us consider the following cost: 𝐽(𝑼⊥)
.
=

det
[
diag(𝑼𝐻

⊥ 𝑹̂𝑼⊥)
]
. Then the solution of

min
𝑼⊥

𝐽(𝑼⊥) subject to 𝑼𝐻
⊥ 𝑼⊥ = 𝑰𝑀−1, 𝑼𝐻

⊥ 𝒉̄ = 0 (31)

is given by 𝐽min = 𝒉̄𝐻𝑹̂−1𝒉̄ ⋅ det 𝑹̂, and is attained when
𝑼⊥ is an orthonormal basis for the range space of (𝑰𝑀 −
𝒉̄𝒉̄𝐻)𝑹̂(𝑰𝑀 − 𝒉̄𝒉̄𝐻).
Substituting the value of 𝐽min into (30), one has

− log 𝑓

= 𝑁

(
𝑀 + log

𝜋𝑀

𝑁
+ log det 𝑹̂

)
−𝑁 log

∣∣𝒉̄𝐻 𝒖̄∥
∣∣2

− log det𝑮∗(𝜌)

+ 𝑁 log(𝒉̄𝐻𝑹̂−1𝒉̄) +𝑁 log
(
𝒖̄𝐻
∥ 𝒀 𝑮∗(𝜌)𝒀 𝐻 𝒖̄∥

)
.(32)

3For the sake of clarity and with some abuse of the notation, we denote
the value of 𝑓(𝒚 ∣Σ,𝒉) obtained after maximization w.r.t. a parameter in Ω′
simply by 𝑓 .

Now, minimizing (32) with respect to 𝒉̄ and 𝒖̄∥ (unit-norm
signature vector and Capon beamformer respectively) amounts
to minimizing

(𝒉̄𝐻𝑹̂−1𝒉̄) ⋅ (𝒖̄𝐻
∥ 𝒀 𝑮∗(𝜌)𝒀 𝐻 𝒖̄∥)∣∣𝒉̄𝐻 𝒖̄∥

∣∣2 , (33)

subject to 𝒉̄𝐻 𝒖̄∥ ∕= 0. To this end, the following result will
be applied; see Appendix E for the proof.

Lemma 5: Let 𝑨1, 𝑨2 be two 𝑀 × 𝑀 positive definite
Hermitian matrices. The minimum value of

𝐹 (𝒖1,𝒖2)
.
=

(𝒖𝐻
1 𝑨1𝒖1) ⋅ (𝒖𝐻

2 𝑨2𝒖2)

∣𝒖𝐻
1 𝒖2∣2 (34)

subject to 𝒖𝐻
1 𝒖2 ∕= 0 is given by 𝐹min = 𝜆min(𝑨1𝑨2) =

𝜆min(𝑨2𝑨1), and is attained if 𝒖1 (resp. 𝒖2) is a minimum
right eigenvector4 of 𝑨2𝑨1 (resp. 𝑨1𝑨2).
Therefore, from the SVD (7), the minimum value of (33) is
found to be 𝜆min[𝒀 𝑮∗(𝜌)𝒀 𝐻𝑹̂−1] = 𝑁𝜆min[𝑽

𝐻𝑮∗(𝜌)𝑽 ].
Using 𝒀 † = 𝑽 𝑺−1𝑼𝐻 , the corresponding ML estimates ˆ̄𝒉
and ˆ̄𝒖∥ are seen to be the unit-norm minimum eigenvectors of
the matrices 𝒀 𝑮∗(𝜌)𝒀 † and (𝒀 𝐻)†𝑮∗(𝜌)𝒀 𝐻 , respectively.

Substitution of these optimum values into (32) finally yields

max
Σ,𝒉

𝑓(𝒚 ∣Σ,𝒉) (35)

= [(𝜋𝑒)𝑀 det 𝑹̂]−𝑁 ⋅max
𝜌≥0

{(
𝜆𝑁min[𝑽

𝐻𝑮∗(𝜌)𝑽 ]

det𝑮∗(𝜌)

)−1
}
,

which, together with (13), proves that the GLR test is indeed
(8) as in Theorem 1.

The ML estimates of the parameters are summarized in Ta-
ble I. The expression for the ML estimate 𝑾̂⊥ = 𝑼̂⊥Γ̂⊥𝑼̂𝐻

⊥
given in Table I is justified in Remark 1 of Appendix D while
that of Σ stems from (24).

As previously mentioned, there is no closed-form expression
for the ML estimate of 𝜌, which has to be computed by
numerical means, e.g. a gradient search as in Sec. VI. This
raises the issue of local optima, about which the following
can be said. First, experimental evidence suggests that the
likelihood function is unimodal in 𝜌. Second, the asymptotic
(as 𝑁 → ∞) likelihood function does turn out to be unimodal;
see Remark 3 in Appendix F. And finally, for certain kinds of
temporal covariance matrices unimodality can be analytically
established, as shown in the next section.

IV. GLR TEST FOR LOW-SNR AND BINARY-VALUED

EIGENSPECTRUM CASES

In this section we first explore the behavior of the GLR
test (8) for asymptotically low SNR, with arbitrary (but non-
white) temporal correlation of the signal of interest. After this,
we particularize the GLR test (8) to the case in which the
eigenvalues of the temporal covariance matrix 𝑪 reduce to
{0, 𝜆} with 𝜆 > 0 (recall that these eigenvalues approach the
samples of the signal PSD as 𝑁 → ∞; thus, this situation
includes the case of a PSD occupying only a fraction of
the Nyquist bandwidth, in which it is constant), showing

4In the sequel we shall refer to right eigenvectors simply as eigenvectors.
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Transformed parameters: Ω′ = {𝜌, 𝒉̄, 𝛾∥, 𝒖̄∥,Γ⊥,𝑼⊥} ML estimates of transformed parameters

𝜌 = 𝒉𝐻Σ−1𝒉 𝜌 = argmin𝜌≥0

{
𝜆𝑁

min

[
(𝒀 𝑮∗(𝜌)𝒀 𝐻)(𝒀 𝒀 𝐻)−1

]

det𝑮∗(𝜌)

}

𝒉̄ = 𝒉/
√
𝒉𝐻𝒉 ˆ̄𝒉 = unit-norm minimum eigenvector of 𝒀 𝑮∗(𝜌)𝒀 †

𝒖̄∥ = (Σ−1𝒉)/
√
𝒉𝐻Σ−2𝒉 ˆ̄𝒖∥ = unit-norm minimum eigenvector of (𝒀 𝐻)†𝑮∗(𝜌)𝒀 𝐻

𝛾∥ = (𝒉𝐻Σ−2𝒉)/(𝒉𝐻Σ−1𝒉) 𝛾∥ =
(

1
𝑁

ˆ̄𝒖𝐻
∥ 𝒀 𝑮∗(𝜌)𝒀 𝐻 ˆ̄𝒖∥

)−1

𝑼⊥Γ⊥𝑼𝐻
⊥ = Σ−1 − (𝒉𝐻Σ−1𝒉)−1(Σ−1𝒉)(Σ−1𝒉)𝐻 𝑼̂⊥Γ̂⊥𝑼̂𝐻

⊥ =
[
(𝑰𝑀 − ˆ̄𝒉 ˆ̄𝒉𝐻 )𝑹̂(𝑰𝑀 − ˆ̄𝒉 ˆ̄𝒉𝐻 )

]†
Original parameters: Ω = {Σ,𝒉} ML estimates of original parameters

𝒉 = (
√

𝜌/𝛾∥/∣𝒖̄𝐻
∥ 𝒉̄∣) ⋅ 𝒉̄ 𝒉̂ =

(√
𝜌/𝛾∥/∣ ˆ̄𝒖𝐻

∥
ˆ̄𝒉∣
)
⋅ ˆ̄𝒉

Σ−1 = 𝑼⊥Γ⊥𝑼𝐻
⊥ + 𝛾∥𝒖̄∥𝒖̄𝐻

∥ Σ̂−1 = 𝑼̂⊥Γ̂⊥𝑼̂𝐻
⊥ + 𝛾∥ ˆ̄𝒖∥ ˆ̄𝒖𝐻

∥
Σ = Π(𝑼⊥Γ−1

⊥ 𝑼𝐻
⊥ )Π𝐻 + (𝛾∥∣𝒖̄𝐻

∥ 𝒉̄∣2)−1𝒉̄𝒉̄𝐻 Σ̂ = Π̂𝑹̂Π̂𝐻 + 𝜌−1𝒉̂𝒉̂𝐻

Π
.
= 𝑰𝑀 − (𝒖̄𝐻

∥ 𝒉̄)−1𝒉̄𝒖̄𝐻
∥ Π̂ = 𝑰𝑀 − (ˆ̄𝒖𝐻

∥
ˆ̄𝒉)−1 ˆ̄𝒉 ˆ̄𝒖𝐻

∥

TABLE I
TRUE PARAMETERS (LEFT) AND ML ESTIMATES (RIGHT) UNDER ℋ1 , WITH 𝑹̂ = 1

𝑁
𝒀 𝒀 𝐻 , 𝑮(𝜌)

.
= (𝑰𝑁 + 𝜌𝑪)−1 .

that a closed-form expression for the detector exists in this
case, valid for all SNR values. Remarkably, the closed-form
detectors obtained in both cases are the same.

A. GLR test for asymptotically low SNR

From (8), the GLR statistic is 𝑇 = max𝜌≥0 𝑡(𝜌). For small
𝜌, the following first-order approximations

(𝑰𝑁+𝜌𝑪∗)−1 ≈ 𝑰𝑁−𝜌𝑪∗, det(𝑰𝑁+𝜌𝑪∗) ≈ 1+𝜌 tr𝑪∗

(36)
hold. Therefore,

𝑡(𝜌) ≈ 𝜆−𝑁
min [𝑽

𝐻(𝑰𝑁 − 𝜌𝑪∗)𝑽 ]

1 + 𝜌 tr𝑪∗ =
(1 − 𝜌𝜆max[𝑽

𝐻𝑪∗𝑽 ])−𝑁

1 + 𝜌 tr𝑪∗ .

(37)
Taking logarithms and using the approximation log(1+𝑥) ≈ 𝑥
for small ∣𝑥∣, one has

log 𝑡(𝜌) ≈ 𝜌𝑁

(
𝜆max[𝑽

𝐻𝑪∗𝑽 ]− 1

𝑁
tr𝑪∗

)
. (38)

Suppose now that 𝜌 were known; in that case, the GLR
statistic is directly 𝑡(𝜌), and (38) shows that, in low SNR, the
GLR test is equivalent to comparing 𝜆max[𝑽

𝐻𝑪∗𝑽 ] against
a threshold. This amounts to saying that for vanishingly small
SNR, knowledge of 𝜌 becomes irrelevant, and the GLR test can
be rephrased as in (9) since tr𝑪∗ is a constant independent
of the data, thus establishing Lemma 1.

B. Binary-valued eigenspectrum

We now set to prove Lemma 2. Consider the EVD 𝑪 =
𝑭Λ𝑭𝐻 , and assume that the only eigenvalues of 𝑪 are 𝜆
and zero, with multiplicities 𝐿 and 𝑁 −𝐿 respectively. Since
it is assumed that 𝑪 has ones on its diagonal, it follows that
tr𝑪 = 𝐿𝜆 = 𝑁 . Letting 𝑏

.
= 𝐿/𝑁 < 1 denote the fraction

of nonzero eigenvalues, then 𝜆 = 𝑏−1. The GLR statistic 𝑇
from (8) can be written as

𝑇 = max
𝜌≥0

{
𝜆−𝑁

min

[
(𝑭 ∗𝑽 )𝐻(𝑰𝑁 + 𝜌Λ)−1𝑭 ∗𝑽

]
det(𝑰𝑁 + 𝜌Λ)

}
(39)

It is readily checked that (𝑰𝑁 + 𝜌Λ)−1 = 𝑰𝑁 − 𝜌
1+𝑏−1𝜌Λ and

det(𝑰𝑁 + 𝜌Λ) = (1 + 𝑏−1𝜌)𝑏𝑁 . Therefore,

𝑇 1/𝑁 (40)

= max
𝜌≥0

⎧⎨
⎩
𝜆−1

min

[
(𝑭 ∗𝑽 )𝐻(𝑰𝑁 − 𝜌

1+𝑏−1𝜌Λ)𝑭 ∗𝑽
]

(1 + 𝑏−1𝜌)𝑏

⎫⎬
⎭

=

{
min
𝜌≥0

[(
1− 𝜌𝜆̄

1 + 𝑏−1𝜌

)
(1 + 𝑏−1𝜌)𝑏

]}−1

, (41)

where 𝜆̄
.
= 𝜆max[𝑽

𝐻𝑪∗𝑽 ]. It is straightforward to show that
the minimum in (41) is attained at

𝜌 = max

{
0,

𝜆̄− 1

𝑏−1 − 𝜆̄

}
, if 0 ≤ 𝜆̄ ≤ 𝑏−1, (42)

whereas no minimum exists if 𝜆̄ > 𝑏−1. However, this
case need not be considered: since 𝑽 𝐻𝑽 = 𝑰𝑀 , by the
Poincaré separation theorem [38] one has 𝜆max[𝑽

𝐻𝑪∗𝑽 ] ≤
𝜆max[𝑪

∗] = 𝑏−1. Thus, (41) becomes

𝑇 1/𝑁 =

{
1, if 0 ≤ 𝜆̄ ≤ 1,

𝜆̄−𝑏
(

1−𝑏
1−𝑏𝜆̄

)1−𝑏

, if 1 < 𝜆̄ ≤ 𝑏−1,
(43)

which is a non-decreasing function of 𝜆̄ ∈ [0, 𝑏−1]. Hence, the
GLR test for binary-valued eigenspectrum is equivalent to the
test (9), as was to be shown. It has a nice geometrical inter-
pretation: if we collect in 𝑭 the columns of 𝑭 corresponding
to the nonzero eigenvalue 𝜆 = 𝑏−1, then 𝑪 = 𝑏−1𝑭𝑭𝐻 , and

𝜆max[𝑽
𝐻𝑪∗𝑽 ] = 𝑏−1𝜆max[(𝑭

𝐻𝑽 ∗)𝐻(𝑭𝐻𝑽 ∗)]
= 𝑏−1 cos2 𝜃, (44)

where 𝜃 is the minimum principal angle [39] between the
subspaces spanned by 𝑽 ∗ and 𝑭 . The GLR statistic is thus
a measure of the largest achievable projection of a vector in
the range space of 𝑽 ∗ (data subspace) onto the range space
of 𝑭 (reference subspace). Note that cos2 𝜃 > 𝑏 in order to
have 𝑇 > 1.
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V. PERFORMANCE ANALYSIS IN LOW SNR

The following result, whose proof is given in Appendix
F, provides the asymptotic distributions of the GLR statistic
under each hypothesis, assuming that the SNR is small. Thus,
it enables us to compute the probabilities of detection 𝑃D and
false alarm 𝑃FA for a given threshold.

Theorem 2: As 𝑁 → ∞ and for sufficiently small SNR,
the GLR statistic (8) is asymptotically distributed as

2 log𝑇 ∼
{

𝜒2
2𝑀−1, under ℋ0,

𝜒′2
2𝑀−1(𝛼sph(𝜌)), under ℋ1,

(45)

𝛼sph(𝜌)
.
= 2𝑁 log

1
𝑁 tr(𝑰𝑁 + 𝜌𝑪)

[det(𝑰𝑁 + 𝜌𝑪)]1/𝑁
, (46)

where 𝜌
.
= 𝒉𝐻Σ−1𝒉, and 𝜒2

𝑑, 𝜒
′2
𝑑 (𝛼) denote respectively

central and non-central chi-square distributions with 𝑑 degrees
of freedom and non-centrality parameter 𝛼.

The argument of the log in (46) is the ratio of the arithmetic
mean (AM) to geometric mean (GM) of the eigenvalues of
𝑰𝑁 + 𝜌𝑪 , which is the temporal covariance matrix at the
output of the Capon beamformer. By the AM-GM inequality,
this ratio is no less than one, and it is equal to one iff
all eigenvalues are equal, i.e., iff 𝑪 = 𝑰𝑁 . In that case
𝛼sph(𝜌) = 0 for all 𝜌 and the asymptotic distributions under ℋ1

and ℋ0 coincide, which is consistent with the fact that white
signals are not detectable under this signal model. Applying
Szegö’s theorem [40], the asymptotic value of the AM-GM
ratio can be written in terms of the signal PSD:

lim
𝑁→∞

1
𝑁 tr(𝑰𝑁 + 𝜌𝑪)

[det(𝑰𝑁 + 𝜌𝑪)]1/𝑁
(47)

=
1
2𝜋

∫ 𝜋

−𝜋[1 + 𝜌𝑆𝑠𝑠(𝑒
𝑗𝜔)]d𝜔

exp
{

1
2𝜋

∫ 𝜋

−𝜋 log[1 + 𝜌𝑆𝑠𝑠(𝑒𝑗𝜔)]d𝜔
} ,

which is the inverse of the Spectral Flatness Measure (SFM)
[41] associated with the power spectrum 1 + 𝜌𝑆𝑠𝑠(𝑒

𝑗𝜔). Its
minimum value is 1 for 𝜌 = 0, increasing monotonically with
𝜌 toward the inverse of the SFM associated to 𝑆𝑠𝑠(𝑒

𝑗𝜔) [42].
We could ask for the signal eigenvalue distribution maxi-

mizing the performance of the GLR detector at a given SNR.
In view of Theorem 2, this amounts to maximizing 𝛼sph(𝜌).
Recalling that tr𝑪 = 𝑁 due to signal power normalization,
and with {𝜆0, . . . , 𝜆𝑁−1} the eigenvalues of 𝑪 , the problem
becomes

min
{𝜆𝑛}

𝑁−1∏
𝑛=0

(1 + 𝜌𝜆𝑛) (48)

subject to
𝑁−1∑
𝑛=0

𝜆𝑛 = 𝑁, 𝜆𝑖 ≥ 0, 𝑖 = 0, . . . , 𝑁 − 1,

whose solutions are 𝜆𝑗 = 𝑁 for some 𝑗 ∈ {0, 1, . . . , 𝑁 − 1}
and 𝜆𝑛 = 0 for 𝑛 ∕= 𝑗 (independently of 𝜌), as can be easily
shown following the same reasoning as in [21, Sec. IV]. For
𝑁 → ∞, this implies that the optimum PSD concentrates all
its power at a single frequency. This is not surprising, as this
kind of peaky spectra minimize the SFM and are easier to
detect in the presence of noise.
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Fig. 1. Distribution of the statistic 2 log 𝑇 for 𝑀 = 4 and 𝑁 = 128. (a)
Under ℋ0 (b) Under ℋ1.

Finally, note from Theorem 2 that, as desired, the asymptotic
performance of the GLR detector does not depend on the
specific spatial correlation profile of the noise, but only on
the operational SNR 𝜌.

VI. NUMERICAL RESULTS

We proceed to examine the performance of the proposed de-
tectors via Monte Carlo simulations and check the accuracy of
the analytical approximations. In all experiments, the signature
vector 𝒉 and the noise spatial covariance matrix Σ = 𝑯𝑯𝐻

are randomly generated at each Monte Carlo run, with 𝒉 scaled
in order to obtain a given SNR value 𝜌 = 𝒉𝐻Σ−1𝒉. The
entries of 𝒉 and 𝑯 ∈ ℂ𝑀×𝑀 are independent zero-mean
circular Gaussian. We refer to the two proposed detectors as:

1) Iterative GLRT: the exact GLR test from (8), in which
the optimization w.r.t. 𝜌 is performed using a gradient
descent algorithm detailed in Appendix G.

2) Asymptotic GLRT: the closed-form detector from (9),
which has been shown to coincide with the GLR detector
for vanishing SNR or for a binary-valued eigenspectrum
(PSD) of the primary signal.

For each signal type used in the simulations, the autocorre-
lation of the signal is estimated from a register of 106 noise-
free samples, and the Toeplitz matrix 𝑪 is built from these
estimates.

In order to check the accuracy of the theoretical distributions
of the GLR statistic given in Theorem 2, these are compared in
Fig. 1 against the empirical histograms of the iterative GLRT
scheme, for a setting with 𝑀 = 4 antennas and 𝑁 = 128.
The PSD of the signal is constant within its support, which
equals half the Nyquist bandwidth. A very good agreement is
observed, even for this moderate value of the sample size 𝑁 .
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To establish suitable benchmarks for the proposed schemes,
we additionally consider the three following detectors, all of
which incorporate knowledge of 𝑪 .

1) A direct generalization of the single-antenna detector
of Quan et al. [21], in which the following statistic is
compared against a threshold:

𝑇Quan et al. = tr(𝒀 𝑪𝒀 𝐻). (49)

2) An energy ratio (ER) detector in which (49) is normal-
ized by the total observed energy, in order to cope with
the noise uncertainty issue. The corresponding statistic
is

𝑇ER =
tr(𝒀 𝑪𝒀 𝐻)

tr(𝒀 𝒀 𝐻)
, (50)

which is a direct generalization of (10) to the multi-
antenna setting.

3) The “rule T” detector proposed by Stoica & Cedervall
in [29], which exploits that the temporal correlation
length of the noise is much shorter than that of the
signal of interest. Its specification is too lengthy and the
reader is referred to [29] for more information. Using the
notation from [29], our implementation assumes 𝑛̂ = 1
(signal spatial rank), 𝑀 = 16 (truncation point) and
𝐾 = 1 (number of correlation lags).

A. Detection performance in the low SNR regime

The empirical ROC curves of the different detectors con-
sidered are shown in Fig. 2, together with the analytical
approximation from Theorem 2, for a setting with 𝑀 = 4,
𝑁 = 512 and 𝜌 = 0.2. Two different kinds of signals are
considered. The first one is an OFDM-modulated digital TV
baseband signal with a bandwidth of 3.805 MHz, sampled at
16 Msps and quantized to 9-bit precision. The signal samples
are approximately Gaussian distributed, with a PSD that is
almost constant within its support (about 48% of the Nyquist
bandwidth). The second signal uses a 16-QAM constellation
and square-root raised cosine pulses with roll-off factor 1,
and it is sampled at twice its baud rate with random timing
offset. In this case, the corresponding samples do not follow
a Gaussian distribution. In accordance with the signal model,
frequency-flat channels are assumed; the impact of frequency
selectivity will be considered in Sec. VI-C.

As can be seen in Fig. 2, the proposed schemes signifi-
cantly outperform the detectors of Quan et al. and Stoica &
Cedervall, as well as the Energy Ratio detector. The SNR is
sufficiently low for the asymptotic GLRT to achieve the same
performance as the iterative GLRT detector. The agreement of
the empirical and theoretical ROC curves for the GLR test is
again quite good. Also note that the GLR detectors perform
noticeably better with the OFDM signal than with the QAM
signal. This is explained by the shape of the respective PSDs:
in this setting, the inverse SFM given by (47) equals 1.01525
and 1.00705 respectively for the OFDM and QAM signals.

B. Detection performance vs. SNR

The exact GLR detector (8) and its asymptotic version (9)
were tested with the same OFDM and QAM signals of the
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Fig. 2. ROC curves for 𝑀 = 4, 𝑁 = 512 and 𝜌 = 0.2: (a) OFDM and (b)
square root raised cosine signals.
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previous section, but now varying the operational SNR in order
to check the performance loss incurred by the asymptotic GLR
scheme. Fig. 3 shows the probability of missed detection in
terms of the average SNR per antenna, 𝜌/𝑀 , for 𝑀 = 4, 𝑁 =
128 and fixed 𝑃FA = 0.05. Notice the good match between
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Fig. 4. Detection performance vs. SNR for fixed 𝑃FA = 0.05, with 𝑀 = 4
and 𝑁 = 256. Lines: frequency-flat channels. Markers: Frequency-selective
WINNER II channel model.

the empirical and analytical (asymptotic) results over the SNR
range considered, which is not limited to just the very low
SNR region. The better results observed for the OFDM signal
are again explained by the fact that the corresponding PSD
is ”less flat”. Also note that the two versions of the GLR
detector yield the same result with the OFDM signal; this is
as expected, since the PSD of the OFDM signal is very close to
the binary-valued eigenspectrum case for which both detectors
are equivalent (cf. Sec IV-B). On the other hand, for the raised
cosine PSD the asymptotic form of the GLR detector presents
a performance loss that increases with the SNR. Hence, with
non-binary valued power spectra, this detector offers a tradeoff
between complexity and performance.

C. Effect of frequency selective channels

To close this section, we consider a realistic scenario based
on the parameters of the GSM system. The separation between
GSM channels is 200 kHz, although in a given geographical
area two adjacent channels cannot be active in order to avoid
interference. Thus, the effective channel separation is 400 kHz,
which is the same as the approximate bandwidth of the GSM
signal, based on Gaussian Minimum Shift Keying (GMSK)
[43]. We thus synthesized samples of a baseband GMSK
waveform based on GSM parameters at a sampling rate of
400 ksps.

Frequency-selective channels were generated according to
the WINNER Phase II model [44] with Profile C1 (suburban),
and Non-line-of-sight (NLOS). The central frequency is 1.8
GHz and the channel bandwidth is 400 kHz. Transmitter and
receiver are randomly distributed on a 10 km-side square. For
the receiver we take a linear array with 𝑀 = 4 antennas
with inter-element separation of 10 cm. This channel is re-
scaled to obtain a fixed operational SNR and is applied to
the GSM waveform. Fig. 4 shows the probability of detection
of the two proposed schemes vs. average per antenna SNR
for fixed 𝑃FA = 0.05. The inset also shows the PSD of
the GMSK waveform. It is observed that both the exact

and asymptotic versions of the GLR detector are robust to
frequency selectivity effects, and in fact the results obtained
virtually match those of a frequency-flat scenario.

We note that some small degree of non-whiteness in the
combined spectral content of noise plus interfering broadband
sources should be expected within the detector’s bandwidth
due to random frequency selectivity affecting the secondary
users (assuming a uniform PSD at the transmitter over the
detector’s bandwidth). Nonetheless, for the detection of a
comparatively narrow-band primary signal in the simulated
WINNER Phase II channel model, this effect (fluctuations in
the tenths of dB range over a span of 400 kHz) is less critical
than the mitigation of spatially correlated interference. We
should remark as reported in [45], that under all real-world
conditions, unavoidable model uncertainties appear in terms
of an SNR wall that establishes a trade-off between primary
user’s SNR and detector robustness. That is, below a minimum
SNR, any detector ceases to operate reliably regardless of
the duration of the observation window. Although worth
mentioning, a detailed statistical analysis of these degrading
effects5 falls out of the scope of this paper and has not been
included for reasons of space.

VII. CONCLUSIONS

The multiantenna GLR detector for a Gaussian signal of
known (up to a scaling) PSD and spatial rank one in tempo-
rally white Gaussian noise-plus-interference of arbitrary and
unknown spatial correlation has been derived in terms of a
univariate optimization problem over an SNR parameter. An
analytical expression for the statistical distributions of the
test in the low SNR regime has been obtained, resulting in
close agreement with empirical results for realistic scenar-
ios featuring practical (non-Gaussian) communication signals.
This is attributed to the fact that, as the detector statistic is
based on sample correlations, the underlying distribution of
individual samples becomes asymptotically irrelevant for large
data records. The spectral flatness measure at the output of
the minimum variance beamformer was found to determine
the performance of the GLR detector, such that less spectrally
flat signals enjoy improved detectability. At the other extreme,
temporally white signals are not detectable under the model
considered. The asymptotic version of the GLR detector for
low SNR was also derived, resulting in a closed-form test
with much lower computational cost to which the exact GLR
detector also reduces if the signal PSD is binary-valued.

APPENDIX

A. Proof of (17)

Letting 𝒒
.
= Σ−1/2𝒉, one has

𝑹−1
1 (51)

= [𝑪 ⊗ 𝒉𝒉𝐻 + 𝑰𝑁 ⊗Σ]−1

= (𝑰𝑁 ⊗Σ−1/2)[𝑪 ⊗ 𝒒𝒒𝐻 + 𝑰𝑀𝑁 ]−1(𝑰𝑁 ⊗Σ−1/2).

5For example, detection within the steep spectral roll-off region of the
broadband interferer(s).
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Recalling the definition (14) of 𝑮(𝜌), we now claim that

[𝑪 ⊗ 𝒒𝒒𝐻 + 𝑰𝑀𝑁 ]−1 = 𝑰𝑀𝑁 −𝑪𝑮(𝜌)⊗ 𝒒𝒒𝐻 , (52)

which can be checked by directly multiplying the right-hand
side of (52) by 𝑪⊗𝒒𝒒𝐻+𝑰𝑀𝑁 to see that it yields the identity
matrix (using that 𝑪 and 𝑮(𝜌) share the same eigenvectors).
Substituting (52) back into (51) and noting from (14) that
Σ−1/2𝒒 = 𝒖∥, the desired result is obtained.

B. Proof of (18)

From (17), and using the property tr(𝑨𝑇
1 𝑨

𝐻
2 𝑨3𝑨4) =

vec(𝑨2)
𝐻(𝑨1 ⊗𝑨3)vec(𝑨4) [47], one has

𝒚𝐻𝑹−1
1 𝒚 (53)

= vec(𝒀 )𝐻(𝑰𝑁 ⊗Σ−1 −𝑪𝑮(𝜌)⊗ 𝒖∥𝒖𝐻
∥ )vec(𝒀 )

= tr(Σ−1𝒀 𝒀 𝐻)− tr(𝒖∥𝒖𝐻
∥ 𝒀 (𝑪𝑮(𝜌))𝑇𝒀 𝐻). (54)

Applying now the identity 𝑪𝑮(𝜌) = 𝜌−1[𝑰𝑁 −𝑮(𝜌)], which
follows from the definition (14) of 𝑮(𝜌), noting that 𝑮𝑇 (𝜌) =
𝑮∗(𝜌), and then rearranging terms yields the desired result.

C. Proof of Lemma 3

First, note that 𝑾⊥ = [𝑼⊥ 𝒉̄ ]Γ̃⊥[𝑼⊥ 𝒉̄ ]𝐻 constitutes a
full EVD of 𝑾⊥, where

Γ̃⊥
.
=

[
Γ⊥

0

]
. (55)

Then the determinant of Σ−1 can be written as

det(Σ−1)

= det(𝑾∥ +𝑾⊥)

= det
(
𝛾∥𝒖̄∥𝒖̄𝐻

∥ + [𝑼⊥ 𝒉̄ ]Γ̃⊥[𝑼⊥ 𝒉̄ ]𝐻
)

(56)

= det
(
𝛾∥[𝑼⊥ 𝒉̄ ]𝐻 𝒖̄∥𝒖̄𝐻

∥ [𝑼⊥ 𝒉̄ ] + Γ̃⊥
)

(57)

= det(Γ̃⊥) + 𝛾∥𝒖̄𝐻
∥ [𝑼⊥ 𝒉̄ ] adj(Γ̃⊥)[𝑼⊥ 𝒉̄ ]𝐻 𝒖̄∥,(58)

where in the last step we used the fact that det(𝑨+ 𝒑𝒒𝐻) =
det𝑨+𝒒𝐻 adj(𝑨)𝒑 [46]. Note now from (55) that det(Γ̃⊥) =
0, whereas adj(Γ̃⊥) = det(Γ⊥)𝒆𝑀𝒆𝐻𝑀 . The desired result
then follows.

D. Proof of Lemma 4

Let 𝒀⊥
.
= (𝑰𝑀 − 𝒉̄𝒉̄𝐻)𝒀 be the orthogonal projection

of the data matrix onto the subspace orthogonal to 𝒉. Let
𝑹̂⊥

.
= 1

𝑁𝒀⊥𝒀 𝐻
⊥ be the corresponding sample covariance

matrix, with (economy-size) EVD 𝑹̂⊥ = 𝑸𝑫𝑸𝐻 (i.e., 𝑫 ∈
ℝ(𝑀−1)×(𝑀−1) is positive diagonal and 𝑸 ∈ ℂ𝑀×(𝑀−1)

has orthonormal columns). Note that since 𝑼𝐻
⊥ 𝒉̄ = 0, then

𝑼𝐻
⊥ 𝑹̂𝑼⊥ = 𝑼𝐻

⊥ 𝑹̂⊥𝑼⊥. Therefore, by virtue of Hadamard’s
inequality [46], the cost 𝐽 satisfies

𝐽(𝑼⊥) = det
[
diag(𝑼𝐻

⊥ 𝑸𝑫𝑸𝐻𝑼⊥)
]

≥ det(𝑼𝐻
⊥ 𝑸𝑫𝑸𝐻𝑼⊥), (59)

with equality holding in (59) iff the matrix between parenthe-
ses is diagonal. This happens if 𝑼⊥ = 𝑸, which is feasible

since its columns are orthonormal and 𝑸𝐻 𝒉̄ = 0. Thus
𝐽min = det𝑫.

Let now 𝑸̃
.
= [𝑸 𝒉̄ ], which is unitary. Write the inverse

of 𝑸̃𝐻𝑹̂𝑸̃ in terms of the adjoint matrix as

(𝑸̃𝐻𝑹̂𝑸̃)−1 =
adj(𝑸̃𝐻𝑹̂𝑸̃)

det(𝑸̃𝐻𝑹̂𝑸̃)
, (60)

which can be rewritten as

𝑸̃𝐻𝑹̂−1𝑸̃ =
adj(𝑸̃𝐻𝑹̂𝑸̃)

det 𝑹̂
. (61)

The (𝑀,𝑀) element of this matrix is therefore

𝒉̄𝐻𝑹̂−1𝒉̄ =
𝒆𝐻𝑀 adj(𝑸̃𝐻𝑹̂𝑸̃)𝒆𝑀

det 𝑹̂
=

det(𝑸𝐻𝑹̂𝑸)

det 𝑹̂
. (62)

Finally, observe that 𝑫 = 𝑸𝐻𝑹̂⊥𝑸 = 𝑸𝐻𝑹̂𝑸 because
𝑸𝐻 𝒉̄ = 0. This, together with (62), yields the desired result.

Remark 1: Note from (29) that the ML estimate of Γ⊥ is
given by

Γ̂⊥ =
[
diag

(
𝑼̂𝐻

⊥ 𝑹̂𝑼̂⊥
)]−1

= 𝑫−1, (63)

since the ML estimate of 𝑼⊥ is 𝑼̂⊥ = 𝑸. Hence, the
ML estimate of 𝑾⊥ = 𝑼⊥Γ⊥𝑼𝐻

⊥ turns out to be 𝑾̂⊥ =
𝑼̂⊥Γ̂⊥𝑼̂𝐻

⊥ = 𝑸𝑫−1𝑸𝐻 = 𝑹̂†
⊥.

Remark 2: We note that the Moore-Penrose pseudoinverse
𝑾 †

⊥ = 𝑼⊥Γ−1
⊥ 𝑼𝐻

⊥ fulfils 𝑾 †
⊥𝒉 = 0, with 𝑾⊥𝑾

†
⊥ the

projector onto the subspace orthogonal to 𝒉 and 𝑾⊥𝑾
†
⊥ +

𝒉𝒉
𝐻

= I𝑀 . Then, to verify (24), we premultiply by Σ−1:
Σ−1(Π𝑾 †

⊥Π
𝐻 + 𝜌−1𝒉𝒉H) = 𝑾⊥𝑾

†
⊥Π

𝐻 + I𝑀 − Π𝐻 =

I𝑀 − 𝒉𝒉
H
Π𝐻 . As Π𝒉 = 0, the previous result is I𝑀 ,

verifying that (24) is a valid expression for Σ.

E. Proof of Lemma 5

Since 𝐹 (𝒖1,𝒖2) is invariant to scalings in 𝒖1 and 𝒖2, its
minimization is equivalent to the problem

min
𝒖1,𝒖2

(𝒖𝐻
1 𝑨1𝒖1)(𝒖

𝐻
2 𝑨2𝒖2) subject to ∣𝒖𝐻

1 𝒖2∣2 = 𝑐2,

(64)
with 𝑐2 > 0 an arbitrary positive constant. Thus, consider the
Langrangian

ℒ = (𝒖𝐻
1 𝑨1𝒖1)(𝒖

𝐻
2 𝑨2𝒖2)− 𝜒(∣𝒖𝐻

1 𝒖2∣2 − 𝑐2), (65)

with 𝜒 the Lagrange multiplier. Equating the gradient of ℒ
w.r.t. 𝒖1, 𝒖2 to zero, we respectively obtain

(𝒖𝐻
2 𝑨2𝒖2)𝑨1𝒖1 = 𝜒(𝒖𝐻

2 𝒖1)𝒖2, (66)

(𝒖𝐻
1 𝑨1𝒖1)𝑨2𝒖2 = 𝜒(𝒖𝐻

1 𝒖2)𝒖1. (67)

To discard the possibility of having 𝒖𝐻
1 𝒖2 = 0, note that

this would mean that the left-hand sides of (66)-(67) are both
zero, which can only happen if 𝒖1 = 𝒖2 = 0 since 𝑨1, 𝑨2

are positive definite. Thus, assuming 𝒖1 ∕= 0, 𝒖2 ∕= 0, solving
for 𝜒 in (66)-(67) yields

𝜒 =
(𝒖𝐻

1 𝑨1𝒖1)(𝒖
𝐻
2 𝑨2𝒖2)

∣𝒖𝐻
1 𝒖2∣2 , (68)
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that is, the Lagrange multiplier takes the value of the attained
cost. Substituting now the value of 𝒖2 from (66) and of 𝜒
from (68) into (67), one has 𝑨2𝑨1𝒖1 = 𝜒𝒖1. Similarly, it
also holds that 𝑨1𝑨2𝒖2 = 𝜒𝒖2. Thus 𝜒 is an eigenvalue of
𝑨2𝑨1 (resp. 𝑨1𝑨2) with associated eigenvector 𝒖1 (resp.
𝒖2). Hence the cost is minimized when 𝜒 is the smallest
eigenvalue of these matrices. Equivalently, 𝒖1 (resp. 𝒖2) is
a generalized eigenvector [39] of the pair (𝑨1,𝑨

−1
2 ) [resp.

(𝑨2,𝑨
−1
1 )].

F. Proof of Theorem 2

The asymptotic distributions of the GLR statistic 𝑇GLR in
the weak signal regime are given in [31, Sec. 6.5] for a test
of the form

ℋ0 : 𝜽𝑟 = 𝜽𝑟0 , 𝜽𝑠 ℋ1 : 𝜽𝑟 ∕= 𝜽𝑟0 , 𝜽𝑠, (69)

where 𝜽𝑟 ∈ ℝ𝑟, 𝜽𝑠 ∈ ℝ𝑠. One wishes to test whether 𝜽𝑟 =
𝜽𝑟0 as opposed to 𝜽𝑟 ∕= 𝜽𝑟0 , and 𝜽𝑠 is a vector of nuisance
parameters which are unknown (but the same) under either
hypothesis. The distributions are

2 log𝑇GLR ∼
{

𝜒2
𝑟 , under ℋ0,

𝜒′2
𝑟 (𝛼), under ℋ1,

(70)

where the non-centrality parameter 𝛼 is given in [31, eq.
(6.24)]. In our case, the nuisance parameters are given by the
elements of the noise spatial covariance Σ. On the other hand,
the parameter to be tested is 𝒉 = 0 versus 𝒉 ∕= 0. However,
since the p.d.f. depends on 𝒉 only through 𝒉𝒉𝐻 , which is
invariant to multiplication of 𝒉 by a unit-magnitude complex
scalar, we can fix the imaginary part of the last element of 𝒉
(say) to zero. Thus the vector 𝜽𝑟 comprises the real parts of
the elements of 𝒉, plus the imaginary parts of the elements of
𝒉 save the last one. The size of 𝜽𝑟 is therefore 𝑟 = 2𝑀 − 1.

Direct application of [31, eq. (6.24)] to determine 𝛼 is
involved for the model at hand. We propose an alternative
approach based on the following result, whose proof will be
presented in turn.

Lemma 6: Consider the GLR statistic 𝑇 from (8). Then one
has

lim
𝑁→∞

𝔼[∣𝑇 − 𝑇 (𝜌0)∣2] = 0, (71)

where 𝜌0 = 𝒉𝐻Σ−1𝒉 = 𝒖𝐻
∥ 𝒉 is the true value of the SNR,

and

𝑇 (𝜌)
.
=

[ 1
𝑁 tr(𝑰𝑁 + 𝜌𝑪)

[det(𝑰𝑁 + 𝜌𝑪)]1/𝑁

]𝑁
. (72)

From Lemma 6, it follows that

lim
𝑁→∞

𝔼[2 log𝑇 ] = lim
𝑁→∞

2 log𝑇 (𝜌0) (73)

= lim
𝑁→∞

2𝑁 log
1
𝑁 tr(𝑰𝑁 + 𝜌0𝑪)

[det(𝑰𝑁 + 𝜌0𝑪)]1/𝑁
.

On the other hand, note that if 𝑥 ∼ 𝜒′2
𝑟 (𝛼), then 𝔼[𝑥] = 𝑟+𝛼.

Hence,

lim
𝑁→∞

𝔼[2 log𝑇 ] = (2𝑀 − 1) + lim
𝑁→∞

𝛼. (74)

It follows from (73)-(74) that for sufficiently large 𝑁 , 𝛼 ≫
2𝑀−1 and one may approximate 𝛼 ≈ 2 log𝑇 (𝜌0) = 𝛼sph(𝜌0).

Proof of Lemma 6: Write the data matrix as 𝒀 = 𝒉𝒔𝑇 +
Σ1/2𝑾 , where the entries of 𝑾

.
= Σ−1/2[ 𝒛1 𝒛2 ⋅ ⋅ ⋅ 𝒛𝑁 ]

are independent zero-mean complex circular Gaussian random
variables with unit variance. It follows that for 𝑨 ∈ ℂ𝑁×𝑁 ,

𝔼[𝒀 𝑨𝒀 𝐻 ] = tr(𝑪∗𝑨)𝒉𝒉𝐻 + tr(𝑨)Σ. (75)

Now note that 1
𝑁𝒀 𝑨𝒀 𝐻 is a consistent estimator of its mean

for the matrices 𝑨 in this paper, and hence

1

𝑁
𝒀 𝑨𝒀 𝐻 var

=
tr(𝑪∗𝑨)

𝑁
𝒉𝒉𝐻 +

tr(𝑨)

𝑁
Σ, (76)

where
var
= denotes stochastic convergence in variance [48],

i.e., 𝑎𝑁
var
= 𝑏𝑁 iff lim𝑁→∞ 𝔼[∣𝑎𝑁 − 𝑏𝑁 ∣2] = 0, applying

componentwise for matrices. Let us rewrite the GLR statistic
𝑇 as

𝑇 = max
𝜌≥0

𝜆−𝑁
min

[
( 1
𝑁𝒀 𝒀 𝐻)−1( 1

𝑁𝒀 𝑮∗(𝜌)𝒀 𝐻)
]

[det𝑮∗(𝜌)]−1
. (77)

Then, taking into account that tr𝑪∗ = tr 𝑰𝑁 = 𝑁 , the
asymptotic behavior of 𝑇 can be found:

𝑇
var
= (78)

max𝜌≥0
𝜆−𝑁

min [
1
𝑁 tr𝑮∗(𝜌)⋅(Σ+𝒉𝒉𝐻 )−1(Σ+𝑎(𝜌)𝒉𝒉𝐻 )]

[det𝑮∗(𝜌)]−1 =

max𝜌≥0

[
1
𝑁 tr𝑮∗(𝜌)

[det𝑮∗(𝜌)]1/𝑁 ⋅ 𝜆min

[
𝑰𝑀 − 1−𝑎(𝜌)

1+𝜌0
𝒖∥𝒉𝐻

]]−𝑁

(79)

where

𝑎(𝜌)
.
=

tr(𝑪∗𝑮∗(𝜌))
tr𝑮∗(𝜌)

. (80)

In order to obtain (79), the Matrix Inversion Lemma has been
applied. Denote now the matrix in brackets in (79) by 𝑩. Then
𝑩 has an eigenvalue equal to one with multiplicity 𝑀 − 1,
since 𝑩𝒗 = 𝒗 for any 𝒗 such that 𝒗𝐻𝒉 = 0. The remaining
eigenvalue is associated to the eigenvector 𝒖∥ and is given by

𝜆 =
1 + 𝜌0𝑎(𝜌)

1 + 𝜌0
. (81)

We claim that 𝑎(𝜌) ≤ 1 for all 𝜌 ≥ 0, so that 𝜆 in (81) is
less than one and hence it is the minimum eigenvalue of 𝑩.
First, note that 𝑎(0) = tr𝑪∗/ tr 𝑰𝑁 = 1. On the other hand,
for 𝜌 > 0, since 𝑪 and 𝑮(𝜌) share the same eigenvectors, we
can write 𝑎(𝜌) in (80) in terms of the eigenvalues {𝜆𝑛}𝑁−1

𝑛=0

of 𝑪 as

𝑎(𝜌) =

∑𝑁−1
𝑛=0

𝜆𝑛

1+𝜌𝜆𝑛∑𝑁−1
𝑛=0

1
1+𝜌𝜆𝑛

(82)

=
1

𝜌

[
𝑁∑𝑁−1

𝑛=0
1

1+𝜌𝜆𝑛

− 1

]
, (83)

where (83) follows from the fact that 𝑁 =
∑

𝑛
1

1+𝜌𝜆𝑛
+

𝜌
∑

𝑛
𝜆𝑛

1+𝜌𝜆𝑛
. Note now that for positive numbers {𝑥𝑛}𝑁−1

𝑛=0 ,
the Cauchy-Schwarz inequality can be invoked to show that(

1
𝑁

∑
𝑛 𝑥𝑛

) (
1
𝑁

∑
𝑛

1
𝑥𝑛

)
≥ 1. Hence, taking 𝑥𝑛 = 1 + 𝜌𝜆𝑛,

and noting that
∑

𝑛 𝜆𝑛 = 𝑁 , one has (1+𝜌)
𝑁

∑
𝑛

1
1+𝜌𝜆𝑛

≥ 1.
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Applying this to (83) yields 𝑎(𝜌) ≤ 1, as desired. Therefore,
from (79), one has

𝑇
var
=

[
min
𝜌≥0

[
1
𝑁 tr𝑮∗(𝜌)

det1/𝑁 𝑮∗(𝜌)
⋅ 1 + 𝜌0𝑎(𝜌)

1 + 𝜌0

]]−𝑁

. (84)

Note from (80) that 1 + 𝜌0𝑎(𝜌) can be written as

1 + 𝜌0𝑎(𝜌) =
tr[(𝑰𝑁 + 𝜌0𝑪

∗)𝑮∗(𝜌)]
tr𝑮∗(𝜌)

. (85)

Substituting (85) in (84),

𝑇
var
=

(
1

𝑁(1 + 𝜌0)
min
𝜌≥0

𝐻(𝜌)

)−𝑁

, (86)

where we have introduced

𝐻(𝜌)
.
=

tr[(𝑰𝑁 + 𝜌0𝑪
∗)𝑮∗(𝜌)]

det1/𝑁 𝑮∗(𝜌)
. (87)

Since 𝑮∗(𝜌) = (𝑰𝑁 + 𝜌𝑪∗)−1, applying Jensen’s inequality
one has

log𝐻(𝜌)

= log
𝑁−1∑
𝑛=0

1 + 𝜌0𝜆𝑛
1 + 𝜌𝜆𝑛

+
1

𝑁

𝑁−1∑
𝑛=0

log(1 + 𝜌𝜆𝑛) (88)

≥ log𝑁 +
1

𝑁

𝑁−1∑
𝑛=0

log
1 + 𝜌0𝜆𝑛
1 + 𝜌𝜆𝑛

+
1

𝑁

𝑁−1∑
𝑛=0

log(1 + 𝜌𝜆𝑛)

(89)

= log𝑁 +
1

𝑁

𝑁−1∑
𝑛=0

log(1 + 𝜌0𝜆𝑛) (90)

= log𝐻(𝜌0), (91)

showing that the minimum is attained at 𝜌 = 𝜌0. Hence,

𝑇
var
=

⎛
⎜⎝

[∏𝑁−1
𝑛=0 (1 + 𝜌0𝜆𝑛)

]1/𝑁
1 + 𝜌0

⎞
⎟⎠

−𝑁

= 𝑇 (𝜌0), (92)

as was to be shown.
Remark 3: Asymptotic unimodality in 𝜌. In addition to

being minimized at 𝜌 = 𝜌0, the function 𝐻(𝜌) in (87)
has no other local minimum in 𝜌 ≥ 0 provided that the
detectability condition 𝑪 ∕= 𝑰𝑁 holds, as we show next.
Differentiating (88),

d log𝐻(𝜌)

d𝜌
=

1

𝑁

𝑁−1∑
𝑛=0

𝜆𝑛
1 + 𝜌𝜆𝑛

−
[
𝑁−1∑
𝑛=0

1 + 𝜌0𝜆𝑛
1 + 𝜌𝜆𝑛

]−1 𝑁−1∑
𝑛=0

𝜆𝑛(1 + 𝜌0𝜆𝑛)

(1 + 𝜌𝜆𝑛)2
. (93)

Let now

𝛿
.
= 𝜌0−𝜌, 𝑥𝑛

.
=

𝜆𝑛
1 + 𝜌𝜆𝑛

⇒ 1 + 𝜌0𝜆𝑛
1 + 𝜌𝜆𝑛

= 1+ 𝛿𝑥𝑛,

(94)

so that (93) becomes

d log𝐻(𝜌)

d𝜌
(95)

=
1

𝑁

∑
𝑛

𝑥𝑛 −
[∑

𝑛

(1 + 𝛿𝑥𝑛)

]−1 ∑
𝑛

𝑥𝑛(1 + 𝛿𝑥𝑛)

= −
[∑

𝑛

(1 + 𝛿𝑥𝑛)

]−1

︸ ︷︷ ︸
.
=𝑐1

⎡
⎣∑

𝑛

𝑥2𝑛 − 1

𝑁

(∑
𝑛

𝑥𝑛

)2
⎤
⎦

︸ ︷︷ ︸
.
=𝑐2

⋅𝛿.

(96)

Note from (94) that 𝑐1 > 0 for all 𝜌 ≥ 0. On the other hand,
from the Cauchy-Schwarz inequality one has 𝑐2 ≥ 0, with
equality iff all 𝑥𝑛 are equal. But this would imply that all
eigenvalues of 𝑪 are equal, i.e., 𝑪 = 𝑰𝑁 ; thus, 𝑐2 > 0.
We conclude that the derivative (96) is negative if 𝛿 > 0
and positive if 𝛿 < 0, which shows that 𝐻(𝜌) has a unique
minimum at 𝜌 = 𝜌0.

G. Gradient descent computations

The goal is to maximize 𝑡(𝜌) in (8) over 𝜌 ≥ 0. Equivalently,
we can minimize 𝑡0(𝜌)

.
= 𝑡−1/𝑁 (𝜌) by means of an iterative

gradient descent of the form 𝜌𝑘+1 = 𝜌𝑘 − 𝜇𝑘𝑡
′
0(𝜌𝑘), with

𝜇𝑘 > 0 a suitable stepsize sequence. In the simulations, we
initialized 𝜌0 = 1, 𝜇0 = 100. The stepsize is reduced as per
𝜇𝑘 = 0.25𝜇𝑘−1 whenever there is a sign change in the descent
direction. The stopping criterion adopted is ∣𝑡′0(𝜌𝑘)∣ < 10−5

with a maximum of 100 iterations.
The required derivative is obtained as follows. Denote the

minimum unit-norm eigenvector of 𝑽 𝐻(𝑰𝑁 + 𝜌𝑪∗)−1𝑽 by
𝒖0(𝜌). Then we can write

𝜆0(𝜌)
.
= 𝜆min[𝑽

𝐻(𝑰𝑁 + 𝜌𝑪∗)−1𝑽 ] (97)

= 𝒖𝐻
0 (𝜌)

[
𝑽 𝐻(𝑰𝑁 + 𝜌𝑪∗)−1𝑽

]
𝒖0(𝜌), (98)

and therefore, using the expressions for eigenvalues derivatives
in [47], one has

𝑡′0(𝜌)

= [det(𝑮∗(𝜌))]−1/𝑁 ⋅ ∂
∂𝜌

(
𝒖𝐻
0 (𝜌)

[
𝑽 𝐻𝑮∗(𝜌)𝑽

]
𝒖0(𝜌)

)
+ 𝜆0(𝜌) ⋅ ∂

∂𝜌
[det(𝑮∗(𝜌))]−1/𝑁

= − [det(𝑮∗(𝜌))]−1/𝑁 ⋅
⋅ (

𝒖𝐻
0 (𝜌)

[
𝑽 𝐻𝑮∗(𝜌)𝑪∗𝑮∗(𝜌)𝑽

]
𝒖0(𝜌)

)
+ 𝜆0(𝜌) ⋅ [det(𝑮∗(𝜌))]−1/𝑁 1

𝑁
tr (𝑮∗(𝜌)𝑪∗)

=

[
−𝒖𝐻

0 (𝜌)𝑨(𝜌)𝒖0(𝜌) +
1

𝑁
𝜆0(𝜌) ⋅ tr (𝑮∗(𝜌)𝑪∗)

]
⋅

⋅ [det(𝑮∗(𝜌))]−1/𝑁
,

where 𝑨(𝜌)
.
= 𝑽 𝐻𝑮∗(𝜌)𝑪∗𝑮∗(𝜌)𝑽 . Using the EVD 𝑪 =

𝑭Λ𝑭𝐻 and the fact that 𝑭𝐻 approaches the orthonormal DFT
matrix for large 𝑁 , one can precompute 𝑭𝐻𝑽 ∗ efficiently by
applying the FFT to the columns of 𝑽 ∗. The elements of
𝑨(𝜌) are then obtained as weighted crosscorrelations between
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the columns of 𝑭𝐻𝑽 ∗, where the weights are of the form
𝜆𝑛/(1 + 𝜌𝜆𝑛)

2. A similar approach can be used to compute
𝑽 𝐻𝑮∗(𝜌)𝑽 efficiently.

REFERENCES

[1] M. Wax, T. Kailath, ”Detection of signals by information-theoretic
criteria,” IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-33,
pp. 387–392, Apr. 1985.

[2] M. Viberg, B. Ottersten, T. Kailath, ”Detection and estimation in sensor
arrays using weighted subspace fitting,” IEEE Trans. Signal Process.,
vol. 39, pp. 2436–2449, Nov. 1991.

[3] L. L. Scharf, B. Friedlander, ”Matched subspace detectors,” IEEE Trans.
Signal Process., vol. 42, pp. 2146–2157, Aug. 1994.

[4] O. Besson, S. Kraut, L. L. Scharf, ”Detection of an unknown rank-one
component in white noise,” IEEE Trans. Signal Process., vol. 54, pp.
2835–2839, Jul. 2006.

[5] A. Leshem, A.-J. van der Veen, ”Multichannel detection of Gaussian
signals with uncalibrated receivers,” IEEE Signal Process. Lett., vol. 8,
pp. 120–122, Apr. 2001.

[6] S. A. Vorobyov, A. Gershman, Kon Max Wong, ”Maximum likelihood
direction-of-arrival estimation in unknown noise fields using sparse
sensor arrays,” IEEE Trans. Signal Process., vol. 53, pp. 34–43, Jan.
2005.

[7] M. Agrawal, S. Prasad, ”A modified likelihood function approach to
DOA estimation in the presence of unknown spatially correlated Gaus-
sian noise using a uniform linear array,” IEEE Trans. Signal Process.,
vol. 48, pp. 2743–2749, Oct. 2000.

[8] Yuehua Wu, Kwok-Wai Tam, Fu Li, ”Determination of number of
sources with multiple arrays in correlated noise fields,” IEEE Trans.
Signal Process., vol. 50, pp. 1257–1260, Jun. 2002.

[9] P. Stoica, Kon Max Wong, Qiang Wu, ”On a nonparametric detection
method for array signal processing in correlated noise fields,” IEEE
Trans. Signal Process., vol. 44, pp. 1030–1032, Apr. 1996.

[10] M. Viberg, P. Stoica, B. Ottersten, ”Maximum likelihood array pro-
cessing in spatially correlated noise fields using parameterized signals,”
IEEE Trans. Signal Process., vol. 45, pp. 996–1004, Apr. 1997.

[11] I. Akyildiz, Won-Yeol Lee, M. Vuran, S. Mohanty, ”A survey on
spectrum management in cognitive radio networks,” IEEE Commun.
Mag., vol. 46, pp. 40–48, Apr. 2008.

[12] J. M. Peha, ”Sharing spectrum through spectrum policy reform and
cognitive radio,” Proc. IEEE, vol. 97, pp. 708–719, Apr. 2009.

[13] J. Unnikrishnan, V. Veeravalli, ”Cooperative sensing for primary detec-
tion in cognitive radio,” IEEE J. Sel. Topics Signal Process., vol. 2, pp.
18–27, Feb. 2008.

[14] A. Taherpour, M. Nasiri-Kenari, S. Gazor, ”Multiple antenna spectrum
sensing in cognitive radios,” IEEE Trans. Wireless Commun., vol. 9, pp.
814–823, Feb. 2010.

[15] Rui Zhang, Teng Lim, Ying-Chang Liang, Yonghong Zeng, ”Multi-
antenna based spectrum sensing for cognitive radios: A GLRT ap-
proach,” IEEE Trans. Commun., vol. 58, pp. 84–88, Jan. 2010.

[16] Pu Wang, Jun Fang, Ning Han, Hongbin Li, ”Multiantenna-assisted
spectrum sensing for cognitive radio,” IEEE Trans. Veh. Technol., vol.
59, pp. 1791–1800, May 2010.

[17] D. Ramı́rez, G. Vazquez-Vilar, R. López-Valcarce, J. Vı́a, I. Santamarı́a,
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